Sample records for geoscience education programs

  1. Mississippi State University’s Geoscience Education and Geocognition Research Program in the Department of Geosciences

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Clary, R. M.; Sherman-Morris, K.; Kirkland, B.; Gillham, D.; Moe-Hoffman, A.

    2009-12-01

    The Department of Geosciences at Mississippi State University offers both a MS in Geosciences and a PhD in Earth and Atmospheric Sciences, with the possibility of a concentration in geoscience education. The department offers broad research opportunities in the geoscience sub-disciplines of Geology, Meteorology, GIS, and Geography. Geoscience education research is one of the research themes emphasized in the department and focuses on geoscience learning in traditional, online, field-based, and informal educational environments. Approximately 20% of the faculty are actively conducting research in geoscience education and incorporate both qualitative and quantitative research approaches in areas including: the investigation of effective teaching strategies, the implementation and evaluation of geoscience teacher professional development programs and diversity enhancement programs, the study of the history and philosophy of science in geoscience teaching, the exploration of student cognition and understanding of complex and dynamic earth systems, and the investigation of using visualizations to enhance learning in the geosciences. The inception and continued support of an active geoscience education research program is derived from a variety of factors including: (1) the development of the on-line Teachers in Geosciences (TIG) Masters Degree Program which is the primary teaching appointment for the majority of the faculty conducting geoscience education research, (2) the securing of federal funds to support geoscience education research, (3) the publication of high-quality peer-reviewed research papers in both geoscience education and traditional research domains, (4) the active contribution of the geoscience education faculty in their traditional research domains, (5) a faculty that greatly values teaching and recognizes the research area of geoscience education as a sub-domain of the broader geoscience disciplines, (6) the involvement of university faculty, outside of these primary faculty leaders, in geoscience education research-related projects where the expertise the geoscience education faculty offers is a catalyst for collaboration, (7) departmental support including research space, teaching loads, and start-up funds that are in-line with the remainder of the department faculty. Results of the program have included securing funding from multiple agencies (e.g., NSF, NASA, DOE, MDE, NOAA, ARC), providing support to and involving graduate and undergraduate students in both geoscience education and traditional research projects, disseminating project results in peer-reviewed journals, technical reports, and international/national conferences, and developing courses for the concentration in geoscience education.

  2. Geocognition Research: An International Discipline (Invited)

    NASA Astrophysics Data System (ADS)

    Libarkin, J.

    2009-12-01

    Geocognition and geoscience education research have experienced a dramatic increase in research productivity and graduate student training in the past decade. At this writing, over twelve U.S. graduate programs dedicated to geocognition and geoscience education research exist within geoscience departments, with numerous other programs housed within education. International research programs are experiencing similar increases in these research domains. This insurgence of graduate training opportunities is due in large part to several factors, including: An increased awareness of the importance of Earth Systems Science to public understanding of science, particularly in light of global concern about climate change; new funding opportunities for science education, cognitive science, and geoscience education research; and, engagement of a significant part of the geosciences and education communities in writing new standards for Earth Systems literacy. Existing research programs blend geoscience content knowledge with research expertise in education, cognitive science, psychology, sociology and related disciplines. Research projects reflect the diversity of interests in geoscience teaching and learning, from investigations of pedagogical impact and professional development to studies of fundamental geocognitive processes.

  3. Summary of the Journal of Geoscience Education Urban Theme Issue (Published in November, 2004)

    NASA Astrophysics Data System (ADS)

    Abolins, M. J.

    2004-12-01

    The urban geoscience education theme issue includes twelve manuscripts describing efforts to make geoscience more inclusive. These efforts reflect two central beliefs: (1) that urban geoscience education more effectively serves urban residents (slightly more than 80% of the American population) and (2) that urban education encourages minority participation in the geosciences. These convictions spawned educational programs serving many different kinds of learners. Educators developed unique curricula to meet the needs of each audience, but most curricula incorporate content associated with the built environment. The following paragraphs summarize audience characteristics and curricular content. Audience Urban geoscience education served many different kinds of learners. Although most programs targeted an audience with a specific level of educational experience (e.g., elementary school students) at a specific location (e.g., Syracuse, NY), audience characteristics varied greatly from one program to another: (1) Participants included elementary, middle, and high school students, undergraduates (both majors and non-majors), K-12 teachers (both pre-service and in-service), graduate students, realtors, and community members. (2) At least three programs served populations with substantial numbers of African American, Hispanic, and Asian American students. (3) Audiences were drawn from every corner of the nation except the Pacific Northwest and Florida and resided in cities varying greatly in population. These cities included the nation's largest combined metropolitan area (New York City, NY-NJ-CT-PA), other metropolitan areas containing populations of over one million, and communities as small as Ithaca, NY (population: 96,501). As illustrated by the preceding examples, urban geoscience education served learners with different levels of educational experience, some programs focused on minority learners, and program participants lived in cities both big and small. Content Most urban geoscience curricula include content associated with the built environment. Some content is organized around themes that are unique to the largest cities, but much content is explicitly suburban. Examples follow: (1) A good example of a theme unique to the largest cities is the impact of geology on the construction of early Twentieth Century skyscrapers. (2) Much explicitly suburban material addresses human-environment interactions in urbanizing areas. The above examples show that curricula described in the theme issue include content relevant to both big city and suburban learners. Summary Although urban geoscience education programs serve many different kinds of learners, most curricula include content focusing on the built environment. Taken together, urban geoscience education programs utilized content relevant to both big city and suburban learners and served audiences with different levels of educational experience and various ethnic backgrounds.

  4. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    NASA Astrophysics Data System (ADS)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as ensure that they have the necessary skills and competencies to succeed as next generation professionals in a variety of employment sectors.

  5. Voluntarism and Diversification of Undergraduate Geoscience Programs.

    ERIC Educational Resources Information Center

    Greenberg, Jeffrey King

    1990-01-01

    Strategies that can be used to revitalize geoscience education are discussed. Stressed are the ideas of providing voluntary assistance to science and science teacher education and program diversification. (CW)

  6. Building on the Success of Increasing Diversity in the Geosciences: A Bridging Program From Middle School to College

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Robinson, D.; Suleiman, A.; Maggi, B.

    2004-12-01

    A bridging program to increase the diversity in the geosciences was created at Hampton University (HU) to inspire underrepresented minorities to pursue an educational path that advances them towards careers in the geosciences. Three objectives were met to achieve this goal. First, we inspired a diverse population of middle and high school students outside of the classroom by providing an after school geoscience club, a middle school geoscience summer enrichment camp, and a research/mentorship program for high school students. Second, we helped fill the need for geoscience curriculum content requested of science teachers who work primarily with underrepresented middle school populations by providing a professional development workshop at HU led by geoscience professors, teachers, and science educators. Third, we built on the successful atmospheric sciences research and active Ph.D. program by developing our geoscience curriculum including the formation of a new space, earth, and atmospheric sciences minor. All workshops, camps, and clubs have been full or nearly full each year despite restrictions on participants repeating any of the programs. The new minor has 11 registered undergraduates and the total number of students in these classes has been increasing. Participants of all programs gave the quality of the program good ratings and participant perceptions and knowledge improved throughout the programs based on pre-, formative, and summative assessments. The ultimate goal is to increase the number of degrees granted to underrepresented minorities in the geosciences. We have built a solid foundation with our minor that prepares students for graduate degrees in the geosciences and offer a graduate degree in physics with a concentration in the atmospheric sciences. However, it's from the geoscience pipeline that students will come into our academic programs. We expect to continue to develop these formal and informal education programs to increase our reputation and utilize the network of schools with which we have built relationships to recruit underrepresented minority students into our academic programs. We also plan to continue to enhance our undergraduate minor and graduate degree programs to build a self-sustaining graduate degree-granting program in the geosciences.

  7. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted that their institutions did not recognize the value of education-related scholarly activities, or undervaluing it compared to more traditional research activities. Given this reality, faculty desire strategies for balancing their time to allow time to pursue both. The current restructuring of NSF educational programs raises questions regarding future directions and the scale of support that may be available from the proposed Catalyzing Advances in Undergraduate STEM Education (CAUSE) Program. At the time of writing this abstract, specific details have not been communicated, but it appears that CAUSE could encompass components from several programs within the Division of Undergraduate Education's TUES, STEP, and WIDER programs, as well as the Geoscience Education and OEDG programs in the Geosciences Directorate. The RTUGeoEd project will continue to provide support to faculty seeking CAUSE (and other educational funding within DUE).

  8. Offering a Geoscience Professional Development Program to Promote Science Education and Provide Hands-on Experiences for K-12 Science Educators

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; Pollard, David A.; Snipes, Vincent T.; Atkinson, Alvin

    2014-01-01

    Development of an effective strategy for promoting science education and professional development of K-12 science educators is a national priority to strengthen the quality of science, technology, engineering, and mathematics (STEM) education. This article reports the outcomes of a Geoscience Professional Development Program (GPDP) workshop…

  9. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation

    NASA Astrophysics Data System (ADS)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus groups results, and career outcomes strongly suggest the program cultivated an environment in which not only were students expected to enter graduate school, but they were successful in pursuing a graduate degree and entering the geoscience workforce. The third study was a critical incident study conducted to develop a taxonomy for geoscience recruitment at the more pre-college age. Analysis of 20 interviews with undergraduate geoscience majors produce an independent taxonomy with many similarities to a previous study garnered from interviews with geoscience professionals. Use of the taxonomy in program design will enhance the effectiveness of the recruitment of underrepresented minorities to major in the geosciences and enter careers in the geosciences. New Zealand is one the most seismically active places in the world. July 15th, 2009 Dusky Sound, South Island, New Zealand encountered a Mw 7.8 earthquake. In order to gain insight into partitioning of the slip on the subduction zone, a relocation study from the 2009 events was performed. Using the software program hypoDD, events were relocated and formed 4 major clusters. Results from the relocation indicate that 1) the events are all located above the subduction interface; 2) the events appear to have occurred in a transitional zone between the Australian and Pacific plates; and 3) the northernmost cluster appears to have partially filled a seismic gap between the 2009 Dusky Sound event and a previous event in 2003.

  10. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited)

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.

    2010-12-01

    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education (PIRE) programs, and the new Climate Change Education Partnership (CCEP) program. Many broader impact activities associated with individual research grants supported by GEO contribute to the mix, through integration of research and education. Improving access to high quality geoscience education, developing educational resources and pedagogies that reflect current understandings based on cognitive research on how people learn science in formal and informal settings, cultivating a diverse talent pool for the future, and developing robust mechanisms to evaluate the quality of these various approaches and tools are challenges faced by the entire geosciences research and education community, not just NSF/GEO. In the past two years, GEO has worked collaboratively with the Education and Human Resources (EHR) Directorate, and sister agencies NOAA and NASA, to establish a new GEO Education and Diversity Strategic Framework, that will guide our investments in the future, and identify opportunities for a more cohesive, collaborative, and synergistic approach across NSF and the federal government. Details of this new strategic framework, results of recent program evaluations, and their implications for future NSF/GEO education program funding will be discussed.

  11. Building an Effective and Affordable K-12 Geoscience Outreach Program from the Ground Up: A Simple Model for Universities

    ERIC Educational Resources Information Center

    Dahl, Robyn Mieko; Droser, Mary L.

    2016-01-01

    University earth science departments seeking to establish meaningful geoscience outreach programs often pursue large-scale, grant-funded programs. Although this type of outreach is highly successful, it is also extremely costly, and grant funding can be difficult to secure. Here, we present the Geoscience Education Outreach Program (GEOP), a…

  12. Developing a Program to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Prendeville, J. C.

    2001-05-01

    The Geosciences have a history of poor participation by minorities- African Americans, Hispanics, Native Americans and persons with disabilities. Demographic data concerning population trends over the next decades make it clear that, without intervention, underrepresentation of these groups in the geosciences will only worsen. The Directorate for Geosciences of the National Science Foundation has acknowledged the problem of underrepresentation and the loss of intellectual resources that it represents. The Directorate has established a program to create a pool of students from underrepresented groups who will take their place in the future as both scientific researchers and educators, as well as scientifically knowledgeable citizens. The strategy employed in developing the Geosciences Diversity program emphasizes community direction and inclusion. Steps in developing the program included examining data that demonstrate where the "leaks" in the educational pipeline occur; reviewing the programs that are offered by the NSF, by other federal agencies and by professional societies; and gaining insights from individuals who have developed or managed programs that have similar goals.

  13. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and attitudes of the two student research groups that could be contributing to the developing geoscience workforce crisis. However, the study also validated the notion that, in spite of significant blocking forces arrayed in front of them, advanced geoscience programs can be successful and offer viable curricula that serve to increase students' interest and opinions towards the field. By not only recognizing the existence of the geoscience workforce gap but also understanding its root causes, the role of advanced high school geoscience education emerges as an integral part of a solution to the problem.

  14. Increasing Diversity in the Geosciences: Recruitment Programs and Student Self-Efficacy

    ERIC Educational Resources Information Center

    Baber, Lorenzo D.; Pifer, Meghan J.; Colbeck, Carol; Furman, Tanya

    2010-01-01

    Using a conceptual framework constructed around self-efficacy, this study explores specific recruitment programs that may contribute to the development of self-efficacy for students of color in the geosciences. This mixed methods study of geoscience education includes quantitative analysis of the Summer Experience in Earth and Mineral Science…

  15. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through a second pilot testing with Spring 2012 graduates from 45 departments across the United States. These graduating students from undergraduate and graduate programs answered questions about their earth science education experiences at the high school, community college, and university levels; their quantitative skills; their research and internship experiences and their immediate plans after graduation. Out of the 294 complete responses to the survey, 233 were from undergraduate students. This presentation will focus on the responses of these undergraduate students. AGI hopes to fully deploy this survey broadly to geosciences departments across the country in Spring 2013. AGI will also begin longitudinally participants from the previous Exit Survey efforts in order to understand their progression through their chosen career paths.

  16. American Indian and Indigenous Geoscience Program: Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2013-05-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one component of a cultural geoscience program in ensuring diverse students complete with excellence and success their route to research and education. The critical components of a cultural geoscience program and the role of cultural mentors are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational geoscience program approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The program model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  17. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before and after transfer, research opportunities, and 2YC-4YC collaborations. Improving student success is an important priority at most 2YCs, and is especially challenging because students who enroll at a 2YC arrive with a wide range of abilities, preparation, and goals. Web resources that build on research from education, cognitive science, and psychology address topics such as stereotype threat, solo status, the affective domain, and effective teaching approaches. Other materials describe how to work with various student populations (e.g., English-language learners, students with disabilities, veterans), approaches to strengthening students' ability to monitor their own learning, and other strategies for supporting student success. Programs that support student success in general are important for the more specific goal of developing the geoscience workforce.

  18. Defining the Geoscience Community through a Quantitative Perspective

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  19. Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences

    NASA Astrophysics Data System (ADS)

    Furman, T.; Freeman, K. H.; Faculty, D.

    2003-12-01

    Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before pursuing employment or doctoral programs. Enrollments in courses for non-majors have also increased substantially over the past 5 years, while those of other PSU science departments have decreased. We attribute this success to changes in pedagogic approaches, focusing on active learning exercises in large (200+) and small (<75) courses. Innovative use of an electronic personal response system has also improved attendance, enrollment and student learning in our general education courses. This approach was developed by a fixed-term faculty hire in Geoscience Education. As per our departmental strategic plan, we plan to hire again in this area to further these successes and implement new approaches to learning and teaching in our undergraduate educational programs.

  20. Geoscience Education in the Boy Scouts of America

    ERIC Educational Resources Information Center

    Hintz, Rachel; Thomson, Barbara

    2012-01-01

    Boy Scout geoscience education is not "desk" education--it is an informal, hands-on, real-world education where Scouts learn through activities, trips, and the outdoors, as well as in meetings and in the merit badge program. Merit badge requirements, many of which meet National Science Education Standards for Earth and Space Science,…

  1. Growing Community Roots for the Geosciences in Miami, Florida, A Program Aimed at High School and Middle School Students to Increase Awareness of Career and Educational Opportunities in the Geosciences

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Hickey-Vargas, R.; Gebelein, J.; Draper, G.; Rego, R.

    2013-12-01

    Growing Community Roots for the Geosciences is a 2-year pilot recruitment project run by the Department of Earth and Environment at Florida International University (FIU) and funded by the NSF OEDG (Opportunities for Enhancing Diversity in the Geosciences) program. FIU, the State University of Florida in Miami is a federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. The goal of this project is to inform students enrolled in the local middle and high schools to career opportunities in the geosciences and to promote pathways for underrepresented groups to university geoscience degree programs. The first year's program included a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students in the public school system. The teacher workshop was attended by 20 teachers who taught comprehensive and physical science in grades 6-8. It included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, interpretation of landform with Google Earth imagery, and a field trip to a local working limestone quarry. On the first day of the workshop, participants were surveyed on their general educational background in science and their familiarity and comfort with teaching basic geoscience concepts. On the final day, the teachers participated in a group discussion where we discussed how to make geoscience topics and careers more visible in the school curriculum. The 2-week summer camp was attended by 21 students entering grades 9-12. The program included hands on exercises on geoscience and GIS concepts, field trips to local barrier islands, the Everglades, a limestone quarry and a waste to energy facility, and tours of the NOAA National Hurricane Center and the FIU SEM lab. Participants were surveyed on their general educational background in math and science as well as their general interest in geoscience careers. In separate focus groups, participants were queried on better ways of interesting high school students in geoscience majors. Suggestions included visits by faculty and college students to high schools and using social media promote events and activities

  2. Facilitating Classroom Innovation in the Geosciences Through the NSF Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) Program

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2012-12-01

    The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.

  3. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns continue to pursue careers or education in the geosciences. This presentation will highlight elements of the programs that can be easily replicated in other facilities as well as activities that may be incorporated into university-based experiences.

  4. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.

    2015-12-01

    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http://serc.carleton.edu/integrate/programs/diversity/index.html SAGE 2YC - http://serc.carleton.edu/sage2yc/index.html BSGD - http://serc.carleton.edu/NAGTWorkshops/departments/degree_programs/index.html

  5. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.

    2015-12-01

    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education Research; and the NAGT Building Strong Departments program that has developed extensive web-based resources using the "matrix approach" http://nagt.org/nagt/profdev/twp/trav_departments.html. Geoscience departments should commit to producing great Science and great Scientists.

  6. Investigating Education and Immediate Career Paths of Master's and Doctoral Graduates over the Past Few Decades

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2016-12-01

    Students enter into geoscience graduate degree programs have specific expectations of the type of career they are working towards. Are the graduate degree programs effectively serving these students through the development of necessary skills and experiences for their desired career pathway? This question is of particular interest to parties like the National Science Foundation and other STEM agencies who are concerned about the optimal investment in the development of the science and engineering workforce. To address this question, investigation on the general trends of education and immediate career paths over time is needed. The National Science Foundation has been collecting data on education and career paths of science and engineering graduates for decades. Since 2013, AGI has been collecting data from geoscience graduates since 2013 on their education, skills development, and immediate plans after graduation through AGI's Geoscience Student Exit Survey. This presentation synthesizes the data from these two sources related to geoscience master's and doctoral graduates to look at education and career paths over time to see how they have changed over the past few decades, as well as look specifically at the immediate plans of recent graduates as they enter the geoscience workforce. This data will also give some indication of the development of skills gained from these programs through activities such as field work and research.

  7. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader workforce development efforts.

  8. Developing Expert Interdisciplinary Thinkers: Online Resources for Preparing Pre-service Teachers to Teach the NGSS

    NASA Astrophysics Data System (ADS)

    Kent, M.; Egger, A. E.; Bruckner, M. Z.; Manduca, C. A.

    2014-12-01

    Over 100,000 students obtain a bachelor's degree in education every year; these students most commonly encounter the geosciences through a general education course, and it may be the only geoscience course they ever take. However, the Next Generation Science Standards (NGSS) contain much more Earth science content than previous standards. In addition, the NGSS emphasize the use of science and engineering practices in the K-12 classroom. Future teachers need to experience learning science as a scientist, through a hands-on, activity-based learning process, in order to give them the skills they need to teach science that same way in the future. In order to be successful at teaching the NGSS, both current and future teachers will need more than a single course in geoscience or science methods. As a result, there is now a key opportunity for geoscience programs to play a vital role in strengthening teacher preparation programs, both through introductory courses and beyond. To help programs and individual faculty take advantage of this opportunity, we have developed a set of web-based resources, informed by participants in the InTeGrate program as well as by faculty in exemplary teacher preparation programs. The pages address the program-level task of creating engaging and effective courses for teacher preparation programs, with the goal of introducing education majors to the active pedagogies and geoscience methods they will later use in their own classrooms. A collection of exemplary Teacher Preparation programs is also included. Additional pages provide information on what it means to be an "expert thinker" in the geosciences and how individual faculty and teachers can explicitly teach these valuable skills that are reflected in the science and engineering practices of the NGSS. Learn more on the InTeGrate web site about preparing future teachers: serc.carleton.edu/integrate/programs/teacher_prep.htmland training expert thinkers: serc.carleton.edu/integrate/teaching_materials/expert_thinkers.html

  9. Supporting Success for All Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Macdonald, H.; McDaris, J. R.; Weissmann, G. S.

    2015-12-01

    The geoscience student population in the United States today does not reflect the diversity of the US population. Not only does this challenge our ability to educate sufficient numbers of students in the geosciences, it also challenges our ability to address issues of environmental justice, to bring geoscience expertise to diverse communities, and to pursue a research agenda reflecting the needs and interests of our nation as a whole. Programs that are successful in supporting students from underrepresented groups attend to the whole student (Jolly et al, 2004) as they develop not only knowledge and skills, but a sense of belonging and a drive to succeed in geoscience. The whole student approach provides a framework for supporting the success of all students, be they members of underrepresented groups or not. Important aspects of support include mentoring and advising, academic support, an inclusive learning community, and opportunities to learn about the profession and to develop geoscience and professional skills. To successfully provide support for the full range of students, it is critical to consider not only what opportunities are available but the barriers different types of students face in accessing these opportunities. Barriers may arise from gaps in academic experiences, crossing into a new and unfamiliar culture, lack of confidence, stereotype threat, implicit bias and other sources. Isolation of geoscience learning from its application and social context may preferentially discourage some groups. Action can be taken to increase support for all students within an individual course, a department or an institution. The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges program and the On the Cutting Edge Professional Development for Geoscience Faculty program all provide resources for individuals and departments including on line information, program descriptions, and workshop opportunities.

  10. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  11. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    ERIC Educational Resources Information Center

    Schmidt, Richard William

    2013-01-01

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds…

  12. The Geoscience Alliance--A National Network for Broadening Participation of Native Americans in the Geosciences

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A. R.

    2014-12-01

    The Geoscience Alliance is a national alliance of individuals committed to broadening participation of Native Americans in the geosciences. Native Americans in this case include American Indians, Alaska Natives and people of Native Hawai'ian ancestry. Although they make up a large percentage of the resource managers in the country, they are underrepresented in degrees in the geosciences. The Geoscience Alliance (GA) members are faculty and staff from tribal colleges, universities, and research centers; native elders and community members; industry, agency, and corporate representatives; students (K12, undergraduate, and graduate); formal and informal educators; and other interested individuals. The goals of the Geoscience Alliance are to 1) create new collaborations in support of geoscience education for Native American students, 2) establish a new research agenda aimed at closing gaps in our knowledge on barriers and best practices related to Native American participation in the geosciences, 3) increase participation by Native Americans in setting the national research agenda on issues in the geosciences, and particularly those that impact Native lands, 4) provide a forum to communicate educational opportunities for Native American students in the geosciences, and 5) to understand and respect indigenous traditional knowledge. In this presentation, we look at the disparity between numbers of Native Americans involved in careers related to the geosciences and those who are receiving bachelors or graduate degrees in the geosciences. We address barriers towards degree completion in the geosciences, and look at innovative programs that are addressing those barriers.

  13. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  14. Role Models and Mentors in Mid-Pipeline Retention of Geoscience Students, Newark, NJ

    NASA Astrophysics Data System (ADS)

    Gates, A. E.; Kalczynski, M. J.

    2012-12-01

    Undergraduate minority students retained enthusiasm for majoring in the geosciences by a combination of working with advanced minority mentors and role models as well as serving as role models for middle and high school students in Geoscience Education programs in Newark, NJ. An academic year program to interest 8-10th grade students from the Newark Public schools in the Geosciences employs minority undergraduate students from Rutgers University and Essex Community College as assistants. There is an academic year program (Geoexplorers) and a science festival (Dinosaur Day) at the Newark Museum that employs Rutgers University students and a summer program that employs Rutgers and Essex Community College students. All students are members of the Garden State LSAMP and receive any needed academic support from that program. The students receive mentoring from minority graduate students, project personnel and participating Newark Public School teachers, many of whom are from minority groups. The main factor in success and retention, however, is their role as authorities and role models for the K-12 students. The assistants are respected and consulted by the K-12 students for their knowledge and authority in the geosciences. This positive feedback shows them that they can be regarded as geoscientists and reinforces their self-image and enthusiasm. It further reinforces their knowledge of Geoscience concepts. It also binds the assistants together into a self-supporting community that even extends to the non-participating minority students in the Rutgers program. Although the drop-out rate among minority Geoscience majors was high (up to 100%) prior to the initiation of the program, it has dropped to 0% over the past 3 years with 2 participants now in PhD programs and 2 others completing MS degrees this year. Current students are seriously considering graduate education. Prior to this program, only one minority graduate from the program continued to graduate school in the Geosciences over the past decade or more. Even students with poor performance are not leaving the major. Prior to the program, there were no geoscience courses offered at ECC and no students pursuing majors when transferring. Since ECC began participating in the program 3 years ago, 4 students (of 15 assistants) are confirmed Geoscience majors at Rutgers or elsewhere and not all have been successfully tracked. ECC is further initiating undergraduate geoscience courses this year to meet the emerging demand. Although there are several contributing factors including the support of the GS-LSAMP, it is clear that the level of enthusiasm and self-esteem as Geoscientists has been enhanced by the positive feedback of serving as a role-model and authority.

  15. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with campus career centers, incorporate career advising and mentoring throughout the degree program, and recognize that co-curricular experiences are also important avenues through which students can also develop as professionals. Graduate students and post-doctoral fellows have many questions about academic jobs and the academic job search process and many are uncertain about the nature of academic positions at different kinds of educational institutions (two-year colleges, primarily undergraduate institutions, and research universities). On the Cutting Edge workshops and webinars provide insights into academic careers in different institutional settings, various teaching strategies and course design, strategies for moving research forward, effective teaching and research statements, the job search process, and negotiation. The website provides resources on these topics as well as others and includes screen casts of the webinar sessions, making these resources available to all.

  16. Broadening Diversity in the Geosciences through Teacher-Student Workshops That Emphasize Community-Based Research Projects

    ERIC Educational Resources Information Center

    Murray, Kent S.; Napieralski, Jacob; Luera, Gail; Thomas-Brown, Karen; Reynolds-Keefer, Laura

    2012-01-01

    The Geosciences Institute for Research and Education at the University of Michigan-Dearborn has been an example of a successful and effective model in increasing the participation of underrepresented groups in the geosciences. The program emphasizes involving middle school and at-risk high school students from the Detroit area public schools,…

  17. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory, incorporating student, tribal educator, and OPI views while considering sound geological content to formatively contribute to program success.

  18. Multiple Strategies for Multiple Audiences: SJSU's Contributions to the Geoscience Education Community

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2007-12-01

    Pre- and in-service teachers nationwide face increasing qualification and credentialing demands. This may be particularly true for secondary (9-12) science teachers and multiple subject (K-8) faculty. Traditional B.S. programs in Physics, Chemistry, Biology rarely require geoscience courses, yet those candidates wishing to pursue high school teaching may need to demonstrate Earth science content competency to qualify for a credential. If successful, they will likely be asked to teach a geoscience course at some point during their careers. Even more daunting is the plight of those in the K-8 arena: many current and prospective teachers have been forced to minimize science electives in lieu of increasing education requirements. National, state, and local teaching standards call for escalating emphases on the four geoscience sub- disciplines: geology, meteorology, oceanography, and space science. How can current and future teachers establish geoscience content and pedagogy competency when undergraduate curricula often substitute other (albeit valuable) requirements? How can current and future K-12 educators supplement their academic knowledge to substantiate "highly qualified" status, and (perhaps more importantly) to feel comfortable enough to share geoscience concepts with their students? How can we in higher education assist this population of already overcommitted, less experienced teachers? San Jose State University has developed a multi-pronged approach to meet several concurrent demands. Faculty from SJSU's Geology Department and Program in Science Education developed a course, Earth Systems and the Environment, that satisfies all four geoscience sub-disciplines' required content for teachers. While it is intended for future K-8 educators, it also carries general education certification, and has been adapted and delivered online since 2005. SJSU's in-service community can enroll in the 3 graduate credit, ESSEA (Earth Systems Science Education Alliance) courses for middle- and high-school teachers. These curricula use jig-saw and cooperative learning strategies to enhance educators' understanding, and to build confidence in teaching geoscience ideas by modeling effective pedagogy. The Bay Area Earth Science Institute (BAESI) augments these formal education options, offering summer and weekend workshops for which teachers may earn inexpensive university credit. Established in 1990, BAESI has served more than 1500 teachers with geoscientist- and master teacher-led workshops that supply standards- based Earth science concepts and effective strategies for teaching them.

  19. Enrichment Programs and Professional Development in the Geosciences: Best Practices and Models (OEDG Research Report, Stony Brook University)

    ERIC Educational Resources Information Center

    Gafney, Leo

    2017-01-01

    This report is based on several evaluations of NSF-funded geoscience projects at Stony Brook University on Long Island, NY. The report reviews the status of K-12 geoscience education, identifying challenges posed by the Next Generation Science Standards (NGSS), the experiences of university faculty engaged in teacher preparation, state…

  20. The American Geological Institute Minority Participation Program

    NASA Astrophysics Data System (ADS)

    Smith, M. J.; Byerly, G. R.; Callahan, C. N.

    2001-12-01

    Since 1971, the American Geological Institute (AGI) Minority Participation Program (MPP) has supported scholarships for underrepresented minorities in the geosciences at the undergraduate and graduate levels. Some of our MPP scholars have gone on to hugely successful careers in the geosciences. MPP scholars include corporate leaders, university professors, a NASA scientist-astronaut and a National Science Foundation (NSF) CAREER awardee. Yet as ethnic minorities continue to be underrepresented in the geosciences, AGI plans to expand its efforts beyond its traditional undergraduate and graduate scholarships to include diversity programs for secondary school geoscience teacher internships, undergraduate research travel support, and doctoral research fellowships. Funding for the MPP has come from multiple sources, including industry, scientific societies, individuals, and during the last 10 years, the NSF. College-level students apply for the MPP awards or award renewals, and the MPP Advisory Committee selects scholarship recipients based upon student academic performance, financial need, and potential for success as a geoscience professional. Mentoring is a long-standing hallmark of the AGI MPP. Every AGI MPP scholar is assigned a professional geoscientist as a mentor. The mentor is responsible for regular personal contacts with MPP scholars. The MPP Advisory Committee aims to match the profession of the mentor with the scholar's academic interest. Throughout the year, mentors and scholars communicate about possible opportunities in the geosciences such as internships, participation in symposia, professional society meetings, and job openings. Mentors have also been active in helping younger students cope with the major changes involved in relocating to a new region of the country or a new college culture. We believe that AGI is well-positioned to advance diversity in the geosciences through its unique standing as the major professional organization in the geosciences. AGI maintains strong links to its 37 professional Member Societies, state and federal agencies, and funding programs, many with distinctive programs in the geoscience education. AGI Corporate Associates have consistently pledged to support diversity issues in geoscience education. Current plans include seeking funding for 48 undergraduate awards at 2500 each and 24,000 to support undergraduate travel to professional meetings. We also expect to increase the size of our graduate scholarship program to 30 students and raise an additional $30,000 to support graduate travel to professional meetings.

  1. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    NASA Astrophysics Data System (ADS)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience education. Where appropriate, the resources on the ERN are tagged to components of the NGSS making this a one-stop portal for geoscience education materials. Providers of non-commercial geoscience education resources, especially those that align with the NGSS, can contact AGI so that their materials can be added to Earth Science Week and the ERN.

  2. Beyond the Classroom: The Potential of After School Programs to Engage Diverse High School Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Pickering, J.; Briggs, D. E.; Alonzo, J.

    2011-12-01

    Over the last decade many influential reports on how to improve the state of STEM education in the United States have concluded that students need exciting science experiences that speak to their interests - beyond the classroom. High school students spend only about one third of their time in school. After school programs are an important opportunity to engage them in activities that enhance their understanding of complex scientific issues and allow them to explore their interests in more depth. For the last four years the Peabody Museum, in partnership with Yale faculty, other local universities and the New Haven Public Schools, has engaged a diverse group of New Haven teens in an after school program that provides them with multiple opportunities to explore the geosciences and related careers, together with access to the skills and support needed for college matriculation. The program exposes 100 students each year to the world of geoscience research; internships; the development of a Museum exhibition; field trips; opportunities for paid work interpreting geoscience exhibits; mentoring by successful college students; and an introduction to local higher education institutions. It is designed to address issues that particularly influence the college and career choices of students from communities traditionally underrepresented in STEM. Independent in-depth evaluation, using quantitative and qualitative methods, has shown that the program has enormous positive impact on the students. Results show that the program significantly improves students' knowledge and understanding of the geosciences and geoscience careers, together with college and college preparation. In the last two years 70% - 80% of respondents agreed that the program has changed the way they feel about science, and in 2010/11 over half of the students planned to pursue a science degree - a considerable increase from intentions voiced at the beginning of the program. The findings show that the students' knowledge of many geoscience fields (e.g., ocean sciences, human environmental impact) and careers in these areas had increased significantly. The high school to college transition is a time when many students leave the STEM pipeline. Increased knowledge of the geosciences at this critical time encourages them to take courses in these areas in college and to delve more deeply into the subject. The program has been supported by grants from the NSF "Opportunities for Enhancing Diversity in the Geosciences" Program, the Institute of Museum and Library Services, and other funders.

  3. Proposed Grand Challenges in Geoscience Education Research: Articulating a Community Research Agenda

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; St John, K. K.; Teasdale, R.; Ryker, K.; Riggs, E. M.; Pyle, E. J.; Petcovic, H. L.; McNeal, K.; McDaris, J. R.; Macdonald, H.; Kastens, K.; Cervato, C.

    2017-12-01

    Fourteen ago the Wingspread Project helped establish geoscience education research (GER) as an important research field and highlighted major research questions for GER at the time. More recently, the growth and interest in GER is evident from the increase in geoscience education research articles, the establishment of the NAGT GER Division, the creation of the GER Toolbox, an increase in GER graduate programs, and the growth of tenure-eligible GER faculty positions. As an emerging STEM education research field, the GER community is examining the current state of their research and considering the best course forward so that it can have the greatest collective impact on advancing teaching and learning in the geosciences. As part of an NSF-funded effort to meet this need, 45 researchers drafted priority research questions, or "Grand Challenges", that span 10 geoscience education research themes. These include research on: students' conceptual understanding of the solid and the fluid Earth, K-12 teacher preparation, teaching about Earth in the context of societal problems, access and success of underrepresented groups in the geosciences, spatial and temporal reasoning, quantitative reasoning and use of models, instructional strategies to improve geoscience learning, students' self-regulated learning, and faculty professional development and institutional change. For each theme, several Grand Challenges have been proposed; these have undergone one round of peer-review and are now ready for the AGU community to critically examine the proposed Grand Challenges and make suggestions on strategies for addressing them: http://nagt.org/nagt/geoedresearch/grand_challenges/feedback.html. We seek perspectives from geoscience education researchers, scholars, and reflective educators. It is our vision that the final outcomes of this community-grounded process will be a published guiding framework to (1) focus future GER on questions of high interest to the geoscience education researcher and practitioner community, (2) provide funding agencies with a strong rationale for including GER in future funding priorities, (3) increase the strength of evidence of GER community claims, and (4) elevate the visibility, stature, and collaborative potential of GER in the geosciences and in STEM education research.

  4. Creating and maintaining a successful geoscience pathway from 2YC to 4YC for Native Hawaiian Students: First Steps

    NASA Astrophysics Data System (ADS)

    Guidry, M.; Eschenberg, A.; McCoy, F. W.; McManus, M. A.; Lee, K.; DeLay, J. K.; Taylor, S. V.; Dire, J.; Krupp, D.

    2017-12-01

    In the Fall of 2015, the two four year (4YC) institutions within the University of Hawaii (UH) system offering baccalaureate degrees in geosciences enrolled only six Native Hawaiian (NH) students out of a total of 194 students in geoscience degree programs. This percentage (3%) of NH students enrolled in geosciences is far lower than the percentage of NH students enrolled at any single institution in the UH system, which ranges from 14 to 42%. At the same time, only six (3%) of the 194 students enrolled in geoscience baccalaureate programs were transfer students from the UH community colleges. Of these six transfer students, three were NH. This reflects the need for increased transfer of NH in the geosciences from two year (2YC) to 4YC. In the Fall of 2015, UH Manoa's (UHM) School of Ocean and Earth Science and Technology (SOEST) accounted for only 0.14% of transfer students from UH community colleges. This compares to 5% in the UHM School of Engineering and 27% in the UHM College of Arts and Sciences. As part of the first year of a multi-institutional five-year NSF TCUP-PAGE (Tribal Colleges and Universities Program - PArtnerships for Geoscience Education) award, we review our first steps and strategies for building a successful and sustainable geoscience transfer pathway for Native Hawaiian and community college students into the three undergraduate geoscience programs (Atmospheric Sciences, Environmental Sciences, and Geology & Geophysics) within SOEST.

  5. Retention of Women in Geoscience Undergraduate and Graduate Education at Caltech

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.

    2001-12-01

    Institutional barriers encountered by women in undergraduate and graduate schools may take many forms, but can also be as simple as a lack of community support. In the 1990's the California Institute of Technology (Caltech) made a commitment to the retention of women in their graduate and undergraduate schools. Their program included mentoring, focussed tutoring, self-esteem support groups, and other retention efforts. Under this program, the attrition rate of women has dramatically slowed. In this paper, we will discuss recent data from the American Geological Institude chronicling the enrollment and successes of women in the geosciences, the program instituted by Caltech, possible causes of attrition among women in the geosciences, as well as potential programs to address these problems. We will also present, from the nationwide study, data on geoscience departments which have been relatively successful at retaining and graduating women in Earth and Space Sciences.

  6. New Collaborative Strategies for Bringing the Geosciences to Students, Teachers, and the Public: Progress and Opportunities from the National Earth Science Teachers Association and Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Herrold, A.; Holzer, M. A.; Passow, M. J.

    2010-12-01

    The geoscience research and education community is interested in developing scalable and effective user-friendly strategies for reaching the public, students and educators with information about the Earth and space sciences. Based on experience developed over the past decade with education and outreach programs seeking to reach these populations, there is a growing consensus that this will be best achieved through collaboration, leveraging the resources and networks already in existence. While it is clear that gifted researchers and developers can create wonderful online educational resources, many programs have been stymied by the difficulty of attracting an audience to these resources. The National Earth Science Teachers Association (NESTA) has undertaken an exciting new project, with support from the William and Flora Hewlett Foundation, that provides a new platform for the geoscience education and research community to share their research, resources, programs, products and services with a wider audience. In April 2010, the Windows to the Universe project (http://windows2universe.org) moved from the University Corporation for Atmospheric Research to NESTA. Windows to the Universe, which started in 1995 at the University of Michigan, is one of the most popular Earth and space science education websites globally, with over 16 million visits annually. The objective of this move is to develop a suite of new opportunities and capabilities on the website that will allow it become a sustainable education and outreach platform for the geoscience research and education community hosting open educational resources. This presentation will provide an update on our progress, highlighting our new strategies, synergies with community needs, and opportunities for collaboration.

  7. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships.

    NASA Astrophysics Data System (ADS)

    Moosavi, S. C.

    2017-12-01

    By their very nature, the geosciences address societal challenges requiring a complex interplay between the research community, geoscience educators and public engagement with the general population to build their knowledge base and convince them to act appropriately to implement policies guided by scientific understanding. The most effective responses to geoscience challenges arise when strong collaborative structures connecting research, education and the public are in place to afford rapid communication and trust at all stages of the investigative and policy implementation processes. Educational programs that involve students and scientists via service learning exploring high profile issues of community interest and outreach to teachers through professional development build the network of relationships with geoscientists to respond rapidly to solve societal problems. These pre-existing personal connections simultaneously hold wider credibility with the public than unfamiliar scientific experts less accustomed to speaking to general audiences. The Geological Society of America is leveraging the research and educational experience of its members to build a self-sustaining state/regional network of K-12 professional development workshops designed to link the academic, research, governmental and industrial communities. The goal is not only to improve the content knowledge and pedagogical skills which teachers bring to their students, but also to build a diverse community of trust capable of responding to geoscience challenges in a fashion relevant to local communities. Dr. Moosavi is building this program by drawing on his background as a biogeochemistry researcher with 20 years experience focused on use of place-based approaches in general education and pre- and in-service teacher preparation in Research 1 and comprehensive universities, liberal arts and community colleges and high school. Experience with K-12 professional development working with the Minnesota Mineral Education Workshop and an undergraduate service learning research program related to beach erosion and the BP Oil Spill on Grand Isle, Louisiana are of particular value to this effort.

  8. Geoscience Education Research: A Brief History, Context and Opportunities

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching with visualizations, the affective domain, observing and assessing student learning, metacognition, and understanding complex systems. Geoscience education research is a growing and thriving field of scholarship that includes new PhD programs in geocognition (e.g. Michigan State Univ., Purdue Univ., Arizona State Univ., North Carolina State Univ.), and numerous collaborative research consortia (e.g. Synthesis of Research on Learning in the Geosciences; Spatial Intelligence and Learning Center, Geoscience Affective Research Network). The results of geoscience education research are presently being incorporated into the geoscience curriculum through teaching activities and textbooks. These many contributions reveal the need for sustained research on related topics: assessments of student learning, learning environments (lab and field), "what works" for different learning audiences, learning in upper division disciplinary courses, the nature of geoscience expertise. The National Research Council is currently reviewing the Status, Contributions, and Future Direction of Discipline-Based Education Research (DBER), see: http://www7.nationalacademies.org/bose/DBER_Homepage.html

  9. Integrated Design for Geoscience Education with Upward Bound Students

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  10. Assessing Undergraduate Curriculum Through Student Exit Vectors

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Gonzales, L.; Martinez, C.

    2008-12-01

    One aspect of assessing the undergraduate curriculum is recognizing that the exit vector of the student is a metric in the absence of a structured assessment program. Detailed knowledge across all geosciences departments regarding the disposition of their recent baccalaureate recipients has been at best inconsistent, and in the case of about half of geoscience programs, non-existent. However, through examining of multiple datasets, a pattern of disposition of geosciences BS recipients emerges, providing a snapshot of the system- wide response to the system-wide "average" program. This pattern can also be juxtaposed against several frameworks of desired skill sets for recent graduates and the employment sectors likely to hire them. The question remains is can one deduce the effectiveness of the undergraduate program in placing graduates in their next step, whether in graduate school or the workplace. Likewise, with an increasing scrutiny on the "value" of an education, is the resulting economic gain sufficient for the student, such that programs will be viewed as sustainable. A factor in answering this question is the importance of the undergraduate program in the ultimate destination of the professional. Clear pathways exist for "optimal" schools for the production of new faculty and new industry professionals, but is it possible to identify those trends further up the educational pipeline? One major mechanism to examine the undergraduate program effectiveness related to exit vectors is to look at hiring trends witnessed related to markedly different program structures, such as those at universities outside of the United States. Rectifying academic programs between the United States and other national systems is often a challenge, but even given the substantial differences between depth of technical knowledge and breadth of education across these programs, in the end, the sum product is often viewed as roughly comparable. This paper will look at end-of-baccalaureate vectors in several countries, including Australia and South Africa, and how it reflects on the structure of their programs, how the programs align with the country's professional needs, and the ability for the undergraduate geosciences system to provide the key intellectual feedstock for sustaining the geosciences discipline in these countries.

  11. GeoX: A New Pre-college Program to Attract Underrepresented Minorities and First Generation Students to the Geosciences

    NASA Astrophysics Data System (ADS)

    Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team

    2011-12-01

    An emerging challenge in science, technology, engineering and math (STEM) education is the recruitment of underrepresented groups in those areas of the workforce. This paper describes the structure and first-year results of the Geosciences Exploration Summer Program (GeoX) at Texas A&M University. Recent evidence suggest that pipeline programs should target junior and senior high school students who are beginning to seriously consider future career choices and appropriate college programs. GeoX is an overnight program that takes place during the summer at Texas A&M University. Over the course of a week, GeoX participants interact with faculty from the College of Geosciences, administrators, current students, and community leaders through participation in inquiry-based learning activities, field trips, and evening social events. The aim of this project is to foster a further interest in pursuing geosciences as an undergraduate major in college and thereby increase participation in the geosciences by underrepresented ethnic minority students. With funding from industry and private donors, high achieving rising junior and rising senior students, with strong interest in science and math, were invited to participate in the program. Students and their parents were interviewed before and after the program to determine if it was successful in introducing and enhancing awareness of the: 1) various sub-disciplines in the geosciences, 2) benefits of academia and research, 3) career opportunities in each of those fields and 4) college admission process including financial aid and scholarship opportunities. Results of the survey suggest that the students had a very narrow and stereotypical view of the geosciences that was almost identical to the views of their parents. Following the program, the students had a more expanded and positive view of the geosciences compared to the pre-program survey and compared to their parents. While it remains to be seen how many of those students will apply to a geosciences program, the level of interest and the number of students identifying the geosciences as a likely college and career choice greatly increased. Students identified the wide range of field and laboratory activities (including atmospheric soundings, GPR, coring, etc.) and the excitement of the faculty involved as key aspects of the program and for introducing and enhancing their view of the geosciences.

  12. The Natural Science Program at the University of New Mexico: Geosciences Play a Central Role in Preservice Teacher Training

    NASA Astrophysics Data System (ADS)

    Nyman, M. W.; Ellwein, A. L.; Geissman, J. W.; McFadden, L. D.; Crossey, L. J.

    2007-12-01

    An important component for future directions of geoscience departments is public education. The role of geoscience departments in the preparation and professional development of K-12 teachers is particularly critical, and merges with other teaching missions within the University. The importance of geoscience content for teachers (and the general public) is evident in the numerous earth science related public policy issues that are the subject of ever-increasing attention (climate change, energy resources, water utilization, etc.). The earth and space sciences are not only included in both state and federal science content education standards but are also inherently interesting to students and therefore provide an important gateway to foster interest in science as well as other scientific disciplines. For over 10 years, the Department of Earth and Planetary Sciences (EPS) at the University of New Mexico (UNM) has housed and supported the Natural Science Program (NSP), which provides science content courses and numerous programs for K-12 pre- and in-service teachers. Classes and laboratories are integrated, and are capped at 21 students in the 200-level courses, assuring an active and supportive learning environment for students who are typically science-phobic with negative or no experiences with science. Enrollments are maintained at ~150 preservice teachers per semester. The program is staffed by two lecturers, who have advanced degrees in the geosciences as well as K-12 teaching experience, and several part time instructors, including graduate students who gain valuable teaching experience through teaching in the NSP. With continued support from the department, the NSP has expanded to develop robust and functional relationships related to science teacher professional development with Sandia National Laboratories and local school districts, initiated development of a graduate certificate in science teaching and, advanced a proposal for the development of an Energy Education Program at UNM. Finally, the NSP provides a ready avenue for the incorporation of grant funded faculty research into teacher education programs, thus providing a viable and functional method for addressing broader impacts related to NSF funded programs.

  13. Understanding When and How Geoscientists Build Universal Skills and Competencies

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2015-12-01

    Geoscience educators and employers understand the pressing needs for the future workforce to be well-prepared in universal skills and competencies. At the undergraduate and graduate level today, most programs do a good job of this preparation, and employers are finding qualified applicants. However, with workforce needs in the geosciences projected to steadily outstrip supply in coming decades, and with many employers having to do substantial additional training on arrival for new hires, research informing curriculum design and skills development needs to be a priority. The projected retirement of seasoned professionals exacerbates this need and underscores the need to better understand the nature and structure of geoscience skills and competencies at the expert level. A workshop on Synthesizing Geoscience Education Research at the inaugural Earth Educator's Rendezvous began work on assembling a community-wide inventory of research progress. Groups began an assessment of our understanding of key skills in the geosciences as well as curricular approaches to maximize teaching effectiveness and recruitment and retention. It is clear that we have made basic progress on understanding spatial and temporal thinking, as well as systems thinking and geologic problem solving. However, most of this research is in early stages, limited to local populations, disciplines or contexts. Curricular innovations in the integration of quantitative, field-specific and computational techniques are also mostly local or limited in scope. Many programs also locally incorporate an explicit non-technical component, e.g. writing, business, and legal content or experience in team-based project-driven work. Despite much good practitioner wisdom, and a small but growing research base on effectiveness and best practices, we have much yet to learn about geoscience education, especially at the graduate and professional level. We remain far from a universal understanding of these skills and competencies, let alone how they should be most effectively taught to all geoscience students. We do understand universal geoscience skills and competencies better than ever before, but as a community we have a long way yet to go to construct and implement a broad strategy for meeting the geoscience workforce needs for the decades ahead.

  14. InTeGrate: Transforming the Teaching of Geoscience and Sustainability

    NASA Astrophysics Data System (ADS)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.

    2012-12-01

    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is assisting the development teams in incorporation of research-based teaching methods and embedded assessments to document learning. The assessment team will also evaluate the success of these materials in meeting learning outcomes prior to broad dissemination. Additional opportunities for faculty to propose and develop needed materials are currently available.

  15. Website Resources and Support for Two-Year College Geoscience Educators

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Macdonald, H.; Blodgett, R. H.; Manduca, C. A.; Maier, M.

    2011-12-01

    Geoscience faculty at two-year colleges (2YC) face a number of challenges, from the wide diversity of the student population to being isolated from other geoscience faculty. Several projects have developed web resources that address some of these issues by providing professional development, teaching materials, and opportunities to connect with their colleagues at other institutions. The Role of Two-Year Colleges in Geoscience Education and in Broadening Participation in the Geosciences project brought together 2YC faculty from across the country for a planning workshop to discuss these issues and propose strategies and mechanisms to strengthen the 2YC geoscience education community (http://serc.carleton.edu/geo2yc/index.html). The website now hosts more than 30 essays on the state of 2YC education, teaching activities, and course descriptions submitted by 2YC faculty as well as an email discussion list and other ways of networking and discussing important. One outcome of this work is that the National Association of Geoscience Teachers has created a division for 2YC faculty so that members can network with each other and discuss solutions to pressing issues. (http://nagt.org/nagt/divisions/2yc/index.html) The On the Cutting Edge program has an array of professional development resources available (http://serc.carleton.edu/NAGTWorkshops/). Over its decade of work, the program has developed resources on topics of interest to 2YC faculty including: teaching introductory courses, the affective domain, teaching with data, metacognition, online courses, teaching about hazards, and many others. There are also extensive collections of teaching activities and visualizations. In addition, the program continues to hold face-to-face and virtual professional development workshops and webinars that are accessible to 2YC faculty and can help them feel less isolated The Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo) website is specifically aimed at all those teaching introductory classes, including two-year college faculty. This website includes information about a variety of teaching strategies (e.g., lecture tutorials, service learning, just-in-time teaching) and a set of geoscience teaching examples. This is valuable for faculty interested in new approaches to teaching or who want to see examples of activities they can adopt or adapt. The interdisciplinary project Two-year College Outreach Across the Disciplines (http://serc.carleton.edu/econ/2yc/disciplines/index.html) summarizes best practices in nine disciplines, including the geosciences. At a 2011 workshop, sponsored by Economics at Community Colleges, faculty compared notes on what has worked and what hasn't in terms of strengthening disciplinary and interdisciplinary education at 2YCs. (http://serc.carleton.edu/econ/2yc/index.html) These and other projects have developed resources for supporting and enhancing the efforts of two-year college faculty in the geosciences. A variety of these materials is available via the Teach the Earth portal at http://serc.carleton.edu/teachearth/.

  16. Geoscience and the 21st Century Workforce

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical work takes place both inside and outside of the classroom and occurs as a progression throughout the course of study. Professional skills were recognized as an area where outcomes could be strengthened. The challenge faced by geoscience programs is developing pathways into the workforce for students who bring different skills and interests to their studies. Workforce data suggest that in the past only 30% of undergraduate graduates have remained in the geosciences indicating that geoscience programs are playing an important role in developing the workforce beyond the geosciences. A collection of program descriptions describes what is known about career pathways from the programs represented at the workshop.

  17. Early College STEM-focused High Schools: A Natural and Overlooked Recruitment Pool for the Geosciences

    NASA Astrophysics Data System (ADS)

    Freeman, R.; Bathon, J.; Fryar, A. E.; Lyon, E.; McGlue, M. M.

    2017-12-01

    As national awareness of the importance of STEM education has grown, so too has the number of high schools that specifically emphasize STEM education. Students at these schools outperform their peers and these institutions send students into the college STEM pipeline at twice the rate of the average high school or more. Another trend in secondary education is the "early college high school" (ECHS) model, which encourages students to prepare for and attend college while in high school. These high schools, particularly ECHS's that focus on STEM, represent a natural pool for recruitment into the geosciences, yet most efforts at linking high school STEM education to future careers focus on health sciences or engineering. Through the NSF GEOPATHS-IMPACT program, the University of Kentucky (UK) Department of Earth and Environmental Science and the STEAM Academy, a STEM-focused ECHS located in Lexington, KY, have partnered to expose students to geoscience content. This public ECHS admits students using a lottery system to ensure that the demographics of the high school match those of the surrounding community. The perennial problem for recruiting students into geosciences is the lack of awareness of it as a potential career, due to lack of exposure to the subject in high school. Although the STEAM Academy does not offer an explicitly-named geoscience course, students begin their first semester in 9th grade Integrated Science. This course aligns to the Next Generation Science Standards (NGSS), which include a variety of geoscience content. We are working with the teachers to build a project-based learning curriculum to include explicit mention and awareness of careers in geosciences. The second phase of our project involves taking advantage of the school's existing internship program, in which students develop professional skills and career awareness by spending either one day/week or one hour/day off campus. We hosted our second round of interns this year. Eventually we plan to enroll interested students in introductory earth science courses in our department or at a nearby community college. We hope to build a model for establishing a pipeline from an ECHS STEM high school to a geoscience department that can be implemented by other universities. Here we present the highlights and challenges of this first year of our program.

  18. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the collaborating institutions (SDSU, UCSD, Scripps Institute of Oceanography). By building a local K-Ph.D. collaboration, it is our goal that we can directly address the low representation of Native American students in the geosciences and simultaneously aid local tribes in their own efforts to ensure their own continued sovereignty.

  19. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.

    2017-12-01

    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who then incorporate aspects of the session in workshops they lead for their regional faculty networks. Both projects prepare faculty to lead workshops on inclusive practices and programs as a strategy to diversify the geosciences by pervasively changing the way that faculty and departments support students.

  20. Geo-Needs: Investigating Models for Improved Access to Geosciences at Two-Year and Minority-Serving Colleges

    NASA Astrophysics Data System (ADS)

    Her, X.; Turner, S. P.; LaDue, N.; Bentley, A. P.; Petcovic, H. L.; Mogk, D. W.; Cartwright, T.

    2015-12-01

    Geosciences are an important field of study for the future of energy, water, climate resilience, and infrastructure in our country. Geoscience related job growth is expected to steeply climb in the United States, however many of these positions will be left unfilled. One untapped population of Americans is ethnic minorities, who have historically been underrepresented in the geosciences. In 2010, the Bureau of Labor Statistics (BLS) reported that black and Hispanics only make 8.1% of geoscience related jobs, while making up nearly 30% of Americans. This pattern of underrepresentation has been attributed to 1) minority serving institutions lacking geoscience programs, 2) low interest in the outdoors due to a lack of opportunity, and 3) negative and low prestigious perceptions of geoscientists. Our project focuses specifically on the first barrier. Preliminary research suggests that only 2.5% of institutions with geoscience programs (n= 609) are also minority serving. The goals of the Geo-Needs project are to identify obstacles to and opportunities for better use of existing educational resources in two-year and minority-serving institutions, and to explore "ideal" models of resources, partnerships, and other support for geoscience faculty and students in these institutions. Four focus group meetings were held in August 2015 bringing administrators, instructors, resource providers, and education researchers together to discuss and develop these models. Activities at the meetings included small and whole group prompted discussion, guest speakers, gallery walks, and individual reflection. Content from the focus group meetings is available at the project's website: http://serc.carleton.edu/geoneeds/index.html. Findings from the meetings can be used to inform future efforts aimed toward broadening access to the geosciences at two-year and minority-serving institutions.

  1. The American Geological Institute Minority Participation Program (MPP): Thirty Years of Improving Access to Opportunities in the Geosciences Through Undergraduate and Graduate Scholarships for Underrepresented Minorities

    NASA Astrophysics Data System (ADS)

    Callahan, C. N.; Byerly, G. R.; Smith, M. J.

    2001-05-01

    Since 1971, the American Geological Institute (AGI) Minority Participation Program (MPP) has supported scholarships for underrepresented minorities in the geosciences at the undergraduate and graduate levels. Some of our MPP scholars have gone on to hugely successful careers in the geosciences. MPP scholars include corporate leaders, university professors, a NASA scientist-astronaut and a National Science Foundation (NSF) CAREER awardee. Yet as ethnic minorities continue to be underrepresented in the geosciences, AGI plans to expand its efforts beyond its traditional undergraduate and graduate scholarships to include diversity programs for secondary school geoscience teacher internships, undergraduate research travel support, and doctoral research fellowships. AGI promotes its MPP efforts primarily through its web pages, which are very successful in attracting visitors; through its publications, especially Geotimes; and through its Corporate Associates and Member Societies. Funding for the MPP has come from multiple sources over the past 30 years. Industry, non-profit organizations, and individuals have been the primary source of funding for graduate scholarships. The NSF has regularly funded the undergraduate scholarships. AGI Corporate Associates have contributed to both scholarship programs. The MPP Advisory Committee selects scholarship recipients based upon student academic performance, financial need, and potential for success as a geoscience professional. AGI currently has 29 MPP scholars, including 11 undergraduate and 18 graduate students. Undergraduate scholarships range from \\1000 to \\5000, with an average award of approximately \\2500. Graduate scholarships range from \\500 to \\4000, with an average award of approximately \\1300. In addition to financial assistance, every MPP scholar is assigned a professional geoscientist as a mentor. The mentor is responsible for regular personal contacts with MPP scholars, and with writing evaluation reports that are used to gauge the needs of the scholar, and to access the success of the overall program. The MPP Advisory Committee aims to match the profession of the mentor with the scholar's academic interest. Throughout the year, mentors and scholars communicate about possible opportunities in the geosciences such as internships, participation in symposia, professional society meetings, and job openings. Mentors have also been active in helping younger students cope with the major changes involved in relocating to a new region of the country or a new college culture. We believe that AGI is well positioned to advance diversity in the geosciences through its unique standing as the major professional organization in the geosciences. AGI maintains strong links to its professional Member Societies, state and federal agencies and funding programs, many with distinctive programs in the geoscience education. AGI Corporate Associates have consistently pledged to support diversity issues in geoscience education. Current plans include seeking funding for 48 undergraduate awards at \\2500 each and \\24,000 to support undergraduate travel to professional meetings. We also expect to increase the size of our graduate scholarship program to 30 students and raise an additional \\$30,000 to support graduate travel to professional meetings.

  2. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  3. Transforming Indigenous Geoscience Education and Research (TIGER)

    NASA Astrophysics Data System (ADS)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  4. Education.

    ERIC Educational Resources Information Center

    Lowe, Donald R.; Nummedal, Dag

    1980-01-01

    Progress is assessed within the following areas of geoscience education: undergraduate and graduate enrollments, continuing education activities, conferences, National Science Foundation programs, source- and textbook and other educational material publications, earth-science teaching at the precollege level, and marine education (geology of ocean…

  5. Recruiting a Diverse Set of Future Geoscientists through Outreach to Middle and High School Students and Teachers in Miami, Florida

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Hickey-Vargas, R.; Draper, G.; Rego, R.; Gebelein, J.

    2014-12-01

    Florida International University (FIU), the State University of Florida in Miami is a large enrollment, federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. Recruiting local students into the geosciences is challenging because geology is not well integrated into the local school curriculum, the geology is poorly exposed in the low-relief south Florida region and many first generation college students are reluctant to enter unfamiliar fields. We describe and present preliminary findings from Growing Community Roots for the Geosciences in Miami, FL, a 2-year, NSF funded project run by the Department of Earth and Environment at FIU which aims to inform students enrolled in the local middle and high schools to educational and career opportunities in the geosciences. The project takes a multi-faceted approach which includes direct outreach through social media platforms and school visits, a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students. An outreach team of undergraduate geoscience majors were recruited to build and maintain informational resources on Facebook, Instagram, Twitter and Google Plus and to accompany FIU faculty on visits to local middle schools and high schools. Both the teacher workshop and the summer camp included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, exercises with Google Earth imagery and GIS, and field trips to local geological sites and government facilities. Participants were surveyed at the beginning of the programs on their general educational background in math and science and their general attitudes of and interest in geoscience careers. Post program surveys showed significant increases in the comfort of teaching topics in geoscience among teachers and an increased interest in majoring in geoscience among students. On the final day of the programs, participants were queried on better ways of interesting high school to major in geoscience. Suggestions included visits by faculty and college students to high schools and using social media to promote events and activities.

  6. Successful recruiting strategies for geoscience degrees and careers at the two-year college: An example from Metropolitan Community College - Kansas City

    NASA Astrophysics Data System (ADS)

    Wolfe, B.

    2012-12-01

    The overwhelming majority of students at 2-year colleges take geoscience courses (e.g. physical geology or physical geography) to fulfill part of the general education requirements of the Associates in Arts degree or General Education certificates for transfer to a 4-year school. It is common in community college earth science programs to have a relatively small number of students continuing on to major in geoscience programs at their transfer 4-year institution. To increase interest and retention in geosciences courses, we have developed a two prong approach - one aimed at students looking to transfer to a 4-year institution and the other aimed at students in the often overlooked career and technical education (CTE) programs. In the case of transfer students, we employ a "high touch" approach in introductory Physical Geology courses. This includes raising awareness of geoscience related careers combined with faculty mentor and advisor activities for students who express interest in science on their admission forms or in discussions of potential careers in science in first-year experience courses. Faculty mentorships have been very effective, not only in recruiting students to consider careers in geology, but also in advising a curriculum for students necessary to be successful upon transfer to a 4-year institution (such as completing college level chemistry, physics, and calculus courses prior to transfer). The second approach focuses on students pursuing certificates and degrees in CTE energy-related programs (such as HVAC, industrial engineering technology, electrician, and utility linemen). To increase awareness of vocational related geoscience careers, many of which require a good foundation in the vocational training students are currently pursing, we developed a foundation energy course - Energy and the Environment - which fulfills both the science general education component of the AA degree for students looking to transfer as well as CTE students. The curriculum focuses on fundamental concepts of energy generation and environmental impact, including analysis of energy fundamentals, fossil fuel exploration and use, atmospheric pollution, global climate change, nuclear energy, alternative energy sources, and energy conservation, all of which are directly related to geologic processes. This new course is part of newly created energy certificate programs in Photovoltaics, energy efficiency, and solar thermal - with the intention of expanding to AAS degrees in each.

  7. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    NASA Astrophysics Data System (ADS)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  8. Entering a New ERA: Education Resources and AGU

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Johnson, R. M.

    2001-12-01

    Professional societies play a unique role in the on-going battle to improve public education in the Earth and space sciences. With guidance from its Committee on Education and Human Resources (CEHR), AGU has traditionally sponsored strong programs that provide mechanisms for linking its research membership with the formal/informal science education communities. Among the most successful of these are tutorials for K-12 teachers taught by AGU members during national meetings (e.g., GIFT - Geophysical Information For Teachers) and internships that allow teachers to experience geophysical science research first-hand (e.g., STaRS - Science Teacher and Research Scientist). AGU also co-sponsors major symposia to discuss and develop strategies for Earth science education reform (e.g., the NSF-sponsored Shaping the Future workshop) and provides an annual forum for the Heads and Chairs of undergraduate geoscience departments to discuss common problems and share solutions. In the fall of 2001, AGU expects to unveil a major new education and outreach website that will provide enhanced opportunities for communicating to students, teachers and the public about AGU members' research and new directions in geophysical science education. The most important contribution that AGU makes, however, is to validate and prominently endorse the education and outreach efforts of its members, both by sponsoring well-attended, education-related special sessions at AGU national meetings and by annually honoring individuals or groups with the Excellence in Geoscience Education award. Recent staff changes at AGU headquarters have brought new opportunities to expand upon these successful existing programs and move in other directions that capitalize on the strengths of the organization. Among new initiatives being considered are programs that partner education efforts with those being developed as part of several large research programs, curriculum modules that will promote teaching earth sciences-related materials within core physics, chemistry, and math curricula, and more sophisticated informal science education programs. Efforts to better coordinate AGU's education programs with those being developed by other professional geoscience organizations are also underway.

  9. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  10. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes

    NASA Astrophysics Data System (ADS)

    Mosher, S.

    2014-12-01

    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and geoscience literacy. We also identified key elements of successful programs that attract and retain underrepresented groups, including providing financial support, reaching out to students in their communities, involving community members, incorporating role models, and mentoring.

  11. Inquiring with Geoscience Datasets: Instruction and Assessment

    NASA Astrophysics Data System (ADS)

    Zalles, D.; Quellmalz, E.; Gobert, J.

    2005-12-01

    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  12. Delivering accessible fieldwork: preliminary findings from a collaborative international study

    NASA Astrophysics Data System (ADS)

    Stokes, Alison; Atchison, Christopher; Feig, Anthony; Gilley, Brett

    2017-04-01

    Students with disabilities are commonly excluded from full participation in geoscience programs, and encounter significant barriers when accessing field-learning experiences. In order to increase talent and diversity in the geoscience workforce, more inclusive learning experiences must be developed that will enable all students to complete the requirements of undergraduate degree programs, including fieldwork. We discuss the outcomes of a completely accessible field course developed through the collaborative effort of geoscience education practitioners from the US, Canada and the UK. This unique field workshop has brought together current geoscience academics and students with disabilities to share perspectives on commonly-encountered barriers to learning in the field, and explore methods and techniques for overcoming them. While the student participants had the opportunity to learn about Earth processes while situated in the natural environment, participating geoscience instructors began to identify how to improve the design of field courses, making them fully inclusive of learners with disabilities. The outcomes from this experience will be used to develop guidelines to facilitate future development and delivery of accessible geoscience fieldwork.

  13. AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences

    NASA Astrophysics Data System (ADS)

    Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists

    2011-12-01

    The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.

  14. Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2014-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.

  15. Programming and Technology for Accessibility in Geoscience

    NASA Astrophysics Data System (ADS)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  16. A Potential Synergy Connecting Educational Leadership, The Geoscience Community, and Spatial Data

    NASA Astrophysics Data System (ADS)

    Branch, B. D.

    2008-12-01

    The effort to promote more geosciences numbers and greater diversity should reference considerations of federal policy. In congruence, institutions need to include geosciences education in the K-12 curriculum in order to increase the numbers of geoscientists and to increase diversity among geoscientists. For example, No Child Left Behind stated public entities should, ""(1) to carry out programs that prepare prospective teachers to use advanced technology to prepare all students to meet challenging", section 1051 sub section 221. Moreover, Executive Order 12906, the Spatial Data Infrastructure Act, requires all federal agencies to manage their spatial data. Such compliance may influence the job market, education and policy makers to see that spatial thinking transcends the standard course of study. Namely, educational leadership and policy have to be a vital aid to augment the geosciences experience through the K-12 experience and as an inclusion activity in the standard course of study agenda. A simple endorsement by the National Academy of Sciences (2006), in their work titled Learning to think spatially: GIS as a support system in the K-12 curriculum, who stated, "Spatial thinking can be learned, and it can and should be taught at all levels in the education system" (p.3). Such may not be enough to gain the attention and time consideration of educational leadership. Therefore, the challenge for progressive advocates of geosciences is that some may have to consider educational leadership as new frontier to push such policy and research issues.

  17. Planning for the Future of Geo-Cybereducation: Outcomes of the Workshop, Challenges, and Future Directions

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.; Eriksson, S. C.

    2010-12-01

    Inspired by the recommendations of the NSF report “Fostering Learning in the Networked World: The Cyberlearning Opportunity and Challenge” (NSF08204), the NSF National STEM Digital Learning program funded “Planning for the Future of Geocybereducation” Workshop sought to bring together leaders from the geoscience education community, from major geoscience research initiatives, and from the growing public- and private-sector geoscience information community. The objectives of the workshop were to begin conversations aimed at identifying best practices and tools for geoscience cyber-education, in the context of both the changing nature of learners and of rapidly evolving geo-information platforms, and to provide guidance to the NSF as to necessary future directions and needs for funding. 65 participants met and interacted live for the two-day workshop, with ongoing post-meeting virtual interactions via a collaborative workspace (www.geocybered.ning.com). Topics addressed included the rapidly changing character of learners, the growing capabilities of geoscience information systems and their affiliated tools, and effective models for collaboration among educators, researchers and geoinformation specialists. Discussions at the meeting focused on the implications of changing learners on the educational process, the challenges for teachers and administrators in keeping pace, and on the challenges of communication among these divergent professional communities. Ongoing virtual discussions and collaborations have produced a draft workshop document, and the workshop conveners are maintaining the workshop site as a venue for ongoing discussion and interaction. Several key challenges were evident from the workshop discussions and subsequent interactions: a) the development of most of the large geoinformatics and geoscience research efforts were not pursued with education as a significant objective, resulting in limited financial support for such activities after the fact; b) the “playing field” of cybertechnologies relevant to geoscience education, research and informatics changes so rapidly that even committed “players” find that staying current is challenging; c) the scholarly languages of geoscience education, geoscience research, and geoinformatics are different, making easy communication about respective needs and constraints surprisingly difficult; and d) the impact of “everyday” cybertechnologies on learner audiences is profound and (so far) not well addressed by educators. Discussions on these issues are ongoing in a number of other venues.

  18. A synergistic effort among geoscience, physics, computer science and mathematics at Hunter College of CUNY as a Catalyst for educating Earth scientists.

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.

  19. A Unique Partnership to Promote Diversity in the Geosciences, San Jose, California

    NASA Astrophysics Data System (ADS)

    Sedlock, R.; Metzger, E.; Johnson, D.

    2006-12-01

    We report here on a particularly satisfying partnership of academic institutions that focuses on enhancing the participation of underrepresented students in the geosciences. The Bay Area Earth Science Institute (BAESI) at San José State University (SJSU) has provided professional development opportunities to over 1,500 area teachers since 1990. BAESI offerings include summer and weekend workshops, field trips, classroom visits, and a lending library of curricula, sample sets, A/V materials, and equipment. The National Hispanic University (NHU) is a private, non-profit university that enrolls about 700 students, 80% of whom are of Hispanic descent. Another 13% are from other minority groups, 74% are from low-income families, and 70% are women. NHU houses the Latino College Preparatory Academy (LCPA), a charter high school that provides an alternative for students who struggle in traditional schools due to language issues. In the 1990s, administrators at SJSU and NHU set up formal agreements about course articulation, reciprocity, and joint degree programs. In 2002, informal discussions between BAESI and NHU staff led to collaboration on an NSF proposal to strengthen NHU's geoscience curriculum. Since then, the scope of BAESI-NHU actions has expanded greatly: (1) NHU and LCPA staff attended a week-long BAESI professional development workshop funded by NSF, and have attended numerous BAESI field trips. (2) BAESI staff visit NHU and LCPA classrooms to showcase SJSU's Geology Department and to enrich existing Chemistry and Physics classes with geoscience applications. (3) A nascent "Geologist-In-Residence" program pairs SJSU geology students with teachers at LCPA. (4) NHU students have interned with Metzger on local research projects. (5) BAESI brokered donation of an extensive USGS rock collection to NHU. (6) NHU, BAESI, and NASA-Ames staff collaborate on an online Earth Science curriculum for middle-school teachers. (7) We will adapt BAESI summer workshops to a one-week course in effective teaching of high-school science that will be taught during intersession in NHU's Teacher Education Department. We have recently received funding for a collaborative project from NSF's Geoscience Education program to create a joint degree program wherein NHU offers the lower division coursework and bestows an A.S. degree in mathematics and science with geoscience emphasis, and SJSU offers the upper-division coursework and the B.S. degree in geoscience. Our collaborations focus on providing teachers with professional development and educational resources to help underrepresented students receive quality instruction in the geosciences. Participation of NHU teachers- in-training provides a long-term means for spreading quality geoscience teaching to precollege classrooms throughout Santa Clara County, including the largely minority classrooms that NHU teachers are specially trained to staff.

  20. Building Strong Geoscience Departments Through the Visiting Workshop Program

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10 points. Workshops resulted in changes in faculty attitudes and planned changes in programming. Participants wrote that they felt a greater ownership of their curricula and had a deeper understanding of the importance of general education offerings; they recognized a need for improvement; and they recognized a need to communicate the value of the geosciences to their institutions. Planned programmatic changes focused on curriculum revision, program assessment, student recruitment, and interactions with the institutional administration and the public. Leaders noted that the most effective workshops were those where the faculty cancelled all other activities for the duration of the workshop to focus on workshop goals.

  1. Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Dick, G.; Munson, J.

    2017-12-01

    Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).

  2. Case Studies of Two American Towns That Have Recently Developed Geotourism Venues: A Comparison of Steps Taken in Geoscience Education Program Development

    NASA Astrophysics Data System (ADS)

    Wandersee, J. H.; Clary, R. M.

    2005-12-01

    In June, 2003, CNN reported that there were three US public fossil parks (in OH, NY, and IA) that embraced educational missions and allowed the public to collect and actually keep the fossils they found. The new parks moved beyond exhibiting fossils to allowing the park visitor to have a direct, tangible, and authentic geobiological field experience, typically culminating in the visitor's identification and ownership of a small number of personally collected fossils. Our site-based, qualitative, comparative geoscience educational analysis of the strengths and weaknesses of the first three parks was presented at the 2004 International Geological Congress. We subsequently developed a fossil park design model for others contemplating the establishment or instructional use of such parks. Today there are five specially developed, public fossil parks in the US. All are owned and operated by city or county governments, or by non-profit organizations. Each considers its primary mission to be advancing geoscience education. In the current investigation, we conducted on-site, multiple case study research on the two newest US fossil parks. Both are located in small towns: Trammel Fossil Park in Sharonville, Ohio (population 13,000), and Fossil Beds Park in Fossil, Oregon (population 430). The former site is Ordovician in age, with four fossiliferous marine formations. The latter is an Oligocene lake bed and contains approximately 35 species of identified plant fossils. Our focus in both case studies was on identifying the steps of successful fossil park development that lead to a sound informal geoscience education program, based on principles of active, meaningful, and mindful learning (Langer, 1998; Michael and Modell, 2003; Mintzes, Wandersee, and Novak, 2000). We found that each town had developed a collaborative, community-driven, pedagogically innovative, field-based geotourism venue. Each was noteworthy in specific ways for its geoscience education potential as an outdoor teaching laboratory. We report on the results of actual fossil collecting and interpretation at each site, evaluating the opportunities we found to discover common fossils and to learn geobiology in the field. Our study's findings outline the steps of educational program development and support underlying each park. While one utilizes a very effective interpretive signage system that aims to be self-teaching, the other employs a helpful on-site geological interpreter. In one, following the collapse of the timber industry, the town's entire economic recovery plan is now predicated on geotourism and geoscience education activities centered around its fossil park. In the other, the fossil park has become the enticing geoscience jewel of the town's park system. We think the two different fossil park program development approaches we have elucidated (e.g., Wheeler County Oregon's Paleo Project and Sharonville's university-city-local developer collaboration) could be replicated at other appropriate fossil sites. We also correlated our findings with the new National Research Council study, America's Lab Report (2005), to show that fossil parks can offer scientific experiences to the public that contribute to the nation's scientific literacy.

  3. METALS (Minority Education Through Traveling and Learning in the Sciences) and the Value of Collaborative Field-centered Experiences in the Geosciences (Invited)

    NASA Astrophysics Data System (ADS)

    White, L. D.

    2013-12-01

    METALS (Minority Education Through Traveling and Learning in the Sciences) is a field-based, geoscience diversity program developed by a collaborative venture among San Francisco State University, the University of Texas at El Paso, the University of New Orleans, and Purdue University. Since 2010, this program has created meaningful geoscience experiences for underrepresented minorities by engaging 30 high school students in experiential learning opportunities each year. During METALS field trips, the primarily urban students observe natural landforms, measure water quality, conduct beach profiles, and interpret stratigraphic and structural features in locations that have included southern Utah, southern Louisiana, central Wyoming, and northern California. In these geological settings participants are also able to focus on societally relevant, community-related issues. Results from program evaluation suggest that student participants view METALS as: (1) opening up new opportunities for field-based science not normally available to them, (2) engaging in a valuable science-based field experience, (3) an inspirational, but often physically challenging, undertaking that combines high-interest geology content with an exciting outdoor adventure, and (4) a unique social experience that brings together people from various parts of the United States. Further evaluation findings from the four summer trips completed thus far demonstrate that active learning opportunities through direct interaction with the environment is an effective way to engage students in geoscience-related learning. Students also seem to benefit from teaching strategies that include thoughtful reflection, journaling, and teamwork, and mentors are positive about engaging with these approaches. Participants appear motivated to explore geoscience topics further and often discuss having new insights and new perspectives leading to career choices in geosciences. Additionally, students who had a prior and similar fieldtrip experience that included outdoor expeditions and/or a geoscience focus, were able to utilize and build on those prior experiences during their participation in METALS.

  4. A Comparative Analysis of Geosciences Education and its Effectiveness in the United States and Russia

    NASA Astrophysics Data System (ADS)

    Kontar, Y. Y.

    2011-12-01

    Geoscience education is an important issue in the United States and Russia alike. Specifically, the funding of education is highly dependent on the country's overall system and its priorities. The American schools are better funded than Russian schools. The collapse of the Russian economy in the 1980s significantly influenced the decline of the overall national education system, including its quality and funding. Only 4.2 percent of the overall GDP is allocated toward primary and secondary education in Russia. It is 165 times less than in the United States. Russia currently has one of the highest literacy ratings in the world. Despite low funding, students still receive a solid and complete education, specifically in core subjects, such as geosciences, physics and mathematics. However, the education provided by the Russian public schools is becoming less up to date and therefore less effective. Therefore, the country might face poor educational outcomes if the financial allocation is not increased in the near future. Russian schools are designed for a "standard" student. There are a limited amount of auxiliary schools in Russia that focus on providing education for children with various physical disadvantages such as hearing, speech and vision problems. In addition, there are specialized schools for advanced children, who show more potential in certain subjects than the others. The United States, on the other hand, has a relatively lower literacy rate in geosciences, physics and mathematics, but better funding of both public and private schools. Specifically, educational facilities have the necessary learning tools, such as computers, Internet access and updated textbooks. In addition, the handicapped facilities allow for all children to receive compulsory public education. The starting geosciences faculty teaching salary is significantly higher in the United States than in Russia, which makes the profession more desirable. Overall, each country can borrow something from the others geosciences educational systems. Specifically, American schools might adopt a more strict and intense educational policy, especially in subjects such as geosciences, physics and mathematics. Russian policy makers, on the other hand, should look into the American way of financing the educational system. Although the entire U.S. funding of educational programs cannot be adopted due to specific circumstances, many aspects of it might be looked into and implemented by the Russian government.

  5. Web-based Academic Roadmaps for Careers in the Geosciences

    NASA Astrophysics Data System (ADS)

    Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.

    2007-12-01

    To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly positive. Our presentation will include a demonstration of the Academic Roadmap, and a template that can be used by other geoscience departments to easily design websites.

  6. A Hands-On, Interdisciplinary Laboratory Program and Educational Model to Strengthen a Radar Curriculum for Broad Distribution

    ERIC Educational Resources Information Center

    Yeary, Mark; Yu, Tian-You; Palmer, Robert; Biggerstaff, Michael; Fink, L. Dee; Ahem, Carolyn; Tarp, Keli Pirtle

    2007-01-01

    This paper describes the details of a National Science Foundation multi-year educational project at the University of Oklahoma (OU). The goal of this comprehensive active-learning and hands-on laboratory program is to develop an interdisciplinary program, in which engineering, geoscience, and meteorology students participate, which forms a…

  7. Earth Systems Science Curriculum Choices for Pre-Service Teachers at San Jose State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2008-12-01

    San José State University was a member of the original ESSEA consortium (2003-05), and it continues its participation with the broadening ESSEA community. Having hosted the original Middle- and High School Teachers' ESSEA courses, the Geology Department and Program in Science Education have maintained their commitments toward supporting pre- and in-service teachers in geoscience concept competency and effective pedagogy. We have witnessed an encouraging trend in the numbers of K-8 (multiple subject) pre-service teachers who have enrolled in our in-house ESSEA-inspired course: Geology 103 (Earth Systems and the Environment). We have also seen an influx of prospective secondary (single subject) teachers seeking credentials in non- geoscience disciplines. California teacher credentialing requirements, especially when layered on the increasing demands of major fields of study and the California State University System's hefty General Education mandates, give prospective teachers little latitude in their academic programs. Geology 103 was developed to satisfy three logistical objectives: to comply with "geoscience content competency" as defined by the California Commission on Teacher Credentialing (CCTC); to fulfill one of the CSU's upper-division General Education requirements, and to develop science process skills in a population that may never have had similar prior opportunities. The course is offered in two modalities: online and on-campus. The Web-based sections are currently comparing the relative effectiveness of two dissimilar online learning modalities and assessments: one delivers video/audio/animated "podcasts," while the other requires student involvement through interactive Flash media. The course is taught by professors with joint appointments in the Department of Geology and Program in Science Education, and by current and former classroom teachers to ensure that geoscience content knowledge is achieved through inquiry, systems analyses, and other methods promoting enduring understandings.

  8. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthorpogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.; Marchese, P.; Zheng, Y.; Kohfeld, K.

    2006-12-01

    This NSF-funded program developed an oceanographic field experience coupled to a strong curriculum and one-on-one mentoring of individual research projects, as a means to increase diversity in the geosciences. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience that familiarizes them with their environment. As part of this program, multidisciplinary investigations of Long Island Sound were conducted from the R/V Hugh Sharp, part of the University-National Oceanographic Laboratory System (UNOLS) fleet, for one-week during June 2006. Nine students from underrepresented groups in the geosciences (native Americans, Hispanics, and African- Americans) and five investigators from various institutions specializing in marine geophysics, geology, geochemistry, biology, and physical oceanography participate in this project. The expedition introduced the students to a variety of oceanographic techniques, including multibeam bathymetric mapping, high-resolution subbottom profiling, side scan sonar, sediment, water, and biological sampling, and current profiling. The collected dataset is now analyzed by the students to extract the late Quaternary history of Long Island Sound and to assess the impact of anthropogenic activities in the sediments, waters, and ecosystems. 85 % of the student participants have declared either a geoscience and/or environmental science major with concentrations in biology and geosciences. Recruiting for the program relied on partnerships with: 1) Alliance for Minority Participation (AMP) Program of the City University of New York (CUNY). A program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate; 2) the Search for Education, Elevation, and Knowledge Program (SEEK) in place at Queens College. A program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college; and 3) through our regular teaching schedule for non-geoscience majors. The PIs work at four different institutions from NY metropolitan area: 1) Queens College (QC) from the City University of New York (CUNY.); 2) Queensborough Community College (CUNY), a minority serving college; 3) Lehman College (CUNY), a minority serving college; and 4) Lamont-Doherty Earth Observatory (LDEO), a world-class earth science research institution. External financial support for the program has been secured through the City University of New York Graduate Center through a MAGNET fellowship, Minorities Striving and Pursuing Higher Degrees of Success in Earth Systems Science Professional Development Program 2006, through two industry grants (Entergy Co. and NRG Energy), and in the future, through the availability at competitive rates of local research vessels for day- trips. We anticipate that the program will further gain momentum through partnerships with other City University of New York senior and community colleges, and thanks to word of mouth from those students who participated in the program.

  9. High Demand, Core Geosciences, and Meeting the Challenges through Online Approaches

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Leahy, P. Patrick; Houlton, Heather; Wilson, Carolyn

    2014-05-01

    As the geosciences has evolved over the last several decades, so too has undergraduate geoscience education, both from a standpoint of curriculum and educational experience. In the United States, we have been experiencing very strong growth in enrollments in geoscience, as well as employment demand for the last 7 years. That growth has been largely fueled by all aspects of the energy boom in the US, both from the energy production side and the environmental management side. Interestingly the portfolio of experiences and knowledge required are strongly congruent as evidenced from results of the American Geosciences Institute's National Geoscience Exit Survey. Likewise, the demand for new geoscientists in the US is outstripping even the nearly unprecedented growth in enrollments and degrees, which is calling into question the geosciences' inability to effectively reach into the largest growing segments of the U.S. College population - underrepresented minorities. We will also examine the results of the AGI Survey on Geoscience Online Learning and examine how the results of that survey are rectified with Peter Smith's "Middle Third" theory on "wasted talent" because of spatial, economic, and social dislocation. In particular, the geosciences are late to the online learning game in the United States and most faculty engaged in such activities are "lone wolves" in their department operating with little knowledge of the support structures that exist in such development. Yet the most cited barriers for faculty not engaging actively in online learning is the assertion that laboratory and field experiences will be lost and thus fight engaging in this medium. However, the survey shows that faculty are discovering novel approaches to address these issues, many of which have great application to enabling geoscience programs in the United States to meet the expanding demand for geoscience degrees.

  10. Enhancing Diversity in the Geosciences through National Dissemination of the AMS Online Weather Studies Distance Learning Course

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2002-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in an introductory geoscience course simply because none is offered at their college or university. Often introductory or survey courses are a student's first exposure to the geosciences. To help alleviate this problem, the American Meteorological Society (AMS) through its Education Program developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course will be offered at 130 colleges and universities nationwide, including 30 minority-serving institutions, 20 of which have joined the AMS Online Weather Studies Diversity Program during 2002. The AMS encourages course adoption by more institutions serving large numbers of minority students through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time-a highly motivational learning experience. The AMS Education Program designed and services this course and makes it available to colleges and universities as a user-friendly turnkey package with electronic and printed components. The AMS Diversity Program, in cooperation with the National Weather Service (NWS) facilitates institutional participation in Online Weather Studies. Prior to an instructor's initial offering of the course, he or she is invited to attend a one-week course implementation workshop at the NWS Training Center at Kansas City, MO. Participants then join an interactive network to share best practices ideas in science content and teaching strategies related to their offering of Online Weather Studies. They participate in a mentoring program that networks students with professional meteorologists and provides opportunities for internships, summer research, and career counseling. Meteorologists-in-Charge at NWS Weather Forecast Offices across the nation have volunteered their time to help make these opportunities possible. Also, participants are invited to attend the Educational Symposium of the AMS Annual Meeting where they will attend a special Diversity Session and are encouraged to present a paper or poster.

  11. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion of scientific instruments such as GPS and probeware, fostered additional student interest in earth science. IDGE has shown to have a lasting effect on the participating students who learn from the experience that science is a dynamic field in need of creative minds who want to make discoveries. Through relevant inquiry, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award 0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  12. Increasing Diversity in Geosciences: Geospatial Initiatives at North Carolina Central University

    NASA Astrophysics Data System (ADS)

    Vlahovic, G.; Malhotra, R.; Renslow, M.; Harris, J.; Barnett, A.

    2006-12-01

    Two new initiatives funded by the NSF-GEO and NSF-HRD directorates have potential to advance the geospatial program at the North Carolina Central University (NCCU). As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU is establishing a GIS Research, Innovative Teaching, and Service (GRITS) Laboratory and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer GIS certification to Geography graduates. This presentation will focus on the role that GRITS and GIS certification will play in attracting students to the geoscience majors, the planned curriculum changes, and the emerging partnership with ASPRS to develop and offer "provisional certification" to NCCU students. In addition, authors would also like to describe plans to promote geospatial education in partnership with other educational institutions. NCCUs high minority enrollment (at the present approximately 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and possible role model for other HBCUs.

  13. Exploring deliberate mentoring approaches aimed at improving the recruitment and persistence of undergraduate women in the geosciences

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Adams, A. S.; Barnes, R. T.; Burt, M. A.; Clinton, S. M.; Godfrey, E.; Hernandez, P.; Bloodhart, B.; Donaldson, L.; Henderson, H.; Sayers, J.; Sample McMeeking, L. B.; Bowker, C.; Fischer, E. V.

    2015-12-01

    In the United States, men outnumber women in many science and engineering fields by nearly 3 to 1. In fields like physics or the geosciences, the gender gap can be even wider. Previous studies have identified the early college years as a critical point where many women exit STEM disciplines. An interdisciplinary team including experts in the geosciences, psychology, education, and STEM persistence have recently begun a 5-year project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring first and second year female undergraduate students from three universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields and both in-person and virtual peer networks. The first weekend workshops will be held in October 2015. We will present an overview of the major components and lessons learned from these workshops and showcase the web center, including the online peer-networking forum.

  14. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    NASA Astrophysics Data System (ADS)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  15. Using Systems Thinking in the Design, Implementation, and Evaluation of Complex Educational Innovations, with Examples from the InTeGrate Project

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Manduca, Cathryn A.

    2017-01-01

    Many geoscience education initiatives now involve cross-departmental or multi-institutional programs. However, the geoscientists who lead such programs typically have little experience or training in program design, leadership, or evaluation. In this commentary, we make the case that geoscientists taking on these ambitious leadership roles can…

  16. The TXESS Revolution: A Partnership to Advance Earth and Space Science in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Olson, H. C.; Willis, M.

    2007-12-01

    The Texas State Board of Education voted in 2006 to require a fourth year of science for graduation from high school and to authorize the creation of a new senior level Earth Systems and Space Science course as an option to fulfill that requirement. The new Earth Systems and Space Science course will be a capstone course for which three required science courses(biology, chemistry and physics)are prerequisites. Here, we summarize the collective efforts of business leaders, scientists and educators who worked collaboratively for almost a decade to successfully reinstate Earth science as part of Texas' standard high school curriculum and describe a new project, the Texas Earth and Space Science (TXESS) Revolution, a 5-year professional development program for 8th -12th grade minority and minority-serving science teachers and teacher mentors in Texas to help prepare them to teach the new capstone course. At the heart of TXESS Revolution is an extraordinary partnership, involving (1) two UT-Austin academic units, the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering; (2) TERC, a not-for-profit educational enterprise in Massachusetts with 30 years experience in designing science curriculum; (3) the University of South Florida; and (4) the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, a statewide network of teacher mentors and science teachers. With guidance from the Texas Education Agency, the state agency charged with overseeing education, the TXESS Revolution project will provide teachers with access to high quality materials and instruction aligned with the Texas educational standards for the new capstone course through: a program of eight different 3-day professional development academies offered to both teachers and teachers mentors; immersive summer institutes, field experiences, and a Petroleum Science and Technology Institute; training on how to implement Earth Science by Design, a teacher professional development program developed by TERC and the American Geological Institute with National Science Foundation (NSF) funding; and an online learning forum designed to keep teachers and teacher mentors in contact with facilitators and fellow project-participants between and after training, as well as share best practices and new information. The new capstone course promises to be a rigorous and dynamic change to the way Earth and Space Science has been presented previously anywhere in the U.S. and will provide many opportunities for professional development and the dissemination of suitable Earth and Space Science curriculum. The TXESS Revolution project welcomes opportunities to collaborate with geoscience consortia, programs, organizations and geoscience educators to advance Earth and Space Science in Texas. NSF's Opportunities to Enhance Diversity in the Geosciences program, the Shell Oil Company and the Jackson School of Geosciences are together funding the TXESS Revolution project.

  17. Using a modified Learning Potential Assessment Device and Mediated Learning Experiences to Assess Minority Student Progress and Program Goals in an Undergraduate Research Based Geoscience Program Serving American Indians

    NASA Astrophysics Data System (ADS)

    Mitchell, L. W.

    2002-12-01

    During the initiation of a new program at the University of North Dakota designed to promote American Indians to engage in geoscience research and complete geoscience related degrees, an evaluation procedure utilizing a modified Learning Potential Assessment Device (LPAD) and Mediated Learning Experiences (MLE) to assess minority student progress was implemented. The program, called Indians Into Geosciences (INGEOS), utilized a modified form of the Learning Potential Assessment Device first to assess cultural factors, determination, and other baseline information, and second, utilized a series of Mediated Learning Experiences to enhance minority students' opportunities in a culturally appropriate, culturally diverse, and scientifically challenging manner in an effort to prepare students for competitive research careers in the geosciences. All of the LPADs and MLEs corresponded directly to the three goals or eight objectives of INGEOS. The three goals of the INGEOS program are: 1) increasing the number of American Indians earning degrees at all levels, 2) engaging American Indians in challenging and technically based scientific research, and 3) preparing American Indians for successful geoscience careers through multicultural community involvement. The eight objectives of the INGEOS program, called the Eight Points of Success, are: 1) spiritual health, 2) social health, 3) physical health, 4) mental health, 5) financial management, 6) research involvement, 7) technical exposure, and 8) multicultural community education. The INGEOS program goals were evaluated strictly quantitatively utilizing a variety of data sources such as grade point averages, number of credits earned, research project information, and developed products. The INGEOS Program goals reflected a combined quantitative score of all participants, whereas the objectives reflected qualitative measures and are specific for each INGEOS participant. Initial results indicate that those participants which show progress through Mediated Learning Experiences within all of the Eight Points of Success, have a higher likelihood of contributing to all three of the INGEOS programs goals.

  18. Engaging diverse community college students in the geosciences through a year-round career mentoring and research workforce program

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Barge, L. M.; Smith, M.

    2017-12-01

    Student attrition from STEM majors most often occurs in the first or second year of college. To retain underrepresented minority students who are largely enrolled in community colleges in STEM pathways, it is critical to provide hands-on experiences and exposure to STEM occupations in a supportive community, before the students transfer to four-year colleges. The goal of the Bridge to the Geosciences is to provide community college students with year-round career mentoring, exposure to different fields and organizations in the geosciences through small field or research experiences, and community-building within the cohort and in connection with a broader community of scientists. Each year, 20 students from Citrus College in Glendora, California participate in research "geomodules" organized around the planetary, atmospheric, ocean, and environmental science subfields of the geosciences at: (1) the Oak Crest Institute of Science, a chemistry research and diversity-oriented education organization in Monrovia, CA; (2) the NASA Jet Propulsion Laboratory (JPL), a NASA center in Pasadena, CA; (3) the University of Southern California's (USC) Wrigley Institute for Environmental Studies, a research center on Catalina Island; and (4) the University Corporation for Atmospheric Research (UCAR) in Boulder, CO. A peak experience of the program is a ten-day mini-internship at UCAR in Colorado where the students are immersed in atmospheric research, training, fieldwork, and presenting at a premier facility. Professional development, mentoring, science communication and cohort-development are woven across all four geomodules and throughout the year. This program is funded by the National Science Foundation's Improving Undergraduate STEM Education or IUSE program. Preliminary results indicate that the students' interest in the geosciences, confidence in their skills and identify as a scientist, and their sense of belonging to a cohort are increased by participation in this program.

  19. Every Student Counts: Broadening Participation in the Geosciences through a Multiyear Internship Program

    NASA Astrophysics Data System (ADS)

    Sloan, V.

    2010-12-01

    The number of Ph.D.s from underrepresented populations graduating each year in the geosciences lags behind all other sciences including physics. This results in a dearth of minorities acting as role models in higher education. Overall, African Americans, Native Americans, and Hispanics comprised a total of 6% of the Ph.D. graduates in 2005 compared to about 27% of the general population. African Americans were the most poorly represented relative to their proportion in the U.S. population, comprising only 1% of Ph.D.s in the geosciences compared to 12% of the population. Only one African American woman Ph.D. graduated in the geosciences in the U.S. in each of 2004 and 2005, while proportionally one would expect 28 to obtain a Ph.D. each year. Our multiyear internship program, RESESS helps to carry students from underrepresented minority populations through to graduate programs by preparing them for graduate school. Our interns experience an authentic summer research experience at a university, the USGS, or UNAVCO, while doing an intensive writing course and working closely with a science and writing mentor. We continue mentoring during the academic year, as students apply for graduate school and scholarships, and present their research results at professional conferences. RESESS focuses on the Earth sciences and partners with SOARS, which focuses on atmospheric and related sciences. Our future goals include developing more RESESS pods elsewhere in the country, making it possible for students to do community-driven research, and increasing the diversity of support for the program through new and stronger partnerships with organizations such as the U.S.G.S., the National Parks Service, and other universities. In this paper, we will present current statistics on diversity in higher education in the geoscience, details of our program, and conclusions about effective means of supporting minority students in the bridge to graduate school. When the numbers are this low, every student counts. Diana Prado Garzon at work in summer of 2010.

  20. AMS Online Weather Studies: The National Dissemination of a Distance Learning Course for Enhancing Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2004-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in geoscience courses simply because none is offered at their college or university. Often college-level introductory courses are a student's first exposure to the geosciences. To help alleviate this problem of access, the American Meteorological Society (AMS) has developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course has been licensed by over 230 colleges and universities nationwide, among them 72 minority-serving institutions which have joined via the AMS Online Weather Studies Geosciences Diversity Program since 2002. This program designed to reach institutions serving large numbers of minority students has been made possible through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time - a highly motivational learning experience. The AMS Education Program designed and services this course and makes it available to colleges and universities as a user-friendly turnkey package with electronic and printed components. The AMS Geosciences Diversity Program, in cooperation with the National Weather Service (NWS), facilitates institutional participation in Online Weather Studies. Prior to an instructor's initial offering of the course, he or she is invited to attend a one-week course implementation workshop at the NWS Training Center at Kansas City, MO. Participants are encouraged to share best practices ideas in science content and teaching strategies related to their offering of Online Weather Studies. Through the course homepage, students are provided with information on further studies in the atmospheric sciences, opportunities for internships and summer research, and career counseling. Meteorologists-in-Charge at NWS Weather Forecast Offices across the nation have interacted with minority-serving institutions to encourage adoption of the AMS weather course. Also, participating faculty members are invited to the Educational Symposium of the AMS Annual Meeting where they will attend a special Diversity Session and are encouraged to present posters.

  1. Linking the GLOBE Program With NASA and NSF Large-Scale Experiments

    NASA Astrophysics Data System (ADS)

    Filmer, P. E.

    2005-12-01

    NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component that will collaborate with the Geosciences Education assessment contractor and with the GLOBE Office's evaluation and assessment activities; and - Contact and discussions with the GLOBE Office regarding understandings of roles and responsibilities. The following link is a PDF document with full explanation of the GLOBE Program's new direction.

  2. The Geosciences Institute for Research and Education: Bringing awareness of the geosciences to minorities in Detroit MI

    NASA Astrophysics Data System (ADS)

    Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.

    2009-12-01

    According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school administrators and teachers, faculty, and family. It is expected that this experience will generate enthusiasm for learning before entering high school and might lead some of these underrepresented students to pursue their education at UM-D, and possibly for a career in geology.

  3. MS PHD'S: A Successful Model Promoting Inclusion, Preparation and Engagement of Underrepresented Minorities within the Geosciences Workforce

    NASA Astrophysics Data System (ADS)

    Padilla, E.; Scott, O.; Strickland, J. T.; Ricciardi, L.; Guzman, W. I.; Braxton, L.; Williamson, V.; Johnson, A.

    2015-12-01

    According to 2014 findings of the National Research Council, geoscience and related industries indicate an anticipated 48,000 blue-collar, scientific, and managerial positions to be filled by underrepresented minority (URM) workers in the next 15 years. An Information Handling Services (IHS) report prepared for the American Petroleum Institute forecasts even greater numbers estimating upward of 408,000 opportunities for URM workers related to growth in accelerated development of oil, gas and petroleum industries. However, many URM students lack the training in both the hard sciences and craft skills necessary to fill these positions. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program uses integrative and holistic strategies to better prepare URM students for entry into all levels of the geoscience workforce. Through a three-phase program of mentoring, community building, networking and professional development activities, MS PHD'S promotes collaboration, critical thinking, and soft skills development for participants. Program activities expose URM students to education, training and real-life geoscience workforce experiences while maintaining a continuity of supportive mentoring and training networks via an active virtual community. MS PHD'S participants report increased self-confidence and self-efficacy in pursuing geoscience workforce goals. To date, the program supports 223 participants of who 57, 21 and 16 have received Doctorate, Masters and Baccalaureate degrees respectively and are currently employed within the geoscience and related industries workforce. The remaining 129 participants are enrolled in undergraduate and graduate programs throughout the U.S. Geographic representation of participants includes 35 states, the District of Columbia, Puerto Rico and two international postdoctoral appointments - one in Saudi Arabia and the other in France.

  4. Effective Recruiting and Intrusive Retention Strategies for Diversifying the Geosciences through a Research Experiences for Undergraduate Program

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Yuen-Lau, L.; Ikramova, M.

    2016-12-01

    Worse than in most Science, Technology, Engineering, and Mathematics (STEM) fields, underrepresented minority (URM) groups in the geosciences are reported to be farthest beneath the national benchmarks. Even more alarming, the geosciences have the lowest diversity of all the STEM disciplines at all three levels of higher education. In order to increase the number of underrepresented groups in the geosciences, a National Science Foundation funded Research Experiences for Undergraduates (REU) program at the New York City College of Technology has implemented effective recruitment strategies to attract and retain diverse student cohorts. Recruitment efforts include: 1) establishing partnership with the local community colleges; 2) forging collaborations with scientists of color; 3) reaching out to the geoscience departments; and 4) forming relationships with STEM organizations. Unlike the other REU programs which primarily provide a summer-only research experience, this REU program engages students in a year-long research experience. Students begin their research in the summer for nine weeks, and they continue their research one day a week in the fall and spring semesters. During the academic year, they present their projects at conferences. They also serve as STEM ambassadors to community and high school outreach events. This one-year triad connection of 1) professional organizations/conferences, 2) continual research experience, and 3) service constituent has resulted in higher retention and graduation rates of URMs in the STEM disciplines. Both formative and summative program assessment have uncovered and shown that strong recruitment efforts accompanied by intrusive retention strategies are essential to: a) sustain and support STEM URMs in developing confidence as scientists; b) create formal and informal STEM communities; and c) provide a clear pathway to advanced degrees and to the geoscience workforce. This project is supported by NSF REU Grant #1560050.

  5. Geoscience Education Programs in the NSF Division of Undergraduate Education: Different Acronyms with Similar Intent

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2014-12-01

    For the past three decades, the National Science Foundation's (NSF) Division of Undergraduate Education (DUE) has administered a succession of programs intended to improve undergraduate STEM education for all students. The IUSE (Improving Undergraduate STEM Education) program is the latest program in this succession, and reflects an expanded, NSF-wide effort to make sustainable improvements in STEM education on a national scale. The origins and thinking behind IUSE can be in part traced back to precursor programs including: ILI (Instrumentation and Laboratory Improvement), CCD (Course and Curriculum Development), UFE (Undergraduate Faculty Enhancement), CCLI (Course, Curriculum and Laboratory Improvement), and TUES (Transforming Undergraduate Education in STEM), all of which sought to support faculty efforts to investigate and improve curriculum and instructional practice in undergraduate STEM education, and to disseminate effective STEM educational practices for broad adoption. IUSE, like its predecessor programs, is open to all STEM fields, and as such is intended to support improvements in geoscience education, spanning the atmospheric, ocean, and Earth sciences, as well as in environmental science, GIS science, climate change and sustainability/resilience. An emphasis on discipline-based research on learning that had origins in the CCLI and TUES programs is a new priority area in IUSE, with the ambition that projects will take advantage of the integrated expertise of domain scientists, educational practioners, and experts in learning science. We trace and describe the history of undergraduate education efforts with an emphasis placed on the recently introduced IUSE program. Understanding the origin of DUE's IUSE program can provide insights for faculty interested in developing proposals for submission and gain a greater appreciation of trends and priorities within the division.

  6. National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.

    2014-12-01

    The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes an upcoming workshop in collaboration with the American Geosciences Institute, deep collections of relevant digital learning resources, pertinent interest groups within the membership, professional development workshops, and more. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.

  7. The impact of participation in the GEMscholar Program: the persistence of Native American undergraduate students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Zurn-Birkhimer, S.; Geier, S.; Filley, T. R.

    2009-12-01

    The GEMscholar (Geology, Environmental Science and Meteorology scholars) program seeks to increase the number of Native American students pursuing graduate degrees in the geosciences. Drawing on research from Native American student education models to address three key themes of mentoring, culturally relevant valuations of geosciences and possible career paths, and connections to community and family the GEMscholar program was designed to provide research opportunities and a support network for the participants. The GEMscholars work on projects that directly link to their local ecosystems and permit them to engage in long term monitoring and cohesive interaction among each successive year’s participants. Over the past 4 years, the research has been focused on the invasion of the European earthworm on the Red Lake Reservation (Red Lake, MN). This research was specifically chosen because of its cultural relevance and its ability to yield locally important findings. In depth interviews with select GEMscholar participants will be used to discover the types of supports that lead to persistence to graduation and the types of obstacles that lead to attrition for these Native American students. Specifically of interest are cultural factors that influence the students’ education and career goals formation and the role of the GEMscholars program in reaching their identified goals.

  8. Sparking Conversations about Graduate Programs in Geoscience Education Research

    ERIC Educational Resources Information Center

    McNeal, Karen S.; Petcovic, Heather L.

    2017-01-01

    The calls for a college-educated science and technology workforce, as well as a scientifically literate citizenry, have led to a demand for higher education faculty prepared in discipline-based education research (DBER). These faculty members conduct research on teaching and learning in the context of a specific discipline, including the…

  9. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research problem, to make collaborative decisions, and to collectively problem solve. The development of this shared understanding is a primary result of the past decade of work. It has been developed through geoscience hosted events like the On the Cutting Edge emerging theme workshops and the Synthesis of Research on Thinking and Learning in the Geosciences project, complementary events in cognitive science and education that include geoscientists like the Gordon Conferences on Visualization in Science & Education or the Spatial Cognition conference series, and the interactions within and among geoscience education research projects like the Spatial Intelligence and Learning Center, the GARNET project, and many others. With this common ground in place, effective collaborations that bring together deep knowledge of psychology and brain function, of educational design and testing, and of time tested learning goals, teaching methods, and measures of success can flourish. A strong and accelerating research field has emerged that spans from work on basic cognitive skills important in geoscience, to studies of specific teaching strategies.

  10. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    NASA Astrophysics Data System (ADS)

    Laj, C. E.

    2017-12-01

    As a research scientist I have always been interested in sharing whatever I knew with the general public and with teachers, who have the responsibility of forming young people, our ambassadors to the future. The turning point in my educational activities was in 2002, when the European Geosciences Union (EGU) welcomed my proposition to develop a Committee on Education. One of the committee's main activities is the organisation of GIFT (Geosciences Information for Teachers) workshops, held annually during the EGU General Assembly. Typically, these workshops bring together about 80 teachers from 20-25 different countries around a general theme that changes every year. Teachers are offered a mixture of keynote presentations by renowned scientists, and participate to classroom hands-on activities led by high-class educators. They also participate to a poster session, open to every participant to the GA, in which they can show to everyone the activities they have developed in their classroom. Therefore, EGU GIFT workshops spread first-hand scientific information to science teachers, and also offer teachers an exceptional way to networking with fellow teachers worldwide. Speakers are chosen from the academic world, national geosciences organisations such as BGS (UK), BRGM (France), INGV (Italy), the European Space Agency (ESA), CEA (France), from private companies (Total), or from International Organizations for policy makers such as the International Energy Agency (IEA), and IPCC. Since 2010, EGU GIFT workshops have been organized beyond Europe, in connection with EGU Alexander von Humboldt Conferences and other major International Conferences, or in collaboration with local or international organisations. A `Teachers at Sea' program has also been developed for teachers to be able to take part in an Oceanographic cruise. Also, in collaboration with the media manager of EGU the Committee has participated in "Planet Press", a program of geoscience press releases for children.

  11. The NSF IUSE-EHR Program: What's New (and Old) About It, and Resources for Geoscience Proposers

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2015-12-01

    The NSF Division of Undergraduate Education recently released a new solicitation for the IUSE program -- the latest iteration in a succession of funding programs dating back over 30 years (including the Instrumentation and Laboratory Improvement Program (ILI), the Course and Curriculum Development Program (CCD), the Course Curriculum and Laboratory Improvement Program (CCLI), and the Transforming Undergraduate STEM Education Program (TUES). All of these programs sought/seek to support high quality STEM education for majors and non-majors in lower- and upper-division undergraduate courses. The current IUSE-EHR program is described in a 2-year solicitation that includes two tracks: Engaged Student Learning, and Institutional & Community Transformation. Each track has several options for funding level and project duration. A wide range of activities can be proposed for funding, and the program recognizes the varying needs across STEM disciplines. Geoscientists and other potential IUSE proposers are strongly encouraged to form collaborations with colleagues that conduct educational research and to propose projects that build upon the educational knowledge base in the discipline as well as contribute to it. Achieving this may not be immediately obvious to many geoscientists who have interests in improving student learning in their courses, but are not fluent in the scholarship of education in their field. To lower the barriers that have historically prevented larger numbers of geoscientists from developing their ideas into competitive education-related proposals, we have explored strategies for building and leveraging partnerships, sought to identify available resources for proposers, and explored a range of strategies for engaging and supporting larger numbers of potential geoscience proposers.

  12. Alliances for Undergraduate Research in the Geosciences Through Collaborative Recruitment

    NASA Astrophysics Data System (ADS)

    Pandya, R.; Eriksson, S.; Haacker-Santos, R.; Calhoun, A.

    2006-12-01

    Undergraduate research is a key strategy for encouraging students to pursue graduate school and careers in science end engineering. In the geosciences, where participation by members of underrepresented groups is among the lowest of any science field, these programs must continue and strengthen their efforts to engage students from historically underrepresented groups. A significant limitation on our ability to engage students from historically underrepresented groups comes from the expense, in terms of time and resources, of promoting these career options to talented undergraduates considering a host of STEM careers. Another hurdle is our ability to match students with research projects tailored to their interests. Further complicating this is the challenge of matching students who have culturally motivated geographic constraints—for example, Native students who seek to serve their local community—to relevant opportunities. As a result, we believe that a number of highly qualified students never fully consider careers in the geosciences. To address these obstacles, we propose an alliance of undergraduate research programs in the geosciences. In this model, all members of the alliance would share recruiting, and students would submit a single application forwarded to all alliance members. The Alliance could offer applicants multiple research opportunities, from across the alliance, tailored to fit the applicant's needs and interests. This strategy has proven very effective in other fields; for example, the Leadership Alliance allows 32 member institutions to offer internships and fellowships through one central application process. SOARS and RESESS, programs in atmospheric science and geophysics, respectively, have done this co-recruiting for two years. There are many benefits to this type of alliance. First, it would allow programs to leverage and coordinate their recruiting investments. From our experience with SOARS and RESESS, much of the effort in recruiting involves education about careers in the geosciences. By collaborating to build awareness of the geosciences, all partnering institutions and programs would have access to a larger applicant pool, thus enabling them to select the most qualified applicants for their programs. Second, applicants could be more easily matched with programs fitting their stated research interests. Third, fewer highly qualified applicants would be overlooked and discouraged from approaching a career in geosciences. By focusing alliance activities on attracting students form underrepresented groups who have not considered geoscience careers, we could increase the number of students from underrepresented groups who pursue careers in geoscience fields. Our presentation will describe the initial SOARS/RESESS collaboration, next steps to build the alliance, and invite additional participation in the alliance.

  13. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued opportunities to discuss the boundaries of outreach, evaluation, and research and the potential next steps to advance geoscience education. Recommendations from the workshop are well aligned with earlier reports, and along with those documents, contributes to a path forward for geoscience education.

  14. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  15. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  16. Effectiveness of Geosciences Exploration Summer Program (GeoX) for Increasing Awareness and Knowledge of Geosciences

    ERIC Educational Resources Information Center

    Houser, Chris; Garcia, Sonia; Torres, Janet

    2015-01-01

    Summer research experiences are an increasingly popular means of increasing awareness of, and developing interest in, the geosciences and other science, technology, engineering, and math programs. We describe and report the preliminary results of a 1-wk Geosciences Exploration Summer Program in the College of Geosciences at Texas A&M…

  17. Professional Development Opportunities for Two-Year College Geoscience Faculty: Issues, Opportunities, and Successes

    NASA Astrophysics Data System (ADS)

    Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.

    2011-12-01

    Two-year colleges (2YCs) play a critical role in geoscience education in the United States. Nearly half of the undergraduate students who take introductory geoscience do so at a 2YC. With awide reach and diverse student populations, 2YCs may be key to producing a well-trained, diverse and sufficiently large geoscience workforce. However, faculty at 2YCs often face many barriers to professional development including lack of financial resources, heavy and inflexible teaching loads, lack of awareness of opportunities, and few professional development resources/events targeted at their needs. As an example, at the 2009 GSA meeting in Portland, fewer than 80 of the 6500 attendees were from community colleges, although this was more than twice the 2YC faculty attendance the previous year. Other issues include the isolation described by many 2YC geoscience faculty who may be the only full time geoscientist on a campus and challenges faced by adjunct faculty who may have even fewer opportunities for professional development and networking with other geoscience faculty. Over the past three years we have convened several workshops and events for 2YC geoscience faculty including technical sessions and a workshop on funding opportunities for 2YC faculty at GSA annual meetings, a field trip and networking event at the fall AGU meeting, a planning workshop that examined the role of 2YCs in geoscience education and in broadening participation in the geosciences, two workshops supporting use of the 'Math You Need, When You Need It' educational materials that included a majority of 2YC faculty, and marine science summer institutes offered by COSEE-Pacific Partnerships for 2YC faculty. Our experience indicates that 2YC faculty desire professional development opportunities when the experience is tailored to the needs and character of their students, programs, and institutions. The content of the professional development opportunity must be useful to 2YC faculty -workshops and materials aimed at K-12 or at faculty teaching geoscience majors tend not to attract 2YC faculty. Conducting a needs assessment and including 2YC faculty in workshop planning helps ensure that the outcomes of professional development opportunities for 2YC faculty are achieved. Financial support for travel seems to be important, although typically it is not necessary to compensate 2YC faculty beyond expenses. 2YC faculty availability varies significantly during the summer as well as during the academic year, so offering multiple opportunities throughout the year and/or virtual events is important. The Geo2YC website at SERC is a resource for geoscience education at two-year colleges and the associated Geo2YC mailing has facilitated the targeted marketing of opportunities for this important group of educators.

  18. An Integrated Model for Improving Undergraduate Geoscience Workforce Readiness

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Houlton, H. R.

    2017-12-01

    Within STEM fields, employers are reporting a widening gap in the workforce readiness of new graduates. As departments continue to be squeezed with new requirements, chasing the latest technologies and scientific developments and constrained budgets, formal undergraduate programs struggle to fully prepare students for the workforce. One major mechanisms to address gaps within formal education is in life-long learning. Most technical and professional fields have life-long learning requirements, but it is not common in the geosciences, as licensing requirements remain limited. By introducing the concept of career self-management and life-long learning into the formal education experience of students, we can build voluntary engagement and shift some of the preparation burden from existing degree programs. The Geoscience Online Learning Initiative (GOLI) seeks to extend professional life-long learning into the formal education realm. By utilizing proven, effective means to capture expert knowledge, the GOLI program constructs courses in the OpenEdX platform, where the content authors and society staff continuously refine the material into effective one- to two-hour long asynchronous modules. The topical focus of these courses are outside of the usual scope of the academic curriculum, but are aligned with applied technical or professional issues. These courses are provided as open education resources, but also qualify for CEUs as the ongoing professional microcredential in the profession. This way, interested faculty can utilize these resources as focused modules in their own course offerings or students can engage in the courses independently and upon passing the assessments and paying of a nominal fee, be awarded CEUs which count towards their professional qualifications. Establishing a continuum of learning over one's career is a critical cultural change needed for students to succeed and be resilient through the duration of a career. We will examine how this approach mimics successful efforts in other STEM fields and where it aligns with both ongoing evolution in professional geoscience employment and broader trends in STEM career management.

  19. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships (invited)

    NASA Astrophysics Data System (ADS)

    Harcourt, P.

    2017-12-01

    Addressing the urgent issue of climate change requires mitigation and adaptation actions on individual to global scales, and appropriate action must be based upon geoscience literacy across population sectors. The NSF-funded MADE CLEAR (Maryland and Delaware Climate Change Education, Assessment, and Research) project provides a coordinated approach to embed climate change into education programs at the university level, in formal K12 classrooms, and among informal educators. We have worked with state agencies, university systems, non-profit organizations, and community groups to establish and support research-based education about climate change. In this panel I will describe how MADE CLEAR approached the task of infusing climate change education across sectors in the highly diverse states of Delaware and Maryland. I will share the characteristics of our strongest alliances, an analysis of significant barriers to climate change education, and our perspective on the outlook for the future of climate change education.

  20. Ethical considerations in developing the next generation of geoscientists and defining a common cause for the geosciences

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Boland, Maeve

    2017-04-01

    Much of the discussion about ethics in geoscience centers around the ethical use of the science in a societal context or the social and professional conduct between individuals within the geoscience community. Little has been discussed about the challenges and ethical issues associated with the discipline's effort to build its future workforce in light of cyclical hiring, tightening research budgets, and rapidly evolving skill demands for professional geoscientists. Many geoscientists assume that the profession is underappreciated by society and insufficiently visible to students in higher education. Yet, at least in the United States, we are coming out of nearly a decade of record geoscience undergraduate enrollments and graduate programs that are operating at full capacity. During this time we have witnessed several fundamental shifts in the hiring demands for geoscientists, but in aggregate, have not seen any decrease in hiring of new graduates. The formal education system has not been able to respond to rapid changes in the skills required by employers and is producing a proportion of students unprepared to engage in a career as a geoscientist and, in some cases, unaware of the realities of business cycles and the need for professional and geographic mobility. Another problem for the future workforce is the lack of a fundamental rationale for the geosciences. Currently, the geosciences do not have a substantive vision for their role in society that can define the perception and destiny of the geosciences. During the Cold War and the Space Race, for example, advances in geoscience helped shape the next steps by society. Several initiatives, such as Resourcing Future Generations, are proposing research and social context frameworks for the geosciences that address critical global priorities, such as the Sustainable Development Goals. These projects may establish long-term trends and momentum that the discipline can build around. But what is the discipline's, and each of our individual, responsibility towards honest and nurtured development of the next generation, how we recruit future talent and disclose the opportunities and challenges of working in the geosciences, how we construct an educational system that meets the needs of students and society, and what constitutes a common cause for the geosciences?

  1. Attracting and Retaining Undergraduate Students in the Geosciences: A Multipronged Approach

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.

    2017-04-01

    The geosciences are taught at relatively few colleges and universities in the United States. Furthermore, fewer students are selecting the geosciences as careers and where the loss of retired scientists is significant. Thus, new approaches and strategies are needed to attract and retain students in the geosciences. The aim of this project is to both increase the diversity and visibility of the geosciences at the undergraduate level. Using both an interdisciplinary and inter-institutional approach, the Queensborough Community College (QCC) of the City University of New York (CUNY) has been very successful at engaging students in educational activities and applied research in solar, geospace, and atmospheric physics, under the umbrella discipline of space weather. As an interdisciplinary field, space weather offers students a great opportunity to study the Sun-Earth connection. Additionally, students also receive support through several partner institutions including the NASA Goddard Spaceflight Center (GSFC) Community Coordinated Modeling Center (CCMC), four-year colleges and universities, and other summer research programs. With its institutional partners, QCC has implemented a year-long program with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. This poster will describe these approaches, as well as present best strategies that are used to attract and retain students in the geosciences.

  2. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance computing resources to address a grand geosciences problem. Students increase their ability to understand and explain the societal impact of their research and communicate the research to multidisciplinary and lay audiences via near-peer mentoring, poster presentations, and publication opportunities.

  3. Educating the Next Generation of Geoscientists: Strategies for Formal and Informal Settings

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2013-12-01

    ENGAGE, Educating the Next Generation of Geoscientists, is an effort funded by the National Science Foundation to provide academic opportunities for members of underrepresented groups to learn geology in formal and informal settings through collaboration with other universities and science organizations. The program design tests the hypothesis that developing a culture of on-going dialogue around science issues through special guest lectures and workshops, creating opportunities for mentorship through informal lunches, incorporating experiential learning in the field into the geoscience curriculum in lower division courses, partnership-building through the provision of paid summer internships and research opportunities, enabling students to participate in professional conferences, and engaging family members in science education through family science nights and special presentations, will remove the academic, social and economic obstacles that have traditionally hindered members of underrepresented groups from participation in the geosciences and will result in an increase in geoscience literacy and enrollment. Student feedback and anecdotal evidence indicate an increased interest in geology as a course of study and increased awareness of the relevance of geology everyday life. Preliminary statistics from two years of program implementation indicate increased student comprehension of Earth science concepts and ability to use data to identify trends in the natural environment.

  4. Linking Undergraduate Geoscience and Education Departments

    NASA Astrophysics Data System (ADS)

    Ireton, F. W.; McManus, D. A.

    2001-05-01

    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  5. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences at California State University Northridge

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.

    2002-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.

  6. Recruiting Fresh Faces: Engaging the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Martinez, C. M.; Keane, C. M.; Gonzales, L. M.

    2008-12-01

    Approximately 385,000 college students take an introductory geoscience course each year in the United States, according to a study by the American Geological Institute (AGI). This represents only 2.3 percent of the total enrolled higher education population in the US. Though geoscience departments frequently report that introductory geoscience courses are a major source for recruiting new majors, the large numbers of students enrolled in introductory geoscience courses result in only approximately 2,300 new geoscience majors each year, or 0.1 percent of the total college population. According to the College Board, more than 19,000 SAT test-takers in 2007 indicated an interest in pursuing a major in Physical Science, Interdisciplinary Science or Engineering. Forty-nine percent of SAT-takers have had an earth or space science course during high school. There is large pool of college-bound students may be interested in the geosciences, but are unaware of the educational and career opportunities available to them. In an effort to increase the flow of top talent into the geosciences, the American Geological Institute (AGI) launched an ambitious student engagement initiative as part of its Geoscience Workforce Program. This initiative will assist geoscience departments in engaging and recruiting new majors from introductory geoscience courses and will help students connect with the professional community. The academic geoscience community makes up less than 17 percent of the entire geoscience workforce, and many students may not be aware of careers available in other industries and sectors. AGI will make updated careers resources, including diverse employment opportunities, salary potential, and quality of life information, freely available to geoscience instructors for use in their introductory courses. Beginning in Fall 2008, AGI will distribute a New Majors Kit to students in selected geoscience departments. These kits will include tools to help students in their careers, such as access to the Online Glossary of Geology, and will also allow students to join several professional geoscience societies free of charge so that they are included in our global community from the beginning of their academic careers. AGI is creating a global network for geoscience students using social networking and video-sharing websites. Student engagement materials will also address parents' concerns, since they have considerable influence in students' decisions. According to a study by the National Research Center for College and University Admissions, 70 percent of high school juniors say their parents influence their college choices. The AGI Student Engagement Initiative is designed to compliment the recruiting efforts of individual geoscience departments and to assist them in attracting the next generation of geoscientists to our community.

  7. Building Strong Geoscience Programs: Perspectives From Three New Programs

    NASA Astrophysics Data System (ADS)

    Flood, T. P.; Munk, L.; Anderson, S. W.

    2005-12-01

    During the past decade, at least sixteen geoscience departments in the U.S. that offer a B.S. degree or higher have been eliminated or dispersed. During that same time, three new geoscience departments with degree-granting programs have been developed. Each program has unique student demographics, affiliation (i.e. public institution versus private liberal arts college), geoscience curricula and reasons for initiation. Some of the common themes for each program include; 1) strong devotion to providing field experiences, 2) commitment to student-faculty collaborative research, 3) maintaining traditional geology program elements in the core curriculum and 4) placing students into high quality graduate programs and geoscience careers. Although the metrics for each school vary, each program can claim success in the area of maintaining solid enrollments. This metric is critical because programs are successful only if they have enough students, either in the major and/or general education courses, to convince administrators that continued support of faculty, including space and funding is warranted. Some perspectives gained through the establishment of these new programs may also be applicable to established programs. The success and personality of a program can be greatly affected by the personality of a single faculty member. Therefore, it may not be in the best interest of a program to distribute programmatic work equally among all faculty. For example, critical responsibilities such as teaching core and introductory courses should be the responsibility of faculty who are fully committed to these pursuits. However, if these responsibilities reduce scholarly output, well-articulated arguments should be developed in order to promote program quality and sustainability rather than individual productivity. Field and undergraduate research experiences should be valued as much as high-quality classroom and laboratory instruction. To gain the support of the administration, departments should engage fully and proactively in the complimentary areas of assessment and long range planning. Along the same line, a programmatic mission statement that emphasizes the basics of geology, in conjunction with an emphasis on critical thinking and skill development, should drive recruitment of students and faculty rather than chasing curricular trends. Finally, the successes of your program, faculty and students should be deliberately and persistently publicized.

  8. Exploring deliberate mentoring approaches aimed at improving the recruitment and persistence of undergraduate women in the geosciences

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Adams, A. S.; Barnes, R.; Bloodhart, B.; Bowker, C.; Burt, M. A.; Clinton, S. M.; Godfrey, E.; Henderson, H.; Hernandez, P. R.; Sample McMeeking, L. B.; Sayers, J.; Fischer, E. V.

    2016-12-01

    In fall 2015, an interdisciplinary team with expertise in the geosciences, psychology, education, and STEM persistence began a five-year longitudinal project focused on understanding whether a multi-part mentoring program can increase the persistence of undergraduate women in the geosciences. The program focuses on mentoring 1st and 2nd year female undergraduate students from five universities in Colorado and Wyoming and four universities in North and South Carolina, and includes a weekend workshop, mentoring by professional women across geoscience fields, and both in-person and virtual peer networks. In fall 2015, we recruited 85 students from both regions into cohort 1 as well as a propensity score matched group of 255 female students that did not participate in the program. An equal or greater number of students are anticipated for cohort 2 from recruitment in fall 2016. Both cohorts will have attended weekend-long workshops (cohort 1 in October 2015, and cohort 2 in October 2016), which aimed to introduce students to various careers and lifestyles of those working in the geosciences, guide students through their strengths and interests, and address gender biases that students may face. Early analyses indicate that students who are interested in participating in the program are more likely to reject stereotypes and beliefs that the sciences are masculine, and to see science as being compatible with benefitting society. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in fall 2015 and is used by both cohorts. We will present an overview of the major components of the program, early findings from focus group and survey-based feedback from participants, and discuss lessons learned during 2015 that were applied to 2016.

  9. Due Diligence for Students - Geoscience Skills and Demographic Data for Career Planning

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2001-05-01

    A major focus of the American Geological Institute's Human Resources program has been providing demographic and employment data so that students and mentors can better understand the dynamics of a career in the geosciences. AGI has a long history of collecting these data for the geoscience community, including 46 years of geoscience enrollments, periodic comprehensive surveys of employment in the discipline, and working closely with other organizations that collect these data. AGI has launched a new suite of surveys to examine the skills desired by employers and the skills provided through a geoscience education. Historical demographic and enrollment data allow a number of the major trends to be examined. These trends include the dominance of industry as employer in the geosciences and how the cyclicity of geoscience employment has become more complex with the development of the environmental sector over the last 30 years. Additionally, demographics are changing rapidly, with a geoscience workforce that is changing rapidly in age, gender, and background. The discipline may also be facing a change in the nature of geoscience employment, with chronic shortages of skilled geoscientists, but will job opportunities actually increase. This may not be as paradoxical as it appears. The geoindustries are attempting to adjust their strategies to dampen business cycles, which then may lead to more stable employment levels for geoscientists, but they are also broadening their vision of who can become competent geoscientists.

  10. Pathways to the Geosciences through 2YR Community Colleges: A Strategic Recruitment Approach being used at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Houser, C.; Nunez, J.; Miller, K. C.

    2016-12-01

    Department and college operating budgets are increasingly tide to enrollment and student credit hour production, which requires geoscience programs to develop strategic recruitment programs to ensure long-term stability, but also to increase institutional support. There is evidence that proactive high school recruitment programs are successful in engaging students in the geosciences, particularly those that involve the parents, but these programs typically have relatively low-yields and are relatively expensive. This means that increased enrollment of undergraduates in geosciences programs and participation by under-represented groups depends on innovative and effective recruitment and retention practices. The College of Geosciences at Texas A&M University has recently developed a Pathways to the Geosciences program that facilitates the transfer of students from 2-year institutions by providing direction to students interested in the geosciences from one of our partner institutions: Blinn College, Lee College, Houston Community College, San Jacinto College and Lone Star College. Each of the partner institutions offer disciplinary majors related to the geosciences, providing a gateway for students to discover and consider the geosciences starting in their freshman year. The guided pathways provide much needed direction without restricting options and allow students to see connections between courses and their career goals. In its first year, the Pathways to the Geosciences program has resulted in a significant increase in transfer applications and admissions from the partner institutions by 74% and 107% respectively. The program has been successful because we have been proactive in helping students at the partner institutions find the information they need to effectively transfer to a 4-year program. The increase in applications is evidence that students from our partner institutions are being intentional in following a pathway to a major in the College of Geosciences.

  11. Creating an Integrated Community-Wide Effort to Enhance Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Weingroff, M.

    2001-05-01

    Supporting the development and sustenance of a diverse geoscience workforce and improving Earth system education for the full diversity of students are important goals for our community. There are numerous established programs and many new efforts beginning. However, these efforts can become more powerful if dissemination of opportunities, effective practices, and web-based resources enable synergies to develop throughout our community. The Digital Library for Earth System Education (DLESE; www.dlese.org) has developed a working group and a website to support these goals. The DLESE Diversity Working Group provides an open, virtual community for those interested in enhancing diversity in the geosciences. The working group has focused its initial effort on 1) creating a geoscience community engaged in supporting increased diversity that builds on and is integrated with work taking place in other venues; 2) developing a web resource designed to engage and support members of underrepresented groups in learning about the Earth; and 3) assisting in enhancing DLESE collections and services to better support learning experiences of students from underrepresented groups. You are invited to join the working group and participate in these efforts. The DLESE diversity website provides a mechanism for sharing information and resources. Serving as a community database, the website provides a structure in which community members can post announcements of opportunities, information on programs, and links to resources and services. Information currently available on the site includes links to professional society activities; mentoring opportunities; grant, fellowship, employment, and internship opportunities for students and educators; information on teaching students from underrepresented groups; and professional development opportunities of high interest to members of underrepresented groups. These tools provide a starting point for developing a community wide effort to enhance diversity in the geosciences that builds on our collective experiences, knowledge and resources and the work that is taking place in communities around us.

  12. Geoscience Education Research, Development, and Practice at Arizona State University

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional development for STEM teachers; Design and evaluation of innovative transdisciplinary and online curricula; and Visitor cognition of geologic time and basic principles in Southwestern National Parks.

  13. Using Soft Sculpture Microfossils and Other Crafted Models to Teach Geoscience

    NASA Astrophysics Data System (ADS)

    Spinak, N. R.

    2017-12-01

    For the past 5 years, the International Ocean Discovery Program (IODP) has been using the author's sewn models of microfossils to help learners understand the shapes and design of these tiny fossils. These tactile objects make the study of ancient underwater life more tangible. Multiple studies have shown that interactive models can help many learners understand science. The Montessori and Waldorf education programs are based in large part on earlier insights into meeting these needs. The act of drawing has been an essential part of medical education. The STEAM (Science, Technology, Engineering, Arts and Math) movement has advocated for STEM supporters to recognize the inseparability of science and art. This presentation describes how the author's knitted or sewn models of microfossils incorporate art and design into geoscience education. The geoscience research and art processes used in developing and creating these educational soft sculptures will be described. In multiple entry points to science study, specific reciprocal benefits to boundary crossing among the arts and sciences for those who have primary talents in a particular area of study will be discussed. Geoscience education can benefit from using art and craft items such as models. Many websites now offer soft sculptures for biology study such as organs and germs (e.g. (https://www.giantmicrobes.com/us/main/nasty-germs). The Wortheim project involving community and crochet is another approach (http://crochetcoralreef.org/). These tactile artifacts give learners an entry-level experience with biology. Three dimensional models are multisensory. The enlarged manipulative microfossil models invite learners to make comparisons and gain insights when microscopes are not available or appropriate for the audience. Adding the physical involvement of creating a microfossil yourself increases the multi-sensory experience even further. Learning craft skills extends the cross-cutting concepts of the NGSS to a mutual relationship between science and art.

  14. Engaging secondary students in geoscience investigations through the use of low-cost instrumentation

    NASA Astrophysics Data System (ADS)

    Dunn, A. L.; Hansen, W.; Healy, S.

    2010-12-01

    Many of the future challenges facing the United States, such as climate change, securing energy resources, soil degradation, water resources, and atmospheric pollution, are part of the domain of geosciences. Currently, our colleges and universities are not graduating enough geoscience majors to meet this demand, with only 0.27% of all bachelor's degrees granted in geoscience fields in 2006, the fewest in any scientific field (NSF 2008). Moreover, undergraduate recruitment in geosciences from traditionally underrepresented groups is significantly poorer than other STEM fields, with underrepresented groups comprising just 5% of total geoscience bachelor’s degrees awarded (Czujko 2004). Undergraduate geoscience programs therefore have a critical need to not just grow in size, but to expand the spectrum of students within their programs to better reflect the country’s diversity. In 2009, Worcester State College (WSC) initiated an effort as part of NSF's Opportunities for Enhancing Diversity in the Geosciences Program to address this problem on a local scale. Through this program, we are creating a pipeline for diversity in the geosciences through a multi-faceted approach involving teacher training, high school internships, and a co-enrollment and scholarship program between Worcester Public Schools and WSC. Worcester, Massachusetts has a median household income of 43,779, 13,902 below the median household income for Massachusetts, and 24% of the city’s children live below the poverty line. Worcester is a diverse city: 19% of the population is Latino, 9% African-American, and 7% Asian-American, with over 18% foreign-born residents. This diversity is reflected in the city’s school system, where over 80 languages are spoken. In July 2010, the program was initiated with a week-long teacher training workshop. The participants were middle and high school science teachers from Worcester and the surrounding area. The workshop focused on issues of sustainability related to the geosciences, such as solar and wind power, water and soil quality, and assessing land-use change through remote sensing and geospatial tools. The goal of the workshop was to give the teachers tools to engage students in investigating these concepts in the classroom, thereby stimulating an interest in geosciences that would carry over into undergraduate education. As part of the workshop, we provided a low-cost set of tools to give to the teachers for hands-on use in the classroom. We developed a compact, rugged system for measuring solar insolation and temperature, and combined it with a datalogger to collect a continuous timeseries of data. We also built a standalone anemometer for measuring wind speed. These instruments offer entry points for multiple types of classroom investigations into weather, climate, and renewable energy potential. They also provide a platform for practicing mathematical and computer skills such as timeseries graphing, data analysis, spreadsheet use, etc. The cost of the pyranometer, datalogger, and anemometer setup was $229 per user. Feedback from workshop participants was very positive, and the teachers were confident that the instrumentation would give them a new way to engage students in geoscience topics.

  15. Retention and Mentorship of Minority Students via Undergraduate Internship Experiences

    NASA Astrophysics Data System (ADS)

    Cooper, P.

    2004-12-01

    The School of Ocean and Earth Science and Technology at the University of Hawaii is undertaking an Undergraduate Research Internship project to address the lack of full representation of women and underrepresented minorities in the geosciences. The overarching educational objective is to provide education and career development guidance and opportunities for students from underrepresented minorities. In collaboration with industry partners, we hope to prepare undergraduate students for life and careers in today's complex and dynamic technological world by encouraging them to attain high standards in the geosciences, thereby enabling them to compete successfully for positions in graduate programs. To achieve his goal, the project focuses on the following objectives: (1) Creating a high-quality integrated on-campus teaching and off-campus learning environment, and (2) providing an intensive introduction to geoscience careers through the guidance of experienced faculty and workplace mentors. The program will start small, collaborating with one or two companies over the next two years, offering paid summer internships. Opportunities for students include participation in geoscience-related research, obtaining experience in interpreting observations and providing information to end-users, working to improve technology and field methods, and developing the expertise to maintain, operate and deploy equipment. Program participants are assigned individual projects that relate to their academic majors, their career goals, and the ongoing research missions of our industry partners. In addition to their research activities, participants attend a series of seminars and tours dealing with current topics in geoscience to expose them to the wide variety of scientific and technical activities that occur in the workplace. The expected outcomes of this experience will be scientific growth and career development. Given that a very small percentage of all students go on to graduate school, strong mentoring relationships with a special advisor and/or professor who recognizes scientific potential will both aid in student retention in the field and encourage more applications to graduate school.

  16. Increasing Geoscience Literacy and Public Support for the Earthscope National Science Initiative Through Informal Education

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.

    2005-12-01

    Geology and geophysics are frequently perceived by the student, teacher, or adult non-geologist as "difficult to understand"; however, most non-geologists of all ages appreciate geological landforms such as mountains, volcanoes and canyons, and are interested in phenomena such as earthquakes and natural resources. Most people are also interested in local connections and newsworthy programs and projects. Therefore, the EarthScope Project is a perfect opportunity to excite and educate the public about solid-Earth geoscience research and to increase the non-geologist's understanding of Earth's dynamic processes. As the EarthScope Project sweeps across the country, the general public must be made aware of the magnitude, scope, excitement, and achievements of this national initiative. However, EarthScope science is difficult for the non-scientist to understand. The project is large-scale and long-term, and its data sets consist of maps, structural graphics, 3D and 4D visualizations, and the integration of many different geophysical instruments, all elements that are difficult for the non-scientist to understand. Targeted programs for students, teachers, and visitors to the National Parks will disseminate EarthScope information; in addition, museums and other informal science education centers can also play an important role in translating scientific research for the general public. Research on learning in museums has shown that museums educate an audience that is self-selected and self-directed (non-captive), includes family/groups, multigenerational, and repeat visitors, and requires presentation of information for a variety of learning styles. Informal science centers have the following advantages in geoscience-related education: (1) graphics/display expertise; (2) flexibility in approach and programming; (3) ability to quickly produce exhibits, educational programming, and curricula themed to specific topics of interest; (4) inclusion of K-12 teachers in the development of educational programs and materials for students, pre-service and in-service teachers, (5) family learning opportunities; (6) community-wide audience ranging from pre-K through Senior Citizen; (7) accessible, visitor-friendly and non-threatening resource site for science information for the community. Museums and other science centers provide concise, factual, reliable and entertaining presentations of the relevant information. It is not enough to simply report on the scientific research, museums educate through object-based and inquiry-based learning and experiential programming.

  17. A Blueprint for Expanding the Mentoring Networks of Undergraduate Women in the Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Adams, A. S.; Barnes, R.; Bloodhart, B.; Burt, M. A.; Clinton, S. M.; Godfrey, E. S.; Pollack, I. B.; Hernandez, P. R.

    2017-12-01

    Women are substantially underrepresented in the earth and environmental sciences, and that underrepresentation begins at the undergraduate level. In fall 2015, an interdisciplinary team including expertise in the broader geosciences as well as gender and quantitative educational psychology began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring 1st and 2nd year female undergraduate students from five universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. We have found that undergraduate women with large mentoring networks, that include faculty mentors, are more likely to identify as scientists and are more committed to pursuing the geosciences. Our presentation will provide an overview of the major components of our effective and scalable program. We will include a discussion of our first published results in the context of larger social science research on how to foster effective mentoring relationships. We will offer a list of successes and challenges, and we will provide the audience with online links to the materials needed to adopt our model (https://geosciencewomen.org/materials/).

  18. Accessible Earth: An accessible study abroad capstone for the geoscience curriculum

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lamb, D. A.

    2017-12-01

    International capstone field courses offer geoscience-students opportunities to reflect upon their knowledge, develop intercultural competence, appreciate diversity, and recognize themselves as geoscientists on a global scale. Such experiences are often described as pivotal to a geoscientist's education, a right of passage. However, field-based experiences present insurmountable barriers to many students, undermining the goal of inclusive excellence. Nevertheless, there remains a widespread belief that successful geoscientists are those able to traverse inaccessible terrain. One path forward from this apparent dilemma is emerging as we take steps to address a parallel challenge: as we move into the 21st century the geoscience workforce will require an ever increasing range of skills, including analysis, modeling, communication, and computational proficiency. Computer programing, laboratory experimentation, numerical simulation, etc, are inherently more accessible than fieldwork, yet equally valuable. Students interested in pursuing such avenues may be better served by capstone experiences that align more closely with their career goals. Moreover, many of the desirable learning outcomes attributed to field-based education are not unique to immersion in remote inaccessible locations. Affective and cognitive gains may also result from social bonding through extended time with peers and mentors, creative synthesis of knowledge, project-based learning, and intercultural experience. Developing an inclusive course for the geoscience curriculum requires considering all learners, including different genders, ages, physical abilities, familial dynamics, and a multitude of other attributes. The Accessible Earth Study Abroad Program endeavors to provide geoscience students an inclusive capstone experience focusing on modern geophysical observation systems (satellite based observations and permanent networks of ground-based instruments), computational thinking and methods of data science, scientific collaboration, and professional development. In this presentation, we will describe our thought process for creating the Accessible Earth curriculum, our successes to-date, and the anticipated challenges ahead.

  19. Ocean FEST (Families Exploring Science Together)

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wiener, C. S.

    2009-12-01

    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In addition, we are currently conducting a series of pilot events at the middle school level at underserved schools at neighbor islands, funded through the Hawaii Innovation Initiative (Act 111). Themes addressed include community outreach, capacity building, teacher preparation, and use of technology.

  20. Astronomy education awards in the IUSE:EHR portfolio

    NASA Astrophysics Data System (ADS)

    Lee, Kevin M.

    2017-01-01

    Improving Undergraduate STEM Education (IUSE) is a National Science Foundation (NSF) program that addresses immediate challenges and opportunities facing undergraduate STEM education. IUSE endeavors to support faculty as they incorporate educational research results into the classroom and advance our understanding of effective teaching and learning. Note that IUSE is an NSF-wide framework. This paper will focus upon IUSE:EHR - the IUSE program administered from NSF's Education and Human Resources Directorate (EHR) through the Division of Undergraduate Education (DUE). Other branches of IUSE operating within this framework include IUSE:RED in the Engineering Directorate and IUSE:GEOPATHS in the Geosciences Directorate.

  1. The Role of Geoscience Education Research in the Consilience between Science of the Mind and Science of the Natural World

    ERIC Educational Resources Information Center

    Shipley, Thomas F.; Tikoff, Basil

    2017-01-01

    This manuscript addresses the potential role of geoscience education research in understanding geoscience expert practice. We note the similarity between the perception-action framework of Ulric Neisser (Neisser, 1976) and the observation-prediction framework used by geoscience practitioners. The consilience between these two approaches is that…

  2. The Two-Year Colleges' Role in Building the Future Geoscience Technical Workforce

    NASA Astrophysics Data System (ADS)

    Wolfe, B.

    2014-12-01

    Careers in energy science related fields represent significant job growth in the U.S. Yet post-secondary career and technical programs have not kept pace with demand and energy science curriculum, including fundamental concepts of energy generation and environmental impact, lacks a firm position among general or career and technical education courses. Many of these emerging energy related jobs are skilled labor and entry level technical positions requiring less than a bachelor's degree. These include jobs such as solar/photovoltaic design and installation, solar water and space heating installation, energy management, efficiency and conservation auditor, environmental technician, etc. These energy related career pathways fit naturally within the geosciences discipline. Many of these jobs can be filled by individuals from HVAC, Industrial technology, welding, and electrical degree programs needing some additional specialized training and curriculum focused on fundamental concepts of energy, fossil fuel exploration and use, atmospheric pollution, energy generation, alternative energy sources, and energy conservation. Two-year colleges (2ycs) are uniquely positioned to train and fill these workforce needs as they already have existing career and technical programs and attract both recent high school graduates, as well as non-traditional students including displaced workers and returning veterans. We have established geoscience related workforce certificate programs that individuals completing the traditional industrial career and technical degrees can obtain to meet these emerging workforce needs. This presentation will discuss the role of geosciences programs at 2ycs in training these new workers, developing curriculum, and building a career/technical program that is on the forefront of this evolving industry.

  3. AMIDST: Attracting Minorities to Geosciences Through Involved Digital Story Telling

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Ohler, J.; Cooper, C.; McDermott, M.; Heinrich, J.; Johnson, R.; Leeper, L.; Polk, N.; Wimer, T.

    2009-12-01

    Attracting Minorities to Geosciences Through Involved Digital Story Telling (AMIDST) is a project funded by the Geoscience Directorate of the National Science Foundation through their program entitled Opportunities for Enhancing Diversity in Geosciences. This project centers around the idea of integrating place-based geoscience education with culturally sensitive digital story telling, to engage and attract Alaska’s native and rural children from grades 3 through 5 to geosciences. In Spring 2008 we brought together a team 2 native elders, a group of scientists and technicians, an evaluator, 2 teachers and their 24 third grade students from Fairbanks (interior Alaska) to create computer-based digital stories around the geoscience themes of permafrost, and forest fires. These two to four minutes digital narratives consisted of a series of images accompanied by music and a voice-over narration by the children. In Fall 2008 we worked with a similar group from Nome (coastal town in western Alaska). The geoscience themes were climate change, and gold in Alaska. This time the students used the same kind of “green screen” editing so prevalent in science fiction movies. Students enacted and recorded their stories in front of a green screen and in post-production replaced the green background with photos, drawings and scientific illustrations related to their stories. Evaluation involved pre and post project tests for all participants, mid-term individual interviews and exit-interviews of selected participants. Project final assessment results from an independent education evaluator showed that both students and teachers improved their geo science content knowledge about permafrost, forest fires, gold mining, and sea ice changes. Teachers and students went through a very steep learning curve and gained experience and new understanding in digital storytelling in the context of geologic phenomena of local interest. Children took pride in being creators, directors and editors of their own stories. We also concluded that the proposed idea is an excellent hook to intrigue children to science and technology in general, but demands time and commitment from the involved participants. Given the time constraints of a class environment future efforts would be best if spread over a year rather than one semester, or if implemented during summer programs that offer more time and flexibility.

  4. Increasing Diversity and Gender Parity by working with Professional Organizations and HBCUs

    NASA Astrophysics Data System (ADS)

    Wims, T. R.

    2017-12-01

    Context/Purpose: This abstract proposes tactics for recruiting diverse applicants and addressing gender parity in the geoscience workforce. Methods: The geoscience community should continue to develop and expand a pipeline of qualified potential employees and managers at all levels. Recruitment from professional organizations, which are minority based, such as the National Society of Black Engineers (NSBE), and the Society of Hispanic Professional Engineers (SHPE) provides senior and midlevel scientists, engineers, program managers, and corporate managers/administrators with proven track records of success. Geoscience organizations should consider increasing hiring from the 100+ Historically Black Colleges and Universities (HBCU) which have a proven track records of producing high quality graduates with math, science, computer science, and engineering backgrounds. HBCU alumni have been working in all levels of government and corporate organizations for more than 50 years. Results: Professional organizations, like NSBE, have members with one to 40 years of applicable work experience, who are prime candidates for employment in the geoscience community at all levels. NSBE, also operates pipeline programs to graduate 10,000 bachelor degree minority candidates per year by 2025, up from the current 3,620/year. HBCUs have established educational programs and several pipelines for attracting undergraduate students into the engineering and science fields. Since many HBCUs enroll more women than men, they are also addressing gender parity. Both professional organizations and HBCU's have pipeline programs that reach children in high school. Interpretation: Qualified and capable minority and women candidates are available in the United States. Pipelines for employing senior, mid-level, and junior skill sets are in place, but underutilized by some geoscience companies and organizations.

  5. Early Entry for Youth into the Ocean Science Pipeline Through Ocean Science School Camp and Summer Camp Programs: A Key Strategy for Enhancing Diversity in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Crane, N. L.; Wasser, A.; Weiss, T.; Sullivan, M.; Jones, A.

    2004-12-01

    Educators, policymakers, employers and other stakeholders in ocean and other geo-science fields face the continuing challenge of a lack of diversity in these fields. A particular challenge for educators and geo-science professionals promoting ocean sciences is to create programs that have broad access, including access for underrepresented youth. Experiential learning in environments such as intensive multi-day science and summer camps can be a critical captivator and motivator for young people. Our data suggest that youth, especially underrepresented youth, may benefit from exposure to the oceans and ocean science through intensive, sustained (eg more than just an afternoon), hands-on, science-based experiences. Data from the more than 570 youth who have participated in Camp SEA Lab's academically based experiential ocean science camp and summer programs provide compelling evidence for the importance of such programs in motivating young people. We have paid special attention to factors that might play a role in recruiting and retaining these young people in ocean science fields. Over 50% of program attendees were underrepresented youth and on scholarship, which gives us a closer look at the impact of such programs on youth who would otherwise not have the opportunity to participate. Both cognitive (knowledge) and affective (personal growth and motivation) indicators were assessed through surveys and questionnaires. Major themes drawn from the data for knowledge growth and personal growth in Camp SEA Lab youth attendees will be presented. These will be placed into the larger context of critical factors that enhance recruitment and retention in the geo-science pipeline. Successful strategies and challenges for involving families and broadening access to specialized programs such as Camp SEA Lab will also be discussed.

  6. The Woods Hole Partnership Education Program (PEP): Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Scott, O.; Jearld, A., Jr.; Liles, G.; Gutierrez, B.

    2015-12-01

    In March 2009, the Woods Hole Diversity Initiative launched the Partnership Education Program (PEP), a multi-institutional effort to increase diversity in the student population (and ultimately the work force) in the Woods Hole science community. PEP, a summer research internship program, is open to students of all backgrounds but is designed especially to provide opportunities for URM in science, technology, engineering, and mathematics (STEM). PEP is a 10-week program which provides intensive mentored research, a credit-bearing course and supplemental career and professional development activities. Students have opportunities to work in various research areas of geosciences. PEP is emerging as an effective and sustainable approach to bringing students into the STEM research community. PEP is carefully structured to provide critical support for students as they complete their undergraduate experience and prepare for geosciences careers and/or graduate school. The PEP experience is intended to provide students with an entry into the Woods Hole science community, one of the most vibrant marine and environmental research communities in the world. The program aims to provide a first-hand introduction to emerging issues and real-world training in the research skills that students need to advance in science, either as graduate students or bachelors-level working scientists. This is a long-recognized need and efforts are being made to ensure that the students begin to acquire skills and aptitudes that position them to take advantage of a wide range of opportunities. Of note is that the PEP is transitioning into a two year program where students are participating in a second year as a research intern or employee. Since 2013, at least four partner institutions have invited PEP alumni to participate in their respective programs as research assistants and/or full-time technicians.

  7. Supporting geoscience with graphical-user-interface Internet tools for the Macintosh

    NASA Astrophysics Data System (ADS)

    Robin, Bernard

    1995-07-01

    This paper describes a suite of Macintosh graphical-user-interface (GUI) software programs that can be used in conjunction with the Internet to support geoscience education. These software programs allow science educators to access and retrieve a large body of resources from an increasing number of network sites, taking advantage of the intuitive, simple-to-use Macintosh operating system. With these tools, educators easily can locate, download, and exchange not only text files but also sound resources, video movie clips, and software application files from their desktop computers. Another major advantage of these software tools is that they are available at no cost and may be distributed freely. The following GUI software tools are described including examples of how they can be used in an educational setting: ∗ Eudora—an e-mail program ∗ NewsWatcher—a newsreader ∗ TurboGopher—a Gopher program ∗ Fetch—a software application for easy File Transfer Protocol (FTP) ∗ NCSA Mosaic—a worldwide hypertext browsing program. An explosive growth of online archives currently is underway as new electronic sites are being added continuously to the Internet. Many of these resources may be of interest to science educators who learn they can share not only ASCII text files, but also graphic image files, sound resources, QuickTime movie clips, and hypermedia projects with colleagues from locations around the world. These powerful, yet simple to learn GUI software tools are providing a revolution in how knowledge can be accessed, retrieved, and shared.

  8. Recruiting and retaining geoscience students at a large public university: Balancing the needs of first-time freshman and upper-division transfer students

    NASA Astrophysics Data System (ADS)

    Bowman, D. D.; Clemens-Knott, D.

    2012-12-01

    The Department of Geological Sciences at California State University, Fullerton (CSUF) is one of the largest geology programs in the state. Approximately 4,000 students at CSUF take general education geology classes; this provides a large pool from which to recruit undergraduate students for either the Geology B.S. or Earth Sciences B.A. offered by the department. The department has seen a dramatic increase in majors over the last decade, from a low of 28 majors in 2002 to more than 110 in 2012. This increase does not appear to be driven by growth in the oil industry; in a recent survey of CSUF geoscience (BS or BA) students, 15% of respondents indicated an interest in a career in petroleum. The department has engaged in aggressive recruitment and outreach efforts over the last decade, with activities ranging from earthquake preparedness rallies in conjunction with the annual California ShakeOut, to an emerging high school and community college intern program at the department's paleontology curation facility. Despite these efforts, the majority of CSUF geoscience students declared the geology major after taking an introductory physical geology course either at CSUF or a local community college. Over the last ten years, approximately 50% of the geoscience majors at CSUF transferred from a community college. Among the geoscience students who began their career at CSUF, only one third had declared a geoscience major in their freshman year. Over two thirds of geoscience majors at CSUF declared their major after completing more than 60 units. The strong tendency for students to declare a geoscience major late in their career poses significant challenges to students' ability to graduate in a timely manner. To mitigate this problem, the department has an aggressive advising program, wherein students attend mandatory advising with a faculty member every semester. The department is also working closely with community college partners to improve the preparation of transfer students through advising partnerships facilitated by the NSF-sponsored STEM2 program, and through active collaboration in implementing a geology "Associate's Degree-for-Transfer" at community colleges under the framework of California's Student Transfer Achievement Reform Act (SB 1440).

  9. Teaching Field Geology in the Nepal Himalaya with a Geohazards and Intercultural Emphasis

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Upreti, B. N.; Gajurel, A.

    2017-12-01

    SIT Study Abroad (School of International Training), in collaboration with Nepal's national university - Tribhuvan University, runs a seven-week summer field education called "Nepal: Geoscience in the Himalaya". The program is designed to teach core geoscience field skills as well as geohazard analysis and intercultural science collaboration. Approximately 70% of the students come from colleges across the USA and 30% come from Tribhuvan University. A key element of the learning is how to work effectively with colleagues from a different educational system and culture. The program starts with a four-day orientation in Kathmandu and then travels to the Kali Gandaki Valley of western Nepal. Everyone treks on foot while completing a geologic transect map from south to north across the main Himalayan range. More traditional field skills are learned during a detailed stratigraphic exercise. On the way back down the valley, the emphasis changes to surface processes and students complete an air photo analysis and small research project on human-earth system interactions. Once back on the road system, the students conduct both a landslide hazard analyses and an earthquake damage assessment. Throughout this time, students maintain a research ideas journal from which they develop an independent study project, which they carry out during the last two weeks of the program. The program particularly emphasizes affordable, sustainable solutions to geohazards that are appropriate for a developing country such as Nepal—a very eye-opening approach for students from the USA. The overall program mission is to promote geoscience field skill development in a societal context and more globally informed scientists, citizens, and leaders.

  10. Teaching and Training in Geoinformatics: Experiences from the Cyberinfrastructure Summer Institute for Geoscientists (CSIG)

    NASA Astrophysics Data System (ADS)

    Smeekens, M.; Baru, C.; Keller, G. R.; Arrowsmith, R.; Crosby, C. J.

    2009-12-01

    The Cyberinfrastructure Summer Institute for Geoscientists (CSIG) has been conducted each year since 2004 under sponsorship of the GEON project that is funded by the NSF. The goal of the institute, which is broadly advertised to the Geoscience community, is to introduce geoscientists to Computer Science concepts and commonly-used as well as emergent information technology tools. The week-long program originally covered topics ranging from Data Modeling, Web Services, and Geographic Information Systems, to brief introductions to key concepts in Grid Computing, Parallel Programming, and Scientific Workflows. However, the program as well as the composition and expectations of the audience have evolved over time. Detailed course and instructor evaluations provide valuable feedback on course content and presentation approaches, and are used to plan future CSIG curriculum. From an initial emphasis on Geoscience graduate students and postdocs, the selection process has evolved to encourage participation by individuals with backgrounds in Geoscience as well as Computer Science from academia, government agencies, and industry. More recently, there has been an emphasis on selecting junior faculty and those interested in teaching Geoinformatics courses. While the initial objective of CSIG was to provide an overview of information technology topics via lectures and demonstrations, over time attendees have become more interested in specific instruction in how informatics and cyberinfrastructure (CI) capabilities could be utilized to address issues in Earth Science research and education. There have been requests over the years for more in-depth coverage on some topics and hands-on exercises. The program has now evolved to include a “Build Track”, focused on IT issues related to the development and implementation of Geoinformatics systems, and an “Education Track”, focused on use of Geoinformatics resources in education. With increasing awareness of CI projects, the audience is also becoming more interested in an introduction to the broader landscape of CI activities in the Geosciences and related areas. In the future, we plan a “demo” session to showcase various CI projects. Attendees will not only hear about such projects but will be able to use and experience the cyber-environments and tools in a hands-on session. The evolution of the CSIG program reflects major changes in the IT landscape since 2004. Where we once discussed Grid Computing, students are now learning about Cloud Computing and related concepts. An institute like CSIG play an important role in providing “cross-training” such that geoscientists gain insight into IT issues and solution approaches, while computer scientist gain a better appreciation of the needs and requirements of geoscience applications. In this presentation, we will summarize and analyze the trends over the years in program as well as audience composition; discuss lessons learnt over the years; and present our plan for future CSIG offerings.

  11. ASPIRE: Active Societal Participation in Research and Education

    NASA Astrophysics Data System (ADS)

    Garza, C.; Parrish, J.; Harris, L.; Posselt, J.; Hatch, M.

    2017-12-01

    Active Societal Participation In Research and Education (ASPIRE) aims to cultivate a generation of geoscientists with the leadership knowledge and skills, scholarship, and material support to reframe and rebrand the geosciences as socially relevant and, thereby, to broaden participation in these fields. This generation of geoscientists will do so by bridging longstanding divides that impede access to and inclusion in the geosciences: between basic and applied science, between scholars in the academy and members of historically marginalized communities, and between the places where science is needed and the places where it is typically conducted. To bring about these types of change, we draw upon, refine, and institutionalize the working group model as the Mobile Working Group (MWG), directly referencing the need to move outside of the "ivory tower" and into the community. Led by a geoscientist with one foot in the academy and the other in the community - the Boundary Spanner - each MWG will focus on a single issue linked to a single community. ASPIRE supports multiple MWGs working across the geographic, ethnographic and "in practice" community space, as well as across the body of geoscience research and application. We hypothesize that in institutionalizing a new mode of geoscience research (MWG), learning from Boundary Spanners experiences with MWG, and refining a leadership development program from our findings, that we will have a scalable leadership tool and organizational structure that will rebrand the geosciences as socially relevant and inclusive of geoscientists from diverse backgrounds even as the "science space" of geoscience expands to incorporate in-community work.

  12. MS PHD'S: Effective Pathways to Mentoring for Increasing Diversity in the Geoscience Workforce - What have we done? What can we still do?

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Johnson, A.; Braxton, L.

    2011-12-01

    In 2003 a young, African-American geoscientist and professor discovered significant gaps in the recruitment and retention of minority students within the post-secondary educational community and a subsequent correlation of underrepresentation within the geosciences workforce. From this research, a unique concept was born: The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science Professional Development Program (MS PHD'S PDP). This program was founded upon a vision that minorities can and should play a role in facilitating a network to attract, retain and increase minority representation in the geosciences workforce. In 2003, the pilot MS PHD'S program focused on a simple grass roots concept of effective mentoring and professional development administered by and for minorities through professional development activities. Today the program has grown to an impressive number of alumni who, in addition to establishing careers in the ESS professional workforce, also return to mentor the next generation of upcoming minority geoscientists. Alumni, mentors and current participants not only experience what has grown into a three-phase program but also enjoy enhanced benefits of ongoing interaction through social media, list-servs and webinars. While keeping its feet firmly planted in its grass-roots philosophy of effective mentoring and professional development by and for minorities, the MS PHD'S program looks to the future, by asking the question, "What can we do next to ensure the future of maintaining and growing diverse representation in the geosciences workforce?" Looking ahead, future goals for the program include increasing its pilot representation motto of "by and for minorities", exploring new technologies and digital tools, and expanding its supportive network of distinguished academicians, scientific organizations, industry partners, alumni, peers, and representatives of non-science disciplines.

  13. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  14. Why did you decide to become a Geoscience Major: A Critical Incident Study for the Development of Recruiting Programs for Inspiring Interests in the Geosciences Amongst Pre-College Students

    NASA Astrophysics Data System (ADS)

    Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.

    2011-12-01

    Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.

  15. Ka`Imi`Ike: Explorations in the Geosciences from an Indigenous Perspective

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Puniwai, N.; Sing, D.; Ziegler-Chong, S.

    2006-12-01

    The Ka `Imi `Ike Program is a recent initiative at the University of Hawai`i whose mission is to recruit and retain Native Hawaiian and Pacific Islanders (NHPI) to disciplines within the geosciences. The Program seeks to create pathways for NHPI students interested in geoscience disciplines through various venues and activities, including linking science with culture and community through a summer boarding experience for incoming freshman or sophomore University of Hawaii students. The 3-week institute, Explorations in Geosciences, was offered for the first time in Summer 2006. The 10 college students who participated were introduced to mentor geoscientists to learn more about the different disciplines and the pathways the scientists took in their careers. Hands-on activities trained students in current technology (such as GPS) and exposed them to how the technology was used in different research applications. A key and crucial component of the Explorations in Geosciences summer program was that "local" or Native Hawaiian role models were selected as the geoscience mentors whenever possible and mostly local and regional examples of geoscience phenomena were used. Moreover, the "science" learned throughout the summer program was linked to local Traditional Environmental Knowledge (TEK) by a Native Hawaiian kumu (teacher). The merging of "western" science with traditional knowledge reinforced geoscience concepts, and afforded the students an opportunity to better understand how a career in the geosciences could be beneficial to them and their community. At the end of the summer institute, the students had to give a final presentation of what geoscience concepts and careers they thought were most interesting to them, and how the program impacted their view of the geosciences. They also had to keep a daily journal which outlined their thoughts about the topics presented each day of the summer institute. Preliminary assessment reveals that several of the students came away from the summer program with a better understanding of the geosciences and are now considering a possible career in a geoscience discipline. The students also indicated that the linking of traditional knowledge with "western" science strengthened their perception of how the geosciences are a part of their cultural understanding of the environmental.

  16. Myths in funding ocean research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Duce, Robert A.; Benoit-Bird, Kelly J.; Ortiz, Joseph; Woodgate, Rebecca A.; Bontempi, Paula; Delaney, Margaret; Gaines, Steven D.; Harper, Scott; Jones, Brandon; White, Lisa D.

    2012-12-01

    Every 3 years the U.S. National Science Foundation (NSF), through its Advisory Committee on Geosciences, forms a Committee of Visitors (COV) to review different aspects of the Directorate for Geosciences (GEO). This year a COV was formed to review the Biological Oceanography (BO), Chemical Oceanography (CO), and Physical Oceanography (PO) programs in the Ocean Section; the Marine Geology and Geophysics (MGG) and Integrated Ocean Drilling Program (IODP) science programs in the Marine Geosciences Section; and the Ocean Education and Ocean Technology and Interdisciplinary Coordination (OTIC) programs in the Integrative Programs Section of the Ocean Sciences Division (OCE). The 2012 COV assessed the proposal review process for fiscal year (FY) 2009-2011, when 3843 proposal actions were considered, resulting in 1141 awards. To do this, COV evaluated the documents associated with 206 projects that were randomly selected from the following categories: low-rated proposals that were funded, high-rated proposals that were funded, low-rated proposals that were declined, high-rated proposals that were declined, some in the middle (53 awarded, 106 declined), and all (47) proposals submitted to the Rapid Response Research (RAPID) funding mechanism. NSF provided additional data as requested by the COV in the form of graphs and tables. The full COV report, including graphs and tables, is available at http://www.nsf.gov/geo/acgeo_cov.jsp.

  17. Education.

    ERIC Educational Resources Information Center

    O'Connor, J. V.; Withington, Charles F.

    1979-01-01

    The year 1978 marked a downward trend in geoscience education. Lobbying for geoscience education should be encouraged. Among the year's developments were the publishing of textbooks on historical geology and geomorphology. (BB)

  18. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong Geoscience Departments sought to create the same type of shared information base that was supporting individual faculty for departments. The Teach the Earth portal and its underlying web development tools were used by NSF-funded projects in education to disseminate their results. Leveraging these funded efforts, the Climate Literacy Network has expanded this geoscience education community to include individuals broadly interested in fostering climate literacy. Most recently, the InTeGrate project is implementing inter-institutional collaborative authoring, testing and evaluation of curricular materials. While these projects represent only a fraction of the activity in geoscience education, they are important drivers in the development of a large, national, coherent geoscience education network with the ability to collaborate and disseminate information effectively. Importantly, the community is open and defined by active participation. Key mechanisms for engagement have included alignment of project activities with participants needs and goals; productive face-to-face and virtual workshops, events, and series; stipends for completion of large products; and strong supporting staff to keep projects moving and assist with product production. One measure of its success is the adoption and adaptation of resources and models by emerging projects, which results in the continued growth of the network.

  19. A Best Practices Approach to Working with Undergraduate Women in the Geosciences

    NASA Astrophysics Data System (ADS)

    Godfrey, E. S.; Clinton, S. M.; Adams, A. S.; Pollack, I. B.; Barnes, R.; Bloodhart, B.; Bowker, C.; Burt, M. A.; Henderson, H.; Hernandez, P. R.; Maertens, J.; Sample McMeeking, L. B.; Sayers, J.; Fischer, E. V.

    2017-12-01

    Many projects and programs aim to increase female participation in STEM fields, but there is little existing literature about the best practices for implementing such programs. An NSF-sponsored project, PROmoting Geoscience Research, Education & SuccesS (PROGRESS), aims to assess the effectiveness of a professional development and peer-mentoring program on undergraduate students' interest and persistence in geoscience-related fields and on self-perceptions as a scientist. We held workshops in off-campus locations in the Carolinas and the Colorado/Wyoming Front Range in 2015 (2016) for students at seven (nine) universities. Recruiting 1st and 2nd year female STEM students, however, proved challenging, even though all transportation and expenses were provided at no cost to participants. The initial acceptance rate to attend the workshop was surprisingly low (less than 30%) and was further impacted by a high number of cancellations ( 1/3 of acceptees) in the days leading up to each workshop. However, 88% of students who completed an online strength assessment beforehand attended the workshop. Thus, an activity that requires student effort in advance can be used to gauge the likelihood of participation. The PROGRESS model is proving to be effective and beneficial for undergraduate students. Post-workshop evaluations revealed that nearly all participants would recommend the workshop to others. Students found it successful in both establishing a support system in the geosciences and increasing their knowledge of geoscience opportunities. Participant surveys show that panel discussions on career paths and the mentoring experiences of working geoscientists were the most favorably-viewed workshop components. It's not enough to offer excellent programs, however; interventions are required to recruit and incentivize participants and to help students recognize the value of a mentoring program. A successful program will devote significant time toward maintaining frequent contact with participants using a variety of media (i.e., email, texting, and/or phone calls). This presentation will discuss the challenges of recruiting students and maintaining their interest and involvement in a mentoring program, as well as the potential best practices for implementing similar programs.

  20. International Geoscience Workforce Trends: More Challenges for Federal Agencies

    NASA Astrophysics Data System (ADS)

    Groat, C. G.

    2005-12-01

    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in appeal of the U.S. as a friendly workplace for international scientists, government agencies, universities, and the private sector face geoscience workforce challenges that will continue to grow.

  1. Initial Results from the STEM Student Experiences Aboard Ships (STEMSEAS) Program

    NASA Astrophysics Data System (ADS)

    Lewis, J. C.; Cooper, S. K.; Thomson, K.; Rabin, B.; Alberts, J.

    2016-12-01

    The Science Technology Engineering and Math Student Experiences Aboard Ships (STEMSEAS) program was created as a response to NSF's call (through GEOPATHS) for improving undergraduate STEM education and enhancing diversity in the geosciences. It takes advantage of unused berths on UNOLS ships during transits between expeditions. During its 2016 pilot year - which consisted of three transits on three different research vessels in different parts of the country, each with a slightly different focus - the program has gained significant insights into how best to create and structure these opportunities and create impact on individual students. A call for applications resulted in nearly 900 applicants for 30 available spots. Of these applicants, 32% are from minority groups underrepresented in the geosciences (Black, Hispanic, or American Indian) and 20% attend community colleges. The program was able to sail socioeconomically diverse cohorts and include women, veterans, and students with disabilities and from two- and four-year colleges. Twenty-three are underrepresented minorities, 6 attend community colleges, 5 attend an HBCU or tribal college, and many are at HSIs or other MSIs. While longer term impact assessment will have to wait, initial results and 6-month tracking for the first cohort indicate that these kinds of relatively short but intense experiences can indeed achieve significant impacts on students' perception of the geosciences, in their understanding of STEM career opportunities, their desire to work in a geoscience lab setting, and to incorporate geosciences into non-STEM careers. Insights were also gained into the successful makeup of mentor/leader groups, factors to consider in student selection, necessary pre- and post-cruise logistics management, follow-up activities, structure of activities during daily life at sea, increasing student networks and access to mentorships, and leveraging of pre-existing resources and ship-based opportunities. Additionally, lessons learned by working with multiple UNOLS ship operators can be applied to the growth of the program over time.

  2. SUNY Oneonta Earth Sciences Outreach Program (ESOP) - Generating New Drilling Prospects for Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Ebert, J. R.

    2010-12-01

    The SUNY Oneonta ESOP is a National Science Foundation-funded program that, since 2005, has striven to address the dearth of students graduating with baccalaureate degrees in geoscience disciplines. In large part, its goal has been to provide talented STEM-oriented students with dual-enrollment college-level geoscience programs run by their local teachers for college credit. These high-school upperclassman experiences have been shown to be effective in recruiting talented students to geoscience fields, and we believe that this program is a model by which more baccalaureate programs can locate "new drilling prospects" to keep the pipeline of talented and trained geoscientists flowing into the workforce. In this presentation, we will highlight the current efforts to expand ESOP to other high schools around the country and in recruiting other colleges and universities to create their own dual-enrollment programs. We will also highlight how a senior-level geoscience course is ideal for providing students with meaningful geoscience inquiry experiences, and how we plan to support such efforts through the online teaching and learning cohorts designed to foster collaborative inquiry activities.

  3. Make Change Happen at the Program or Institutional Scale: Converting Community Expertise into Practical Guidance

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Orr, C. H.

    2016-12-01

    As geoscience and STEM programs address common challenges like increasing the diversity of graduates or implementing active learning pedagogies, it is important to learn from the experiences of others in the community. Individual faculty members embody a wealth of experience on these topics but distilling that experience into practical guidance that has value for a broad audience is not as simple as knowing exactly what one person did. Context is important, not only because activities used in similar contexts are easier to adapt, but also because activities that work across multiple contexts are more robust. The development of any best practices guidance benefits from the engagement of a community. Synthesizing across multiple viewpoints leads to a consensus that builds on the diversity of individual experiences. The Science Education Resource Center (SERC) at Carleton College has had success generating such resources in geoscience and STEM education. Working with different groups of educators, we have helped develop content around making change happen at the program or institutional levels, increasing the diversity of students graduating in geoscience and STEM, fostering interdisciplinary learning, translating the results of education research into practice, and several others. These resources draw out common practices, situate them in the education research base, and highlight examples of their use in the real world but also communicate the different ways individuals or institutions have adapted these practices for their particular situation. These resources were developed through a group synthesis process involving the contribution of individual or group expertise, a face-to-face meeting of teams working on themes drawn from the contributed work, and asynchronous group revision and review following the meeting. The materials developed via this process provide reliable and adaptable guidance firmly rooted in the community's experience. This presentation will showcase these materials and describe the development process in detail. The materials that have been developed are being added to SERC's For Higher Ed portal (serc.carleton.edu/highered/index.html).

  4. Engaging Undergraduates in the New York City S-SAFE Internship Program: An Impetus to Raise Geoscience Awareness

    ERIC Educational Resources Information Center

    Blake, Reginald A.; Liou-Mark, Janet; Blackburn, Noel; Chan, Christopher; Yuen-Lau, Laura

    2015-01-01

    To engender and raise awareness to the geosciences, a geoscience research project and a corresponding geoscience internship program were designed around plume dispersion dynamics within and above the New York City subway system. Federal, regional, and local agencies partnered with undergraduate students from minority-serving institutions to…

  5. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6 - 12 student and teacher participants and undergraduates. (This program is supported by NSF OEDG grant #1108281.)

  6. Helping Educators Find Visualizations and Teaching Materials Just-in-Time

    NASA Astrophysics Data System (ADS)

    McDaris, J.; Manduca, C. A.; MacDonald, R. H.

    2005-12-01

    Major events and natural disasters like hurricanes and tsunamis provide geoscience educators with powerful teachable moments to engage their students with class content. In order to take advantage of these opportunities, educators need quality topical resources related to current earth science events. The web has become an excellent vehicle for disseminating this type of resource. In response to the 2004 Indian Ocean Earthquake and to Hurricane Katrina's devastating impact on the US Gulf Coast, the On the Cutting Edge professional development program developed collections of visualizations for use in teaching. (serc.carleton.edu/NAGTWorkshops/visualization/collections/ tsunami.html,serc.carleton.edu/NAGTWorkshops/visualization/ collections/hurricanes.html). These sites are collections of links to visualizations and other materials that can support the efforts of faculty, teachers, and those engaged in public outreach. They bring together resources created by researchers, government agencies and respected media sources and organize them for easy use by educators. Links are selected to provide a variety of different types of visualizations (e.g photographic images, animations, satellite imagery) and to assist educators in teaching about the geologic event reported in the news, associated Earth science concepts, and related topics of high interest. The cited links are selected from quality sources and are reviewed by SERC staff before being included on the page. Geoscience educators are encouraged to recommend links and supporting materials and to comment on the available resources. In this way the collection becomes more complete and its quality is enhanced.. These sites have received substantial use (Tsunami - 77,000 visitors in the first 3 months, Hurricanes - 2500 visitors in the first week) indicating that in addition to use by educators, they are being used by the general public seeking information about the events. Thus they provide an effective mechanism for guiding the public to quality resources created by geoscience researchers and facilities, in addition to supporting incorporation of geoscience research in education.

  7. Geoscience as an Agent for Change in Higher Education

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Orr, C. H.; Kastens, K.

    2016-12-01

    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major, 2) making higher education more equitable by reducing gaps in participation and achievement in STEM; and 3) using liberal education to prepare students to deal with the complexity, diversity and change that characterize our time.

  8. Sustaining Public Communication of Geoscience in the Mass Media Market

    NASA Astrophysics Data System (ADS)

    Keane, Christopher

    2017-04-01

    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  9. Summaries of physical research in the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  10. Lessons Learned for Recruiting and Retaining Native Hawaiians in the Geosciences

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Brock, L.; Levine, R.; Spencer, L.; Wai, B.; Puniwai, N.

    2008-12-01

    Many Native Hawaiian and Pacific Island (NHPI) college students are unaware of the majors or career possibilities within geoscience disciplines. This notably can be seen by the low number of NHPI students who graduate with a bachelor's degree in an ocean or Earth science-related field within the University of Hawaii (UH) System. To help address this disparity, the Ka'Imi'Ike Program, which is funded through the Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program at NSF, was started at the University of Hawaii at Manoa to attract and support NHPI students in the geosciences. A key component of the program is the recruiting of NHPI students to disciplines in the geosciences through linking geoscience concepts with their culture and community. This includes a 3-week Explorations in the Geosciences summer institute that introduces incoming freshmen and current UH sophomores to the earth, weather, and ocean sciences via hands-on field and lab experiences. Ka'Imi'Ike also provides limited support for current geoscience majors through scholarships and internship opportunities. Results from student journals and pre- and post- questionnaires given to students during the summer institute have shown the program to be successful in increasing student interest and knowledge of the geoscience disciplines. Demonstrating the links between scientific thought and NHPI culture has been crucial to peaking the students' interest in the geosciences. The results also show that there is a need to include more specifics related to local career options, especially information that can be shared with the students' family and community as our data show that parents play a formidable role in the career path a student chooses. Moreover, in order to provide a more contiguous pipeline of support for NHPI students, Ka'Imi'Ike is beginning to network its students from the summer institute to other programs, such as the C-MORE Scholars Program, which offer undergraduate research experiences in the ocean and earth sciences. Though the Ka'Imi'Ike Program has been quite successful in facilitating NHPI participation in undergraduate research projects, the program is continually evolving by seeking and developing cutting edge approaches to strengthen its recruitment of NHPI into geoscience majors and careers.

  11. The Strength of Evidence Pyramid: One Approach for Characterizing the Strength of Evidence of Geoscience Education Research (GER) Community Claims

    ERIC Educational Resources Information Center

    St. John, Kristen; McNeal, Karen S.

    2017-01-01

    During the past two decades, the Geoscience Education Research (GER) community has been increasingly recognized as an evidence-based research subdiscipline in the geoscience and in the larger discipline-based education research (DBER) field. Most recently, the GER community has begun to address the current state of the field and discuss the best…

  12. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks, effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.

  13. Information needs and behaviors of geoscience educators: A grounded theory study

    NASA Astrophysics Data System (ADS)

    Aber, Susan Ward

    2005-12-01

    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier was a lack of time and funding for converting photographic prints and slides to digital images. Findings have implications for academic librarians to provide more visual media or assistance with organizing and formatting existing outdated media formats and to create collaborative collection development through repackaging personal collections of geoscience participants to enhance teaching. Implications for library school educators include providing curriculum on information needs and behaviors from a user's perspective, subject specialty librarianship, and internal collaborative collection development to complement external collection development.

  14. GET21: Geoinformatics Training and Education for the 21st Century Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Baru, C.; Allison, L.; Fox, P.; Keane, C.; Keller, R.; Richard, S.

    2012-04-01

    The integration of advanced information technologies (referred to as cyberinfrastructure) into scientific research and education creates a synergistic situation. On the one hand, science begins to move at the speed of information technology, with science applications having to move rapidly to keep apace with the latest innovations in hardware and software. On the other hand, information technology moves at the pace of science, requiring rapid prototyping and rapid development of software and systems to serve the immediate needs of the application. The 21st century geoscience workforce must be adept at both sides of this equation to be able to make the best use of the available cyber-tools for their science and education endeavors. To reach different segments of the broad geosciences community, an education program in geoinformatics must be multi-faceted, ranging from areas dealing with modeling, computational science, and high performance computing, to those dealing with data collection, data science, and data-intensive computing. Based on our experience in geoinformatics and data science education, we propose a multi-pronged approach with a number of different components, including summer institutes typically aimed at graduate students, postdocs and researchers; graduate and undergraduate curriculum development in geoinformatics; development of online course materials to facilitate asynchronous learning, especially for geoscience professionals in the field; provision of internship at geoinformatics-related facilities for graduate students, so that they can observe and participate in geoinformatics "in action"; creation of online communities and networks to facilitate planned as well as serendipitous collaborations and for linking users with experts in the different areas of geoscience and geoinformatics. We will describe some of our experiences and the lessons learned over the years from the Cyberinfrastructure Summer Institute for Geoscientists (CSIG), which is a 1-week institute that has been held each summer (August) at the San Diego Supercomputer Center, University of California, San Diego, since 2005. We will also discuss these opportunities for GET21 and geoinformatics education in the context of the newly launched EarthCube initiative at the US National Science Foundation.

  15. Workshop for Early Career Geoscience Faculty: Providing resources and support for new faculty to succeed

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Beane, R. J.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Allen-King, R. M.; Yuretich, R.; Richardson, R. M.; Ormand, C. J.

    2015-12-01

    A vital strategy to educate future geoscientists is to support faculty at the beginning of their careers, thus catalyzing a career-long impact on the early-career faculty and on their future students. New faculty members are at a pivotal stage in their careers as they step from being research-focused graduate students and post-doctoral scholars, under the guidance of advisors, towards launching independent careers as professors. New faculty commonly, and not unexpectedly, feel overwhelmed as they face challenges to establish themselves in a new environment, prepare new courses, begin new research, and develop a network of support. The workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career has been offered annually in the U.S. since 1999. The workshop is currently offered through the National Association of Geoscience Teachers On the Cutting Edge professional development program with support from the NSF, AGU and GSA. This five-day workshop, with associated web resources, offers guidance for incorporating evidence-based teaching practices, developing a research program, and managing professional responsibilities in balance with personal lives. The workshop design includes plenary and concurrent sessions, individual consultations, and personalized feedback from workshop participants and leaders. Since 1999, more than 850 U.S. faculty have attended the Early Career Geoscience Faculty workshop. Participants span a wide range of geoscience disciplines, and are in faculty positions at two-year colleges, four-year colleges, comprehensive universities and research universities. The percentages of women (~50%) and underrepresented participants (~8%) are higher than in the general geoscience faculty population. Multiple participants each year are starting positions after receiving all or part of their education outside the U.S. Collectively, participants report that they are better prepared to move forward with their careers as a result of the workshop, that they plan to incorporate evidence-based teaching in their classrooms, and that they leave the workshop with a network of support and the resources needed to enable them succeed. http://serc.carleton.edu/NAGTWorkshops/earlycareer

  16. Tribal and Indigenous Geoscience and Earth System Science: Ensuring the Evolution and Practice of Underrepresented Scientists and Researchers in the 21ST Century and Beyond

    NASA Astrophysics Data System (ADS)

    Bolman, J.

    2014-12-01

    The time is critical for Tribal, Indigenous and Underrepresented K-12/university students and communities to accept the duty to provide representation in Earth System Sciences/Geosciences fields of study and professions. Tribal nations in the U.S have a unique legal status rooted in a complex relationship between the U.S. federal government, individual state/local governments and Tribal authorities. Although geosciences are often at the center of these relationships, especially as they pertain to the development of natural resources, tribal economics, and environmental stewardship, Tribal/Indigenous people remain severely underrepresented in advanced geoscience education. Our students and communities have responded to the invitation. To represent and most important develop and lead research initiatives. Leadership is a central focus of the invitation to participate, as Tribal people have immense responsibility for significant landscapes across North American Continent, critical natural resources and millennia of unpretentious natural evolution with the localized native geologies, species and environmental systems. INRSEP and Pacific Northwest Tribal Nations found sustaining relationships with the Geoscience Alliance, MS PHD's, Woods Hole PEP, Native American Pacific Islander Research Experience (NAPIRE) and LSAMP programs, in addition to state/federal agencies, has advanced culturally-relevant STEM research. Research foundationally grounded on traditional ecological knowledge, individual and Tribal self-determination. A key component is student research experiences within their ancestral homelands and traversing to REU's in multiple national and international Tribal/Indigenous ancestral territories. The relationships also serve an immense capacity in tracking student achievement, promoting best practices in research development and assessing outcomes. The model has significantly improved the success of students completing STEM graduate programs. The presentation will highlight lessons learned on how to 1) Ensure a diverse cohort/community of student, professionals and researchers; 2) Evolve intergenerational mentoring processes/outcomes; 3) Innovate research and programs; and 4) Advance the broader impact of geosciences research and outcomes.

  17. Professional Development For Community College Faculty: Lessons Learned From Intentional Mentoring Workshops

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.

    2016-12-01

    The Geoscience Workforce Development Initiative at UNAVCO supports attracting, training, and professionally developing students, educators, and professionals in the geosciences. For the past 12 years, UNAVCO has managed the highly successful Research Experiences in Solid Earth Science for Students (RESESS) program, with the goal of increasing the diversity of students entering the geosciences. Beginning in 2015, UNAVCO added Geo-Launchpad (GLP), a summer research preparation internship for Colorado community college students to prepare them for independent research opportunities, facilitate career exploration in the geosciences, and provide community college faculty with professional development to facilitate effective mentoring of students. One core element of the Geo-Launchpad program is UNAVCO support for GLP faculty mentors. Each intern applies to the program with a faculty representative (mentor) from his or her home institution. This faculty mentor is engaged with the student throughout the summer via telephone, video chat, text message, or email. At the end of each of the past two summers, UNAVCO has hosted four GLP faculty mentors in Boulder for two days of professional development focused on intentional mentoring of students. Discussions focused on the distinction between mentoring and advising, and the array of career and professional opportunities available to students. Faculty mentors also met with the external evaluator during the mentor training and provided feedback on both their observations of their intern as well as the impact on their own professional experience. Initial outcomes include re-energizing the faculty mentors' commitment to teaching, as well as the opportunity for valuable networking activities. This presentation will focus on the ongoing efforts and outcomes of the novel faculty mentor professional development activities, and the impact these activities have on community college student engagement in the geosciences.

  18. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    NASA Astrophysics Data System (ADS)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  19. Data-driven Inquiry in Environmental Restoration Studies

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Montgomery, D. R.

    2008-12-01

    Place-based field work has been recognized as an important component of geoscience education programs for engaging students. Field work helps students appreciate the spatial extent of data and the systems operating in a locale. Data collected in a place has a temporal aspect that can be explored through representations such as photographs and maps and also though numerical data sets that capture characteristics of place. Yet, experiencing authentic geoscience research in an educational setting requires going beyond fieldwork: students must develop data literacy skills that will enable them to connect abstract representations of spatio-temporal data with place. Educational researchers at SRI International led by Dr. Daniel Zalles, developer of inquiry-based geoscience curricula, and geoscientists at the University of Washington (UW) led by Dr. David Montgomery, Professor of Earth and Space Sciences, are building educational curriculum modules that help students make these connections. The modules concern the environmental history of the Puget Sound area in Washington State and its relevance for the American Indians living there. This collaborative project relies on environmental data collected in the Puget Sound Regional Synthesis Model (PRISM) and Puget Sound River History Project. The data sets are being applied to inquiry-based geoscience investigations at the undergraduate and high school level. The modules consist of problem-based units centered on the data sets, plus geographic and other data representations. The modules will rely on educational "design patterns" that characterize geoscientific inquiry tasks. Use of design patterns will enable other modules to be built that align to the modes of student thinking and practice articulated in the design patterns. The modules will be accompanied by performance assessments that measure student learning from their data investigations. The design principles that drive this project have already been used effectively in a prior SRI project reported about at AGU 2007 called Data Sets and Inquiry in Geoscience Education. The modules are being readied for pilot-testing with undergraduate students in a new environmental history course at the University of Washington and with students taking science courses in high schools serving American Indian students in the Puget Sound area. This NSF-funded project is contributing to our knowledge base about how students can become more engaged and more skilled in geoscience inquiry and data analysis and what variations in educational supports and expectations need to exist to build successful experiences for the students with the materials. It is also expanding our knowledge of how to better connect place-based education to inquiry tasks that expand students" quantitative reasoning skills. Lastly, it is providing a model of how scientists can work effectively with educational researchers to provide educational outlets for their research. We will report on the progress of the project so far, which is in its first year of funding.

  20. Preparing Future Geoscientists at the Critical High School-to-College Junction: Project METALS and the Value of Engaging Diverse Institutions to Serve Underrepresented Students

    NASA Astrophysics Data System (ADS)

    White, L. D.; Maygarden, D.; Serpa, L. F.

    2015-12-01

    Since 2010, the Minority Education Through Traveling and Learning in the Sciences (METALS) program, a collaboration among San Francisco State Univ., the Univ. of Texas at El Paso, the Univ. of New Orleans, and Purdue Univ., has created meaningful, field-based geoscience experiences for underrepresented minority high school students. METALS activities promote excitement about geoscience in field settings and foster mutual respect and trust among participants of different backgrounds and ethnicities. These gains are strengthened by the collective knowledge of the university partners and by faculty, graduate and undergraduate students, scientists, and science teachers who guide the field trips and who are committed to encouraging diversity in the geosciences. Through the student experiences it provides, METALS has helped shape and shift student attitudes and orientation toward geoscience, during and beyond their field experience, just as these students are poised at the critical juncture from high school to college. A review of the METALS findings and summative evaluation shows a distinct pattern of high to moderately high impact on most students in the various cohorts of the program. METALS, overall, was perceived by participants as a program that: (1) opens up opportunities for individuals who might not typically be able to experience science in outdoor settings; (2) offers high-interest geology content in field contexts, along with social and environmental connections; (3) promotes excitement about geology while encouraging the development of mutual respect, interdependence, and trust among individuals of different ethnicities; (4) influences the academic choices of students, in particular their choice of major and course selection in college. Summative data show that multiple aspects of this program were highly effective. Cross-university collaborations create a dynamic forum and a high-impact opportunity for students from different backgrounds to meet and develop friendships. Such collaborations also expose students to a network of professionals and mentors who can help them navigate career and educational paths. Taken as a whole, the results of the program and our evaluations suggest that the multi-university character of METALS is particularly beneficial for both students and mentors.

  1. Enhancing Geoscience Education within a Minority-Serving Preservice Teacher Population

    ERIC Educational Resources Information Center

    Ellins, Katherine K.; Olson, Hilary Clement

    2012-01-01

    The University of Texas Institute for Geophysics and Huston-Tillotson University collaborated on a proof of concept project to offer a geoscience course to undergraduate students and preservice teachers in order to expand the scope of geoscience education within the local minority student and teacher population. Students were exposed to rigorous…

  2. Building Geosciences Departments for the Future: Geospatial Initiatives at North Carolina Central University

    NASA Astrophysics Data System (ADS)

    Vlahovic, G.; Malhotra, R.; Renslow, M.; Albert, B.; Harris, J.

    2007-12-01

    Two ongoing initiatives funded by the NSF-GEO and NSF-HRD directorates are being used to enhance the geospatial program at the North Carolina Central University (NCCU) to make it a leader, regionally and nationally, in geoscience education. As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU has established a Geospatial Research, Innovative Teaching, and Service (GRITS) Center and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer "Provisional" GIS certification to students graduating with Geography degrees. This presentation will focus on the role that ongoing geospatial initiatives are playing in attracting students to this program, increasing opportunities for academic and industry internships and employment in the field after graduation, and increasing awareness of the NCCU geosciences program among GIS professionals in North Carolina. Some of the program highlights include "Provisional" ASPRS certification recently awarded to three NCCU graduate students - the first three students in the nation to complete the provisional certification process. This summer GRITS Center faculty conducted two GIS workshops for academic users and three more are planned in the near future for North Carolina GIS professionals. In addition, a record number of students were awarded paid internship positions with government agencies, non profit organizations and the industry. This past summer our students worked at NOAA, NC Conservation Fund, UNC Population Center, and Triangle Aerial Surveys. NCCUs high minority enrollment (at the present above 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and a possible role model for other HBCUs.

  3. Strategies for exposing students to potential careers in the geosciences and preparing them with skillsets valued by today's workforce: a case study

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Haacker, R.

    2016-12-01

    Students, graduate students, and postdocs facing the job market cite a lack of familiarity with non-academic careers in the geosciences, uncertainty about the skills needed, and fear of the future. We work with these groups in several education programs at the National Center for Atmospheric Research (NCAR), and have interviewed and polled them about these issues. Surveys of and focus groups with alumni from two of these programs, an undergraduate career development program and a postdoctoral study program, provided insight into their employment and the skills that they see as valuable in their careers. Using this data, we redesigned the one-week undergraduate program, called the NCAR Undergraduate Leadership Workshop, with the goals of: (1) exposing students to the diversity of careers in the geosciences; (2) providing students with practice developing their non-technical skills, and; (3) creating content about careers in the atmospheric sciences for sharing with other students in the community. Students self-organized into consulting groups and had to propose and design their projects. During the course of the week, students interacted with approximately twenty professionals from fields in or related to the geosciences through lectures, lunch conversations, and student-led interviews. The professionals were asked to described their own work and the meanders of their career paths, to illustrate the range of professions in our field. The teams then developed creative materials intended for sharing these profiles, such as websites, powerpoint presentations and videos, and presented them formally at the week's end. In this presentation, we will share about this case study, the survey results on competencies valued in today's STEM workforce, and techniques for giving students practice developing those skills.

  4. GeoCorps America

    NASA Astrophysics Data System (ADS)

    Dawson, M.

    2011-12-01

    GeoCorps America, a program of the Geological Society of America's (GSA) Education and Outreach Department, provides short-term geoscience jobs in America's most amazing public lands. These jobs are hosted on federal lands managed by GeoCorps' three partner agencies: the National Park Service (NPS), the U.S. Forest Service (USFS), and the Bureau of Land Management (BLM). Agency staff submit to GSA position descriptions that help meet their geoscience needs. GSA advertises the positions online, recruits applicants from its 24,000+ members, and coordinates the placement of the candidates selected by agency staff. The typical GeoCorps position lasts for three months, pays a stipend of $2,750, and provides either free housing or a housing allowance. Some GeoCorps positions are classified as "Guest Scientist" positions, which generally last longer, involve larger payments, and require a higher level of expertise. Most GeoCorps positions occur during the spring/summer, but an increasing number of positions are being offered during the fall/winter. GeoCorps positions are open to geoscientists of all levels, from undergraduates through retired professionals. GeoCorps projects involve field and laboratory-based geoscience research, but some projects focus on developing educational programs and materials for staff, volunteers, and the public. The subject areas covered by GeoCorps projects include geology, hydrology, paleontology, mapping/GIS, soils, geo-hazards, cave/karst science, and more. GeoCorps positions have taken place at over 125 different locations nationwide, including Grand Canyon National Park, Sierra National Forest, and Craters of the Moon National Monument. In 2011, GeoCorps began offering GeoCorps Diversity Internships and GeoCorps American Indian Internships. The introduction of these programs doubled the level of diversity among GeoCorps participants. This increase in diversity is helping GSA and its partner agencies in meeting its mutual goal of broadening participation in the field of geoscience. Over the next few years, GeoCorps aims to further increase its diversity, add more partner groups (such as USGS), and continue to provide inspiring educational and professional development opportunities for geoscientists of all levels.

  5. Association for Women Geoscientists: enhancing gender diversity in the geosciences.

    NASA Astrophysics Data System (ADS)

    Holmes, M.; O'Connell, S.; Foos, A.

    2001-12-01

    The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986 and 1996, women comprised 18 to 22 percent of doctoral candidates. AWG recently obtained funding from the National Science Foundation to address the under-representation of women in academia. The objectives of the project are to determine the current status of women in academia, identify barriers to women's progress in the field, and recommend strategies to overcome these barriers.

  6. The Evolution of Building a Diverse Geosciences in the United States

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Houlton, Heather; Leahy, P. Patrick

    2016-04-01

    Since the 1960s, the United States has had numerous systematic efforts to support diversity in all parts of society. The American Geosciences Institute has had active ongoing research and diversity promotion programs in the geosciences since 1972. Over this time, the drivers and goals of promoting a diverse discipline have evolved, including in the scope and definition of diversity. The success of these efforts have been mixed, largely driven by wildly different responses by specific gender and racial subsets of the population. Some critical cultural barriers have been solidly identified and mitigation approaches promoted. For example, the use of field work in promotion of geoscience careers and education programs is viewed as a distinct negative by many African American and Hispanic communities as it equates geoscience as non-professional work. Similarly, efforts at improving gender diversity have had great success, especially in the private sector, as life-balance policies and mitigations of implicit biases have been addressed. Yet success in addressing some of these cultural and behavioral issues has also started to unveil other overarching factors, such as the role of socio-economic and geographic location. Recent critical changes in the definition of diversity that have been implemented will be discussed. These include dropping Asian races as underrepresented, the introduction of the multiracial definition, evolution of the nature of gender, and the increased awareness of persons with disabilities as a critical diverse population. This has been coupled with dramatic changes in the drivers for promoting diversity in the geosciences in the U.S. from a moral and ethical good to one of economic imperative and recognizing the way to access the best talent in the population as the U.S. rapidly approaches being a majority minority society. These changes are leading to new approaches and strategies, for which we will highlight specific programmatic efforts both by AGI and other leading US geoscience diversity efforts.

  7. A Synthesis of Instructional Strategies in Geoscience Education Literature That Address Barriers to Inclusion for Students with Disabilities

    ERIC Educational Resources Information Center

    Carabajal, Ivan G.; Marshall, Anita M.; Atchison, Christopher L.

    2017-01-01

    People with disabilities make up the largest minority population in the U.S. yet remain sorely underrepresented in scientific disciplines that require components of field-based training such as the geosciences. This paper provides a critical analysis of broadening participation within geoscience education literature through the use of accessible…

  8. A Worldwide Community of Primary and Secondary Students and Their Teachers Engage in and Contribute to Geoscience Research

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Kopplin, M. R.; Yule, S.

    2009-12-01

    The GLOBE (Global learning and Observations to Benefit the Environment) program is among the most successful long-term citizen scientist programs engaging K-12 students, in-service and pre-service teachers, as well as community members in different areas of geoscience investigations: atmosphere/weather, land cover biology, soils, hydrology, and vegetation phenology. What sustains this multi-nation project is the interest and collaboration among scientists, educators, students and the GLOBE Partnerships that are mostly self-supporting and function in the United States and in a hundred other countries. The GLOBE Program Office in the United States continues to offer, an overall coordinating and leadership function, a website, an infrastructure, management and support for web data entry and access, as well as visualizations, and a much used help desk. In Alaska, GLOBE research and activities are maintained through professional development workshops for educators, continued year-long support for teachers and their students (classroom visits, email, mail and newsletters) including program assessments, funded through federal grants to the University of Alaska Fairbanks. The current earth system science Seasons and Biomes project uses GLOBE protocols as well as newly developed ones to fit the needs of the locale, such as ice freeze-up and break-up seasonality protocols for rivers and lakes in tundra, taiga and other northern biomes, and mosquito phenology protocols for tropical and sub-tropical moist broadleaf forests and other biomes in Asia and Africa, invasive plant species for Africa, and modified plant phenology protocols for temperate deciduous forests in Australia. Students contribute data and use archived data as needed when they conduct geoscience research individually, in small groups or as a class and/or collaboratively with others in schools in other parts of the country and the world.

  9. Payoffs and Pitfalls of a Minority Outreach Program: An Alaskan Example

    NASA Astrophysics Data System (ADS)

    Hanks, C. L.; Fowell, S. J.; Wartes, D.; Owens, G.

    2004-12-01

    The Rural Alaska Honors Institute (RAHI) is a summer bridging program for college-bound high school students from remote Alaskan communities. In the 20+ years since its initiation, more than 50% of RAHI graduates eventually obtained post-secondary degrees. The success of the RAHI program provides insights into how an outreach program can achieve its goals and avoid potential pitfalls. Instrumental to the success of the RAHI program are: longevity; small size (40-45 students per summer); support from the Alaska Native community; academic rigor; aggressive recruiting; establishment of a sense of community amongst participants; and individual mentoring and support. Potential pitfalls include: overextending the program to include too many students; failure to maintain academic rigor in all courses; recruitment of students and staff who do not embrace the program's methods and goals; and attempts to evaluate the program on the basis of short-term results. Alaska Natives in Geosciences introduces college-bound Alaska Native students to the geosciences by teaching a college-level introductory geoscience class as a RAHI elective. By collaborating with RAHI, Alaska Natives in Geosciences takes advantage of RAHI's effective recruitment efforts and proven mentoring program. However, maintaining scientific rigor has been difficult due to large differences in the students' scientific backgrounds, the demands of other courses in the RAHI program and the brevity of the summer session. Immediate post-course survey responses suggest that many RAHI students thought the geoscience class was interesting but too difficult and much too time-consuming. However, surveys of RAHI geoscience students a year later suggest that many found the course a very positive experience. An unanticipated result was that RAHI students who did not take the class also gained some insight into the geosciences.

  10. Engaging the Geodetic and Geoscience Communities in EarthScope Education and Outreach

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.

    2013-12-01

    UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).

  11. Making geoscience education accessible for students who are blind and visually impaired

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.

    2011-12-01

    UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).

  12. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, Edward C.

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  13. Summaries of FY 1993 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of themore » individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less

  14. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.

    2014-12-01

    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also provides resources on effective strategies for developing REU programs for community college students, examples of successful multi-year programs, links to other projects working on undergraduate research in the first two years, and references for further reading. serc.carleton.edu/sage2yc/studentsuccess/ug-research/

  15. "What's A Geoscientist Do?": A Student Recruitment And Education Tool

    NASA Astrophysics Data System (ADS)

    Hughes, C. G.

    2015-12-01

    Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.

  16. "Xoa:dau" to "Maunkaui": Integrating Indigenous Knowledge into an Undergraduate Earth Systems Science Course

    ERIC Educational Resources Information Center

    Palmer, Mark H.; Elmore, R. Douglas; Watson, Mary Jo; Kloesel, Kevin; Palmer, Kristen

    2009-01-01

    Very few Native American students pursue careers in the geosciences. To address this national problem, several units at the University of Oklahoma are implementing a geoscience "pipeline" program that is designed to increase the number of Native American students entering geoscience disciplines. One of the program's strategies includes…

  17. Summaries of FY 92 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries,more » equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  18. The Math You Need, When You Need It: Student-Centered Web Resources Designed to Decrease Math Review and Increase Quantitative Geology in the Classroom

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Baer, E. M.

    2007-12-01

    Introductory geoscience courses are rife with quantitative concepts from graphing to rates to unit conversions. Recent research suggests that supplementary mathematical instruction increases post-secondary students' retention and performance in science courses. Nonetheless, many geoscience faculty feel that they do not have enough time to cover all the geoscience content, let alone covering the math they often feel students should have learned before reaching their classes. We present our NSF-funded effort to create web modules for students that address these concerns. Our web resources focus on both student performance and faculty time issues by building students' quantitative skills through web-based, self-paced modular tutorials. Each module can be assigned to individual students who have demonstrated on a pre-test that they are in need of supplemental instruction. The pre-test involves problems that place mathematical concepts in a geoscience context and determines the students who need the most support with these skills. Students needing support are asked to complete a three-pronged web-based module just before the concept is needed in class. The three parts of each tutorial include: an explanation of the mathematics, a page of practice problems and an on-line quiz that is graded and sent to the instructor. Each of the modules is steeped in best practices in mathematics and geoscience education, drawing on multiple contexts and utilizing technology. The tutorials also provide students with further resources so that they can explore the mathematics in more depth. To assess the rigor of this program, students are given the pre-test again at the end of the course. The uniqueness of this program lies in a rich combination of mathematical concepts placed in multiple geoscience contexts, giving students the opportunity to explore the way that math relates to the physical world. We present several preliminary modules dealing with topics common in introductory geoscience courses. We seek feedback from faculty teaching all levels of geoscience addressing several questions: In what math/geoscience topics do you feel students need supplemental instruction? Where do students come up against quantitative topics that make them drop the class or perform poorly? Would you be willing to review or help us to test these modules in your class?

  19. New Resources on the Building Strong Geoscience Departments Website

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Manduca, C. A.; MacDonald, H.

    2009-12-01

    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources and offered workshops on high-interest topics, such as recruiting students, curriculum development, and program assessment. The Building Strong Geoscience Departments website has a growing collection of resources, drawn from workshop discussions and presentations, showcasing how geoscience departments approach curriculum revision, student recruitment, and program assessment. Recruitment resources consist of specific examples of a wide variety of successful approaches to student recruitment from departments at a wide array of institutions. Curricular feature pages framing the process of curriculum development or revision and a collection of dozens of geoscience curricula, searchable by degree program name. Each curriculum in the collection includes a diagram of the course sequence and structure. Program assessment resources include a collection of assessment instruments, ranging from alumni surveys and student exit interviews to course evaluations and rubrics for assessing student work, and a collection of assessment planning documents, ranging from mission and vision statements through student learning goals and outcomes statements to departmental assessment plans and guidelines for external reviews. These recruitment strategies, curricula, and assessment instruments and documents have been contributed by the geoscience community. In addition, we are developing a collection of case studies of individual departments, highlighting challenges they have faced and the strategies they have used to successfully overcome those challenges. We welcome additional contributions to all of these collections. These online resources support the Building Strong Geoscience Departments Visiting Workshop program, which we launched in the fall of 2009.

  20. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  1. An Effective Model for Enhancing Underrepresented Minority Participation and Success in Geoscience Undergraduate Research

    ERIC Educational Resources Information Center

    Blake, Reginald A.; Liou-Mark, Janet; Chukuigwe, Chinedu

    2013-01-01

    Geoscience research is a fundamental portal through which geoscience knowledge may be acquired and disseminated. A viable model to introduce, stimulate, and prolong geoscience education has been designed and implemented at the New York City College of Technology through a National Science Foundation (NSF) Research Experiences for Undergraduates…

  2. EarthScope Education and Outreach: Accomplishments and Emerging Opportunities

    NASA Astrophysics Data System (ADS)

    Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.

    2014-12-01

    EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through informal education venues" Leveraging ESNO, IRIS, and UNAVCO resources has exceeded the capabilities of any single entity, thereby amplifying the impact of EarthScope's education and outreach effort.

  3. Hooking tomorrow's geoscientists: Authentic field inquiry as a compelling pedagogy

    NASA Astrophysics Data System (ADS)

    Wallstrom, Erica

    2015-04-01

    Engaging high school students in the geosciences without providing them with opportunities to directly explore, understand, and question the natural world is like trying to catch a fish without a hook. How can educators hope to inspire youth to pursue a career in the geosciences when the subject is first introduced to teenagers within the confines of a classroom? Regardless of the content and activities employed by the teacher, the synthetic classroom setting is unable to recreate the organic richness of an authentic outdoor learning environment. A new course offering at Rutland High School in Rutland, Vermont, USA shifts away from the traditional classroom based pedagogy by focusing the learning on exploring the temporal changes occurring in the region's geologic features. Numerous visits to local quarries, outcrops, overlooks, and universities guide the course curriculum. Students use their new understandings and personal observations to complete a culminating independent investigation. This alternate learning model is made possible through collaboration with local universities, businesses, and government agencies. If the geosciences is to remain competitive in the recruitment of exemplary STEM candidates, than the focus of high school earth science programs must be considered. This course offers one alternative to improve engagement and understanding of the geoscience standards. While not the only option, it offers one possibility for hooking students on geosciences.

  4. The Other Kind of Rock: Diversifying Geosciences Outreach with some Tools from Rock n' Roll

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.

    2015-12-01

    Music can communicate science at times when words and graphs fail. For this reason, earth scientists are increasingly using sounds and rhythms to capture the public's imagination while demonstrating technical concepts and sharing the societal impacts of their research. Musical approaches reach across the boundaries of perceptual learning style, age, gender, and life history. Music therefore makes science (and scientists) more approachable to a wide range of people. But in addition to its unique power for engaging diverse audiences, music-based outreach also sets an example for the geosciences' untapped potential as a public empowerment tool. Like many STEM fields, the music industry has long been criticized for poor inclusion of women and minorities. Rock n' roll camps for girls are answering this challenge by teaching music as a vessel for empowerment, with principles that can easily be adapted to geoscience outreach and education. The process of observing the planet is innately empowering; outreach programs that emphasize this in their design will take their impacts to the next level. Just as diversity in the scientific community benefits geoscience, geoscience also benefits diverse communities. This presentation will outline some principles and applications from the music world to achieving both of these aims.

  5. The Non-traditional Student, a new Geoscience Resource

    NASA Astrophysics Data System (ADS)

    Ferrell, R.; Anderson, L.; Bart, P.; Lorenzo, J. M.; Tomkin, J.

    2004-12-01

    The LSU GAEMP (Geoscience Alliance to Enhance Minority Participation) program targets non-traditional students, those without an undergraduate degree in geoscience, in its efforts to attract African American and Hispanic students from minority serving institutions (MSIs) to pursue careers in geology and geophysics. Faculty collaborators at nine MSIs (seven HBCUs and two HSIs) work closely with LSU faculty to advertise the program and to select student participants. The enthusiastic cooperation of the MSI Professors is crucial to success. The ideal student is a junior-level, high academic achiever with a major in one of the basic sciences, mathematics, engineering or computer science. A special summer course uses a focus on research to introduce basic geoscience concepts. Students are encouraged to design a cooperative research project to complete during their last year at their home institution and to apply for GAEMP graduate fellowships leading directly to an M.S. or Ph.D. in Geoscience. There are several reasons for the emphasis on these students 1. They have special knowledge and skills to use in graduate programs in geophysics, geochemistry, geobiology, etc. 2. Third-year students have demonstrated their ability to succeed in the academic world and are ready to select a graduate program that will enhance their employment prospects. 3. The MSIs, especially some of the physics programs at the collaborating HBCUs, provide well-trained, highly motivated graduates who have compiled excellent records in highly ranked graduate programs. This pool of talent is not available in the geosciences because most MSIs do not have geoscience degree programs. 4. This group provides a unique niche for focus as there are many programs concentrating on K-12 students and the recruitment of traditional majors. In the first year of GAEMP, 12 students participated in the summer program, six elected to pursue research projects and expressed interest in applying for the fellowships, and one student entered the graduate program early. The paucity of information regarding career opportunities and rewards in geoscience is one of the major obstacles encountered. GAEMP is sponsored by a 5-year NSF award through the OEDG program

  6. Development of a geoscience curriculum in a small liberal arts college

    NASA Astrophysics Data System (ADS)

    Toteva, T.

    2007-12-01

    Geoscience programs with emphasis on geophysics are traditionally offered in research type of universities. Most small liberal arts colleges do not have the resources to offer geophysics education. Randolph College (Lynchburg, VA) is becoming one of the few small schools that provide a unique opportunity for undergraduate students to acquire basic knowledge and skills in geoscience methods, in particular in geophysics. One faculty member was hired a year ago and charged to offer a number of classes and labs in geoscience. As a result of that today the college has a geophysics lab with a 250 MHz GPR antenna, a 12 channel Geometrics Geode, three sets of geophones, and sieve equipment for geotechnical work. The above equipment was acquired with funds from the college and outside sponsors. In addition, collaboration with Virginia Tech led to the installation of a new seismological station, with a broad band seismograph, on college land. This alone triggered incredible interest in earthquake seismology, not only from students but from the campus community as well. All the equipment is used both for classes and undergraduate research. It has a significant contribution to the rapid increase in interest in the Environmental Studies and Physics programs in the school. It allows the offering of new field based classes. Such classes are always of great interest to students because they provide hands-on experience. As a result of offering these new classes, two new B.S. programs were added to the curriculum - B.S. in Environmental Science and B.S. in Physics.

  7. Navigating the boundary of science for decision making at the state and local level

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Wood, C.; Boland, M. A.; Rose, C. A.

    2015-12-01

    Scientific information should play a vital role in many decision making processes, yet issues incorporating geoscience information often arise due to inherent differences between how scientists and decision makers operate. Decision makers and scientists have different priorities, produce work at different rates, and often lack an understanding of each others' institutional constraints. Boundary organizations, entities that facilitate collaboration and information flow across traditional boundaries such as that between scientists and decision makers, are in a unique position to improve the dialogue between disparate groups. The American Geosciences Institute (AGI), a nonprofit federation of 50 geoscience societies and organizations, is linking the geoscience and decision-making communities through its Critical Issues Program. AGI's Critical Issues program has first-hand experience in improving the transfer of information across the science-decision making boundary, particularly in areas pertaining to water resources and hazards. This presentation will focus on how, by collaborating with organizations representing the decision making and geoscience communities to inform our program development, we have created our three main content types - website, webinar series, and research database - to better meet the needs of the decision-making process. The program presents existing geoscience information in a way that makes the interconnected nature of geoscience topics more easily understood, encourages discussion between the scientific and decision-making communities, and has established a trusted source of impartial geoscience information. These efforts have focused on state and local decision makers—groups that increasingly influence climate and risk-related decisions, yet often lack the resources to access and understand geoscience information.

  8. The YES Africa 2011 Symposium: A Key to Developing the Future Geoscience Workforce in Africa

    NASA Astrophysics Data System (ADS)

    Nkhonjera, E.

    2011-12-01

    Africa is facing serious challenges in geoscience education. This has been as a result of absence of or very young/small Earth Science Departments in some universities (e.g., Mauritius, Namibia, Botswana, Swaziland, Malawi): Limited capacity (staff and equipment needed for practicals) to cope with the growing number of students, compounded by brain drain of academic staffs and the fact that current tertiary programmes do not seem to produce graduates suitable for the industry are some of the contributing factors to the challenges, (UNESCO-AEON Report, 2009). As such Earth Science studies in Africa have been one of the career paths that has not been promoted or highly preferred by many students. In January 2011, the YES Network African chapter was launched through the YES Africa 2011 Symposium that took place at the University of Johannesburg South Africa in Conjunction with the 23rd Colloquium of Africa Geology from the 08-14th January 2011. The YES Africa 2011 Symposium was organized by five YES African National networks from Southern, Central, Eastern and Northern Africa to bring young geoscientists from all regions of Africa together to present their research about African geoscience topics. The symposium also included roundtable discussions about increasing the involvement of youth's participation in geoscience issues in Africa, about how to increase the number of youths in African geosciences education university programs, and about how to promote geoscience careers to university students in Africa c. Roundtable discussions revealed that many African colleges and universities do not provide adequate infrastructure and resources to support the students studying in the department. As such, most students graduate with poor preparation for geoscience careers, having gained a theoretical understanding of geology, but not the practical application of the discipline. The recommendations from the YES Africa 2011 Symposium also highlighted on the best ways of developing the geoscience workforce in Africa so that it can become competitive within the international community. International networks like the YES Network help geoscience students and early-career geoscientists to interact with their colleagues around the world and share knowledge and experiences. YES Network conferences, such as the YES Africa 2011 Symposium are a prime example of how geoscience students and early-career geoscientists are actively working together through this professional international network to provide opportunities for young scientists to present their research, share ideas about future projects, and discuss strategies for solving current scientific and career or academic pathway concerns.

  9. What can They do When we Give Them the Chance? Assessing the Impact of Data- Immersive Technology-Enabled Inquiry Projects on High School Students' Understanding of Geoscience

    NASA Astrophysics Data System (ADS)

    Zalles, D.; Quellmalz, E.; Gobert, J.; Pallant, A.

    2006-12-01

    The report "Bringing Research on Learning to the Geosciences" (Manduca, Mogk, & Stillings, 2002) proposed a new program of research to invigorate and expand geoscience education. The report recommended integrating best practices in learning science with the distinctive challenges posed by using geoscience data sets and visualizations in inquiry activities (e.g., working with geologic time-referenced concepts, observing complex natural systems, using integrative and synthetic approaches). Geoscience educators are challenged with how to take advantage of publicly available data and visualization technology to build in their students deeper understanding of key Earth system phenomena and, at the same time, greater ability to identify and generate appropriate inquiry strategies. Their challenge is made greater by the fact that the ways in which geoscientists design research studies and represent, interpret, and analyze data vary widely with the disparate Earth system phenomena they study. Data for example, that permit analysis of the relationships between plate boundaries and earthquakes have quite different representational requirements than weather data that support analyses of climate change. The data's spatial and temporal characteristics are also critical determinants of representational requirements. How can students be led to appreciate what is knowable and not knowable by specific data sets, and how can they become better at taking the best possible advantages of whatever data are available to them as they formulate research questions and confront authentic problems? These are the questions we are addressing in our NSF-funded project, Data Sets and Inquiry in Geoscience Education. We are investigating what greater understandings of epistemically-appropriate geoscientifc inquiry high school students are capable of demonstrating when provided with the opportunity. To do this, we are designing and testing data-immersive project-based units that supplement existing geoscience curriculum programs. The units provide extended multi-day inquiry-based investigations centered on real geoscience data sets and data visualizations. The performance assessments provide evidence of geoscience knowledge and inquiry strategies seldom captured in traditional test formats. In the assessments, students apply the inquiry they practiced in the units to similar yet contrasting problems. We have chosen to focus on the highly-contrasting subjects of geology and climatology. In the geology unit, the students use a time-based simulation tool that provides three-dimensional data about earthquakes around the world in order to explore their relationship to the characteristics of plate boundaries in the Earth's crust. In the climatology unit, the students compare historical climate data about a particular city in relation to its state, to other communities in its state, and to North America in order to draw conclusions about the extent to which the characteristics of local climate change mirror what is happening elsewhere. They think critically about what can and cannot be known from the available data and conceptualize what would be a more ideal research study if sufficient resources were available. In our presentation, we will report on the progress we have made developing and pilot testing the units and assessments in high school classrooms. We will also report preliminary results and describe rubrics we have devised to assess the results.

  10. “Hidden” threats to science education

    NASA Astrophysics Data System (ADS)

    Huntoon, J. E.; Buchanan, R.; Buhr, S. M.; Kirst, S.; Newton, S.; Van Norden, W.

    2012-04-01

    Many readers of Eos are involved with education. Most would agree that what happens at precollege levels will ultimately affect the geoscience profession; after all, future scientists are today's precollege students. While a growing number of scientists are working to improve the quality of precollege programs, only a few are addressing what we term the "hidden" threats to science education. Hidden threats have nothing to do with scientific content; rather, they result from social, political, and bureaucratic forces operating within and outside of schools and universities.

  11. Place in the City: Place-Based Learning in a Large Urban Undergraduate Geoscience Program

    ERIC Educational Resources Information Center

    Kirkby, Kent C.

    2014-01-01

    One of my principal goals at the University of Minnesota is to transform the university's entry-level geoscience program into an effective ''concluding'' geoscience course that provides students with a clear understanding of the many interactions between Earth processes and human society. Although place-based learning appeared to be a promising…

  12. Identifying Curriculum Design Patterns as a Strategy for Focusing Geoscience Education Research: A Proof of Concept Based on Teaching and Learning with Geoscience Data

    ERIC Educational Resources Information Center

    Kastens, Kim; Krumhansl, Ruth

    2017-01-01

    The geoscience education research (GER) enterprise faces a challenge in moving instructional resources and ideas from the well-populated domain of "practitioners' wisdom" into the research-tested domains of St. John and McNeal's pyramid of evidence (this volume). We suggest that the process could be accelerated by seeking out clusters of…

  13. Understanding the Factors that Support the Use of Active Learning Teaching in STEM Undergraduate Courses: Case Studies in the Field of Geoscience

    NASA Astrophysics Data System (ADS)

    Iverson, Ellen A. Roscoe

    The purpose of this study was to understand the factors that support the adoption of active learning teaching strategies in undergraduate courses by faculty members, specifically in the STEM disciplines related to geoscience. The focus of the study centered on the context of the department which was identified as a gap in evaluation and educational research studies of STEM faculty development. The study used a mixed-method case study methodology to investigate the influences of departmental context on faculty members' adoption of active-learning teaching practices. The study compared and contrasted the influence of two faculty development strategies initiated in the field of geoscience. Six university geoscience departments were selected that had participated in two national geoscience professional development programs. Data were generated from 19 faculty interviews, 5 key informant interviews, and documents related to departmental and institutional context. The study concluded that two main factors influenced the degree to which faculty who participated in geoscience faculty development reported adoption of active learning pedagogies. These conclusions are a) the opportunity to engage in informal, regular conversations with departmental colleagues about teaching promoted adoption of new teaching approaches and ideas and b) institutional practices regarding the ways in which teaching practices were typically measured, valued, and incentivized tended to inhibit risk taking in teaching. The conclusions have implications related to institutional policy, faculty development, and the role of evaluation.

  14. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.

    2003-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have coauthored six abstracts at professional meetings. Also, high-school students have gained first hand experience of a college course and geologic research.

  15. Oceanography and Geoscience Scholars at Texas A&M University Funded through the NSF S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) Program

    NASA Astrophysics Data System (ADS)

    Richardson, M. J.; Gardner, W. D.

    2016-02-01

    Over the last seven years we have led the creation and implementation of the Oceanography and Geoscience Scholars programs at Texas A&M University. Through these programs we have been able to provide scholarship support for 92 undergraduates in Geosciences and 29 graduate students in Oceanography. Fifty-seven undergraduate scholars have graduated in Geosciences: 30 undergraduate students in Meteorology, 7 in Geology, and 20 in Environmental Geosciences. Two students have graduated in other STEM disciplines. Twenty-four students are in the process of completing their undergraduate degrees in STEM disciplines. Twenty-three students have graduated with MS or PhD degrees in Oceanography and five PhD students are completing their dissertations. As specified in the program solicitation all of the scholars are academically talented students with demonstrated financial need as defined by the FAFSA (Free Application for Federal Student Aid). We have endeavored to recruit students from underrepresented groups. One-third of the undergraduate scholars were from underrepresented groups; 28% of the graduate students. We will present the challenges and successes of these programs.

  16. Unidata: A cyberinfrastrucuture for the geosciences

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan

    2016-04-01

    Data are the lifeblood of the geosciences. Rapid advances in computing, communications, and observational technologies - along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system - are revolutionizing nearly every aspect of our field. The result is a dramatic proliferation of data from diverse sources; data that are consumed by an evolving and ever-broadening community of users and that are becoming the principal engine for driving scientific advances. Data-enabled research has emerged as a Fourth Paradigm of science, alongside experiments, theoretical studies, and computer simulations Unidata is a data facility, sponsored by the NSF, and our mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation in the geosciences. For more nearly thirty years, Unidata has worked in concert with the atmospheric science education and research community to develop and provide innovative data systems, tools, techniques, and resources to support data-enabled science to understand the Earth system. In doing so, Unidata has maintained a close, synergistic relationship with the universities, engaging them in collaborative efforts to exploit data and technologies, and removing roadblocks to data discovery, access, analysis, and effective use. As a community-governed program, Unidata depends on guidance and feedback from educators, researchers, and students in the atmospheric and related sciences. The Unidata Program helps researchers and educators acquire and use earth-related data. Most of the data are provided in "real time" or "near-real time" - that is, the data are sent to participants almost as soon as the observations are made. Unidata also develops, maintains, and supports a variety of software packages. Most of these packages are developed at the Unidata Program Center (UPC), while a few others originated externally, but are modified, maintained, and supported at the UPC. Software provided by Unidata is available at no charge. The overarching goal embodied in Unidata's strategic plan is the creation of a scientific ecosystem in which "data friction" is reduced and data transparency and ease-of-use are increased. In such an environment, scientists will expend less effort locating, acquiring, and processing data and more time interpreting their data and sharing knowledge. To accomplish the goals set forth in our strategic plan, Unidata has been working to build and provide cloud-based infrastructure that makes it easy to discover, access, integrate and use data from disparate geoscience disciplines, allowing investigators to perceive connections that today are obscured by incompatible data formats or the mistaken impression that the data they need for their investigations do not exist.

  17. Spinning Your Own Story - Marketing the Geosciences to the Public

    NASA Astrophysics Data System (ADS)

    Sturm, D.; Jones, T. S.

    2006-12-01

    Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga system, increased goodwill with the local newspaper, and increased participation in the after- school program from students in the metro area.

  18. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    NASA Astrophysics Data System (ADS)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.

  19. Using Intentional Development of Research Skills as a Framework for Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Peterson, V. L.; Lord, M. L.

    2008-12-01

    We advocate that geoscience departmental or community discussions related to curriculur revision or accreditation should be considered within a framework that clearly and intentionally develops research and professional skills throughout the curricular structure. Among the primary qualities sought by geoscience employers and graduate schools are graduates with strong research, critical thinking, field, communication, and people/team skills. While these should be the hallmark of a liberally educated graduate, we think it is imperative to explicitly develop and assess these skills as part of the same curricular framework used for organizing essential content. Though many organizations and authors have argued about the importance and effectiveness of undergraduate research as a means to develop higher level skill sets, discussions of geoscience accreditation or curricular revision commonly emphasize the choice of a core set of courses or content. Drummond and Markin (2008) highlight the commonalities among core geoscience courses. However, their summary, and our own experiences and program comparisons also point out diversity among successful geoscience program cores that may relate to expansion of the boundaries of our discipline, geographic factors, and/or size and character of department faculty. At Western Carolina University (WCU) and more recently at Grand Valley State University, attempts at curricular revision were initially stymied by difficulties in defining core courses. At WCU, focus on a critical skills framework helped to work through these challenges to establish a revised geology curriculum in 2000 with explicit goals to build critical thinking, reasoning, synthesis, and communication skills. To achieve these goals, investigative experiences were included in all geology courses, a senior research capstone was required, and more opportunities were created for all students to engage in out-of-class research. Numerous measures indicate programmatic and student successes, but reveal challenges that the program now seeks to improve by adding skills and assessment benchmarks to key courses at each class level. These changes are supported by a faculty with a common vision, a recent program review, and a University initiative to improve student engagement and synthesis.

  20. Technical and Soft Skills Expectations During the Transition from Recent Graduate to New Hire

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2001-12-01

    Employer-applicant skill compatibility represents a major component of the career development process, particularly for new entrants to the job market. Newly minted geoscientists largely bring a distinct set of skills learned during their formal education and training, which combined with a broader view of the person are evaluated for career potential in today's major employers. University departments possess a strong view of their role in educating future geoscientists, including the skill sets imparted, the basis of education provided, and the expectation for how their students will evolve into colleagues in the profession. Regretfully, based on numerous surveys by both the American Geological Institute's Human Resources program and other independent studies, the formally transferred skills and expectations do not necessarily match those of many geoscience employers. While academia has increased its focus on increasing technical skills and greater specialization, most geoscience employers have further increased the technology gap between themselves and academia, leading most employers to seek broadly trained and well-educated graduates. Additionally, soft skills represent an area of major disagreement between what is considered important and what is considered feasible in a formal education. While debate continues both within industry and academia over the ideal set of soft skills, the great variance in soft skill demands lead to better opportunities for matching of graduate to employer. This debate further enhances the ongoing discussion of the role of the university, the importance of employer needs, and the health of the geoscience discipline within society. Fundamentally, the hiring and career development process remains as sequence of compromises for both the employer and the recent graduate.

  1. From The Horse's Mouth: Engaging With Geoscientists On Science

    NASA Astrophysics Data System (ADS)

    Katzenberger, J.; Morrow, C. A.; Arnott, J. C.

    2011-12-01

    "From the Horse's Mouth" is a project of the Aspen Global Change Institute (AGCI) that utilizes selected short video clips of scientists presenting and discussing their research in an interdisciplinary setting at AGCI as the core of an online interactive set of learning modules in the geosciences for grades 9-12 and 1st and 2nd year undergraduate students. The video archive and associated material as is has limited utility, but here we illustrate how it can be leveraged for educational purposes by a systematic mining of the resource integrated with a variety of supplemental user experiences. The project furthers several broad goals to: (a) improve the quality of formal and informal geoscience education with an emphasis on 9-12 and early undergraduate, (b) encourage and facilitate the engagement of geoscientists to strengthen STEM education by leveraging AGCI's interdisciplinary science program for educational purposes, (c) explore science as a human endeavor by providing a unique view of how scientists communicate in a research setting, potentially stimulating students to consider traditional and non-traditional geoscience careers, (d) promote student understanding of scientific methodology and inquiry, and (e) further student appreciation of the role of science in society, particularly related to understanding Earth system science and global change. The resource material at the core of this project is a videotape record of presentation and discussion among leading scientists from 35 countries participating in interdisciplinary workshops at AGCI on a broad array of geoscience topics over a period of 22 years. The unique archive represents approximately 1200 hours of video footage obtained over the course of 43 scientific workshops and 62 hours of public talks. The full spectrum of material represents scientists active on all continents with a diverse set of backgrounds and academic expertise in both natural and social sciences. We report on the video database resource, our data acquisition protocols, conceptual design for the learning modules, excerpts from the video archive illustrating both geoscience content utilized in educational module development and examples of video clips that explore the process of science and its nature as a human endeavor. A prototype of the user interface featuring a navigational strategy, a discussion of both content and process goals represented in the pilot material and its use in both formal and informal settings are presented.

  2. Opportunities at Geoscience in Veracruz

    NASA Astrophysics Data System (ADS)

    Welsh-Rodríguez, C.

    2006-12-01

    The State of Veracruz is located in the central part of the Gulf of Mexico. It has enormous natural, economic and cultural wealth, is the third most populous state in Mexico, with nearly 33 % of the nation's water resources. It has an enormous quantity of natural resources, including oil, and is strategically located in Mexico. On one hand, mountains to the east are a natural border on the other lies the Gulf of Mexico. Between these two barriers are located tropical forests, mountain forests, jungles, wetlands, reefs, etc., and the land is one of the richest in biodiversity within the Americas. Veracruz, because of its geographical characteristics, presents an opportunity for research and collaboration in the geosciences. The region has experienced frequent episodes of torrential rainfalls, which have caused floods resulting in large amounts of property damage to agriculture, housing, infrastructure and, in extreme situations, loss of human life. In 2004 Veracruz University initiated a bachelor degree in Geography, which will prepare professionals to use their knowledge of geosciences to understand and promote integrated assessment of the prevailing problems in the State. Along with the geography program, the Earth Science Center offers other research programs in seismology, vulcanology, climatology, sustainable development and global change. Because of these characteristics, Veracruz is an optimal environment for active research in the geosciences, as well as for sharing the results of this research with educators, students, and all learners. We look forward to facilitating these efforts in the coming years.

  3. Building Strong Geoscience Departments: Resources and Opportunities

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. M.; Ormand, C. J.

    2008-12-01

    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources, offered workshops on topics from recruiting students to developing a curriculum for the future, and hosted on-line discussion of high interest topics including accreditation. Online resources (http://serc.carleton.edu/departments/index.html) feature successful strategies and specific examples from a wide variety of geoscience departments across North America. These resources address student recruitment, development and assessment of curricula and programs, preparing students for careers, and the future of geoscience. This year the program will offer two new workshops (http://serc.carleton.edu/departments/workshops/index.html). The first, in February, will focus on assessing geoscience programs. Departments are increasingly called upon to assess the impact of their programs on students and to measure the degree to which they meet stated goals. This workshop will showcase the methods and instruments that geoscience departments are using for this assessment, as well as providing opportunities to learn more about evaluation theory and practice from experts in the field. The second workshop, in June, is designed to help departmental teams develop practical solutions to the challenges they currently face. Building on past workshops in this series, participants will help shape the focus of the workshop to meet their needs in areas such as curriculum, assessment, programming, recruitment, or management. A goal of this workshop is to put into broader use the wealth of examples and ideas documented on the project website.

  4. Building a Geoscience Culture for Student Recruitment and Retention - The Geoscience Society and Department Nexus

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Martinez, C. M.

    2009-12-01

    In many other science and engineering fields, the professional society is a key component of the student culture during their education. Students in fields such as physics, civil engineering, and mechanical engineering are usually expected to be members and active participants in their respective professional society, which in turn is tightly integrated with the academic programs through student chapters or activities. This phenomenon does not readily exist in the geosciences, and may be part of the reason for above average student attrition rates and subcompetitive recruitment over the entirety of business cycles. Part of this is a result of 45 societies, including over a dozen that actively recruit student members, but in the same vein, no single society has universal strong cultural presence across the 800 undergraduate programs in the United States. In addition, given the diversity of professional opportunities are not obvious to students because of the traditional subject stovepiping see in the curriculum and societies. To test and address this issue, the American Geological Institute is piloting a program to build student awareness of the breadth of career opportunities in a social context while also promoting the role of societies as a key networking and development conduit. Early responses to this test have resulted in some non-intuitive patterns and may yield insight into the world view of new and prospective majors.

  5. UCLA's Institute for Planets and Exoplanets: Structuring an Education and Public Outreach Program from the Ground Up

    NASA Astrophysics Data System (ADS)

    Curren, I. S.; Jewitt, D. C.

    2014-12-01

    Geoscience education and public outreach efforts (EPO), both formal and informal, are critical to increasing science literacy amongst members of the public and securing the next generation of geoscientists. At UCLA, the Institute for Planets and Exoplanets (iPLEX) has developed a multifaceted program to administer meaningful and original hands-on education and outreach to the public, teachers/professors, and students. To build the program, we first developed a virtual "home base" using Wordpress. With the needs of our community in mind, we structured the website to serve three categories of individuals: the public, teachers/professors, and volunteers. To serve the public, we have developed a series of informal education events (e.g., Exploring Your Universe) that bring thousands of science enthusiasts to campus. For those unable to participate in hands-on demonstrations or for those who would like to see them again, informational videos were developed and made available on our online Physical Demonstrations Digital Library (PDDL). The PDDL contains a second set of videos that are tutorial in nature and specifically designed with teachers, TAs and professors in mind. In addition, we have produced a publicly available annual newsletter written at the level of the informed public that details exciting and current planetary research at UCLA. Another facet of the program, designed with teachers in mind is our application-based private outreach event system in which teachers may choose to have volunteers come to their school with interactive demos or to come to UCLA to speak with scientists and tour laboratories. The final branch of the iPLEX EPO and education program caters to volunteers and includes an online "hub" where volunteers can register for events, download demonstration information packets, and discuss tips with other volunteers. We have recently developed a "Science Education, Outreach, and Communication" course to be integrated into UCLA's undergraduate geology curriculum that will serve twofold to train new volunteers and educate young scientists on how to communicate their field to the public. Feedback from participants indicates an overall increase in geoscience EPO participation and satisfaction from the public, teachers, and volunteers alike since iPLEX's program was emplaced.

  6. Educational activities of CAREER: Crystallization Kinetics in Volcanology

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.

    2011-12-01

    Professional development of teachers is recognized as critical for improving student learning outcomes. The major outreach initiative of my CAREER award was to develop a teacher professional development program for middle school (grades 6-8) teachers that would improve teacher's mastery of geoscience and basic science skills and practices and expose them to an authentic research environment. The explicit objectives of the Research Experience for Teachers in Volcano-Petrology (RET/V-P) were for teachers to (1) master technical skills for safe and productive laboratory work, (2) deepen understanding of science content, (3) develop scientific "habits of the mind" as outlined in the National Science Standards, and (4) hone science communication skills. Six teachers, one undergraduate, and two graduate students participated in the teacher professional development program during the summers of the CAREER award period. A subsequent EAR award now supports the program, and summer 2011 saw the participation of five additional teachers. The teachers span a wide range of educational backgrounds, prior exposure to geoscience, and teaching assignments at public and private schools. Each year, the program was modified using formative and summative evaluation tools to better serve the scheduling needs and content preferences. In general, the program has evolved from an emphasis on research exposure to an emphasis on imparting basic geoscience concepts. A myriad of approaches including field trips to local outcrops, lecture tutorials and lecture-based active engagement exercises (such as iclicker delivery of Geoscience Concept Inventory questions), with a taste of laboratory work (crystal growth experiments, optics primer), has emerged as the most successful means of achieving objectives 1-4, above. The first summer I advertised the RET/V-P, no teachers applied. (This challenge was overcome in subsequent years by targeting the solicitation using teacher list serves, the Hawaii Science Teachers Association web site, and direct email to teachers at nearby schools.) Instead, I modified the way I taught Mineralogy, using CAREER resources to implement a peer-mentoring program in which upper-level undergraduates assisted with a semester-long mineral specimen identification project. The enrolled students received an authentic discovery-based inquiry experience and were required to write and revise incremental and final reports detailing the physical (primarily optical) and chemical evidence supporting their claim. The peer-mentors benefitted from strengthened understanding of subject material and experience teaching and communicating science. A continuing challenge in implementing this and other innovative teaching strategies is obtaining the necessary institutional support in a climate of deep budget cuts. The benefits of receiving the CAREER and PECASE awards are personal and professional. The awards eased the tenure process at my institution, created opportunities to visit other institutions, and liberated me to pursue new research directions and collaborations. Implementing my educational outreach program improves my introductory-level undergraduate teaching and teaches me to communicate my research more effectively.

  7. Developing Effective K-16 Geoscience Research Partnerships.

    ERIC Educational Resources Information Center

    Harnik, Paul J.; Ross, Robert M.

    2003-01-01

    Discusses the benefits of research partnerships between scientists and K-16 students. Regards the partnerships as effective vehicles for teaching scientific logic, processes, and content by integrating inquiry-based educational approaches with innovative research questions. Reviews integrated research and education through geoscience partnerships.…

  8. Building and Sustaining International Scientific Partnerships Through Data Sharing

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Yoksas, T.

    2008-05-01

    Understanding global environmental processes and their regional linkages has heightened the importance of strong international scientific partnerships. At the same time, the Internet and its myriad manifestations, along with innovative web services, have amply demonstrated the compounding benefits of cyberinfrastructure and the power of networked communities. The increased globalization of science, especially in solving interdisciplinary Earth system science problems, requires that science be conducted collaboratively by distributed teams of investigators, often involving sharing of knowledge and resources like community models and other tools. The climate system, for example, is far too complex a puzzle to be unraveled by individual investigators or nations. Its understanding requires finding, collecting, integrating, and assimilating data from observations and model simulations from diverse fields and across traditional disciplinary boundaries. For the past two decades, the NSF-sponsored Unidata Program Center has been providing the data services, tools, and cyberinfrastructure leadership that advance Earth system science education and research, and enabled opportunities for broad participation. Beginning as a collection of US-based, mostly atmospheric science departments, the Unidata community now transcends international boundaries and geoscience disciplines. Today, Unidata technologies are used in many countries on all continents in research, education and operational settings, and in many international projects (e.g., IPCC assessments, International Polar Year, and THORPEX). The program places high value on the transformational changes enabled by such international scientific partnerships and continually provides opportunities to share knowledge, data, tools and other resources to advance geoscience research and education. This talk will provide an overview of Unidata's ongoing efforts to foster to international scientific partnerships toward building a globally-engaged community of educators and researchers in the geosciences. The presentation will discuss how developments in Earth and Space Science Informatics are enabling new approaches to solving geoscientific problems. The presentation will also describe how Unidata resources are being leveraged by broader initiatives in UCAR and elsewhere.

  9. Success of the International Year of the Planet Earth through Targeted High-impact Programs at the American Geological Institute

    NASA Astrophysics Data System (ADS)

    Leahy, P.

    2007-12-01

    The American Geological Institute (AGI) is one of the 12 founding partners of the International Year of the Planet Earth (IYPE) and as such AGI serves on its governing board. AGI is a nonprofit federation of 44 geoscientific and professional associations that represents more than 120,000 geologists, geophysicists, and other earth scientists. AGI provides information services to geoscientists, serves as a voice of shared interests in our profession, plays a major role in strengthening geoscience education, and strives to increase public awareness of the vital role the geosciences play in society's use of resources, resilience to natural hazards, and the health of the environment. The outreach and educational opportunities afforded by IYPE provide AGI with an international venue to promote the role of the geosciences in the daily life of society. AGI's successful release of the 4-part television series entitled Faces of Earth done in partnership with the Discovery Communications is a hallmark example of an outreach product that is technically accurate but designed to engage the non-scientific audience in the wonderment of our science. The series focuses on building the planet, shaping the planet, assembling America, and the human world. Custom short cuts have been produced for special purposes and one of these may be used as part of an IYPE-launch event in Europe. AGI's news magazine, Geotimes will highlight appropriate IYPE events to increase the awareness of the American geoscience community. In addition, Geotimes will promote IYPE by using its logo routinely and through publishing advertisements reminding its professional and public readership of the importance of the IYPE triennium. Similarly, as part of AGI's K-12 educational efforts and teacher training and through its development of Earth Science Week materials, the goals, accomplishments, and importance of IYPE will be incorporated into the targeted educational audiences. IYPE activities will be highlighted on the 2007 Earth Science Week web site, and AGI staff is participating as "first bloggers" for the IYPE Earthlearningidea online investigations. A major AGI contribution to IYPE will be an assessment of the geoscience workforce in the United States. This effort will involve analyzing supply and demand statistics for workforce and working with academia to provide material aimed at ensuring both an adequate and high-quality supply of geoscientists for the future. Such an assessment can be used in collaboratively building a global assessment of the geoscience profession.

  10. Queensborough Community College of the City University of New York (CUNY) Solar and Atmospheric Research and Education Program

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.

    2015-08-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, is the recipient of a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) grant to design and implement a high-impact practice integrated research and education program in solar, geospace and atmospheric physics. Proposed is a year-long research experience with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. Specific objectives include: 1) provide QCC students with research opportunities in solar and atmospheric physics as early as their first year; 2) develop educational materials in solar and atmospheric physics; 3) increase the number of students, especially underrepresented minorities, that transfer to 4-year STEM programs. A modular, interdisciplinary concept approach is used to integrate educational materials into the research experience. The project also uses evidence-based best practices (i.e., Research experience, Mentoring, Outreach, Recruitment, Enrichment and Partnership with 4-year colleges and institutions) that have proven successful at increasing the retention, transfer and graduation rates of community college students. Through a strong collaboration with CUNY’s 4-year colleges (Medgar Evers College and the City College of New York’s NOAA CREST program); Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado, Boulder; and NASA Goddard Space Flight Center’s Community Coordinated Modeling Center (CCMC), the project trains and retains underrepresented community college students in geosciences-related STEM fields. Preliminary results will be presented at this meeting.*This project is supported by the National Science Foundation Geosciences Directorate under NSF Award Number DES-1446704

  11. Informal Educational Strategies in Teaching Geosciences When Formal Courses Are Unavailable: The Experience of Aulagea in Buenos Aires, Argentina

    ERIC Educational Resources Information Center

    Sellés-Martínez, José

    2013-01-01

    The presence of geosciences in the curriculum of primary and secondary schools in Argentina has been highly dependent on educational policies that change frequently under political circumstances. Subjects related to geology, geophysics, meteorology, and astronomy make their appearance and disappear under the influence of educational initiatives…

  12. Out of Boom and Bust, but Where to now for Geoscience Departments?

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2005-12-01

    For most of the last 50 years, the fortunes of geoscience programs at the university level have waxed and waned with the health of the natural resources industries. These industries, and petroleum in particular, have experience major boom and bust cycles, of which geoscience programs often mirrored. This relationship began to change in the early 1990's when many geosciences programs began to offer environmental concentrations. This shift only lasted about five years before job opportunities began to decline in that field as well. By the mid 1990s, for the first time, the fortunes of geoscience departments began to mirror the overall trend of the other physical sciences - and just at the wrong time. The dot-com boom put negative pressure on enrollments, but since 2001, the geosciences, like many sciences, have now begun to experience 4-6 percent enrollment growth each year. Through all of this a number of departments have largely remained strong, and continue to grow. The trends of growth through the past twenty-five years gives us some insight into what healthy departments are doing right, and what opportunities exist for future growth for all programs. Two aspects of successful programs of particular note are those that retained strong, core basic geology academic programs, and those that continue to actively produce master's students. In particular, the master's level poses a unique opportunity for departmental growth. In other science disciplines, combined science master's with MBA's are generating substantial revenue for schools and enhancing the science program's status within the university community and the potential employer pool. However, though the number of master's degrees awarded in the geosciences has remained relatively steady, the number of schools that are actually awarding degrees has shrunk substantially, with the historically strong departments producing a large proportion of master's recipients. The challenge is to now 'read the tea leaves' of what future department success will require in an era of largely replacement-level hiring in the traditional geoscience job sectors and continuing shrinking federal research support. Recent departmental successes point to what appears to be paths for strong a strong future.

  13. UNAVCO's Education and Community Engagement Program: Evaluating Five years of Geoscience Education and Community Outreach

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Dutilly, E.

    2017-12-01

    In 2013, UNAVCO, a facility co-sponsored by the NSF and NASA, received a five-year award from the NSF: Geodesy Advancing Geosciences and EarthScope (GAGE). Under GAGE, UNAVCO's Education and Community Engagement (ECE) program conducts outreach and education activities, in essence broader impacts for the scientific community and public. One major challenge of this evaluation was the breadth and depth of the dozens of projects conducted by the ECE program under the GAGE award. To efficiently solve this problem of a large-scale program evaluation, we adopted a deliberative democratic (DD) approach that afforded UNAVCO ECE staff a prominent voice in the process. The evaluator directed staff members to chose the projects they wished to highlight as case studies of their finest broader impacts work. The DD approach prizes inclusion, dialogue, and deliberation. The evaluator invited ECE staff to articulate qualities of great programs and develop a case study of their most valuable broader impacts work. To anchor the staff's opinion in more objectivity than opinion, the evaluator asked each staff member to articulate exemplary qualities of their chosen project, discuss how these qualities fit their case study, and helped staff to develop data collection systems that lead to an evidence-based argument in support of their project's unique value. The results of this evaluation show that the individual ECE work areas specialized in certain kinds of projects. However, when viewed at the aggregate level, ECE projects spanned almost the entire gamut of NSF broader impacts categories. Longitudinal analyses show that since the beginning of the GAGE award, many projects grew in impact from year 1 to year 5. While roughly half of the ECE projects were prior work projects, by year five at least 33% of projects were newly developed under GAGE. All selected case studies exemplified how education and outreach work can be productively tied to UNAVCO's core mission of promoting geodesy.

  14. Geoscience Education Research Methods: Thinking About Sample Size

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.; CenterAstronomy; Physics Education Research

    2011-12-01

    Geoscience education research is at a critical point in which conditions are sufficient to propel our field forward toward meaningful improvements in geosciences education practices. Our field has now reached a point where the outcomes of our research is deemed important to endusers and funding agencies, and where we now have a large number of scientists who are either formally trained in geosciences education research, or who have dedicated themselves to excellence in this domain. At this point we now must collectively work through our epistemology, our rules of what methodologies will be considered sufficiently rigorous, and what data and analysis techniques will be acceptable for constructing evidence. In particular, we have to work out our answer to that most difficult of research questions: "How big should my 'N' be??" This paper presents a very brief answer to that question, addressing both quantitative and qualitative methodologies. Research question/methodology alignment, effect size and statistical power will be discussed, in addition to a defense of the notion that bigger is not always better.

  15. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2009-05-01

    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  16. Developing a Diverse Professoriate - Preliminary Outcomes from a Professional Development Workshop for Underrepresented Minorities in the Geosciences

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Keane, C. M.; Seadler, A. R.; Wilson, C. E.

    2012-12-01

    A professional development workshop for underrepresented minority, future and early-career faculty in the geosciences was held in April of 2012. Twenty seven participants traveled to the Washington DC metro area and attended this 2.5 day workshop. Participants' career levels ranged from early PhD students to Assistant Professors, and they had research interests spanning atmospheric sciences, hydrology, solid earth geoscience and geoscience education. Race and ethnicity of the participants included primarily African American or Black individuals, as well as Hispanic, Native American, Native Pacific Islanders and Caucasians who work with underrepresented groups. The workshop consisted of three themed sessions led by prestigious faculty members within the geoscience community, who are also underrepresented minorities. These sessions included "Guidance from Professional Societies," "Instructional Guidance" and "Campus Leadership Advice." Each session lasted about 3 hours and included a mixture of presentational materials to provide context, hands-on activities and robust group discussions. Two additional sessions were devoted to learning about federal agencies. For the morning session, representatives from USGS and NOAA came to discuss opportunities within each agency and the importance of promoting geoscience literacy with our participants. The afternoon session gave the workshop attendees the fortunate opportunity to visit NSF headquarters. Participants were welcomed by NSF's Assistant Director for Geosciences and took part in small group meetings with program officers within the Geosciences Directorate. Participants indicated having positive experiences during this workshop. In our post-workshop evaluation, the majority of participants revealed that they thought the sessions were valuable, with many finding the sessions extremely valuable. The effectiveness of each session had similar responses. Preliminary results from 17 paired sample t-tests show increased knowledge gained from each of our themed sessions, with "Familiarity with Federal Agencies" and "Success in Grant Applications" demonstrating statistically significant improvement.

  17. Broadening Participation in the Geosciences through Participatory Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together atmospheric scientists, epidemiologists, medical doctors, and economists to use improved precipitation forecasts to better manage Meningitis in Ghana.

  18. LaURGE: Louisiana Undergraduate Recruitment and Geoscience Education

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Agnew, J.

    2009-12-01

    NSF and the Shell Foundation sponsor a program called Louisiana Undergraduate Recruitment and Geoscience Education (LaURGE). Goals of LaURGE are: 1) Interweave geoscience education into the existing curriculum; 2) Provide teachers with lesson plans that promote interest in geoscience, critical thinking by students, and are consistent with current knowledge in geoscience; and 3) Provide teachers with supplies that make these lessons the highlights of the course. Biology workshops were held at LSU in Baton Rouge and Centenary College in Shreveport in July 2009. 25 teachers including 5 African-Americans attended the workshops. Teachers were from public and private schools in seven different parishes. Teacher experience ranged from 3 years to 40 years. Courses impacted are Biology, Honors Biology, AP Biology, and Environmental Science. The workshops began with a field trip to Mississippi to collect fossil shark teeth and create a virtual field trip. After the field trip, teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic concepts such as geologic time, superposition, and faunal succession. Teachers were also given a $200 budget from which to select fossils for use in their classrooms. One of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth have an excellent fossil record and show continuous transitions in morphology from the Eocene to Pliocene. We take advantage of the curiosity of sharks shared by most people, and allow teachers to explore the variations among different shark teeth and to explain the causes of those variations. Objectives are to have teachers (and their students): 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. The exercise concludes with discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused evolutionary changes in the megatooth shark’s teeth. Other topics covered include radiometric age dating, biogeochemical cycles, and human impact on the carbon and sulfur cycles. Pretests and posttests were administered to assess effectiveness of the program as well as identify teacher misconceptions. This information will be used in future workshops. NSF funding will allow the biology workshops to be repeated in 2010. In addition, a new workshop for physics teachers will be introduced in 2010.

  19. Building an Outdoor Classroom for Field Geology: The Geoscience Garden

    ERIC Educational Resources Information Center

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna

    2016-01-01

    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  20. Alive and aware: Undergraduate research as a mechanism for program vitalization

    NASA Astrophysics Data System (ADS)

    Rohs, C.

    2013-12-01

    Undergraduate research is a vital component of many geoscience programs across the United States. It is especially critical at those institutions that do not have graduate students or graduate programs in the geosciences. This paper presents findings associated with undergraduate research in four specific areas: The success of students that pursue undergraduate research both in the workforce and in graduate studies; the connections that are generated through undergraduate research and publication; the application of undergraduate research data and materials in the classroom; and the development of lasting connections between faculty and students to construct a strong alumni base to support the corresponding programs. Students that complete undergraduate research have the opportunity to develop research proposals, construct budgets, become familiar with equipment or software, write and defend their results. This skill set translates directly to graduate studies; however, it is also extremely valuable for self-marketing when seeking employment as a geoscientist. When transitioning from higher education into the workforce, a network of professional connections facilitates and expedites the process. When completing undergraduate research, students have a direct link to the faculty member that they are working with, and potentially, the network of that faculty member. Even more important, the student begins to build their own professional network as they present their findings and receive feedback on their research. Another area that benefits from undergraduate research is the classroom. A cyclical model is developed where new data and information are brought into the classroom by the faculty member, current students see the impact of undergraduate research and have the desire to participate, and a few of those students elect to participate in a project of their own. It turns into a positive feedback loop that is beneficial for both the students and the faculty members. Finally, it is important to look at the long-range benefit of undergraduate research as an investment that pays off through alumni in the years to come. These alumni have the potential to become the pillars in support of the geoscience program. With their support, the program and associated department becomes strengthened and continues to develop in order to provide for the geoscience workforce needs of the future.

  1. DC Rocks! Using Place-Based Learning to Introduce Washington DC's K-12 Students to the Geosciences

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Mattietti, G. K.

    2017-12-01

    The Washington DC area has interesting geology and a multitude of agencies that deal with the geosciences, yet K-12 public school students in DC, most of whom are minorities, have limited exposure to the geosciences. Geoscience agencies in the DC area have a unique opportunity to address this by introducing the geosciences to local students who otherwise may not have such an opportunity, by highlighting the geology in the students' "backyard," and by leveraging partnerships among DC-based geoscience-related agencies. The USGS and George Mason University are developing a project called DC Rocks, which will give DC's students an exciting introduction into the world of geoscience with place-based learning opportunities that will make geoscience relevant to their lives and their futures. Both the need in DC and the potential for lasting impact are great; the geosciences have the lowest racial diversity of all the science, technology, engineering, and math (STEM) fields, 89% of students in DC public schools are minorities, and there is no dedicated geoscience curriculum in DC. DC Rocks aims to give these students early exposure to the earth sciences, and encourage them to consider careers in the profession. DC Rocks will work with partner agencies to apply several methods that are recommended by researchers to increase the participation of minority students in the geosciences, including providing profoundly positive experiences that spark interest in the geosciences (Levine et al., 2007); increasing students' sense of belonging in the geosciences (Huntoon, et al, 2016); and place-based teaching practices that emphasize the study of local sites (Semken, 2005), such as DC's Rock Creek Park. DC Rocks will apply these methods by coordinating local geoscientists and resources to provide real-world examples of the geosciences' impact on students' lives. Through the DC Rocks website, educators will be able to request geoscience-related resources such as class presentations by local scientists and curricula, and students will be able to access information about geoscience-related opportunities in DC such as field trips. DC Rocks has the potential to encourage minority students to consider higher education in the geosciences by exposing them to the field early on and ultimately these students may pursue geoscience careers.

  2. Smartphones: Powerful Tools for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  3. The First Hydrology (Geoscience) Degree at a Tribal College or University: Salish Kootenai College

    NASA Astrophysics Data System (ADS)

    Lesser, G.; Berthelote, A. R.

    2010-12-01

    A new Hydrology Degree Program was developed at Salish and Kootenai College in western Montana. This program will begin to address the fact that our nation only awards 20 to 30 Geoscience degrees annually to Native American students. Previously absent from SKC and the other 36 Tribal Colleges or Universities (TCU) Science, Technology, Engineering, and Mathematics (STEM) related programs are specific Geoscience disciplines, particularly those focusing on hydrological and water based sciences. Though 23 TCU’s offer some classes to supplement their environmental science or natural resource programs. This program is timely and essential for addressing the concerns that Native Americans have who maintain sovereignty over approximately 20% of our nation’s fresh water resources which are becoming more stressed each year. The overall objective of this new SKC Hydrology degree program is to produce students who are able to “give voice” to the perspectives of Native peoples on natural resources and particularly water-related issues, including water rights, agriculture, environmental health (related to water), beliefs and spirituality related to water, and sustainability of water resources. It will provide the opportunity for interdisciplinary study in physical, chemical, and biological water resources and their management. Students will gain theoretical, conceptual, computational, and practical knowledge/experiences in quantifying, monitoring, qualifying, and managing today’s water resource challenges with particular emphasis on Tribal lands. Completion of the Associate of Science Degree will provide the student with the necessary skills to work as a hydrology- water quality- or geo-technician within the Reservation area, the U. S. Forest Service, the Environmental Protection Agency, the Bureau of Reclamation, the United States Geological Society, and other earth science disciplines. The Bachelor’s Degree program provides students with a broad-based theoretical and technological understanding of environmental and physical sciences and prepares students to design and direct research and programs related to water resources. Graduates of the Bachelor of Science Degree program are prepared to continue their education in graduate school or obtain employment as managers or directors of programs in industry, consulting, local, state, federal and tribal programs. Graduates will find that due to sovereignty issues, most tribes either have in place or are seeking trained professionals to monitor, manage, and protect their respective water resources. Hydrology and Geoscience job openings are expected to continue to exceed the number of qualified jobseekers through the 2018 projection period. And, nationally, 1 in 4 geoscientist positions are employed as hydrologists (30% engineering related services, 30 % Government, and 20% management and technical consulting). The mission of SKC is to provide quality postsecondary educational opportunities for Native Americans, locally and from throughout the United States, and defines cultural understanding as: "The awareness of your own system of values, beliefs, traditions and history, and knowledge and respect for the systems of others, particularly those of American Indian Tribes, and specifically the Salish, Pend d'Oreille and Kootenai People".

  4. Successful strategies for building thriving undergraduate physics programs at minority serving institutions

    NASA Astrophysics Data System (ADS)

    Williams, Quinton

    2013-03-01

    After having been pulled back from the brink of academic program deletion, Jackson State University (Jackson, Mississippi) is now the only HBCU (Historically Black College and University) listed as a top producer of B.S. degrees earned by African Americans in both fields of physics and geoscience. Very pragmatic, strategic actions were taken to enhance the undergraduate degree program which resulted in it becoming one of the most productive academic units at the university. Successful strategies will be shared for growing the enrollment of physics majors, building productive research/educational programs, and improving the academic performance of underprepared students. Despite myriad challenges faced by programs at minority serving institutions in a highly competitive 21st century higher education system, it is still possible for undergraduate physics programs to transition from surviving to thriving.

  5. Development of the Virginia Tech Department of Geosciences MEDL-CMC

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2016-12-01

    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  6. Learning from One Another: On-line Resources for Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. R.; Ormand, C.

    2007-12-01

    Geoscience departments are facing times of great change, bringing both opportunity and challenge. While each department is unique with its own mission, institutional setting, strengths and assets, they share much in common and are all much better positioned to maximize gains and minimize losses if they are well informed of the experiences of other geoscience departments. To this end, over the past four years the Building Strong Geoscience Departments project has offered workshops and sessions at professional society meetings to foster sharing and discussion among geoscience departments in the United States and Canada. Topics that have sparked extended discussion include: Where are the geosciences headed from the standpoints of scientific research and employment? How are departments responding to new interdisciplinary opportunities in research and teaching? What are the threats and opportunities facing geoscience departments nationwide? How are departments recruiting students and faculty? What do geoscience department programs look like both from the standpoint of curriculum and activities beyond the curriculum? How do geoscience programs prepare students for professional careers? What makes a department strong in the eyes of the faculty or the eyes of the institution? This rich discussion has included voices from community colleges, four year colleges and universities, comprehensive and research universities, and minority serving institutions. Participants agree that these discussions have helped them in thinking strategically about their own departments, have provided valuable ideas and resources, and have lead to changes in their program and activities. A central aspect of the project has been the development of a website that captures the information shared at these meetings and provides resources that support departments in exploring these topics. The website (serc.carleton.edu/departments) is a community resource and all departments are invited to both learn from and contribute to its collections.

  7. Geoscience Education and Global Development

    ERIC Educational Resources Information Center

    Locke, Sharon; Libarkin, Julie; Chang, Chun-Yen

    2012-01-01

    A fundamental goal of geoscience education is ensuring that all inhabitants of the planet have knowledge of the natural processes that shape the physical environment, and understand how the actions of humans have an impact on the Earth on local, regional, and global scales. Geoscientists accept that deep understanding of natural processes requires…

  8. Place-Based Education in Geoscience: Theory, Research, Practice, and Assessment

    ERIC Educational Resources Information Center

    Semken, Steven; Ward, Emily Geraghty; Moosavi, Sadredin; Chinn, Pauline W. U.

    2017-01-01

    Place-based education (PBE) is a situated, context-rich, transdisciplinary teaching and learning modality distinguished by its unequivocal relationship to place, which is any locality that people have imbued with meanings and personal attachments through actual or vicarious experiences. As an observational and historical science, geoscience is…

  9. GPS: Geoscience Partnership Study

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2010-01-01

    To promote and expand geoscience literacy in the United States, meaningful partnerships between research scientists and educators must be developed and sustained. For two years, science and education faculty from an urban research university and secondary science teachers from a large urban school district have prepared 11th and 12th grade…

  10. The IODP-Ecord Seen By a Science Teacher

    NASA Astrophysics Data System (ADS)

    Berenguer, J. L.

    2014-12-01

    Since 2009, European teachers were invited to join IODP - ECORD expeditions. Such expeditions hosting teachers aboard the JOIDES Resolution are most successful in training high quality formation, to keep in touch with oceanographic research and researchers who run it. The active participation of these 'teachers at sea' has already helped to disseminate Education tools such as online hands-on, broadcasts from the ship... One of the last IODP Expedition (IODP 345 - Hess Deep Plutonic Crust) was very efficient to discover life on board the JOIDES Resolution to the schools. The program 'School of Rock' is also a great opportunity to build relationships within the educational community. Hundreds of teachers, including some Europeans have been able to participate in these schools, to share their teaching practices and to improve their training in marine geosciences. IODP France organized, last year, the first 'European School of Rock' edition with forty teachers. A new way to bring geosciences into the classroom is 'ship to shore' live video broadcasts from the oceanographic vessel during the expeditions. Since 2010, thousand students in Europe were able to participate in a broadcast with the JOIDES Resolution, have a guided tour of the ship, included the labs, and ask to a scientist ... A magical moment that highlights geosciences in the classroom!. Teaching Geosciences in French schools represent 30% of the national standard for Life Earth Science teaching. Many practical activities have been done with support as concrete as possible. Cores replicas from some expeditions complete successfully geological collections of tools available for the classroom. A lot of students have benefited in Europe from these cores in their classroom. Some conclusions : It is essential to maintain and provide teachers training with the multidisciplinary marine geosciences (biology, geology, physics, chemistry). It remains essential as maintaining formations with the relationship between scientists and teachers through a better mutual understanding of each other's work. Participation of teachers in scientific expeditions aboard the JR is privileged moments. We must also focus on the link 'science and society', especially as it involves many themes such as geosciences climate change, natural hazards...

  11. Ethnic differences in geoscience attitudes of college students

    NASA Astrophysics Data System (ADS)

    Whitney, David J.; Behl, Richard J.; Ambos, Elizabeth L.; Francis, R. Daniel; Holk, Gregory; Larson, Daniel O.; Lee, Christopher T.; Rodrique, Christine M.; Wechsler, Suzanne P.

    While a gender balance remains elusive in the geosciences [de Wet et al., 2002], the underrepresentation of ethnic minorities in these fields is at least as great a concern.A number of cultural and social factors have been proposed to explain the poor ethnic minority representation in the geosciences, including limited exposure to nature, deficient academic preparation, inadequate financial resources to pursue higher education, ignorance of career opportunities in the geosciences, insufficient family support, and misconceptions of the field.

  12. Four Cornerstones for Ensuring a Sustainable Workforce and Opportunity for the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Houlton, H. R.

    2012-04-01

    The great demographic shift underway in many developed nations is impacting the geosciences extraordinarily hard. We examine the situation in the United States as an example of how there are four clear overarching issues to establishing a sustainable geosciences workforce: Carrying Capacity of the Educational Sector, the fundamentals of meeting future demand, the issue of graduate quality, and the emerging challenge of sustaining the capacity building of future geoscientist generations. The United States currently hosts about half of all geoscientists globally and is facing the imminent, and in the case of the Federal geosciences workforce, attrition of the Baby Boom generation geoscientists. This demographic shift is impacting all parts of the geosciences and when coupled by internal shifts in the geosciences on subdisciplinary thrusts, the match between the skill portfolio of new graduates is not necessarily well-aligned with the exiting skills of retirees. In particular, the US geosciences face the challenge of, based on current demand, attrition, and graduation rates of being short nearly 150,000 geoscientists by 2021. At the same time, the educational community is seeing the retirement of faculty that are leading into constrained ability to educate students in a number of topics, especially those in the resource industries. Given current funding trends and priorities, this phenomenon is likely to be in a feedback loop and will complicate the broad skill portfolio of the future geosciences. We also examine the issues of global migration and how it does not appear to be nearly as important to addressing the challenges as assumed by many. In addition, the prospective future geosciences majors appear to be of lesser quality than even 5 years ago based on test score, yet we will also present several broad strategies and cautionary tales that can help the US, and likely the global, geosciences community to ensure a stable and effective future and how this is actually opening new opportunities for the next generation of geoscientists.

  13. Making the Case for GeoSTEM Education

    NASA Astrophysics Data System (ADS)

    Moore, John

    2014-05-01

    As the national Science-Technology-Engineering-Mathematics (STEM) education policy makers in the United States work through reports, findings, forums, workshops, etc., there emerges an opportunity to present the strong case of why and how the role of the Geosciences community can and should be at the forefront of these discussions. Currently existing within the Geosciences scientific and educational community are policies, frameworks, guidance, innovative technology, and unique interdisciplinary Earth System data sets that will establish a pathway to the role of the Geosciences in the classroom, in the 21st Century workforce, and in society. The question may be raised, "Why GeoSTEM?" But the real question should be … "Why not?" Over the past several years the Geosciences have dominated the news cycle in the United States. As we face future natural and human generated hazards and disasters such as the Gulf Oil Spill, not to mention issues confronting society such as Climate Change, Sustainability and Energy, the Geosciences have a critical role in the public awareness, safety, and national security of our nation. In the past year we have experienced volcanic eruptions, earth¬quakes, tsunamis, hurricanes, tornadoes, wildfires, severe drought and flooding, outbreaks of severe weather. Planet Earth will be monitored, observed, and studied as an Earth System, in real or near real time. Policy-makers, decision-makers, scientists, teachers, students, and citizens will not only participate in the process, but come to use such information and data routinely in their daily lives. 3-D data visualizations, virtual field trips, and interactive imagery from space all will contribute to the doing of real science in real time. Policy-Makers have linked Science, Technology, Engineering, and Mathematics (STEM) Education to United States' future economy and national security. The GeoSTEM community can deliver added value through leveraging current and future Geoscience-related resources that monitor our planet and protect the life and property of our citizens. The integration of a Geoscience and Remote Sensing Laboratory into an existing Earth Science program or a new Earth Systems Science course allows students to acquire the necessary rigorous laboratory skills as required by colleges or universities, while developing and becoming proficient in technological skills using industry standard analysis tools. With the accessibility of real-time or near real time data, students in a GeoSTEM driven course can engage in inquiry-based laboratory experiences focusing on real life applications, both local and global. Developing pathways between geoscientists, researchers, teachers, and students, will create an exchange of information, data, observations, and measurements that will lead to authentic science investigations through the monitoring of weather, water quality, sea surface temperature, coral reefs, marine wildlife, earthquakes, tsunamis, wildfires, air quality, land cover, and much more. Satellite, remote sensing, and geospatial technologies can introduce students and society to data that can inform policy makers and society both now and in the future.

  14. The EarthConnections San Bernardino Alliance: Addressing Diversity in the Geosciences Using a Collective Impact Model

    NASA Astrophysics Data System (ADS)

    McGill, S. F.; Benthien, M. L.; Castillo, B. A.; Fitzsimmons, J.; Foutz, A.; Keck, D.; Manduca, C. A.; Noriega, G. R.; Pandya, R. E.; Taber, J. J.; Vargas, B.

    2017-12-01

    The EarthConnections San Bernardino Alliance is one of three regional alliances supported by the national EarthConnections Collective Impact Alliance, funded by a pilot grant from the National Science Foundation INCLUDES program. All three of the regional alliances share a common vision, focused on developing a diverse geoscience workforce through connecting existing programs and institutions into regional pathways that support and guide students from engagement at an early age with Earth science linked to issues facing the local community, through the many steps and transitions to geoscience-related careers. The San Bernardino Alliance began with collaboration between one university, one community college and one high school and also includes the Southern California Earthquake Center as well as professional geologists in the region. Based on discussions at an opening round table event, the Alliance has chosen to capitalize on existing geology student clubs and deeply engaged faculty and alumni at the founding high school, community college and university members of the Alliance to plan joint field trips, service learning projects, guest speakers, and visits to dinner meetings of the local professional societies for students at participating institutions at various stages along the pathway. The underlying motivation is to connect students to their peers and to mentors at institutions that represent the next step on the pathway, as well as to expose them to careers in geology and to geoscience issues that impact the local community. A second type of intervention we are planning is to promote high quality teaching in introductory Earth science courses at the university, community college and high school levels, including the development of high school honors courses in Earth science. To this end we are hosting an NAGT traveling workshop focused on using active learning and societally relevant issues to develop engaging introductory geoscience courses. This teaching workshop will also serve as an opportunity to expand our alliance to include additional educational institutions in the region. We are also planning interviews with local community leaders to identify geoscience issues of local importance that could become a focus for joint service learning projects for students at various stages along the pathway.

  15. Dagik Earth: An affordable three-dimensional presentation of global geoscience data in classrooms and science museums

    NASA Astrophysics Data System (ADS)

    Saito, A.; Takahashi, M.; Tsugawa, T.; Nishi, N.; Odagi, Y.; Yoshida, D.

    2009-12-01

    Three-dimensional display of the Earth is a most effective way to impress audiences how the Earth looks and make them understand the Earth is one system. There are several projects to display global data on 3D globes, such as Science on a Sphere by NOAA and Geo Cosmos by Miraikan, Japan. They have made great successes to provide audiences opportunities to learn the geoscience outputs through feeling that they are standing in front of the "real" Earth. However, those systems are too large, complicated, and expensive to be used in classrooms and local science museums. We developed an easy method to display global geoscience data in three dimensions without any complex and expensive systems. The method uses a normal PC projector, a PC and a hemispheric screen. To display the geoscience data, virtual globe software, such as Google Earth and NASA World Wind, are used. The virtual globe software makes geometry conversion. That is, the fringe areas are shrunken as it is looked from the space. Thus, when the image made by the virtual globe is projected on the hemispheric screen, it is reversely converted to its original shape on the Earth. This method does not require any specific software, projectors and polarizing glasses to make 3D presentation of the Earth. Only a hemispheric screen that can be purchased with $50 for 60cm diameter is necessary. Dagik Earth is the project that develops and demonstrates the educational programs of geoscience in classrooms and science museums using this 3D Earth presentation method. We have developed a few programs on aurora and weather system, and demonstrated them in under-graduate level classes and science museums, such as National Museum of Nature and Science,Tokyo, Shizuoka Science Center and Kyoto University Museum, since 2007. Package of hardware, geoscience data plot, and textbook have been developed to be used as short-term rental to schools and science museums. Portability, low cost and easiness of development new contents are advantages of Dagik Earth comparing to the other similar 3D systems.

  16. Bringing the SF-ROCKS Model Beyond the San Francisco Bay Area: Building a Partnership Between the San Francisco State University and the University of New Orleans Geoscience Diversity Programs

    NASA Astrophysics Data System (ADS)

    White, L. D.; Snow, M. K.; Davis, J.; Serpa, L. F.

    2005-05-01

    Since 2001, faculty and graduate students in the Department of Geosciences at San Francisco State University (SFSU) have coordinated a program to encourage high school students from traditionally underrepresented groups to pursue the geosciences. The SF-ROCKS (Reaching Out to Communities and Kids with Science in San Francisco) program is a multifaceted NSF-funded program that includes curriculum enhancement, teacher in-service training, summer and academic year research experiences for high school students, and field excursions to national parks. Six faculty, five graduate students, and several undergraduate students work together to develop program activities. Working with 9th grade integrated science courses, the students are introduced to SF-ROCKS through lesson plans and activities that focus on the unique geologic environments that surround the schools. Each year a group of twelve to fifteen students is selected to participate in a summer and academic year research institute at the SFSU campus. In the four years of our program, twenty-seven ninth and tenth-grade students have participated in the summer and academic year research experiences. We have observed increased interest and skill development as the high school students work closely with university faculty and students. As SF-ROCKS continues to expand, we are exploring ways to partner with other diversity programs such as the long-standing University of New Orleans (UNO) Minority Geoscience summer field program. The UNO program is successful because it combines field exposure and mentoring with scholarship opportunities for students making it more likely they will study geosciences in college. SF-ROCKS is creating additional ways to further enhance the students' perspective of the geosciences through meaningful field and scientific research experiences by focusing on local and regional geologic environments and also on the geology of national parks.

  17. How Global Science has yet to Bridge Global Differences - A Status Report of the IUGS Taskforce on Global Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Gonzales, L. M.

    2010-12-01

    The International Union of Geological Sciences, with endorsement by UNESCO, has established a taskforce on global geosciences workforce and has tasked the American Geological Institute to take a lead. Springing from a session on global geosciences at the IGC33 in Oslo, Norway, the taskforce is to address three issues on a global scale: define the geosciences, determine the producers and consumers of geoscientists, and frame the understandings to propose pathways towards improved global capacity building in the geosciences. With the combination of rapid retirements in the developed world, and rapid economic expansion and impact of resource and hazard issues in the developing world, the next 25 years will be a dynamic time for the geosciences. However, to date there has been little more than a cursory sense of who and what the geosciences are globally and whether we will be able to address the varied needs and issues in the developed and the developing worlds. Based on prior IUGS estimates, about 50% of all working geoscientists reside in the Unites States, and the US was also producing about 50% of all new geosciences graduate degrees globally. Work from the first year of the taskforce has elucidated the immense complexity of the issue of defining the geosciences, as it bring is enormous cultural and political frameworks, but also shed light on the status of the geosciences in each country. Likewise, this leads to issues of who is actually producing and consuming geoscience talent, and whether countries are meeting domestic demand, and if not, is external talent available to import. Many US-based assumptions about the role of various countries in the geosciences’ global community of people, namely China and India, appear to have been misplaced. In addition, the migration of geoscientists between countries raised enormous questions about what is nationality and if there is an ideal ‘global geoscientist.’ But more than anything, the taskforce is revealing clear global trends in geosciences education, both at the pre-college and university level and frame the state of health of geosciences education in the United States in a totally new light. But indicators are present that the developing world will likely overtake the developed world in the near future in the production of geoscientists, but a key question is will that fundamentally change the nature of the science given the social, cultural, and educational frameworks that the next global generation brings with them.

  18. EarthCube Cyberinfrastructure: The Importance of and Need for International Strategic Partnerships to Enhance Interconnectivity and Interoperability

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.

    2017-12-01

    The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.

  19. Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education.

    NASA Astrophysics Data System (ADS)

    Hansen, P. J. K.

    2009-09-01

    Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education. Pål J. Kirkeby Hansen Faculty of Education and International Studies, Oslo University College (PalKirkeby.Hansen@lui.hio.no) The Knowledge Promotion is the latest curriculum reform in Norwegian compulsory and upper secondary education implemented autumn 2006. The greenhouse effect, the increased greenhouse effect and the importance of the ozone layer are topics in Natural Science upper secondary year 1, but only in Programme for General Studies, chosen by less than 50% of the students. In Geography the same cohort learns about ocean and air currents and their impact on climate, and in particular conditions influencing the weather and climate in Norway. If the students during year 1 get interested in further education in weather, ocean, climate or other geosciences topics, they could continue their education on Programme for Specialization in General Studies and choose the new science subject Geosciences at years 2 and/or 3. Among many geo-topics, Geosciences contains: climate, weather, water circulation, glaciers, atmospheric currents, weather forecasts, variations in the ozone layer, climatic development from the latest Ice Age, climate change - causes, effects and challenges, surface and deep-sea currents in oceans - causes and consequences for the climate, el Niño and la Niña - causes and influence on the climate. The students are supposed to make extensive investigations of different geosciences-parameters on their own in an outdoor field using different tools of geosciences, and on the Internet and other media, and present the results. One serious problem introducing a new subject in upper secondary education is who are able to teach this subject. We who developed the curriculum on mission of the education ministry, had first of all teachers with a degree in natural geography in mind. To empower other interested teachers, for instance with degree in meteorology, oceanography, hydrology, geology or physics, we have given extensive in-service training and should during 2009 be able to offer further education from ½ to 1 year. The school year 2007/2008 was the first with Geosciences as an optional choice. Ca.80 schools of max. 300 were able to give GX a 3 hours/week course, and/or G1 a 5 h/w course. In 2008/2009 it is 92 schools, and the advanced level 5 h/w course G2 has been introduced in many schools. G2 is open to all, but chosen almost only by students with G1. X1 students accomplished the ever first national written exam in G2 in May 2009. Geosciences were introduced as an idea from the education minister, not as result of pressure from the grassroot. She wanted students to have more science subjects to choose among in upper secondary education. She hoped that Geosciences should be a vehicle for introducing new groups of students to science, and perhaps bring them to science studies on higher levels later on. We, who developed the curriculum and are also responsible for the national exam in G2. We are of course very curious about both responses from the schools on the curriculum and the exam, and on the students' attitudes, work and learning outcome. That's why we are setting up a science education research programme from spring 2009. The further education and research programmes are made possible because of a sponsorship (EUR 1.2mill.) to our Geo-Programme 2008-2013 from the Norwegian oil and gas company StatoilHydro. 1 Unknown till May 2009

  20. Researcher, Teacher, Education Researcher: The Evolution of a University Geoscience Instructor

    ERIC Educational Resources Information Center

    Owens, Katharine D.; Steer, David; McConnell, David

    2006-01-01

    This case study describes a professor's evolution from geoscience researcher to effective teacher to education researcher. The article details his initial beliefs about teaching, looks at the factors that prompted him to seek a different teaching approach, and enumerates the supports and challenges that he had on his journey. Factors essential to…

  1. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  2. The Challenges for Persistence with Two-Year College Student Transfers and How One Survey Attempts to Identify Pathways of Success for Geoscience Students

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Van Der Hoeven Kraft, K.; Wolfe, B.

    2014-12-01

    With the rapid growth in enrollments at two-year colleges (2YCs), these institutions provide a rich talent pool for future science, technology, engineering, and math (STEM) graduates at four-year universities, particularly students from underrepresented groups (American Geosciences Institute [AGI], 2014). This is particularly true for the geosciences because over 25% of recent geoscience graduates with a bachelor's degree attended a 2YC for at least one semester (AGI, 2013). However, it is difficult to successfully track 2YC transfers because many 2YC students do not complete an associate's degree and very few institutions offer a geoscience-specific associate's degree. In order to recruit future geoscientists from this pool of students, researchers need to better understand the barriers these students face when trying to transfer and how they are able to successfully navigate these barriers. During spring 2014 graduation, AGI surveyed students completing their bachelor's, master's, and doctoral degrees about their educational background, experiences and future plans after graduation. Those graduates who attended a 2YC for at least one semester provided insight into their enrollment decisions as they transferred into a four-year university. The sample from this survey represents 154 responses from a total of 596 responses. General demographics reveal an older population (average age: 30, median: 27), a higher percent of male students (54% male, 40% female) and Caucasians (76%, 10% non Caucasian) than a traditional 2YC student. Students attending 2YC nationally are on average 28 years old (median: 24), are 57% women, and are 51% Caucasian (AACC Fast Facts, 2014). In addition, responses indicated some of the factors that influenced their ability to successfully transfer into 4-year geoscience programs including personal motivation and successful transfer of credits.

  3. Pop Up/Drill Down: A Traveling Exhibit Designed to Reach Underserved Communities through Art and Geosciences

    NASA Astrophysics Data System (ADS)

    Kurtz, N.

    2017-12-01

    Scientists observe the world around them in an attempt to understand it. Artists observe the world around them in an attempt to create a reflection or response to the environment. It is critical for the two fields to work together in order to engage and inform the general population. The Consortium for Ocean Leadership, the International Ocean Discovery Program and a series of collaborators are designing a traveling exhibit that will inspire underserved communities in the excitement of exploration, the process of science, and the people and tools required to get there. The project aims to learn more about how to increase access to and awareness of ocean/earth science by bringing a pop-up style museum exhibit to local libraries and public events. As an artist with a science and education background and the graphic designer for this exhibit, this author will highlight the ways this project utilizes art and design to educate underserved populations in ocean and geosciences.

  4. Bridging Learning Communities Through Experiential Learning with GIST: 2Y College Experience

    NASA Astrophysics Data System (ADS)

    Sorey, N.; Phillips, C. D.

    2017-12-01

    This study reviews successes of community engagement through experiential learning with GIST across academic disciplines that leverage topics with technology and community relationships throughout a two-year campus and the community at large. This approach allowed for a diversification of populations reached through college student engagement and community outreach efforts. Technological frameworks and development of best practice resources to support students and faculty were shown to increase the capacity for undergraduate research experiences, K12 short course offerings during the summer, and the formation of a STEM-focused student organization. The RSO has participated in activities that include educational technology development, participating in the growth and development of the area's maker movement community, and geoscience outreach and education. Development of the program thus far and lessons learned have resulted in a proposal for an areal-based informal pathway linking the K12 community to area colleges by integrating geoscience outreach with GIST through the maker movement.

  5. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    NASA Technical Reports Server (NTRS)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and diverse research opportunities that are inspired by views of Earth from space taken by astronauts on board the International Space Station. The interest and connection to viewing our home planet from space will inevitably spark questions that will drive students to pursue their research investigations, as well as forming a basis for comparisons to the exploration of other planetary bodies in our solar system.

  6. Expedition Earth and Beyond: Using NASA data resources and integrated educational strategies to promote authentic research in the classroom

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W.; Willis, K.; Runco, S.

    2009-12-01

    Teachers in today’s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and diverse research opportunities that are inspired by views of Earth from space taken by astronauts on board the International Space Station. The interest and connection to viewing our home planet from space will inevitably spark questions that will drive students to pursue their research investigations, as well as forming a basis for comparisons to the exploration of other planetary bodies in our solar system.

  7. G.I.F.K. project: Geosciences Information For Kids

    NASA Astrophysics Data System (ADS)

    Merlini, Anna Elisabetta; Grieco, Giovanni; Evardi, Mara; Oneta, Cristina; Invernizzi, Nicoletta; Aiello, Caterina

    2016-04-01

    Our GIFK program was born after the GIFT experience in 2015 when "The Geco" association attended the workshop focused on mineral resources topics. With an extremely clear vision of the fragility of our planet in relation to our "exploiting" society, we felt the need to find a new way to expose young generations to geoscience topics. With this awareness, a new scientific path for young students, named GIFK -Geosciences Information for Kids- has been created. Thanks to this program, young generations of students are involved in geoscience topics in order to bring up a more eco-aware generation in the future. Particularly, in Italy, we do need new didactic tools to bring kids into science. As part of the classic science program, often teachers do not have time to discuss about the current facts related to our planet and often students do not receive any type of "contact" with the daily scientific events from the school. This program is aimed to introduce small kids, from kindergarten to primary school, to Earth related issues. The key for the educational success is to give children the possibility to get involved in recent scientific information and to plunge into science topics. The connection with up to date scientific research or even just scientific news allows us to use media as a reinforcing tool, and provides a strong link to everyday life. In particular, the first project developed within the GIFK program deals with the amazing recent Sentinel missions performed by ESA (European Space Agency), related to the observation of the Earth from space. The main aim of this project is to discuss about environmental and exploitation problems that the Earth is facing, using satellite images in order to observe direct changes to the Earth surface overtime. Pupils are led to notice and understand how close the relation between daily life and planet Earth is and how important our behavior is even in small acts. Observing the Earth from space and in the Solar System context will give the students the awareness of how the life-balance of our planet is in serious danger now.

  8. Teaching All Geoscience Students: Lessons Learned From Two-Year Colleges

    NASA Astrophysics Data System (ADS)

    Baer, Eric; Blodgett, Robert H.; Macdonald, R. Heather

    2013-11-01

    Geoscience faculty at 2-year colleges (2YCs) are at the forefront of efforts to improve student learning and success while at the same time broadening participation in the geosciences. Faculty of 2YCs instruct large numbers of students from underrepresented minority groups and many students who are the first in their families to pursue higher education. Geoscience classes at 2YCs also typically have large enrollments of nontraditional students, English language learners, and students with learning disabilities.

  9. Geoscience Diversity Enhancement Project: Student Responses.

    ERIC Educational Resources Information Center

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  10. Doctoral Programs Need Changes to Attract and Retain Underrepresented Groups

    NASA Astrophysics Data System (ADS)

    Bernard, R. E.; Mayfield, K. K.

    2017-12-01

    Geoscience is currently recognized as the least diverse of all STEM fields. While attention typically focuses on K-12 and undergraduate populations, the extreme lack of diversity among graduate students, and doctoral students in particular, should be examined and addressed. In 2016, members of underrepresented minority (URM) groups made up only 6% of those graduating with geoscience PhDs. In all STEM fields, only 48% of Hispanic/Latino and 38% of Black/African American doctoral studies had earned doctorates within 7 years, with 36% of members of these groups leaving the program entirely. Recent studies suggest that these high attrition rates can be attributed, in part, to a mismatch between motivations of URM members and PhD-granting institutions while students are pursuing scientific education and careers. Traditional STEM doctoral programs do not offer, facilitate, or incentivize substantial opportunities to integrate social justice issues, community involvement, and altruism—factors which have been found to be of more importance to these populations than to male members of well-represented groups. URM members are also less likely to be interested in purely academic research careers, so doctoral programs may be failing to attract (and failing to prepare) diverse populations by not offering experiences beyond typical research and TA duties. In this presentation, trends in motivation and persistence among URM students in STEM will be discussed, in addition to highlighting education and outreach activities that can be successfully incorporated for a more fulfilling, balanced, attractive, and preparatory education experience. Specific activities undertaken and recommended by the presenter in her PhD experience include the following: a federal research internship, a state government policy internship, a formal partnership with a local K-12 teacher though a former NSF GK-12 program, a two-week education workshop aboard a scientific research drillship, and attending a research conference geared towards URM students (SACNAS). Suggestions and recommendations will be made for meaningful changes at the institutional, funding agency, societal and community levels.

  11. The DLESE Evaluation Toolkit Project

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Barker, L. J.; Marlino, M.

    2002-12-01

    The Evaluation Toolkit and Community project is a new Digital Library for Earth System Education (DLESE) collection designed to raise awareness of project evaluation within the geoscience education community, and to enable principal investigators, teachers, and evaluators to implement project evaluation more readily. This new resource is grounded in the needs of geoscience educators, and will provide a virtual home for a geoscience education evaluation community. The goals of the project are to 1) provide a robust collection of evaluation resources useful for Earth systems educators, 2) establish a forum and community for evaluation dialogue within DLESE, and 3) disseminate the resources through the DLESE infrastructure and through professional society workshops and proceedings. Collaboration and expertise in education, geoscience and evaluation are necessary if we are to conduct the best possible geoscience education. The Toolkit allows users to engage in evaluation at whichever level best suits their needs, get more evaluation professional development if desired, and access the expertise of other segments of the community. To date, a test web site has been built and populated, initial community feedback from the DLESE and broader community is being garnered, and we have begun to heighten awareness of geoscience education evaluation within our community. The web site contains features that allow users to access professional development about evaluation, search and find evaluation resources, submit resources, find or offer evaluation services, sign up for upcoming workshops, take the user survey, and submit calendar items. The evaluation resource matrix currently contains resources that have met our initial review. The resources are currently organized by type; they will become searchable on multiple dimensions of project type, audience, objectives and evaluation resource type as efforts to develop a collection-specific search engine mature. The peer review criteria and process for ensuring that the site contains robust and useful resources has been drafted and received initial feedback from the project advisory board, which consists of members of every segment of the target audience. The review criteria are based upon DLESE peer review criteria, the MERLOT digital library peer review criteria, digital resource evaluation criteria, and evaluation best practices. In geoscience education, as in most endeavors, improvements are made by asking questions and acting upon information about successes and failures; project evaluation can be thought of as the systematic process of asking these questions and gathering the right information. The Evaluation Toolkit seeks to help principal investigators, teachers, and evaluators use the evaluation process to improve our projects and our field.

  12. Design and Delivery of Professional Development Through Partnerships: Long-Term, Short-Term, and Everything In-Between

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Curry, B.; Hairston, M. R.

    2009-12-01

    Professional development for teachers can take a variety of forms, each with unique challenges and needs. At the University of Texas at Dallas (UTD), we have leveraged partnerships between multiple groups including the Masters of Arts in Teaching program in Science Education, the joint US Air Force/NASA CINDI mission, an ionospheric explorer built at UTD, and the UTD Regional Collaborative for Excellence in Science Teaching. Each effort models, and in the case of the later two has created, inquiry-based lessons around Earth-systems science. A space science mission, currently in low Earth orbit aboard the Air Force satellite C/NOFS, provides real world connections to classroom science, scientific data and visualizations, and funding to support delivery of professional development in short courses and workshops at teacher conferences. Workshops and short course in turn often serve to recruit teachers into our longer-term programs. Long-term professional development programs such as the Collaborative provide opportunities to test curriculum and teacher learning, an interface to high-quality sustained efforts within talented communities of teachers, and much more. From the birth of our CINDI Educational Outreach program to the Collaborative project that produced geoscience kit-based modules and associated professional development adopted throughout the state of Texas, we will share highlights of our major professional development initiatives and how our partnerships have enabled us to better serve the needs of K-12 teachers expected to deliver geoscience and space science content in their classrooms.

  13. IPY: Engaging Antarctica: Bringing Antarctic Geoscience to the Public Through a NOVA Documentary and an Innovative Flexible Exhibit for Informal Science Education Venues

    NASA Astrophysics Data System (ADS)

    Rack, F.; Diamond, J.; Levy, R.; Berg, M.; Dahlman, L.; Jackson, J.

    2006-12-01

    IPY: Engaging Antarctica is an informal science education project designed to increase the general public's understanding of scientific research conducted in Antarctica. The project focuses specifically on the multi- national, NSF-funded Antarctic Drilling Project (ANDRILL). The ANDRILL project is the newest geological drilling program in an ongoing effort to recover stratigraphic records from Antarctica. ANDRILL's primary objectives are to investigate Antarctica's role in global environmental change over the past 65 million years and to better understand its future response to global changes. Additionally, through ANDRILL's Research Immersion for Science Educators program (ARISE), 12 science educators from four countries will work on science research teams in Antarctica and produce educational materials that feature Antarctic geoscience. The Engaging Antarctica project will produce both a NOVA television documentary and an innovative informal learning exhibit. The documentary, Antarctica's Icy Secrets, will provide a geological perspective on how Antarctica continues to play a major role in affecting global climate by altering ocean currents and sea levels. The learning exhibit, one that blends standards- and inquiry-based learning with the latest information technologies, is coined the Flexhibit. The Engaging Antarctica Flexhibit will provide a digital package of high resolution images for banners as well as learning activities and ideas for exhibit stations that can be implemented by youth groups. Flexhibit images will feature ANDRILL scientists at work, and audio files, available as podcasts, will tell scientists' stories in their own words, speaking directly to the public about the joys and challenges of Antarctic geological research.

  14. Cultivating Research Skills: An interdisciplinary approach in training and supporting energy research

    NASA Astrophysics Data System (ADS)

    Winkler, H.; Carbajales-Dale, P.; Alschbach, E.

    2013-12-01

    Geoscience and energy research has essentially separate and diverse tracks and traditions, making the education process labor-intensive and burdensome. Using a combined forces approach to training, a multidisciplinary workshop on information and data sources and research skills was developed and offered through several departments at Stanford University. The popular workshops taught required skills to scientists - giving training on new technologies, access to restricted energy-related scientific and government databases, search strategies for data-driven resources, and visualization and geospatial analytics. Feedback and data suggest these workshops were fundamental as they set the foundation for subsequent learning opportunities for students and faculty. This session looks at the integration of the information workshops within multiple energy and geoscience programs and the importance of formally cultivating research and information skills.

  15. GeoMapApp, Virtual Ocean, and other Free Data Resources for the 21st Century Classroom

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W.; Carbotte, S.; Melkonian, A.; Coplan, J.; Arko, R.; Ferrini, V.; O'Hara, S.; Leung, A.; Bonckzowski, J.

    2008-12-01

    With funding from the U.S. National Science Foundation, the Marine Geoscience Data System (MGDS) (http://www.marine-geo.org/) is developing GeoMapApp (http://www.geomapapp.org) - a computer application that provides wide-ranging map-based visualization and manipulation options for interdisciplinary geosciences research and education. The novelty comes from the use of this visual tool to discover and explore data, with seamless links to further discovery using traditional text-based approaches. Users can generate custom maps and grids and import their own data sets. Built-in functionality allows users to readily explore a broad suite of interactive data sets and interfaces. Examples include multi-resolution global digital models of topography, gravity, sediment thickness, and crustal ages; rock, fluid, biology and sediment sample information; research cruise underway geophysical and multibeam data; earthquake events; submersible dive photos of hydrothermal vents; geochemical analyses; DSDP/ODP core logs; seismic reflection profiles; contouring, shading, profiling of grids; and many more. On-line audio-visual tutorials lead users step-by-step through GeoMapApp functionality (http://www.geomapapp.org/tutorials/). Virtual Ocean (http://www.virtualocean.org/) integrates GeoMapApp with a 3-D earth browser based upon NASA WorldWind, providing yet more powerful capabilities. The searchable MGDS Media Bank (http://media.marine-geo.org/) supports viewing of remarkable images and video from the NSF Ridge 2000 and MARGINS programs. For users familiar with Google Earth (tm), KML files are available for viewing several MGDS data sets (http://www.marine-geo.org/education/kmls.php). Examples of accessing and manipulating a range of geoscience data sets from various NSF-funded programs will be shown. GeoMapApp, Virtual Ocean, the MGDS Media Bank and KML files are free MGDS data resources and work on any type of computer. They are currently used by educators, researchers, school teachers and the general public.

  16. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern British Columbia geological highway map was published in 2008. In the works are a geological map for southern British Columbia and three community and regional geoscience guides. 5) What on Earth (www.whatonearth.org), a biannual national newsletter established at the University of Waterloo in 1987, provides a range of Earth science information for teachers in Canada and elsewhere. It was originally published as a colourful printed newsletter, which in recent years was also available online; new issues will be available only online. 6) Friends of Canadian Geoheritage is a new national program currently being piloted in the Ottawa-Gatineau area, where it is working with municipal and other government agencies, schools, universities, and community groups to help preserve, protect and promote Canada's rich geoheritage. A new Geo-Park, a book on building materials in Ottawa, a Geoheritage day, field trips and public talks are just some of the initiatives underway.

  17. Resources and Approaches for Teaching Quantitative and Computational Skills in the Geosciences and Allied Fields

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.

    2016-12-01

    Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop syntheses that highlights best practices, a set of webpages to support teaching with software such as MATLAB, and an interest group actively discussing aspects these issues in Geoscience and allied fields. Learn more and view the resources at http://serc.carleton.edu/matlab_computation2016/index.html

  18. Making Geoscience Data Relevant for Students, Teachers, and the Public

    NASA Astrophysics Data System (ADS)

    Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.

    2009-12-01

    The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis within the structure of the Federation of Earth Science Information Partners (ESIP Federation), leveraging their semi-annual meetings. In this presentation we will describe the AccessData model of making geoscience data accessible and usable in educational contexts from the perspective of both the organizers and from a team. We will also describe how this model has been adapted to other contexts to facilitate a broader reach of geoscience data.

  19. Teach the Earth: On-line Resources for Teachers and Teachers of Teachers

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2007-12-01

    Effective Earth science education depends on excellent teachers: teachers who not only possess a strong grasp of geoscience but are also well-versed in the pedagogic methods they need to connect with their audience. Preparing Earth science teachers is a task no less challenging that also requires strengths in both areas. The Teach the Earth website provides a variety of resources to support preparation of Earth science teachers. Here you can find collections of teaching activities addressing all aspects of the Earth system; discussions of teaching methods linked to examples of their use in geoscience courses; and the Earth Exploration Toolbook, a resource specifically designed for teachers who would like to incorporate data rich activities in their teaching. These resources are suitable for use by teachers, students in courses addressing the methodology of teaching Earth science and science, and faculty designing courses. Faculty working with current and future teachers will find a section on Preparing Teachers to Teach Earth Science with a collection of courses designed specifically to benefit future Earth Science teachers, examples of key activities in these courses, and descriptions of programs for pre-service and in-service teachers. The materials housed in this web-resource demonstrate a wide range of fruitful approaches and exciting opportunities. On the order of 25,000 individuals use the site repeatedly during the year. We estimate that 27 percent of these users are geoscience faculty and 12 percent are teachers. We invite teachers, faculty, researchers, and educators to enhance this resource by contributing descriptions of activities, courses, or programs as a mechanism for sharing their experience with others engaged in similar work.

  20. Applying the Geoscience Education Research Strength of Evidence Pyramid: Developing a Rubric to Characterize Existing Geoscience Teaching Assistant Training Studies

    ERIC Educational Resources Information Center

    Bitting, Kelsey S.; Teasdale, Rachel; Ryker, Katherine

    2017-01-01

    Graduate teaching assistants (GTAs) are responsible for direct instruction of geoscience undergraduate students at an array of universities and have a major effect on the knowledge, beliefs, and practices of their students. GTAs benefit from in-department training in both beliefs and practices that align with the existing literature on teaching…

  1. Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Kortz, Karen M.; van der Hoeven Kraft, Katrien J.

    2016-01-01

    Undergraduate research has been shown to be an effective practice for learning science. While this is a popular discussion topic, there are few full examples in the literature for introductory-level students. This paper describes the Geoscience Education Research Project, an innovative course-based research experience designed for…

  2. Fostering Under-represented Minority Student Success and Interest in the Geosciences: Outcomes of the UNC-Chapel Hill Increasing Diversity and Enhancing Academia (IDEA) Program

    NASA Astrophysics Data System (ADS)

    Hughes, M. H.; Gray, K.; Drostin, M.

    2016-12-01

    For under-represented minority (URM) students, opportunities to meaningfully participate in academic communities and develop supportive relationships with faculty and peers influence persistence in STEM majors (Figueroa, Hurtado, & Wilkins, 2015; PCAST, 2012; Tsui, 2007). Creating such opportunities is even more important in the geosciences, where a lower percentage of post-secondary degrees are awarded to URM students than in other STEM fields (NSF, 2015; O'Connell & Holmes, 2011; NSF, 2011). Since 2011, Increasing Diversity and Enhancing Academia (IDEA), a program of the UNC-Chapel Hill Institute for the Environment (UNC-IE), has provided 39 undergraduates (predominantly URM and female students) with career-relevant research experiences and professional development opportunities, including a culminating experience of presenting their research at a campus-wide research symposium. External evaluation data have helped to characterize the effectiveness of the IDEA program. These data included pre- and post-surveys assessing students' interest in geosciences, knowledge of career pathways, and perceptions of their abilities related to a specific set of scientific research skills. Additionally, progress towards degrees and dissemination outcomes were tracked. In this presentation, we will share quantitative and qualitative data that demonstrate that participation in the IDEA program has influenced students' interest and persistence in geosciences research and careers. These data range from self-reported competencies in a variety of scientific skills (such as organizing and interpreting data and reading and interpreting science literature) to documentation of student participation in geoscience study and professions. About 69% of participants continued research begun during their internships beyond the internship; and about 38% pursued graduate degrees and secured jobs in geoscience and other STEM fields. (Nearly half are still in school.) Overall, these evaluation data have shown that the IDEA research experience, combined with program elements focused on professional development, reinforces students' sense of their science abilities, connects them to a network of supportive students and professionals and contributes to their sense of belonging within the geosciences.

  3. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2006-12-01

    Higher education in geosciences has imminent goals to prepare students with modern geoscience knowledge and skills to meet the increased demand on trained professionals for working on the big challenges faced by geoscience disciplines, such as the global environmental change, world energy supplies, sustainable development, etc. In order to reach the goal, the geoscience education in post-secondary institutes worldwide has to attract and retain enough students and to train students with knowledge and skills needed by the society. The classroom innovations that can encourage and support student investigations and research activities are key motivation mechanisms that help to reach the goal. This presentation describes the use of GeoBrain, an innovative geospatial knowledge system, as a powerful educating tool for motivating and facilitating innovative undergraduate and graduate teaching and research in geosciences. Developed in a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. The online environment provided by GeoBrain has brought significant positive changes to geosciences education in higher-education institutes because of its new concepts and technologies, motivation mechanisms, free exploration resources, and advanced geo- processing capabilities. With the system, the used-to-be very challenging or even impossible teaching tasks has become much easier or practical. For an instance, dynamic classroom demonstration and training for students to deal with data-intensive global climate and environment change issues in real-world applications through the system has become a very pleasant experience instead of the struggling efforts in the past. With GeoBrain, each student can be easily trained to handle multi-terabytes of EOS and other geospatial data in simulation and modeling for solving global-scale problems catering his own interests with a simple Internet connected computer. Preliminary classroom use of GeoBrain in multiple universities has demonstrated that the system is very useful for facilitating the transition of both undergraduate and graduate students from learners to investigators. It has also shown the system can improve teaching effectiveness, refine student's learning habit, and inspire students' interests in pursuing geoscience as their career. As an on-going project, GeoBrain has not reached its maturity. Surely it will improve its functionalities and make great advances in the above areas continuously.

  4. Science in the Mountains: A Unique Research Experience to Enhance Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Hallar, A. Gannet; McCubbin, Ian B.; Hallar, Brittan; Levine, Roger; Stockwell, William R.; Lopez, Jimena P.; Wright, Jennifer M.

    2010-01-01

    Ethnic and racial minorities constitute an important part of the geosciences community because of their diverse perspectives and backgrounds. However, the geosciences have the poorest diversity record of all the science and engineering fields. Recruitment of minorities is important and numerous programs are focusing on engaging students in…

  5. Theoretical Perspectives on Increasing Recruitment and Retention of Underrepresented Students in the Geosciences

    ERIC Educational Resources Information Center

    Callahan, Caitlin N.; LaDue, Nicole D.; Baber, Lorenzo D.; Sexton, Julie; Kraft, Katrien J. van der Hoeven; Zamani-Gallaher, Eboni M.

    2017-01-01

    For decades, programs targeting the recruitment and retention of underrepresented minorities (URM) have had local success in broadening participation in the geosciences. Meanwhile, national graduation rates of URM geoscience majors fall below the national graduation rates of URM STEM majors, generally. In this literature review, we summarize…

  6. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student participation in instrument-based data collection and interpretation. It is thus possible to model for students nearly the entire scientific process in introductory geoscience courses, allowing them to experience the excitement of "doing" science and thereby enticing more of them into the field.

  7. Exploring Student-to-Workforce Transitions with the National Geoscience Exit Survey

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    In 2011, the American Geological Institute (AGI) launched the first pilot of a National Geoscience Exit Survey in collaboration with 32 geoscience university departments. The survey collects data about demographics, high school and community college coursework, university degrees, financial aid, field and research experiences, internships, and when and why the student chose to pursue a geosciences degree. Additionally, the survey collects information about students' future academic and career plans, and gives participants the option to take part in a longitudinal survey to track long-term career trajectories of geosciences graduates. The survey also provides geoscience departments with the ability to add customized questions to collect data about important departmental-level topics. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year. We use the results of the National Geoscience Exit Survey to examine student preparation and transition into geosciences and non-geoscience careers. Preliminary results from the pilot survey indicated future academic and career trajectories for geoscience Bachelor's degree recipients included graduate school (53%) and pursuit of a geoscience career (45%), with some undergraduates keeping their options open for either trajectory. Twelve percent of Bachelor's degree recipients already accepted job offers with geoscience employers. For geoscience Master's degree recipients, 17% planned to continue in graduate school, 35% were seeking a geoscience job, and 42% had already accepted job offers with geoscience employers. Furthermore, the majority of those geoscience graduates who already accepted geoscience job offers had also interned previously with the employer.

  8. Making the Most of a Limited Opportunity: Empowering our Future Earth Science Educators by Engaging Them in Field-Based Inquiry.

    NASA Astrophysics Data System (ADS)

    Levy, R.; David, H.; Carlson, D.; Kunz, G.

    2004-12-01

    Geoscience courses that engage students in our K-12 learning environments represent a fundamental method to increase public awareness and understanding of Earth systems science. K-12 teachers are ultimately responsible for developing and teaching these courses. We recognize that it is our role as university instructors to ensure that our future K-12 teachers receive a high-quality and practical Earth science education; unfortunately many education majors at our institution receive no formal exposure to geoscience. Furthermore, for those students who choose to take a geoscience course, the experience is typically limited to a large introductory lecture-lab. While these courses are rich in content they neither provide opportunities for students to experience `real' Earth science nor address the skills required to teach Earth science to others. In 2002 we began to develop a field-based introductory geoscience course designed specifically for education students. Our major goal was to attract education majors and provide a field-based geoscience learning experience that was challenging, exciting, and directly applicable to their chosen career. Specific objectives of our project were to: (1) teach geoscience concepts and skills that K-12 teachers are expected to understand and teach to their students (outlined in national standards); (2) provide students with an opportunity to learn through scientific inquiry; (3) enhance student confidence in their ability to teach geoscience in the K-12 classroom. We piloted a two-week field course during summer 2004. The field excursion followed a route through Nebraska and Wyoming. Instructors focused on exposing students to the Earth systems concepts and content outlined in national education standards. The primary instructional approach was to engage students in inquiry-based learning. Students were provided many opportunities to utilize science process skills including: observation, documentation, classification, questioning, formulation of hypotheses and models, and interpretation and debate. Evening `classes' on effective teaching practices were conducted at camp. A mobile library, comprising a range of K-12 Earth science curricular materials and activities, was provided for students to utilize, examine, and critique. Students were given sample boxes so that they could collect and curate Earth materials to build their own `teaching set'. Digital cameras were used to record images of natural phenomena. Each student will receive a DVD of the images to use in their future classroom activities. Near the end of the course students were asked to generate a series of lesson plans to teach plate tectonics. Evaluation of our pilot project comprised a series of pre and post instruments to measure: geoscience content knowledge, science process skills, confidence for teaching science related courses, self-efficacy for self-regulation, and student perceptions of classroom knowledge-building. Results indicate significant gains in all measures. The course instructors have also spent time reflecting on instructional approach and associated activities and will use student feedback to modify and improve the course for the future. We are currently applying the evaluation instruments to education majors taking a large lecture-lab course in order to compare outcomes between the two course models. Results will help guide future geoscience education course development.

  9. Oceans of Opportunity: Partnerships to Increase Minority Student Involvement in the Marine Geosciences

    NASA Astrophysics Data System (ADS)

    Pride, C.; Christensen, B.

    2007-12-01

    The Oceans of Opportunity program to increase involvement of traditionally under-represented students in the marine geosciences is in its final phase of track 1 funding from NSF. The program employs a tiered approach to research, teaching and outreach activities to enhance the K-12 to graduate pipeline. Partner institutions include Savannah State University, an HBCU in coastal Georgia; Adelphi University serving a minority population from NYC; the Georgia State University Bio-Bus serving the metro-Atlanta area; and the Joint Oceanographic Institutions. The Oceans of Opportunity education pipeline includes 1) service learning activities implemented by SSU marine science majors in partner public schools with high minority enrollment; 2) outreach by the Georgia State University Bio-Bus to Savannah area schools; 3) expansion of the SSU geoscience curriculum; and 4) development of activities based on models of ODP cores for use in both outreach and college teaching. Service learning through SSU classes has permitted contact with a large number of K-12 students. More than 1000 predominantly African-American K-12 students completed hands-on lessons on plate tectonics and plankton contributors to marine sediments in the two years of this program under the guidance of HBCU science majors. Lessons on use of the marine sediment and fossil record as proxies in paleoclimatic studies using replicas of ODP cores were delivered to 600 students in the Savannah school system and about 2000 visitors to the Georgia Aquarium in Atlanta. The marine geoscience lessons delivered at the high school level resulted in greater test score improvement when the topic had already been thoroughly introduced by the teacher. A survey of science attitudes of the high school students (n=419) indicates African-American high school students have low levels of enjoyment of and interest in the sciences. In addition, more female than male African-American students are enrolling in science courses and intend to become science majors. The geosciences fared worse than most other STEM fields with most college-bound students saying that they did not intend on taking a geoscience course in college. We established Research Training Groups (RTGs) including undergraduate and graduate students focusing on 1) Georgia shelf, estuarine and marsh dynamics, and 2) South African Pleistocene paleoceanography. Collaborative projects between SSU and Adelphi during the course of this program have engaged 12 students (75% minority) in research on shelf and salt marsh micropaleontology and sedimentation, diatoms in modern estuarine environments, and South African paleoclimate using ODP records. RTG students have also developed a marine sediment repository at SSU, participated in field excursions and research cruises, and presented their research at conferences.

  10. Faculty Activity to Reach Consensus and Develop the SF-ROCKS Outreach Program

    NASA Astrophysics Data System (ADS)

    Grove, K.; White, L.

    2003-12-01

    The Geosciences Department at San Francisco State University has prided itself on the excellent relationships among its faculty and students and on its proven ability to train students for careers in industry and academia. Yet, like many Geoscience departments, it recognized a need to generate higher enrollments in the undergraduate majors programs and to increase collaborations among departmental disciplines (in our case, geology, meteorology, and oceanography). To address these concerns, the department created a new outreach program that involves a majority of the faculty and that aims to increase the number of students (particularly those from underrepresented groups) who pursue a career in Geosciences at SFSU and who appreciate the role of the geosciences in their daily lives. The outreach idea was generated at a retreat of departmental faculty in January 2001. The department chair (Grove) used a classroom teaching technique to have faculty brainstorm ideas about increasing student enrollments and to reach consensus about actions to be taken. The faculty was divided into 4 groups of 3 members. Each group member spent 10 minutes brainstorming ideas and writing each idea on a post-it note. Group members then convened for 15 minutes to cluster their post-it note ideas into affinity groups. Each group subsequently had 10-15 minutes to present their ideas to the larger group, who then proceeded to decide on action items. From this activity came a clear consensus about the need for more outreach activities, and the faculty decided to submit a request for funding to a newly created NSF Geosciences program (OEDG---Opportunities for Enhancing Diversity in the Geosciences). Our proposal was successful and we received a 5-year grant to fund SF-ROCKS (Reaching out to Communities and Kids with Science in San Francisco), a program now in its second year and directed by the current department chair (White). The multi-layered program involves faculty and students from SFSU and City College of San Francisco with local high school teachers and their students (see session ED15 for high school student research results and program web site---http://sf-rocks.sfsu.edu---for more details). The program has created more cohesion among department faculty and has been an effective mechanism for engaging faculty and students from our range of Geoscience disciplines, and for providing college students with meaningful experiences in the discipline.

  11. Teaching Resources and Instructor Professional Development for Integrating Laser Scanning, Structure from Motion, and GPS Surveying into Undergraduate Field Courses

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B.; Charlevoix, D. J.; Douglas, B. J.; Crosby, B. T.; Crosby, C. J.; Lauer, I. H.; Shervais, K.

    2017-12-01

    Field experiences have long been considered an integral part of geoscience learning. However, as data acquisition technologies evolve, undergraduate field courses need to keep pace so students gain exposure to new technologies relevant to the modern workforce. Maintaining expertise on new technologies is also challenging to established field education programs. Professional development and vetted curriculum present an opportunity to advance student exposure to new geoscience data acquisition technology. The GEodesy Tools for Societal Issues (GETSI) Field Collection, funded by NSF's Improving Undergraduate STEM Education program, addresses these needs in geodesy field education. Geodesy is the science of accurately measuring Earth's size, shape, orientation, mass distribution and the variations of these with time. Modern field geodesy methods include terrestrial laser scanning (TLS), kinematic and static GPS/GNSS surveying (global positioning system/global navigation satellite system), and structure from motion (SfM) photogrammetry. The GETSI Field Collection is a collaborative project between UNAVCO, Indiana University, and Idaho State University. The project is provides curriculum modules and instructor training (in the form of short courses) to facilitate the inclusion of SfM, TLS, and GPS surveying into geoscience courses with field components. The first module - Analyzing High Resolution Topography with TLS and SfM - is available via SERC; (serc.carleton.edu/getsi/teaching_materials/high-rez-topo) the second module - "High Precision Positioning with Static and Kinematic GPS/GNSS" - will be published in 2018. The module development and assessment follows the standards of the InTeGrate Project (an NSF STEP Center)previously tested on geodesy content in the GETSI classroom collection (serc.carleton.edu/getsi). This model emphasizes use of best practices in STEM education, including situating learning in the context of societal importance. Analysis of student work during development and testing shows a high level of achievement of module learning goals. Two four-day short courses have been run to train instructors on best practices for integration of these topics into field courses. Overall participant satisfaction with the short courses has been 9 out of 10.

  12. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  13. Indigenous Knowledge and Geoscience on the Flathead Indian Reservation, Northwest Montana: Implications for Place-Based and Culturally Congruent Education

    ERIC Educational Resources Information Center

    Johnson, Adam N.; Sievert, Regina; Durglo, Michael, Sr.; Finley, Vernon; Adams, Louis; Hofmann, Michael H.

    2014-01-01

    We investigated connections between the natural and the cultural history of the Flathead Indian Reservation through the integration of geoscience, traditional tribal knowledge, and oral narratives for the purpose of improving Earth Science education in the tribal community. The project served as an avenue for the incorporation of indigenous…

  14. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  15. Tackling Strategies for Thriving Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Wuebbles, Donald J.; Takle, Eugene S.

    2005-05-01

    Special sessions on thriving geosciences departments and on cyberinfrastructure in the geosciences highlighted the recent 5th AGU Meeting of Heads and Chairs of Earth and Space Science Departments. ``From Surviving to Thriving: Strategies for Advancing University Geoscience Programs in Times of Change'' was a topic that drew intense interest. This panel discussion, led by Don Wuebbles (University of Illinois), included panelists Eric Betterton (University of Arizona), Judy Curry (Georgia Institute of Technology), Heather MacDonald (College of William and Mary), and Jim Kirkpatrick (University of Illinois).

  16. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  17. Understanding the Prevalence of Geo-Like Degree Programs at Minority Serving Institutions

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Larsen, K.

    2014-12-01

    Over the decade 2002-12, the percentage of students from underrepresented minorities (URM) graduating with geoscience degrees has increased by 50%. In 2012, of the nearly 6,000 geoscience Bachelor's degrees, 8% were awarded to students from URM. But that same year across all of STEM, 18% of Bachelors went to these students, and URM made up 30% of the US population overall. Minority Serving Institutions (MSIs) play an important role in increasing the diversity of geoscience graduates where there are appropriate degree programs or pathways to programs. To better understand opportunities at these institutions, the InTeGrate project collected information on degree programs at MSIs. A summer 2013 survey of websites for three types of MSIs confirmed that, while stand-alone Geology, Geoscience, or Environmental Science departments are present, there are a larger number of degree programs that include elements of geoscience or related disciplines (geography, GIS, etc.) offered in interdisciplinary departments (e.g. Natural Sciences and Math) or cognate science departments (Physics, Engineering, etc.). Approximately one-third of Hispanic Serving Institutions and Tribal Colleges and one-fifth of Historically Black Colleges and Universities offer at least one degree that includes elements of geoscience. The most common programs were Geology and Environmental Science (94 and 88 degrees respectively), but 21 other types of program were also found. To better profile the nature of these programs, 11 interviews were conducted focusing on strategies for attracting, supporting, and preparing minority students for the workforce. In conjunction with the February 2014 Broadening Access to the Earth and Environmental Sciences workshop, an additional 6 MSI profiles were obtained as well as 22 profiles from non-MSIs. Several common strategies emerge: Proactive marketing and outreach to local high schools and two-year colleges Community building, mentoring and advising, academic support, and funding support Research experiences, internships, alumni or industry interactions, and real-world project These findings align with the literature on supporting students from underrepresented groups. The full set of profiles is available on the InTeGrate website. serc.carleton.edu/integrate/programs/diversity/

  18. Designing and Using Videos in Undergraduate Geoscience Education - a workshop and resource website review

    NASA Astrophysics Data System (ADS)

    Wiese, K.; Mcconnell, D. A.

    2014-12-01

    Do you use video in your teaching? Do you make your own video? Interested in joining our growing community of geoscience educators designing and using video inside and outside the classroom? Over four months in Spring 2014, 22 educators of varying video design and development expertise participated in an NSF-funded On the Cutting Edge virtual workshop to review the best educational research on video design and use; to share video-development/use strategies and experiences; and to develop a website of resources for a growing community of geoscience educators who use video: http://serc.carleton.edu/NAGTWorkshops/video/workshop2014/index.html. The site includes links to workshop presentations, teaching activity collections, and a growing collection of online video resources, including "How-To" videos for various video editing or video-making software and hardware options. Additional web resources support several topical themes including: using videos to flip classes, handling ADA access and copyright issues, assessing the effectiveness of videos inside and outside the classroom, best design principles for video learning, and lists and links of the best videos publicly available for use. The workshop represents an initial step in the creation of an informal team of collaborators devoted to the development and support of an ongoing network of geoscience educators designing and using video. Instructors who are interested in joining this effort are encouraged to contact the lead author.

  19. The Transition into the Workforce by Early-Career Geoscientists, a Preliminary Investigation

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C.

    2017-12-01

    The American Geosciences Institute's Geoscience Student Exit Survey asks recent graduates about their immediate plans after graduation. Though some respondents indicate their employment or continuing education intention, many of the respondents are still in the process of looking for a job in the geosciences. Recent discussions about geoscience workforce development have focused on the critical technical and professional skills that graduates need to be successful in the workforce, but there is little data about employment success and skills development as early-career geoscientists. AGI developed a short preliminary survey to follow up with past participants in AGI's Exit Survey investigating their career path, their skills development after entering the workforce, and their opinions on skills and knowledge they wished they had prior to entering the workforce. The results from this survey will begin to indicate the occupation availability for early-career geoscientists, the continuing education completed by these recent graduates, and the possible attrition away from the geoscience workforce. This presentation presents the results from this short survey and the implications for further research in this area of workforce development and preparation.

  20. Developing Short-Term Indicators of Recruitment and Retention in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fuhrman, M.; Gonzalez, R.; Levine, R.

    2004-12-01

    The NSF Opportunities for Enhancing Diversity in the Geosciences (OEDG) program awards grants to projects that are intended to increase participation in geoscience careers by members of groups that have been traditionally underrepresented in the geosciences. OEDG grantee projects use a variety of strategies intended to influence the attitudes, beliefs, and behaviors of underrepresented students at levels from K-12 to graduate school. The ultimate criterion for assessing the success of a project is the number of underrepresented minority students who become geoscientists (and who would not have otherwise become geoscientists). For most projects this criterion can only be observed in the distant future. In order to develop shorter-term indicators of program success, researchers at AIR developed a conceptual framework based on a review of the literature and discussion with geoscientists. This model allowed us to identify an extensive, but not fully comprehensive, set of indicators. There are undoubtedly other potential indicators of recruitment and retention in the geosciences. The research literature reviewed was a general literature, dealing with science, technology, engineering, and/or mathematics (STEM) college major or career choice by individuals who are underrepresented group members, so the model is based on indicators of retention in a general STEM career path rather than a specific geoscience path. Nonetheless, it is our belief that retention in STEM is critical for retention in geoscience. In the past year, AIR staff have conducted a critical incident study to further refine this model. This study focused on factors unique to the geosciences. The goal was to learn about behaviors that encouraged or discouraged someone from becoming a geoscientist, where individual behaviors are termed as "incidents." The preliminary data, the impact of this pilot study on the model, and the revised model will be presented. Some examples of behaviors our study found that seem to affect an individual's decision on becoming a geoscientist include: parental support, exposure to geoscience classes, experience in the outdoors, experiencing extraordinary geosciences events, taking introductory geosciences course, accessibility of geoscience faculty, and participation in informal interactions and social activities in a geoscience department.

  1. Fostering Minerals Workforce Skills of Tomorrow through Education and Training Partnerships

    NASA Astrophysics Data System (ADS)

    Lind, Gavin

    The Minerals Council of Australia (MCA), through its Minerals Tertiary Education Council (MTEC), builds capacity in higher education in the core disciplines of mining engineering, metallurgy and minerals geoscience. Over the past fourteen years, this all-of-industry approach in securing the long-term supply of these critical skills (which remain a chronic skills shortage for the Australian minerals industry) through nationally collaborative programs across sixteen Australian universities delivers spectacular and sustainable results for the industry. These unique, world-first programs are built on a healthy platform of dedicated industry funding and in-kind support and forms part of the MCA's broader uninterrupted, sustainable education and training pathway to increase workforce participation, workforce diversity and workforce skills, regardless of the business cycle in the industry. This paper will highlight the origins, iterations and current successful programs of MTEC, including its future vision, and presents a mechanism for industry and academia to collaborate to address future professional skills needs in the minerals industry globally.

  2. Universal Skills and Competencies for Geoscientists

    NASA Astrophysics Data System (ADS)

    Mosher, S.

    2015-12-01

    Geoscience students worldwide face a changing future workforce, but all geoscience work has universal cross-cutting skills and competencies that are critical for success. A recent Geoscience Employers Workshop, and employers' input on the "Future of Undergraduate Geoscience Education" survey, identified three major areas. Geoscience work requires spatial and temporal (3D & 4D) thinking, understanding that the Earth is a system of interacting parts and processes, and geoscience reasoning and synthesis. Thus, students need to be able to solve problems in the context of an open and dynamic system, recognizing that most geoscience problems have no clear, unambiguous answers. Students must learn to manage uncertainty, work by analogy and inference, and make predations with limited data. Being able to visualize and solve problems in 3D, incorporate the element of time, and understand scale is critical. Additionally students must learn how to tackle problems using real data, including understand the problems' context, identify appropriate questions to ask, and determine how to proceed. Geoscience work requires integration of quantitative, technical, and computational skills and the ability to be intellectually flexible in applying skills to new situations. Students need experience using high-level math and computational methods to solve geoscience problems, including probability and statistics to understand risk. Increasingly important is the ability to use "Big Data", GIS, visualization and modeling tools. Employers also agree a strong field component in geoscience education is important. Success as a geoscientist also requires non-technical skills. Because most work environments involve working on projects with a diverse team, students need experience with project management in team settings, including goal setting, conflict resolution, time management and being both leader and follower. Written and verbal scientific communication, as well as public speaking and listening skills, are important. Success also depends on interpersonal skills and professionalism, including business acumen, risk management, ethical conduct, and leadership. A global perspective is increasingly important, including cultural literacy and understanding societal relevance.

  3. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students

    NASA Astrophysics Data System (ADS)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.

    2012-12-01

    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and experiences led by Lake Superior State University professors, K-12 earth science teachers, local science experts (most with tribal affiliation), and local Native American leaders. Student selection is based on an application that includes academic background and performance, a personal essay, and teacher and counselor references. All of the students invited to be part of the GRANITE program participated in the summer field excursion. The GRANITE summer field trip was structured to address over 50% of Michigan's high school geology standards. Each student's geoscience knowledge and interest is assessed through questionnaires administered pre- and post the summer field experience. Also, student feedback is gathered during the GRANITE field trip and more than six months post field trip. Students recorded field observations and discussion in their field books which they used to produce powerpoint slides summarizing and reflecting upon what they did and learned each day. Students' post field excursion, content-oriented scores increased each of the three years of the program. In addition to geosciences content growth, all of the students responded affirmatively that GRANITE "increased my understanding of how geoscientists study the Earth "and "increased my knowledge of the importance of geoscience to our society."

  4. Global Geoscience Initiatives From Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R.; Gardiner, L.; Lagrave, M.; Genyuk, J.; Bergman, J.; Foster, S. Q.

    2006-12-01

    The Windows to the Universe (www.windows.ucar.edu) Earth and space science educational program and web site has an extensive international presence. The web site reaches a vast user audience, having served more than 124 million page views across approximately 14 million user sessions in the past year. About 44% of these user sessions originated from domains outside of the United States. The site, which contains roughly 7,000 pages originally offered in English, is being translated into Spanish. This effort, begun in 2003, is now approximately 80% complete. Availability in a second major language has dramatically increased use of the site both in the U.S.A. and abroad; about 29% (4.1 million) of the annual user sessions visit Spanish-language portions of the site. In September 2005 we began distributing a monthly electronic newsletter for teachers that highlights features on the web site as well as other geoscience programs and events of relevance to educators. We currently have more than 4,400 subscribers, 33.6% of whom are outside of the United States. We are actively seeking news and information about other programs of relevance to this audience to distribute via our newsletter. We have also begun to solicit information (tips, anecdotes, lesson plans, etc.) from geoscience teachers around the world to share via this newsletter. Finally, Windows to the Universe participated in the Education and Outreach efforts of the MILAGRO scientific field campaign in Mexico in March of 2006. MILAGRO was a collaborative, multi-agency, international campaign to conduct a coordinated study of the extent and effects of pollutants emitted by a "mega-city" (in this case Mexico City) in order to understand the impacts of vast urban environments on global climate modeling. We enlisted several scientists involved with MILAGRO to write "Postcards from the Field" about their ongoing research during the project; these electronic "postcards" were distributed, in English and Spanish, via the Windows to the Universe web site. Serendipitously, while training scientists in the field in Veracruz, Mexico, to develop these electronic "postcards", we had the opportunity to conduct a teacher training workshop for 60 teachers from the Veracruz area. Several of these teachers will be attending a bilingual (English and Spanish) professional development workshop, along with teachers from Colorado, that we are conducting in Boulder, Colorado, this fall. In this session we will describe our approaches to international Education and Outreach efforts. We will describe techniques that we think work well, challenges to successful multi-cultural education efforts, and pitfalls that we've learned to avoid or to work around. We will also describe opportunities for other programs to take advantage of our large, global audience and to participate in our international outreach efforts, primarily via announcements in our electronic newsletter.

  5. Building the Quality of Diversity in the Geoscience Workforce Through Peer-and Near-Peer Mentored Research Experiences: The CSUN Catalyst Program, a Model for Success in the Geosciences

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Pedone, V. A.; Simila, G. W.; Yule, J. D.

    2004-12-01

    One means of achieving diversity in the geoscience workforce is through the careful cultivation of individuals towards successful careers. Our critical components for student achievement, as reflected in student evaluations, included the development of positive mentoring relationships, honing of critical thinking, writing and oral presentation skills, academic success, and financial support. In the initial three-year phase of in the California State University Northridge (CSUN) Catalyst program, thirty-one students participated, with subequal proportions of high school, undergraduate (freshman to senior) and graduate students. This initial cohort was dominated by Latina(o) students (22) with fewer African American (5), American Indian (2), Pacific Islander (1) and hearing-impaired (1) students. Students were incrementally recruited into the program at a rate of ~10 per year. New students were united through a semester-long Catalyst Course where they worked in groups on various team-building exercises followed by activities in which students were introduced to four different research projects by faculty advisors. Students then continued working on a research project in the following semesters, either as undergraduate or graduate research assistants. The research groups constituted self-mentoring subsets of peers and near-peers, tiered by experience (graduate to high school students) and directed by one of the four Catalyst faculty members. Catalyst student office space promoted intragroup interaction and camaraderie. Most students attended at least one regional, national or international Geoscience meeting. The CSUN Catalyst program has fostered the individual success of its participants, with most progressing towards or achieving BS and MS degrees in the geosciences. Those that have entered the workforce, have done so with more opportunities for career advancement as a result of their Catalyst experiences. Catalyst students have also advanced academically into MS and PhD programs. The research-focussed Catalyst program has therefore succeeded in building quality and diversity in the Geoscience community.

  6. Five Years of the RoBOT "Rocks Beneath Our Toes" High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.

    2011-12-01

    The "Rocks Beneath Our Toes" or RoBOT Program began in 2006 as part of an NSF CAREER award through the Geochemistry and Petrology Program. The educational outreach program engages Boston area high school students in a hands on study of rocks and minerals collected in their communities. The goal is to provide high school students a unique window into modern scientific methods of geochemistry and mineralogy and create a higher level of interest and awareness of geoscience amongst Massachusetts secondary school students who are less often exposed to earth science coursework. Beginning with a joint field trip to sampling sites identified by participants, high school students work with Boston University undergraduates enrolled in Mineralogy to analyze their samples in thin section. During the field trip, each BU undergraduate is paired with a high school student. The assignment of student pairings (started in year 2) dramatically increased student interactions and enjoyment. The program culminates with a visit by the high school group to tour BU's lab facilities and work with the undergraduates using the petrographic microscopes to explore their rock. At this visit, BU undergraduates present their semester's work in one-on-one powerpoint presentations from which discussion and microscope work follow. Thus far, >50 high school students, >40 undergraduates, and 7 high school educators were involved in the program. This included participants from three different suburban Boston area high schools and with students enrolled in the BU "Upward Bound" program: an existing program designed to enhance educational opportunities for Boston inner city high school students. Participant reviews indicate great success in achieving the program's goals. Notably, both BU undergraduates and high school students rated the opportunities for interaction with eachother among the best aspects of RoBOT. On a scale of 1 to 10, BU undergraduates rated the following four categories highest: powerpoint presentations to students (8.5); field trip (8.4); working together with microscopes (8.3); would you recommend RoBOT to others (8.2). The high school students rated the following four categories highest: RoBOT provided new geosciences experiences (9.3); working together with microscopes (9.0); tour of BU labs (8.7); powerpoint presentations by students (8.4). In addition, the PI was able to recruit top undergraduate students from Mineralogy and the RoBOT experience to join his research group where they could contribute to broader CAREER award research aims. Challenges and areas for improvement remain for the future of RoBOT. These include keeping participants engaged between the field trip and the BU visit, logistics of field trip scheduling especially with larger groups requiring more field sites and samples, and the ability to gain the interest and collaboration of secondary school educators to initiate the program in the first place. This has proven especially difficult for high schools that do not offer any earth science curriculum, indicating once again the uphill battle in perception that the geosciences face at the secondary school level.

  7. Earth System Science Education Alliance (ESSEA) IPY Modules

    NASA Astrophysics Data System (ADS)

    Blaney, L. S.; Myers, R. J.; Schwerin, T.

    2008-12-01

    The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn more about the characteristics and importance of our polar regions. One goal of IPY 2007-2008 is to increase the awareness, understanding and interest of school-age children in polar conditions and research. The inclusion of polar topics in the ESSEA courses and modules contributes to the achievement of that goal.

  8. Summaries of FY 1996 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and ismore » also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.« less

  9. A Mixed Methods Approach to Determining the Impact of a Geoscience Field Research Program upon Science Teachers' Knowledge, Beliefs, and Instructional Practices

    ERIC Educational Resources Information Center

    Luera, Gail; Murray, Kent

    2016-01-01

    A mixed methods research approach was used to investigate the impact of a geosciences research institute upon 62 science teachers' knowledge, beliefs, and teaching practices related to teaching the geosciences. Pre- and postinstitute quantitative and qualitative assessments revealed mixed results. Results of a quantitative measure found a…

  10. Learning about the Earth as a System. International Conference on Geoscience Education Conference Proceedings (2nd, Hilo, HI, July 28-31, 1997).

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    Learning about the earth as a system was the focus of the 1997 International Conference on Geoscience Education. This proceedings contains details on the organization of the conference as well as five general sessions by various participants. The interactive poster sessions are organized according to three themes: (1) Earth Systems/Science…

  11. "Sleuthing through the Rock Cycle": An Online Guided Inquiry Tool for Middle and High School Geoscience Education

    ERIC Educational Resources Information Center

    Schifman, Laura; Cardace, Dawn; Kortz, Karen; Saul, Karen; Gilfert, Amber; Veeger, Anne I.; Murray, Daniel P.

    2013-01-01

    The rock cycle is a key component of geoscience education at all levels. In this paper, we report on a new guided inquiry curricular module, "Sleuthing through the Rock Cycle," which has a blended online/offline constructivist design with comprehensive teaching notes and has been successful in pilot use in Rhode Island middle and high…

  12. Online Experiential Learning: Effective Applications for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Matias, A.; Eriksson, S. C.

    2015-12-01

    Students today are rarely satisfied with a one-size-fits-all educational experience. The rapid changing landscape of the web and other technologies are breaking down communicationand geographic barries. More students are increasingly turning to the web for quality education that fits into their lives. As a result, higher education institutions are expanding their offerings through online courses. Nonetheless, online learning brings challenges as well as a fresh opportunityfor exploring practices not present in traditional higher education programs, particularly in the sciences. We are in a unique position to empower students to make strategic academic and professional decisions in global terms. Online learning, supportedwith hands-on and minds-on activities, actively engages student with critical thinking skills and higher level learning. This presentation will showcase examples from a series of geoscience and environmental science courses currently offered fully online at SUNY Empire State College (ESC). Taking advantage of the proliferation of tools currently available for online learning management systems, we will explore how we approach course developent to create an interactive learning environment. Students learn through case studies, group projects and understanding real-world issues while learning concepts. Particular focus will be given to an international collaboration with the Tecnologico de Monterrey, Chihuahua Campus. This collaboration took place during the Spring of 2015 with students from the fully-online, lower-level Geology and the Environment course at ESC and the upper-level, face-to-face Mobile Programming course in Mexico. Ultimately, the goal of this presentation is to show faculty members and afministrators the pedagogical principles and approach used with the expectation that it could help support development of online learning opportunities at their institutions.

  13. NOAA's Undergraduate Scholarship Program Outcomes and Opportunities

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Jabanoski, K.; Christenson, T.

    2017-12-01

    NOAA supports about 115 - 150 undergraduates per year through the Ernest F. Hollings Scholarship and the Educational Partnership Program Undergraduate Scholarship. These programs provide tuition support and paid summer internships at NOAA to exceptional students majoring in the geosciences. Multiple methods were used to evaluate program outcomes and track the career trajectories, including mining LinkedIn data and conducting evaluation surveys of recipients as well as students who applied but did not receive the award. Results show more than 75% of scholars continued on to graduate school, primarily in a NOAA mission fields. This compared to only 56% of nonrecipients. More than 60% of alumni had at least one professional record, with the most alumni working in private industry, followed by nongovernmental organizations and federal, state and local government. The evaluation identified 77 other scholarship programs applied to by NOAA scholarship recipients. The most commonly reported program was the NSF Research Experiences for Undergraduates (REU) for which 20% of scholars applied and 46% of applications were successful. Other common scholarships included the Goldwater Scholarship (received by 5% of NOAA scholars) and the Udall Scholarship (received by 4% of scholars). In the most recent class of 118 undergraduate scholars, 24% reported having another research experience by the time they arrived for orientation at the end of their sophomore year. These results suggest coordination across scholarship opportunities may be useful to engage and retain students in geoscience fields.

  14. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher preparation in that postdoctoral research scientists are directly involved in the clinical preparation of the teacher candidates7. In this program, professional educators and senior scientists guide and work closely with the postdoctoral scientists in developing lessons and field experiences for the teacher candidates. This exposes the postdoctoral scientists to pedagogical techniques. Furthermore, postdoctoral scientists make regular visits to partner schools and share their research interests with high school science students8. Regular assessments about the quality of the postdoctoral scientist's teaching, in the form of course evaluations and informal discussions with the teacher candidates and professional educators, further augments the postdoctoral scientists teaching skills. These experiences can ultimately improve university level science teaching, should the postdoctoral scientists find positions within a university setting. Here, five postdoctoral researchers present self-studies of changing instructional practice born of their involvement in clinical teacher preparation in the AMNH-MAT program.

  15. Undergraduate Research in Earth Science Classes: Engaging Students in the First Two Years

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Wysession, M. E.; Beauregard, A.; Reinen, L. A.; Surpless, K.; O'Connell, K.; McDaris, J. R.

    2014-12-01

    The recent PCAST report (2012), Engage to Excel, calls for a major shift in instructional modes in introductory (geo)science courses by "replacing standard laboratory courses with discovery-based research courses". An increased emphasis is recommended to engage students in experiments with the possibility of true discovery and expanded use of scientific research courses in the first two years. To address this challenge, the On the Cutting Edge program convened a workshop of geoscience faculty to explore the many ways that true research experiences can be built into introductory geoscience courses. The workshop goals included: consideration of the opportunities, strategies and methods used to provide research experiences for students in lower division geoscience courses; examination of ways to develop students' "geoscience habits of mind" through participation in authentic research activities; exploration of ways that student research projects can be designed to contribute to public science literacy with applications to a range of issues facing humanity; and development of strategies to obtain funding for these research projects, to make these programs sustainable in departments and institutions, and to scale-up these programs so that all students may participate. Access to Earth data, information technology, lab and field-based instrumentation, and field experiences provide unprecedented opportunities for students to engage in authentic research at early stages in their careers. Early exposure to research experiences has proven to be effective in the recruitment of students to the geoscience disciplines, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Workshop outcomes include an online collection of tested research projects currently being used in geoscience classes, resources related to effective design, implementation and assessment of student research projects, and all workshop activities are posted on the website: http://serc.carleton.edu/74960

  16. Virtual Tools to Broaden Participation in the Earth and Space Sciences through Geolead (Geoscience Learning, Engagement And Development)

    NASA Astrophysics Data System (ADS)

    Asher, P. M.; Holm Adamec, B.; Furukawa, H.; Morris, A. R.; Haacker, R.; Kaplan, M.; Lewis, G. B.; Velasco, E.; Brey, J. A.

    2014-12-01

    Professional societies, along with federal agencies, national research centers and laboratories, academic institutions, and private industry, all play a key role in educating the next generation of Earth, ocean, atmospheric, and space scientists by offering programs and opportunities that attract students to the field, engage and retain them by supporting them through their formal education, and provide training for a career in this field. Research indicates that multiple engagement opportunities, such as mentoring, internships, participation in research, and learning communities, among other interventions, increase student success. This is particularly true for first-generation students and those who are members of underrepresented minority populations. However, it is often difficult to provide such a variety of programs at a significant scale, especially for geographically isolated students and those whose schools have fewer resources. To enable this, the American Geophysical Union (AGU) is convening a coalition of organizations to co-design and implement a concept called Geoscience Learning, Engagement And Development (GeoLEAD). GeoLEAD will provide a virtual platform as well as a collaborative infrastructure to help engage, retain, and prepare two- and four-year-college undergraduate Earth, ocean, atmospheric, and space science students (including those students who are interested in becoming majors) for the workforce. It will centralize access to the vast array of already existing programs and services that are currently scattered across multiple organizations, support the development of new services and programs, and simplify the search process by recommending bundles of programs and services based on the students' profiles and interests. This presentation will highlight the research that led to the development of the GeoLEAD concept, including studies of the ways in which undergraduates use online resources for their education. Additionally, other virtual resources for students that are in the development or implementation stage, such as an online poster competition and a virtual student conference, will be discussed.

  17. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  18. Attracting Urban Minority Students to Geosciences through Exposure to Careers and Applied Aspects in Newark, NJ

    NASA Astrophysics Data System (ADS)

    Gates, A. E.; Kalczynski, M. J.

    2014-12-01

    A solid pipeline of URM students into the Geosciences has been established in Newark, NJ by introducing them to applied opportunities. Prior to an OEDG program designed to engage URM students, there were no students from or near Newark interested in pursuing geosciences at Rutgers-Newark or Essex Community College, the two local urban campuses. By infusing activities that showed the applied aspects of geoscience and opportunities for careers into regular high school lesson plans, a significant number of students became interested. These students were recruited into a 4-week modular summer institute that focused on energy, mining resources, environment and surface processes. About 90 students per year attended the institute which included 2 local field trips per week, presentations by industry professionals, activities that placed academic subjects into career perspective and a research project that directly affected the well-being of the students and their families. The most interested dozen of the 90 students were invited to participate in a high profile applied project that received significant media coverage, further enhancing their impression of the importance of geosciences. Previous graduates of the program were employed as assistants in subsequent programs to recycle the experience and enthusiasm. This had a positive effect on the persistence of the assistants who viewed themselves as role models to the younger students. The results are burgeoning numbers of URM geoscience majors at Rutgers, offering of geoscience for the first time in 30 years at Essex Community College as well as a new 2+2 geoscience track and several dual-credit courses at local high schools. An important aspect of this pathway or pipeline is that students must be able to clearly see the next step and their role in it. They are very tentative in this essentially pioneering pursuit. If they don't get a sense of a welcoming community and an ultimate career outcome, they quickly lose interest and retreat to a pursuit or major that is more traditional.

  19. The Geoscience Ambassador: Training opportunities and skill development for tomorrow's geoscientists

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2017-04-01

    How can high schools geoscience teachers engage younger students who are not taught geoscience subjects at lower key stages? As passionate practitioners of learning, high school teachers are in a seemingly ideal position to inspire young learners to study and pursue a career in the field of geoscience. However, recruitment of students is often challenging if students do not have the opportunity to study the subjects first. For geoscience subjects such as geology to remain sustainable and viable at A-level, it is imperative that high schools invest time and effort in improving student awareness of subjects which students can access later in their academic career. Perhaps one of the greatest, most accessible and overlooked promotional tools for a geoscience subject are the students themselves. In 2016/2017, a new scheme at Hessle High School and Sixth Form in Yorkshire, United Kingdom, offered senior A-level geology students the opportunity to become "Geoscience Ambassadors". These students were recruited to act as champions for their geoscience subject (geology) to support with inspiring and engaging younger students who may otherwise not choose the subject. The traditional method of disseminating learning is to offer "train the trainer" sessions where training is delivered to peers for onward cascaded teaching and education. On returning from the 2016 Geosciences Information for Teachers (GIFT) workshop at EGU, training was provided to other teaching professionals on the activities and key learning points, the training was also disseminated to an enthusiastic group of A-level students to enable them to become Geoscience Ambassadors. This cascade approach moves away from the tradition of training high school staff alone on new pedagogies but additionally trains young and enthusiastic 17 year olds to work with groups of younger students in the local and regional area. Students use their newly discovered knowledge and skills to inspire younger students with their enthusiasm and passion for geology. The student ambassadors work with cohorts of junior students to share learning through projects and lessons in previous GIFT subjects including the Rosetta space mission and Mediterranean geoscience. This scheme has provided younger students with valuable knowledge and skills and an awareness of post 16 courses but also offers ambassadors the chance to practice and learn transferrable skills beneficial to their future higher-education careers. The scheme has also allowed their passion for their subject to be shared with others. All of the 2016 Geoscience Ambassadors successfully went on to apply for degrees in geology or geoscience related disciplines at university. The ambassador scheme offers an alternative approach to supporting the engagement and understanding of the geosciences. By encouraging students to become Geoscience Ambassadors, they have the opportunity to compound their knowledge of the subjects as well as inspiring junior students who previously had little awareness of geoscience.

  20. New Sustainability Programs and Their Impact at a Large Public State University

    NASA Astrophysics Data System (ADS)

    Bralower, T. J.; Guertin, L. A.

    2016-12-01

    The Pennsylvania State University comprises 24 campuses across the state. Students who are admitted to any campus are automatically admitted to the University Park Campus once they meet the entrance requirements for their major. The University Park Campus has a Geoscience Department with over 30 faculty and several degree programs. Several of the campuses also have Geoscience faculty. Two of the campuses offer majors in geoscience fields with plans at other campuses to add Environmental Science degree programs. Campus faculty play an instrumental role in recruiting students into the geosciences and providing them with general and allied science education. However, these faculty have high teaching loads and often struggle to fulfill student demand for courses. Penn State is also home to the World Campus which offers courses solely online to students all around the world including a large number of Military personnel. Penn State has led the development of five introductory-level blended and online courses as part of the InTeGrate STEP center. These courses are Coastal Processes, Hazards and Society; Water Science and Society; Climate, Energy, and Our Future; the Future of Food; and Earth Modeling. They add to an existing blended and online course, Earth in the Future that has been taught at the University Park and World Campuses for four years. Combined, the courses include 70 weekly modules. The courses constitute the basis of a recently approved Minor and Certificate of Excellence in Earth Sustainability offered in online format through the World Campus and in blended format at all the campuses. We are in the process of establishing an e-Learning Cooperative so that faculty at a campus can teach any of the sustainability courses online to students throughout the Penn State system. This will enable students to receive a greater introduction to, and variety of, sustainability courses at the campuses, and enable faculty to tailor courses to local campus interests and issues instead of that of World Campus students. The Cooperative is designed to provide lower faculty-student ratios and instill community among faculty throughout the system. Finally, this program will support the development of, and collaboration between, independent Environmental Science four-year degree programs at multiple campuses.

  1. Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College

    NASA Astrophysics Data System (ADS)

    Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.

    2014-12-01

    The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.

  2. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.

    2012-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the program. The data provided here also represent an excellent benchmark by which to measure future changes in student participation and program design that may result from 2012 changes in the REU program solicitation. For example, one important change is that REU programs are now required to include greater participation of students who are attending non-research institutions.

  3. Attrition among Women and Minorities in Earth and Space Science (ESS) Graduate Programs

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.; Hawthorne, C.; Allen, W. R.; Alvarez, R.; Geisler, J.

    2001-05-01

    Recent data collected by the American Geological Institute (AGI) indicates that the rate of enrollment of ethnic minorities in the geosciences has steadily declined since the 1980's, and in that time the number of geoscience degrees awarded to ethnic minorities has been fairly steady at less than 1%. Data from the National Science Foundation suggests that only 43 of 186 Universities offering an ESS program have ever graduated an ethnic minority in the history of their program. Factors contributing to these abysmal figures differ for different ethnic-minority groups. We will address institutional obstacles to graduate learning which result in above-normal attrition of ethnic-minorities in ESS graduate programs. The recent studies show an attrition rate of 70% among African American males in ESS graduate programs, while among Hispanic females the attrition rate is only 3%. Studies by sociologists have recently shown that some law schools and medical schools have traits in common with these geoscience departments in the rates at which degrees are awarded to ethnic minorities. Institutional barriers encountered by ethnic minorities in graduate schools may take many forms, but can also be as simple as a lack of community support. In the 1990's the California Institute of Technology (Caltech) made a commitment to the retention of women in their graduate and undergraduate schools. Their program included mentoring, focussed tutoring, self-esteem support groups, and other retention efforts. Under this program, the attrition rate of women has dramatically slowed. In this paper, we will discuss the AGI data, the program instituted by Caltech, possible causes of attrition among populations of Hispanic, and African American males and females, as well as potential programs to address these problems. We will also present, from the nationwide study, data on geoscience departments which have been relatively successful at retaining and graduating ethnic minorities in Earth and Space Sciences. The AGI Report on the Status of [U.S.] Academic Geoscience Departments is available online at the URL listed below.

  4. Transitioning from Faculty-Led Lecture to Student-Centered Field Learning Facilitated by Near-Peer Mentors: Preliminary Findings from the GeoFORCE/ STEMFORCE Program.

    NASA Astrophysics Data System (ADS)

    Berry, M.; Wright, V. D.; Ellins, K. K.; Browder, M. G. J.; Castillo, R.; Kotowski, A. J.; Libarkin, J. C.; Lu, J.; Maredia, N.; Butler, N.

    2017-12-01

    GeoFORCE Texas, a geology-based outreach program in the Jackson School of Geosciences, offers weeklong summer geology field based courses to secondary students from minority-serving high schools in Texas and the Bahamas. Students transitioning from eighth to ninth grade are recruited into the program and ideally remain in GeoFORCE for four years. The program aims to empower underrepresented students by exposing them to experiences intended to inspire them to pursue geoscience or other STEM careers. Since the program's inception in 2005, GeoFORCE Texas has relied on a mix of classroom lectures delivered by a geoscience faculty member and time in the field. Early research findings from a National Science Foundation-sponsored GeoPaths-IMPACT project are influencing the evolution of field instruction away from the faculty-led lecture model to student-centered learning that may improve students' grasp of key geological concepts. The eleventh and twelfth grade programs are shifting towards this strategy. Each trip is facilitated by a seven-person team comprised of a geoscience graduate student, master teachers, four undergraduate geology students, and preservice teachers. Members of the instructional team reflected the racial, ethnic, and cultural diversity that the geoscience strives to achieve; all are excellent role models for GeoFORCE students. The outcome of the most recent Central Texas twelfth grade trip, which used a student-centered, project-based approach, was especially noteworthy. Each group was given a topic to apply to what they saw in the field, such as fluvial systems, cultural significance, or geohazards, etc., and present in any manner in front of peers and a panel of geoscience experts. Students used the latest presentation technology available to them (e.g. Prezi, iMovies) and sketches and site notes from field stops. The final presentations were clear, informative, and entertaining. It can be concluded that the students were more engaged with the peer-teaching method than in prior years when they read the field manuals. Knowing they had to produce a presentation gave them motivation to focus and absorb information. They successfully took their new geological knowledge and applied existing skillsets that will be useful for college and, hopefully, a future career in geosciences or STEM field.

  5. Social Technologies to Jump Start Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and early career geoscientists to tune in what's going on in the geoscience community, to meet geoscience professionals, and to find innovative career ideas. Early analysis of the page's participants indicates that the network is reaching its intended audience, with more than two-thirds of "fans" participating in the page falling in the 18-34 age range. Twenty-seven percent of these are college-aged, or 18-24 years old. An additional 20% of the page's fans are over age 45, providing students with access to seasoned geoscientists working in a variety of professions. GeoConnection's YouTube Channel includes video resources for students on educational pathways and career choices. Videos on the channel have received more than 100,000 views collectively. In addition, the AGI Workforce program has been an active participant in the YES network, and facilitated the virtual participation of both speakers and attendees for the first YES Congress, held in October 2009 in Beijing. By integrating webinar technologies and other social media, the breadth of attendees and speakers at the Congress was greatly expanded. Challenges with technology represented the minor problem for this effort, but rather human factors required the greatest focus to ensure success. Likewise, the challenge for the GeoConnection Network is not so much technology implementation, but rather remaining responsive and relevant with the ever-changing landscape of online communications. Reports show that participation in social-networking media among young people ages 16-24 has dropped (eg. Istrategy Labs, 2009, Ofcom, 2009) however, internet use among younger generations is high. Geoscience organizations must identify and participate in new online communications trends in order to continue to reach students and young professionals, but also, these individuals must also communicate with geosciences organizations so that the appropriate technologies and venues can be provided to strengthen the interconnect between individuals.

  6. Native Geosciences: Pathways to Traditional Knowledge in Modern Research and Education

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2010-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language, traditional practices and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand, elevate and incorporate Traditional Native geosciences knowledge into modern research and education to expand understandings for all learners. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native traditions and our inherent understanding of what is "sacred above is sacred below" is the foundation for a multi-faceted approach for increasing the representation of Natives in geosciences. The approach is centered on the incorporation of traditional knowledge into modern research/education. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies to place and building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and Tribes in Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning and research communities connected to Tribal Sacred Sites and natural resources. Native geoscience learning is centered on the themes of earth, wind, fire and water and the Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal communities and a return to traditional ways of supporting the development of our "story" or purpose for being. The opportunities include residential summer field experiences, interdisciplinary curriculums and development of Tribally-driven Native research/education experiences.

  7. Teaching GeoEthics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.

    2014-12-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic security; (4) GeoEthics and Earth: explicating geoscientists' responsibilities to provide stewardship towards of the Earth based on their knowledge of Earth's composition, architecture, history, dynamic processes, and complex systems. Workshop resources can be accessed at serc.carleton.edu/geoethics/

  8. "Fort Valley State University Cooperative Developmental Energy Program: Broadening the Participation of Underrepresented Minorities in the Geosciences"

    NASA Astrophysics Data System (ADS)

    Crumbly, I.; Hodges, J.; Kar, A.; Rashidi, L.

    2014-12-01

    According to the American Geological Institute's Status of Recent Geoscience Graduates, 2014, underrepresented minorities (URMs) make up only 7%, 5%, and 2% of graduates at the BS/BA, MA/MS, and Ph.D levels, respectively. Recruiting academically-talented URMs to major in the geosciences instead of majoring in other fields such as medicine, law, business, or engineering is a major undertaking. Numerous factors may contribute as to why few URMs choose geoscience careers. To address the underrepresentation of URMs in the geosciences 1992, the Cooperative Developmental Energy Program (CDEP) of Fort Valley State University (FVSU) and the College of Geosciences at the University of Oklahoma (OU) implemented a 3 + 2 dual degree program specifically in geology and geophysics. Since 1992, FVSU-CDEP has added the University of Texas at Austin (2004), Pennsylvania State University (2005), University of Arkansas (2010), and the University of Nevada at Las Vegas (2015) as partners to offer degrees in geology and geophysics. The dual degree programs consist of students majoring in chemistry or mathematics at FVSU for the first three years and transferring to one of the above partnering universities for years four and five to major in geology or geophysics. Upon completion of the program, students receive a BS degree in chemistry or mathematics from FVSU and a BS degree in geology or geophysics from a partnering university. CDEP has been responsible for recruiting 33 URMs who have earned BS degrees in geology or geophysics. Females constitute 50% of the graduates which is higher than the national average. Also, 56% of these graduates have earned the MS degree and 6% have earned the Ph.D. Currently, 60% of these graduates are employed with oil and gas companies; 20% work for academia; 12% work for governmental agencies; 6 % are professionals with environmental firms; and 2% of the graduate's employment is unknown.

  9. "Fort Valley State University Cooperative Developmental Energy Program: Broadening the Participation of Underrepresented Minorities in the Geosciences"

    NASA Astrophysics Data System (ADS)

    Crumbly, I.; Hodges, J.; Kar, A.; Rashidi, L.

    2015-12-01

    According to the American Geological Institute's Status of Recent Geoscience Graduates, 2014, underrepresented minorities (URMs) make up only 7%, 5%, and 2% of graduates at the BS/BA, MA/MS, and Ph.D levels, respectively. Recruiting academically-talented URMs to major in the geosciences instead of majoring in other fields such as medicine, law, business, or engineering is a major undertaking. Numerous factors may contribute as to why few URMs choose geoscience careers. To address the underrepresentation of URMs in the geosciences 1992, the Cooperative Developmental Energy Program (CDEP) of Fort Valley State University (FVSU) and the College of Geosciences at the University of Oklahoma (OU) implemented a 3 + 2 dual degree program specifically in geology and geophysics. Since 1992, FVSU-CDEP has added the University of Texas at Austin (2004), Pennsylvania State University (2005), University of Arkansas (2010), and the University of Nevada at Las Vegas (2015) as partners to offer degrees in geology and geophysics. The dual degree programs consist of students majoring in chemistry or mathematics at FVSU for the first three years and transferring to one of the above partnering universities for years four and five to major in geology or geophysics. Upon completion of the program, students receive a BS degree in chemistry or mathematics from FVSU and a BS degree in geology or geophysics from a partnering university. CDEP has been responsible for recruiting 33 URMs who have earned BS degrees in geology or geophysics. Females constitute 50% of the graduates which is higher than the national average. Also, 56% of these graduates have earned the MS degree and 6% have earned the Ph.D. Currently, 60% of these graduates are employed with oil and gas companies; 20% work for academia; 12% work for governmental agencies; 6 % are professionals with environmental firms; and 2% of the graduate's employment is unknown.

  10. Expanding the Horizon: A Journey to Explore and Share Effective Geoscience Research Experiences

    NASA Astrophysics Data System (ADS)

    Bolman, J.

    2013-12-01

    The Indian Natural Resource Science and Engineering Program (INRSEP) has worked diligently over the past 40 + years to ensure the success of Tribal, Indigenous and Underrepresented undergraduate and graduate students in geoscience and natural resources fields of study. Central to this success has been the development of cultural relevant research opportunities directed by Tribal people. The research experiences have been initiated to address culturally relevant challenges on Tribal and non-Tribal lands. It has become critically important to ensure students have multiple research experiences across North America as well as throughout the continent. The INRSEP community has found creating and maintaining relationships with organizations like the Geoscience Alliance, Minorities Striving and Pursuing Higher Degrees of Success (MSPHD's) and the Louis Stokes Alliance for Minority Participation (LSAMP) program has greatly improved the success of students matriculating to graduate STEM programs. These relationships also serve an immense capacity in tracking students, promoting best practices in research development and assessing outcomes. The presentation will highlight lessons learned on how to 1) Develop a diverse cohort or 'community' of student researchers; 2) Evolve intergenerational mentoring processes and outcomes; 3) Tether to related research and programs; and Foster the broader impact of geoscience research and outcomes.

  11. The IS-GEO RCN: Fostering Collaborations for Intelligent Systems Research to Support Geosciences

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Pierce, S. A.

    2016-12-01

    Geoscience problems are complex and often involve data that changes across space and time. Frequently geoscience knowledge and understanding provides valuable information and insight for problems related to energy, water, climate, mineral resources, and our understanding of how the Earth evolves through time. Simultaneously, many grand challenges in the geosciences cannot be addressed without the aid of computational support and innovations. Intelligent and Information Systems (IS) research includes a broad range of computational methods and topics such as knowledge representation, information integration, machine learning, robotics, adaptive sensors, and intelligent interfaces. IS research has a very important role to play in accelerating the speed of scientific discovery in geosciences and thus in solving challenges in geosciences. Many aspects of geosciences (GEO) research pose novel open problems for intelligent systems researchers. To develop intelligent systems with sound knowledge of theory and practice, it is important that GEO and IS experts collaborate. The EarthCube Research Coordination Network for Intelligent Systems for Geosciences (IS-GEO RCN) represents an emerging community of interdisciplinary researchers producing fundamental new capabilities for understanding Earth systems. Furthermore, the educational component aims to identify new approaches to teaching students in this new interdisciplinary area, seeking to raise a new generation of scientists that are better able to apply IS methods and tools to geoscience challenges of the future. By providing avenues for IS and GEO researchers to work together, the IS-GEO RCN will serve as both a point of contact, as well as an avenue for educational outreach across the disciplines for the nascent community of research and practice. The initial efforts are focused on connecting the communities in ways that help researchers understand opportunities and challenges that can benefit from IS-GEO collaborations. The IS-GEO RCN will jumpstart interdisciplinary research collaborations in this emerging new area so that progress across both disciplines can be accelerated.

  12. Striving to Diversify the Geosciences Workforce

    NASA Astrophysics Data System (ADS)

    Velasco, Aaron A.; Jaurrieta de Velasco, Edith

    2010-08-01

    The geosciences continue to lag far behind other sciences in recruiting and retaining diverse populations [Czujko and Henley, 2003; Huntoon and Lane, 2007]. As a result, the U.S. capacity for preparedness in natural geohazards mitigation, natural resource management and development, national security, and geosciences education is being undermined and is losing its competitive edge in the global market. Two key populations must be considered as the United States looks to build the future geosciences workforce and optimize worker productivity: the nation's youth and its growing underrepresented minority (URM) community. By focusing on both of these demographics, the United States can address the identified shortage of high-quality candidates for knowledge-intensive jobs in the geosciences, helping to develop the innovative enterprises that lead to discovery and new technology [see National Research Council (NRCd), 2007].

  13. Geoscience Information for Teachers (GIFT) Workshops of the European Geoscience Union General Assembly

    NASA Astrophysics Data System (ADS)

    Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; King, Chris; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert

    2017-04-01

    GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly in Vienna, and also elsewhere in the world usually associated with large geoscience conferences. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "The solar system and beyond", "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water" and "Evolution and Biodiversity". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 800 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/

  14. Geoinformatics: Transforming data to knowledge for geosciences

    USGS Publications Warehouse

    Sinha, A.K.; Malik, Z.; Rezgui, A.; Barnes, C.G.; Lin, K.; Heiken, G.; Thomas, W.A.; Gundersen, L.C.; Raskin, R.; Jackson, I.; Fox, P.; McGuinness, D.; Seber, D.; Zimmerman, H.

    2010-01-01

    An integrative view of Earth as a system, based on multidisciplinary data, has become one of the most compelling reasons for research and education in the geosciences. It is now necessary to establish a modern infrastructure that can support the transformation of data to knowledge. Such an information infrastructure for geosciences is contained within the emerging science of geoinformatics, which seeks to promote the utilizetion and integration of complex, multidisciplinary data in seeking solutions to geosciencebased societal challenges.

  15. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  16. Summaries of FY 1994 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less

  17. The Role of Geoscience Departments in Preparing Future Geoscience Professionals

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; MacDonald, H.; Manduca, C. A.

    2010-12-01

    The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational interviews of geoscientists, and department faculty can support these activities simply by suggesting them to students and offering encouragement. Departments can also help students expand their career options by developing networks of alumni and potential employers. Alumni networks offer real-life examples of abstract career options, while networks of employers offer internship opportunities and a direct line to job openings. Finally, the power of simply talking to students directly should not be underestimated. Asking students about their career plans, offering them information on available options, encouraging them to apply for particular internships or jobs, or inviting them to meet with alumni who are visiting campus, can have a powerful impact. In all of this, we need to be supportive of student choices. Overall, faculty can help students make more informed career decisions and develop skills that will be of value in their career through a variety of strategies, working with students as an advisor or mentor to help them explore career options. Our website provides many examples of how geoscience departments across the country work toward these goals, as well as background information on topics such as geoscience employment trends.

  18. Diversity, Geosciences, and Societal Impact: Perspectives From a Geoscientist, Workforce Development Specialist, and Former Congressional Science Fellow

    NASA Astrophysics Data System (ADS)

    Morris, A. R.

    2014-12-01

    In order for the United States to remain competitive in the STEM fields, all available interested citizens must be engaged, prepared, and retained in the geoscience workforce. The misperception that the geosciences do little to support the local community and give back to fellow citizens contributes to the lack of diversity in the field. Another challenge is that the assumptions of career paths for someone trained in geosciences are often limited to field work, perpetuated by visuals found in media, popular culture and recruiting materials and university websites. In order to combat these views it is critical that geoscientists make visible both the diverse career opportunities for those trained in geoscience and the relevance of the field to societal issues. In order to make a substantive change in the number of underrepresented minorities pursuing and working in geosciences we must rethink how we describe our work, its impacts and its relevance to society. At UNAVCO, we have undertaken this charge to change they way the future generation of geoscientists views opportunities in our field. This presentation will include reflections of a trained geoscientist taking a non-field/research career path and the opportunities it has afforded as well as the challenges encountered. The presentation will also highlight how experience managing a STEM program for middle school girls, serving as a Congressional Science Fellow, and managing an undergraduate research internship program is aiding in shaping the Geoscience Workforce Initiative at UNAVCO.

  19. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    NASA Astrophysics Data System (ADS)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  20. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  1. An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.

    2009-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among REU Sites managed by the three divisions in the Directorate of Geosciences (e.g. recruitment tools, academic level of participants, and enrichment activities), but other aspects vary among the Sites managed by the different divisions (e.g. admissions rate, diversity, and distribution among research disciplines). The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  2. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  3. Lessons Learned in Developing Research Opportunities for Native American Undergraduate Students: The GEMscholars Project

    NASA Astrophysics Data System (ADS)

    Zurn-Birkhimer, S. M.; Filley, T. R.; Kroeger, T. J.

    2008-12-01

    Interventions for the well-documented national deficiency of underrepresented students in higher education have focused primarily on the undergraduate student population with significantly less attention given to issues of diversity within graduate programs. As a result, we have made little progress in transforming faculty composition to better reflect the nation's diversity resulting in relatively few minority mentors joining faculty ranks and schools falling short of the broader representation to create an enriched, diverse academic environment. The GEMscholars (Geology, Environmental Science and Meteorology scholars) Program began in the summer of 2006 with the goal of increasing the number of Native American students pursuing graduate degrees in the geosciences. We drew on research from Native American student education models to address three key themes of (a) mentoring, (b) culturally relevant valuations of geosciences and possible career paths, and (c) connections to community and family. A collaboration between Purdue University, West Lafayette, IN and three institutions in northern Minnesota; Bemidji State University, Red Lake Nation College and Leech Lake Tribal College, is structured to develop research opportunities and a support network for Native American undergraduate students (called GEMscholars) to participate in summer geoscience research projects in their home communities. Research opportunities were specifically chosen to have cultural relevance and yield locally important findings. The GEMscholars work on projects that directly link to their local ecosystems and permit them to engage in long term monitoring and cohesive interaction among each successive year's participants. For example, the GEMscholars have established and now maintain permanent field monitoring plots to assess the impacts of invasive European earthworm activity on forest ecosystem health. The culmination of the summer project is the GEMscholars Symposium at Purdue University where the GEMscholars present their research findings to the academic community. Initial results from formative evaluations have been promising and allowed for two iterations of program modifications. The research team has turned "lessons learned" into best practices for developing research opportunities for Native American undergraduate students. Best practices include (a) developing and maintaining tribal relations, (b) creating projects that are exciting for the students and relevant to the community, and (c) maintaining constructive and positive student contact.

  4. Creating Authentic Geoscience Research Experiences for Underrepresented Students in Two-Year Undergraduate Programs

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2014-12-01

    With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)

  5. Impact of the On the Cutting Edge Professional Development Program on U.S. Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Iverson, E. A.; Czujko, R.; Macdonald, H.; Mogk, D. W.; Tewksbury, B. J.; McLaughlin, J.; Sanford, C.; Greenseid, L.; Luxenberg, M.

    2011-12-01

    Transforming STEM education from a dominantly lecture-based format focused on facts to classrooms where students engage with the process of understanding the world through science is a primary goal of faculty development. On the Cutting Edge seeks to support this transformation by using workshops and a website to build a community of geoscience faculty who learn from one another. In order to assess the impact of the On the Cutting Edge program, we surveyed 5917 U.S. geoscience faculty in 2009 and received 2874 completed responses (49% response rate). We looked at the differences in responses between workshop participants who also use the website, website users who have not attended a Cutting Edge workshop, and survey respondents who had neither attended a Cutting Edge workshop nor used the Cutting Edge website. The number of respondents who had attended a Cutting Edge workshop and had not used the website was too small to analyze. Courses described by Cutting Edge workshop participants make significantly less use of lecture and more use of small group discussion and in-class activities. While all faculty respondents routinely update their courses, workshop participants are more likely to have changed their teaching methods in the two years leading up to the survey. When making changes to their teaching methods, workshop participants are more likely than other populations to seek information about teaching on the web, consult journal articles about teaching, and seek advice from colleagues outside their department and from nationally known leaders in geoscience education. Workshop participants are also more likely to tell a colleague when they do something that is particularly successful in class. End-of-workshop survey and follow-up interview data indicate that participants leave workshops reinvigorated, with a new or renewed commitment to student-centered teaching, and that they make use of the website as they implement ideas for changing their teaching following the workshop. Participants can identify specific ideas, techniques, and materials from workshops and the website that they have used in their teaching, and they attribute substantial improvements in their teaching to the Cutting Edge professional development experience. While the differences in behavior reported in the survey results may in part reflect the choice to attend workshops by faculty inclined to improve their teaching, the combination of motivation, attitude, and information developed through the workshop experience is amplifying this effect.

  6. Improving Undergraduate Research Experiences With An Intentional Mentoring Program: Lessons Learned Through Assessment of Keck Geology Consortium Programs

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.

    2015-12-01

    The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.

  7. Popularizing Geological Education among Civil Engineering Students

    ERIC Educational Resources Information Center

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  8. Critical Experiences for Field Geologists: Emergent Themes in Interest Development

    ERIC Educational Resources Information Center

    LaDue, Nicole D.; Pacheco, Heather A.

    2013-01-01

    Geoscience education researchers are working to understand how we can most effectively increase our overall geoscience workforce capacity. The present study employed an inductive approach to explore the critical experiences that led to the persistence of successful field geologists in this STEM field. Interviews with 29 professional field…

  9. Postcards from the Field: Using the Web to Bring Near-Real Time Field Work to the Public

    NASA Astrophysics Data System (ADS)

    Genyuk, J.; Johnson, R. M.; Gardiner, L.; Russell, R.; Bergman, J.; Lagrave, M.; Hatheway, B.; Foster, S.; Araujo-Pradere, E. A.

    2007-12-01

    Field work is one of the aspects of a career in the geosciences that can make it so attractive to students and the public. The chance to go to exciting places, and to see amazing things, while making new discoveries is almost too good to be true. The "Postcards from the Field" capability, developed and implemented in the Windows to the Universe website project in 2006, is now providing a new ability to bring this excitement to a large and global audience online. Windows to the Universe is an extremely popular interdisciplinary Earth and space science educational website, with over 20 million visitors per year, including a large following of students and educators. The website is composed of over 7000 interlinked web pages spanning the geosciences, at three levels of sophistication, in English and Spanish. Our Postcards from the Field capability, which was originally developed in support of a major field campaign in Mexico City in 2006 (the Megacity Initiative: Local and Global Research Observations campaign - MILAGRO), has now been generalized to support submissions from researchers engaged in multiple field campaigns. To date, in addition to postcards submitted during the MILAGRO campaign, we have hosted postcards from researchers and educators studying the life cycle of Adelie penguins in the Antarctic, the East Pacific Rise as a component of the RIDGE2000 program, and storm formation in Europe as a component of the Convective and Orographically- induced Precipitation Study (COPS). We are now expanding our postcard lines to include submissions from researchers engaged in the IPY and educators engaged with the ANDRILL (ANtarctic Geologic DRILLing) Research Immersion for Science Educators program. This presentation will present this new capability, its ease of use, and our vision for how it can be used to bring the excitement of field research to the public, students, and educators online.

  10. ED51: Using International Networks to Develop the Future Global Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Velasco, E. E.; Pangman, P.; Jacobs, R. L.

    2011-12-01

    Developed nations face the immediate need to replace the current wave of retiring geoscientists at the same time developing nations need to build an infrastructure to train future geoscientists. But what does a successful geoscientist look like? Recruiters seem to favor candidates from respected universities that pair applied book knowledge with excellent communication skills and the ability to take a multidisciplinary approach to challenges. Students should be global thinking, business minded, and socially aware. The Society of Exploration Geophysicists as a successful global society addresses the needs of a growing diverse membership through an international approach. Student membership has doubled over the past five years to almost 10,000. The Society is building momentum through targeted, yet diverse programs. Students are eager to participate in the unique SEG/Chevron Student Leadership Symposium, SEG/ExxonMobil Student Education Program, Challenge Bowls, Student Expositions, Honorary Lecturer presentations and related events. These are transformative educational opportunities that provide the impetus for expanded and very effective international networking and transfer of knowledge. As SEG's students build on these relationships and newly acquired leadership skills, they affect the scope and breadth of SEG Student Chapter activities. There has been a resulting increase in multi-country field camps. The Geoscientists Without Borders° humanitarian program provides cross-cultural field opportunities that demonstrate how applied geoscience can make a difference in the global society, while providing students with valuable workforce skills that employers seek. These collaborative efforts are facilitated by social media and on-line communities that cause boundaries to dissolve and time zones to become irrelevant.

  11. A framework for high-school teacher support in Geosciences

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.

    2012-04-01

    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  12. The National Technical Association: A Hallmark for Access and Success

    NASA Astrophysics Data System (ADS)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  13. University education in the Geosciences reflections on the past, the present, and the future

    NASA Astrophysics Data System (ADS)

    Snow, J. T.

    2003-04-01

    The geosciences are a broad area of sciences with a long and rich history. The founders of the geosciences were the "natural philosophers" of the late Renaissance. These pioneering scientists -- Ben Franklin being a good example -- took a holistic view of the Earth and did not distinguish formal disciplinary boundaries. The disciplines that we know today - geology, meteorology, and oceanography, each with myriad specialty areas - developed through the course of the 19th and early 20th centuries. This separation of disciplines was probably to be expected, given the need for concentrated focus on aspects of the Earth and its processes to develop basic knowledge, useful tools, and information for industrial applications. Each discipline developed its own characteristics and tradition that colored and shaped its further growth - geology, for example, has long been associated with the extractive industries, while meteorology has a strong emphasis on prediction of hazardous weather. However, in the closing decades of the 20th century, this situation began to change. Motivated in part by development of capabilities to observe Earth and other planets from space vehicles and in part by a growing interest in problems (such as Earth's climate) that did not fit in any one of the traditional areas, it became apparent that the geoscience disciplines needed to become more closely linked, both among themselves and with the life sciences. This has given rise to new efforts such as "Earth System Science" and "biogeosciences" that are working to integrate and extend knowledge from the traditional disciplines to improve humankind's understanding of Planet Earth. This talk will explore how the history sketched above is reflected in our educational structures and processes, and in our expectations of what students are expected to come to know, understand, and be able to do through a course of university study. I will argue that all the geosciences disciplines are in the midst of a major transition, evolving from a largely descriptive, qualitative past into a quantitative future that is as yet very unclear. Constraints on the amount of time a student can spend in the university (nominally four years for a first degree in the U.S.), the explosion in knowledge about the Earth, and the rise of a broad range of companion technologies - computers of all forms, GIS, GPS, telecommunications, "smart" analytical instruments -- are significant challenges in themselves to today's academic programs. However, expectations of government, students and their parents, and prospective employers (including academia itself) are also proving to be major challenges to those attempting to develop programs for students. I will close by speculating a bit on what the future may hold for students, academicians, and universities.

  14. Developing Geoscience Students' Quantitative Skills

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2005-12-01

    Sophisticated quantitative skills are an essential tool for the professional geoscientist. While students learn many of these sophisticated skills in graduate school, it is increasingly important that they have a strong grounding in quantitative geoscience as undergraduates. Faculty have developed many strong approaches to teaching these skills in a wide variety of geoscience courses. A workshop in June 2005 brought together eight faculty teaching surface processes and climate change to discuss and refine activities they use and to publish them on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills) for broader use. Workshop participants in consultation with two mathematics faculty who have expertise in math education developed six review criteria to guide discussion: 1) Are the quantitative and geologic goals central and important? (e.g. problem solving, mastery of important skill, modeling, relating theory to observation); 2) Does the activity lead to better problem solving? 3) Are the quantitative skills integrated with geoscience concepts in a way that makes sense for the learning environment and supports learning both quantitative skills and geoscience? 4) Does the methodology support learning? (e.g. motivate and engage students; use multiple representations, incorporate reflection, discussion and synthesis) 5) Are the materials complete and helpful to students? 6) How well has the activity worked when used? Workshop participants found that reviewing each others activities was very productive because they thought about new ways to teach and the experience of reviewing helped them think about their own activity from a different point of view. The review criteria focused their thinking about the activity and would be equally helpful in the design of a new activity. We invite a broad international discussion of the criteria(serc.Carleton.edu/quantskills/workshop05/review.html).The Teaching activities can be found on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills/). In addition to the teaching activity collection (85 activites), this site contains a variety of resources to assist faculty with the methods they use to teach quantitative skills at both the introductory and advanced levels; information about broader efforts in quantitative literacy involving other science disciplines, and a special section of resources for students who are struggling with their quantitative skills. The site is part of the Digital Library for Earth Science Education and has been developed by geoscience faculty in collaboration with mathematicians and mathematics educators with funding from the National Science Foundation.

  15. A vision for, and progress towards EarthCube

    NASA Astrophysics Data System (ADS)

    Jacobs, C.

    2012-04-01

    The National Science Foundation (NSF), a US government agency, seeks to transform the conduct of research in geosciences by supporting innovative approaches to community-created cyberinfrastructure that integrates knowledge management across the Geosciences. Within the NSF organization, the Geosciences Directorate (GEO) and the Office of Cyberinfrastructure (OCI) are partnering to address the multifaceted challenges of modern, data-intensive science and education. NSF encourages the community to envision and create an environment where low adoption thresholds and new capabilities act together to greatly increase the productivity and capability of researchers and educators working at the frontiers of Earth system science. This initiative is EarthCube. NSF believes the geosciences community is well positioned to plan and prototype transformative approaches that use innovative technologies to integrate and make interoperable vast resources of heterogeneous data and knowledge within a knowledge management framework. This believe is founded on tsunami of technology development and application that has and continues to engulf science and investments geosciences has made in cyberinfrastructure (CI) to take advantage the technological developments. However, no master framework for geosciences was employed in the development of technology-enable capabilities required by various geosciences communities. It is time to develop an open, adaptable and sustainable framework (an "EarthCube") to enable transformative research and education of Earth system. This will involve, but limited to fostering common data models and data-focused methodologies; developing next generation search and data tools; and advancing application software to integrate data from various sources to expand the frontiers of knowledge. Also, NSF looks to the community to develop a robust and balanced paradigm to manage a collaborative effort and build community support. Such a paradigm must engage a diverse range of geosciences data collections and collectors, establish sustainable partnerships with other entities that collect data (e.g. other Federal and international agencies), the integrate simulations and observations, and foster symbiotic relationships with industry. Two realize this vision, NSF posted open letters to the community, had several WebEx session, established a social network website to stimulate community dialog (EarthCube.ning.com), held a Charrette with broad community participation, and is accepting expression of interests from the community for the early development efforts of all or part the EarthCube framework.

  16. Field-based education and indigenous knowledge: Essential components of geoscience education for native American communities

    NASA Astrophysics Data System (ADS)

    Riggs, Eric M.

    2005-03-01

    The purpose of this study is to propose a framework drawing on theoretical and empirical science education research that explains the common prominent field-based components of the handful of persistent and successful Earth science education programs designed for indigenous communities in North America. These programs are primarily designed for adult learners, either in a postsecondary or in a technical education setting and all include active collaboration between local indigenous communities and geoscientists from nearby universities. Successful Earth science curricula for indigenous learners share in common an explicit emphasis on outdoor education, a place and problem-based structure, and the explicit inclusion of traditional indigenous knowledge in the instruction. Programs sharing this basic design have proven successful and popular for a wide range of indigenous cultures across North America. We present an analysis of common field-based elements to yield insight into indigenous Earth science education. We provide an explanation for the success of this design based in research on field-based learning, Native American learning styles research, and theoretical and empirical research into the nature and structure of indigenous knowledge. We also provide future research directions that can test and further refine our understanding of best practices in indigenous Earth science education.

  17. Making the GeoConnection: Web 2.0-based support for early-career geoscientists (Invited)

    NASA Astrophysics Data System (ADS)

    Martinez, C. M.; Gonzales, L. M.; Keane, C. M.

    2010-12-01

    The US Bureau of Labor estimates that there will be an 18% increase in geoscience jobs between 2008 and 2018 in the United States, and demand for geoscientists is expected to rise worldwide as scientists tackle global challenges related to resources, hazards and climate. At the same time, the geoscience workforce is aging, with approximately half of the current workforce reaching retirement age within the next 10-15 years. A new generation of geoscientists must be ready to take the reins. To support this new generation, AGI’s geoscience workforce outreach programs were designed to help retain geoscience students through their degree programs and into careers in the field. These resources include support for early-career professional development and career planning. AGI’s GeoConnection Network for the Geosciences provides a venue for informal dissemination of career information and professional resources. The network links Web 2.0 platforms, including a Facebook page, YouTube Channel and Twitter feed, to build a robust geoscience community of geoscientists at all stages of their careers. Early-career geoscientists can participate in GeoConnection to network with other scientists, and to receive information about professional development and job opportunities. Through GeoConnection packets, students can join professional societies which will assist their transition from school to the workplace. AGI’s member societies provide professional development course work, field trips, career services, interviewing opportunities, and community meetings. As part of the GeoConnection Network, AGI hosts informational webinars to highlight new workforce data, discuss current affairs in the geosciences, and to provide information about geoscience careers. Between December 2009 and August 2010, AGI hosted 10 webinars, with more than 300 total participants for all the webinars, and 5 additional webinars are planned for the remainder of the year. The webinars offer early-career scientists the opportunity to understand global geoscience workforce concerns and to interact with geoscience professionals through question and answer sessions. Recordings of the live webinar presentations are posted online and may be accessed at any time.

  18. Teaching with Games: Online Resources and Examples for Entry Level Courses

    NASA Astrophysics Data System (ADS)

    Teed, R.; Manduca, C.

    2004-12-01

    Using games to teach introductory geoscience can motivate students to enthusiastically learn material that they might otherwise condemn as "boring". A good educational game is one that immerses the players in the material and engages them for as long as it takes to master that material. There are some good geoscience games already available, but instructors can also create their own, suitable to their students and the content that they are teaching. Game-Based Learning is a module on the Starting Point website for faculty teaching entry level geosciences. It assists faculty in using games in their teaching by providing a description of the features of game-based learning, why you would use it, how to use games to teach geoscience, examples, and references. Other issues discussed include the development of video games for teaching, having your students create educational games, what makes a good game, handling competition in the classroom, and grading. The examples include descriptions of and rules for a GPS treasure hunt, a geology quiz show, and an earthquake game, as well as links to several online geological video games, and advice on how to design a paleontology board game. Starting Point is intended to help both experienced faculty and new instructors meet the challenge of teaching introductory geoscience classes, including environmental science and oceanography as well as more traditional geology classes. For many students, these classes are both the first and the last college-level science class that they will ever take. They need to learn enough about the Earth in that one class to sustain them for many decades as voters, consumers, and sometimes even as teachers. Starting Point is produced by a group of authors working with the Science Education Resource Center. It contains dozens of detailed examples categorized by geoscience topic with advice about using them and assessing learning. Each example is linked to one of many modules, such as Game-Based Learning, Interactive Lectures, or Using an Earth History Approach. These modules describe teaching tools and techniques, provide examples and advice about using them in an introductory geoscience class, and give instructors details on how to create their own exercises.

  19. Unidata: Community, Science, and Technology; in that order.

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Ramamurthy, M. K.; Davis, E.

    2015-12-01

    Unidata's mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation. The Unidata community has grown from around 250 individual participants in the early years to tens of thousands of users in over 150 countries. Today, Unidata's products and services are used on every continent and by every sector of the geoscience enterprise: universities, government agencies, private sector, and other non-governmental organizations. Certain traits and ethos are shared by and common to most successful organizations. They include a healthy organizational culture grounded by some core values and guiding principles. In that environment, there is an implicit awareness of the connection between mission of an organization, its values, and its day-to-day activities, and behaviours of a passionate staff. Distinguishing characteristics include: vigorous engagement of the community served by those organizations backed by strong and active governance, unwavering commitment to seek input and feedback from users, and trust of those users, earned over many years through consistent, dependable, and high-quality service. Meanwhile, changing data volumes and standards, new computing power, and expanding scientific questions sound continue to shape the geoscience community. These issues were the drivers for founding Unidata, a cornerstone data facility, in 1984. Advances in geoscience occur at the junction of community, science, and technology and this submission will feature lessons from Unidata's thirty year history operating at this nexus. Specifically, this presentation will feature guiding principles for the program, governance mechanisms, and approaches for balancing science and technology in a community-driven program.

  20. Identifying Students' Conceptions of Basic Principles in Sequence Stratigraphy

    ERIC Educational Resources Information Center

    Herrera, Juan S.; Riggs, Eric M.

    2013-01-01

    Sequence stratigraphy is a major research subject in the geosciences academia and the oil industry. However, the geoscience education literature addressing students' understanding of the basic concepts of sequence stratigraphy is relatively thin, and the topic has not been well explored. We conducted an assessment of 27 students' conceptions of…

  1. Students' Interest in Geoscience Topics, Contexts and Methods

    ERIC Educational Resources Information Center

    Hemmer, Ingrid; Bayrhuber, Horst; Haubler, Peter; Hemmer, Michael; Hlawatsch, Sylke; Hoffmann, Lore; Raffelsiefer, Marion

    2007-01-01

    Geoscience topics are playing an increasingly important role with regard to the future of our planet. Consequently, they have been moving into the educational foreground because of their societal relevance. The question is, however: Are pupils interested in these topics? This is important didactically, for interest is both a prerequisite and a…

  2. Placing Ourselves on a Digital Earth: Sense of Place Geoscience Education in Crow Country

    ERIC Educational Resources Information Center

    Cohn, Teresa Cavazos; Swanson, Elisabeth; Him, Gail Whiteman Runs; Hugs, Dora; Stevens, Lisa; Flamm, Devon

    2014-01-01

    Solutions to many environmental challenges now require geoscience expertise, knowledge of global interconnectedness, and an understanding of local cultural nuances, a combination for which geoscientists and our students may not be prepared. The Crow Indian Reservation and its borderlands are a microcosm of these challenges, where geoscience…

  3. Social Learning Theories--An Important Design Consideration for Geoscience Fieldwork

    ERIC Educational Resources Information Center

    Streule, M. J.; Craig, L. E.

    2016-01-01

    The nature of field trips in geoscience lends them to the application of social learning theories for three key reasons. First, they provide opportunity for meaningful practical experience and promote effective learning afforded by no other educational vehicle in the subject. Second, they are integral for students creating a strong but changing…

  4. Geoscience Research at Storm Peak (GRASP), a year-long program providing exceptional field research for a diverse group of undergraduate students

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.; Hallar, B. L.; Stockwell, W.; Kittelson, J.; Lopez, J.

    2008-12-01

    Geoscience Research at Storm Peak (GRASP) was designed to engage students from underrepresented groups through a partnership between Minority Serving Institutions and the University of Nevada, Reno (UNR). The program exposed the GRASP participants to potential careers in the geosciences, provided them with an authentic research experience at Storm Peak Laboratory (SPL), and gave them an opportunity to explore dynamic scenery. Undergraduate students from Howard University, Colorado State at Pueblo, Leman College, and SUNY Oneonta, gathered at SPL in June of 2008 via funding from the National Science Foundation Opportunity for Enhancing Diversity. The students reunited at Howard University in November to present the results of their research project. Throughout the year-long GRASP program students encountered the scientific process-creating a hypothesis, collecting and analyzing data, and presenting their results. Results from surveys, focus groups, and individual interviews will be discussed in this presentation.

  5. Natural Hazards Education in the Himalayan Region of Ladakh, India

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Tostevin, Rosalie

    2015-04-01

    Here we present a review of a geohazards education and engagement project in the Indian region of Ladakh. Located in the Indian Himalaya, Ladakh is home to historically-disadvantaged and endangered indigenous groups. It is also an area of extreme topography, climate and vulnerability, with a growing tourist industry. This combination of factors makes it an important region to improve geohazards understanding and observe the complex interactions between nature, society, and culture. This project: (i) delivered a geoscience education programme, in conjunction with a range of local and international partners, to multiple schools in the region; (ii) utilised interactive demonstrations to teach students about the key physical dynamics of landslides and earthquakes; and (iii) integrated aspects of physical and social science within the teaching, to give students a holistic understanding of natural hazards and disaster risk reduction. In total three programmes were delivered, to a range of different ethnic and socio-economic backgrounds. This presentation will particularly highlight (i) the importance of delivering material in a culturally appropriate way, (ii) challenges regarding the sustainability of delivering high quality geoscience education projects, and (iii) ways in which geoscience education outreach can be mainstreamed into overseas research visits.

  6. Developing Resources for Teaching Ethics in Geoscience

    NASA Astrophysics Data System (ADS)

    Mogk, David W.; Geissman, John W.

    2014-11-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Geoethics encompasses the values and professional standards required of geoscientists to work responsibly in any geoscience profession and in service to society. Funding agencies (e.g., the National Science Foundation, the National Institutes of Health) require training of graduate students in the responsible conduct of research; employers are increasingly expecting their workers to have basic training in ethics; and the public demands the highest standards of ethical conduct by scientists. However, there is currently no formal course of instruction in ethics in the geoscience curriculum, and few faculty members have the experience, resources, and sometimes willingness required to teach ethics as a component of their geoscience courses.

  7. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to assist in areas such as the creation of educational products and standards and the setting of relevant government policy. In order to increase the reach of the ESLI Principles, the document has been translated into Spanish, and other languages are also being considered. The document will undergo annual updating in response to growth and change in the scientific understandings of Earth science.

  8. The IUGS Task Group on Global Geoscience Professionalism - promoting professional skills professionalism in the teaching, research and application of geoscience for the protection and education of the public

    NASA Astrophysics Data System (ADS)

    Allington, Ruth; Fernandez-Fuentes, Isabel

    2013-04-01

    A new IUGS Task Group entitled the Task Group on Global Geoscience Professionalism was formed in 2012 and launched at a symposium at the 341GC in Brisbane on strengthening communication between fundamental and applied geosciences and between geoscientists and public. The Task Group aims to ensure that the international geoscience community is engaged in a transformation of its profession so as to embed the need for a professional skills base alongside technical and scientific skills and expertise, within a sound ethical framework in all arenas of geoscience practice. This needs to be established during training and education and reinforced as CPD throughout a career in geoscience as part of ensuring public safety and effective communication of geoscience concepts to the public. The specific objective of the Task Group on Global Geoscience Professionalism that is relevant to this poster session is: • To facilitate a more 'joined up' geoscience community fostering better appreciation by academics and teachers of the professional skills that geoscientists need in the workplace, and facilitate better communication between academic and applied communities leading to more effective application of research findings and technology to applied practitioners and development of research programmes that truly address urgent issues. Other Task Group objectives are: • To provide a specific international forum for discussion of matters of common concern and interest among geoscientists and geoscientific organizations involved in professional affairs, at the local, national and international level; • To act as a resource to IUGS on professional affairs in the geosciences as they may influence and impact "Earth Science for the Global Community" in general - both now and in the future; • To offer and provide leadership and knowledge transfer services to countries and geoscientist communities around the world seeking to introduce systems of professional governance and self-regulation in the Earth sciences; • To provide geoscientists in all areas of professional practice and at all stages of their careers with practical guidance and support on professional matters; • To continue and increase over time the provision of symposia and technical sessions to allow for exchange and knowledge transfer at IGCs and other events for those involved in, and impacted by, the evolution of professionalism in the geosciences. • To act as a resource to members of IUGS, and others, of material and speakers to present to geoscience groups - in particular young Earth scientists - around the world on professional practice and registration matters (including geoscience practice standards and guidelines, and reporting standards, codes of ethics and conduct, and professional registration.) The sponsors of the new TG are: • European Federation of Geologists (EFG) • Geoscientists Canada • American Institute of Professional Geologists (AIPG) • Australian Institute of Geoscientists (AIG) • South African Council for Natural Scientific Professions (SACNSP) • El Colegio de Geólogos de Bolivia (College of Geologists of Bolivia)

  9. Integrating Research and Education at the National Center for Atmospheric Research at the Interface of Formal and Informal Education

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Foster, S.

    2005-12-01

    The National Center for Atmospheric Research (NCAR) in Boulder, Colorado, is a leading institution in scientific research, education and service associated with exploring and understanding our atmosphere and its interactions with the Sun, the oceans, the biosphere, and human society. NCAR draws thousands of public and scientific visitors from around the world to its Mesa Laboratory facility annually for educational as well as research purposes. Public visitors include adult visitors, clubs, and families on an informal visit to NCAR and its exhibits, as well as classroom and summer camp groups. Additionally, NCAR provides extensive computational and visualization services, which can be used not only for scientific, but also public informational purposes. As such, NCAR's audience provides an opportunity to address both formal and informal education through the programs that we offer. The University Corporation for Atmospheric Research (UCAR) Office of Education and Outreach works with NCAR to develop and implement a highly-integrated strategy for reaching both formal and informal audiences through programs that range from events and exhibits to professional development (for scientists and educators) and bilingual distance learning. The hallmarks of our program include close collaboration with scientists, multi-purposing resources where appropriate for maximum efficiency, and a commitment to engage populations historically underrepresented in science in the geosciences.

  10. Climate Discovery Online Courses for Educators from NCAR

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D. L.; Meymaris, K. K.; Johnson, R. M.; Gardiner, L.; Russell, R.

    2008-12-01

    The National Center for Atmospheric Research (NCAR) has responded to the pressing need for professional development in climate and global change sciences by creating the Climate Discovery online course series. This series was designed with the secondary geoscience educator in mind. The online courses are based on current and credible climate change science. Interactive learning techniques are built into the online course designs with assignments that encourage active participation. A key element of the online courses is the creation of a virtual community of geoscience educators who exchange ideas related to classroom implementation, student assessment, and lessons plans. Geoscience educators from around the country have participated in the online courses. The ongoing interest from geoscience educators strongly suggests that the NCAR Climate Discovery online courses are a timely and needed professional development opportunity. The intent of NCAR Climate Discovery is to positively impact teachers' professional development scientifically authentic information, (2) experiencing guided practice in conducting activities and using ancillary resources in workshop venues, (3) gaining access to standards-aligned lesson plans, kits that promote hands-on learning, and scientific content that are easily implemented in their classrooms, and (4) becoming a part of a community of educators with whom they may continue to discuss the challenges of pedagogy and content comprehension in teaching climate change in the Earth system context. Three courses make up the Climate Discovery series: Introduction to Climate Change; Earth System Science - A Climate Change Perspective; and Understanding Climate Change Today. Each course, instructed by science education specialists, combines geoscience content, information about current climate research, hands-on activities, and group discussion. The online courses use the web-based Moodle courseware system (open- source software similar to Blackboard and webCT), utilizing its features to promote dialogue as well as provide rich online content and media. A key element of the online courses is the development and support of an online learning community, an essential component in successful online courses. Interactive learning techniques are built into the course designs with assignments that encourage active participation. Educators (both formal and informal) use the courses as a venue to exchange ideas and teaching resources. A unique feature of the courses is the emphasis on hands-on activities, a hallmark of our professional development efforts. This presentation will focus on the lessons learned in the development of the three online courses and our successful recruitment and retention efforts.

  11. The Andean Geotrail (2): An educational project

    NASA Astrophysics Data System (ADS)

    Galland, O.; Sassier, C.; Vial, M.; Thiberge, P.

    2009-12-01

    The role of Geosciences in our society is of primary importance. Its implications for humanity relate to major challenges such as climate change, managing energy resources, natural hazard mitigation, and water scarcity. Despite these issues being familiar to specialists, this is in general not the case for the public. In a world, where the impact of human activity is beginning to be seen on the environment, knowledge of the Earth and its history is paramount to make informed decisions that will influence our future. The necessity to educate the global population and raise awareness of Geosciences has led UNESCO to designate 2009 the International Year of the Planet Earth. In the framework of the UNESCO International Year of Planet Earth, we performed an educational project in collaboration with primary, secondary and high schools in France and Norway. Geosciences are not usually studied in schools, but this project allowed more than 600 pupils (from 17 schools) aged 8 to 18 years old to share the geological discoveries of our popular science adventure The Andean Geotrail (see Sassier et al., this session). The main educational goal was to promote Geosciences by illustrating in the field what geology is. Our natural laboratory was the spectacular Andean Cordillera. The secondary goal was to promote careers in geology and highlight their variety by allowing the pupils to meet geologists through portraits of geologists. The teachers of the partner schools used our project as a dynamic complement to their theoretical lessons. To set up this partnership, we obtained the support of the pedagogic supervisors of the French Ministry of National Education. The pedagogical project consisted of three steps: (1) Before the expedition (Oct.-Nov. 2008), we visited the pupils of each partner school to present the project, establish personal contact and engage the pupils in our adventure. (2) During The Andean Geotrail itself (Nov. 2008-Aug. 2009), we continuously documented our visits to spectacular geological localities on our website and blog using essays, articles and photographs (http://georouteandine.blogspot.com). In total, over 9 months, we published 74 blogs, 31 geology articles and 9 portraits of geologists. We targeted our work to complement the national pedagogical programs of the secondary and high schools. During the entire Geotrail, students interacted with us on a weekly basis, via our website and blog, asking specific questions about our recent articles. (3) Following the Geotrail (Sept. to Nov. 2009), we will return to the partner schools to evaluate the pedagogical impact of the educational project on the interest of the students in Earth Sciences. This step is an on-going work. The Andean Geotrail is scheduled to appear at the French Science Festival (Nov. 2009, France), during which we will present a popular science exhibition and public workshop.

  12. Outreach to Hispanic/Latino Communities With a Spanish-Language Version of the Earthscope Website

    NASA Astrophysics Data System (ADS)

    López, A. M.; Stein, S.; Delaughter, J.

    2005-12-01

    Spanish is estimated to be the fourth language in the world based on number of speakers, the second as a vehicle of international communication and the third as an international language of politics, economics and culture. Its importance in the U.S. is illustrated by the fact that the Hispanic/Latino population is becoming the largest minority group because it has the fastest growth rate of all ethnic groups in the U.S. According to the U.S. Census Bureau, in 2004 there were ~41 million people in the U.S. (~14% of the total population) of Hispanic or Latino origin. Although the Spanish-speaking population is growing rapidly, the same cannot be said about the number of Hispanic/Latino high school and college graduates. Studies by the National Center for Education Statistics show that Hispanic/Latino students are as likely to drop out are to complete high school. Similarly, although more Hispanic/Latino students enroll in college and/or universities than a decade ago, few complete degrees. For example, in the geosciences only 3% of bachelor's degrees were granted to people identifying themselves as Hispanic or Latino. Over the last 28 years, only 263 of the 20,000 geoscience Ph.D.s awarded in the U.S. went to Hispanic Americans. Bilingual educational offerings are one technique for addressing this discrepancy. For example, scientists and research programs such as EarthScope, NASA, NOAA, and ODP frequently reach out to students and the general public using the internet. Many well-made and useful websites with scientific themes in the U.S. are available to millions of users worldwide, providing a resource that is limited or non-existent in other countries. Unfortunately, few geoscience education sites are available in languages other than English. To address this need, Earthscope is developing a Spanish version of its website describing its goals, techniques, and educational opportunities. Currently, approximately 90% of the educational content on this site (http://www.earthscope.org/education/index.php) is available in both English and Spanish. As time and resources permit, more of the site will be translated. This effort is already having an effect; in a recent Google search using the term "Ferias Científicas" (Science Fairs), EarthScope's site ranked second. Such Spanish material will hopefully have several applications relevant to Earthscope goals. They should encourage Spanish-speaking students to explore the geosciences, and help Hispanic populations become more knowledgeable about the Earth by providing information about the geologic processes and hazards in their area in a language they truly understand. In addition, such web sites can provide useful resources to people in Latin American countries, many of which have geologic processes that are an important aspect of their lives.

  13. Challenges of the NGSS for Future Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.

    2013-12-01

    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  14. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists

    NASA Astrophysics Data System (ADS)

    Mhopjeni, Kombada

    2015-04-01

    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among early-career geoscientists in the industry and university students to geoscience activities outside the confines of academia and the industry such as networking and outreach activities. This is compounded by the Network's perceived lack of relevance and appeal among young Namibian scientists. To become more 'popular' YNN needs to solve the issue of indifference among early-career geoscientists in the industry and University students by listening to their needs and actively engaging them in the process. Good communication skills are essential and YNN has to reformulate the way it reaches out to its audiences by developing more active ways to communicate geosciences. With this in mind, YNN plans to implement best practice methods to engage more young scientists in YNN and provide support and guidance on geoscience opportunities.

  15. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of hurricanes to atmospheric water vapor distribution to spectral analysis of soil moisture. Of the 61 REU Scholars, 18.0% (11) are in graduate school in the STEM disciplines, 16.5% (10) have graduated and are in the STEM workforce, and 65.5% (40) continue to pursue their STEM degrees. All of the REU Scholars have made oral and poster presentations at local, region, and/or national conferences. Five of them have won first place recognition for their research, and three students will be co-authors for three peer-reviewed publications and two book chapters. (This program is supported by NSF REU grant #1062934.)

  16. On the Cutting Edge Professional Development Program: Workshop and Web Resources for Current and Future Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    Recognizing that many college and university faculty receive little formal training in teaching, are largely unaware of advances in research on teaching and learning, and face a variety of challenges in advancing in academic careers, the National Science Foundation-funded program On the Cutting Edge provides professional development for current and future faculty in the geosciences at various stages in their careers. The program includes a series of six multi-day workshops, sessions and one-day workshops at professional meetings, and a website with information about workshop opportunities and a variety of resources that bring workshop content to faculty (http://serc.carleton.edu/NAGTWorkshops). The program helps faculty improve their teaching and their job satisfaction by providing resources on instructional methods, geoscience content, and strategies for career planning. Workshop and website resources address innovative and effective practices in teaching, course design, delivery of instructional materials, and career planning, as well as approaches for teaching particular topics and strategies for starting and maintaining a research program in various institutional settings. Each year, special workshops for graduate students and post-doctoral fellows interested in academic careers and for early career faculty complement offerings on course design and emerging topics that are open to the full geoscience community. These special workshops include sessions on topics such as dual careers, gender issues, family-work balance, interviewing and negotiating strategies. The workshops serve as opportunities for networking and community building, with participants building connections with other participants as well as workshop leaders. Workshop participants reflect the full range of institutional diversity as well as ethnic and racial diversity beyond that of the geoscience faculty workforce. More than 40 percent of the faculty participants are female. Of the faculty participants in workshops offered July 2002 through June 2004, workshop participants have come from more than 250 colleges and universities in 49 states and the District of Columbia. Workshop evaluations indicate that the workshops are well received with faculty particularly appreciating the content of the workshops and the opportunities for networking. An important aspect of the program is involvement of the geoscience community in workshop leadership. Leadership roles include serving as co-conveners, invited speakers, demonstration leaders, working group leaders, co-conveners of post-workshop sessions at professional meetings, and contributors to the website.

  17. Improving undergraduate STEM education: The efficacy of discipline-based professional development.

    PubMed

    Manduca, Cathryn A; Iverson, Ellen R; Luxenberg, Michael; Macdonald, R Heather; McConnell, David A; Mogk, David W; Tewksbury, Barbara J

    2017-02-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes.

  18. Improving undergraduate STEM education: The efficacy of discipline-based professional development

    PubMed Central

    Manduca, Cathryn A.; Iverson, Ellen R.; Luxenberg, Michael; Macdonald, R. Heather; McConnell, David A.; Mogk, David W.; Tewksbury, Barbara J.

    2017-01-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes. PMID:28246629

  19. Training Teachers to Use Technology and Inquiry-based Learning Practices in the Geosciences through an Industry-University Partnership

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Buell, R.; Eiland, L.

    2009-12-01

    Teacher professional development centered about the Geosciences is necessary in order to train K-12 teachers about this science field and to effectively educate K-12 students about Earth processes. The partnership of industries, universities, and K-12 schools is a collaborative pathway to support these efforts by providing teachers access to technology, inquiry-based learning, and authentic field experiences within the Geosciences context. This research presents the results of Project SMARTER (Science and Mathematics Advancement and Reform utilizing Technology and Enhanced Resources), a co-lead industry-university partnership and teacher professional development workshop program that focused on technology and inquiry-based learning in the Geosciences. The workshop included fifteen teachers from five distressed counties in Mississippi as defined by the Appalachian Regional Commission. Three (one science, once math, one technology) 7-12 grade teachers were selected from each school district and worked together during activities as a team to foster a cooperative learning experience. The two week workshop trained teachers on the use of a variety of technologies including: Vernier Probes and software, TI-calculators and presenter, Mimio Boards, GPS receivers, Google Earth, Excel, PowerPoint, projectors, and the use of historic geologic datasets. Furthermore, teachers were trained on proper field collection techniques, the use of Hach Kits and field probes, and the interpretation of geologic data. Each daily program incorporated the use of technology-rich and inquiry-based activities into one of the five Earth spheres: atmosphere, lithosphere, biosphere, hydrosphere, and anthrosphere. Results from the pre-post technology attitude survey showed that participating teachers significantly (p < 0.05) increased their confidence level in using technology. Furthermore, all participants self-reflected that the workshop both increased their interest in the Geosciences and their plans to integrate technology in future classroom activities. Qualitative responses from daily feedback forms and journal entries indicated that participating teachers were enthusiastic about inquiry-, technology-, and field-based learning activities and were willing to incorporate cross-discipline lesson plans. Evaluation of final lesson plans developed by the teachers during the workshop combined with follow-up classroom visits illustrated that the teachers appropriately developed classroom lessons to incorporate inquiry and technology and that they successfully implemented these lesson plans in their own classroom as a direct result of participating in workshop activities.

  20. Educator Exploration of Authentic Environmental Issues of the Coastal Margin Through Information Technology

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schielack, J. F.

    2004-12-01

    Teachers immersed in authentic science inquiry in professional development programs, with the goal of transferring the nature of scientific research to the classroom, face two enormous problems: (1) issues surrounding the required knowledgebase, skills set, and habits of mind of the teachers that control, to a large degree, the ability of teachers to immerse themselves in authentic scientific research in the available time, and (2) the difficulties in transferring this experience to the classroom. Most professional development programs utilize one of two design models, the first limits the authenticity of the scientific experience while placing more emphasis on pedagogical issues, and second where teachers are immersed in scientific research, often through mentoring programs with scientists, but with less explicit attention to problems of transfer to the classroom. The ITS Center for Teaching and Learning (its.tamu.edu), a five-year NSF-funded collaborative program that engages scientists, educational researchers, and educators in the use of information technology to improve science teaching and learning at all levels, has developed a model that supports teachers' learning about authentic scientific research, pedagogical training in inquiry-based learning, and educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. This connection is achieved through scaffolding by information technology that supports the modeling, visualization and exploration of complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum. Our professional development model constitutes a Learning Research Cycle, which is characterized as a seamless continuum of inquiry activities and prolonged engagement in a learning community of educators, scientists, and mathematicians centered on the development of teachers' pedagogical content knowledge as it relates to the use of information technology in doing, learning, and teaching science. This talk will explore the design changes of the geoscience team of the ITS as it moved from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house) over two, two-year cohorts. We have assessed the impact of our Learning Research Cycle model on ITS participants using both a mixed model assessment of learning products, surveys, interviews, and teacher inquiry projects. Assessment results indicate that teachers involved in the second cohort improved their understanding of geoscience and inquiry-based learning, while improving their ability to establish authentic inquiry in their classrooms through the use of information technology and to assess student learning.

  1. Macrosystem Analysis of Programs and Strategies to Increase Underrepresented Populations in the Geosciences

    ERIC Educational Resources Information Center

    Wolfe, Benjamin A.; Riggs, Eric M.

    2017-01-01

    Meeting the future demand for a qualified geoscience workforce will require efforts to increase recruitment, retention, and graduation of an increasingly diverse student body. Doing this successfully requires renewed attention to the needs and characteristics of underrepresented students, which include ethnic and cultural minorities, women, and…

  2. INSPIRE: Initiating New Science Partnerships in Rural Education

    NASA Astrophysics Data System (ADS)

    Pierce, Donna M.; McNeal, K. S.; Bruce, L. M.; Harpole, S. H.; Schmitz, D. W.

    2010-10-01

    INSPIRE, Initiating New Science Partnerships in Rural Education, is a partnership between Mississippi State University and three school districts in Mississippi's Golden Triangle (Starkville, Columbus, West Point). This program recruits ten graduate fellows each year from geosciences, physics, astronomy, and engineering and pairs them with a participating middle school or high school teacher. The graduate fellows provide technology-supported inquiry-based learning in the earth and space sciences by incorporating their research into classroom instruction and using multiple resources such as Google Earth, geographic information systems (GIS), Celestia, and others. In addition to strengthening the communication skills of the graduate fellows, INSPIRE will increase the content knowledge of participating teachers, provide high-quality instruction using multiple technologies, promote higher education to area high-school students, and provide fellows and teachers with international research experience through our partners in Australia, The Bahamas, England, and Poland. INSPIRE is funded by the Graduate STEM Fellows in K-12 Education Program (GK-12; Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  3. Increasing Scientific Literacy at Minority Serving Institutions Nationwide

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Mills, E. W.; Nugnes, K. A.

    2012-12-01

    It is vital to increase the scientific literacy of all students, including those at minority serving institutions (MSIs). With support from NSF, NASA, and NOAA, the American Meteorological Society (AMS) Education Program has developed scientifically authentic, introductory, undergraduate courses that engage students in the geosciences through the use of real-world environmental data. AMS Climate, Weather, and Ocean Studies have already been adopted by more than 600 institutions across the U.S. With additional support from NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the first AMS Climate Studies Diversity Project was held in May 2012 in Washington, D.C. Thirty faculty members from 16 different states, Puerto Rico, and Washington, D.C. attended the week-long workshop. They were immersed in the course materials, received presentations from high-level speakers such as Dr. Thomas Karl, Rear Admiral David Titley, and Dr. Peter Hildebrand, and were trained as change agents for their local institution. Afterwards, faculty work within their MSI to introduce and enhance geoscience curricula and offer the AMS Climate Studies course in the year following workshop attendance. They are also encouraged to implement the AMS Weather and Ocean Studies courses. Subsequent workshops will be held throughout the next 3 years, targeting 100 MSIs. The AMS Climate Studies Diversity Project followed the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects. Evaluation results are extremely favorable with 96% of the participants rating the workshop as outstanding and all would recommend the workshop to other AMS Climate Studies faculty. More in depth results will be discussed in our presentation. AMS Climate Studies explores the fundamental science of Earth's climate system while addressing the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, participants use the AMS Conceptual Energy Model to differentiate between climate variability and climate change. Additionally, the AMS Education Program, James Madison University (JMU), and Los Angeles Valley College (LAVC), are working in collaboration with the Consortium for Ocean Leadership/Integrated Ocean Drilling Program's (IODP) Deep Earth Academy (DEA) to integrate investigations of ocean core data of paleoclimates into course curricula of MSIs. In June 2012, this team participated in a workshop to gain direct experience with ocean core investigations. The goal is to form a trained team to help guide the future, large-scale integration of scientific ocean drilling paleoclimate research into existing MSI geoscience courses, and the development of new course offerings. The AMS is excited to bring meteorology, oceanography, and climate science course work to more students, strengthening the pathway towards advanced geoscience study and careers.

  4. Deep Time Framework: A Preliminary Study of U.K. Primary Teachers' Conceptions of Geological Time and Perceptions of Geoscience.

    ERIC Educational Resources Information Center

    Trend, Roger David

    2001-01-01

    Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)

  5. Transforming a University Tradition into a Geoscience Teaching and Learning Opportunity for the University Community

    ERIC Educational Resources Information Center

    Goldsmith, Steven T.; Trierweiler, Annette M.; Welch, Susan A.; Bancroft, Alyssa M.; Von Bargen, Justin M.; Carey, Anne E.

    2013-01-01

    Recent initiatives in geosciences education have focused on interactive and inquiry-based learning experiences both inside and outside of the classroom. While the concept is sound, examples and datasets seldom focus on opportunities to which the students can immediately relate. Herein we show how a university tradition has been transformed into an…

  6. Engaging Students to Learn through the Affective Domain: A New Framework for Teaching in the Geosciences

    ERIC Educational Resources Information Center

    van der Hoeven Kraft, Katrien J.; Srogi, LeeAnn; Husman, Jenefer; Semken, Steven; Fuhrman, Miriam

    2011-01-01

    To motivate student learning, the affective domain--emotion, attitude, and motivation--must be engaged. We propose a model that is specific to the geosciences with theoretical components of motivation and emotion from the field of educational psychology, and a term we are proposing, "connections with Earth" based on research in the…

  7. Integrating Geoscience and Sustainability: Examining Socio-Techno-Ecological Relationships within Content Designed to Prepare Teachers

    ERIC Educational Resources Information Center

    Hale, Annie E.; Shelton, Catharyn C.; Richter, Jennifer; Archambault, Leanna M.

    2017-01-01

    Coupling the study of sustainability with geoscience may enable students to explore science in a more sophisticated way by examining the social-technological-ecological relationships that exist between human-nonhuman and flora-fauna-land interactions. Elementary educators are a population capable of making these issues come to life for today's…

  8. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability

    NASA Astrophysics Data System (ADS)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.

    2012-12-01

    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education. Sustainability also provides a productive bridge from global to local issues, and vice versa. It has the potential to raise the value placed on faculty engagement with local resources and research questions, and to bring community-based stakeholders outside of academia into the classroom. There are many challenges that participants from geographically diverse parts of the country have in common, including the creation of new courses, and teaching interdisciplinary material beyond one's area of expertise. However, one of the greatest opportunities of using a sustainability theme is that it can be integrated into existing courses. It was also clear that incorporating one module on a sustainability topic can be stimulating and powerful mechanism for linking course content to real world issues. Two of the most important outcomes from the workshop were the creation of an online collection of activities and courses (http://serc.carleton.edu/integrate/workshops/sustainability2012/index.html) as well as the development of a community that can support integration of geoscience and issues of sustainability across the curriculum.

  9. The Quantitative Preparation of Future Geoscience Graduate Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways. Calculus, calculus-based physics, chemistry, statistics, programming and linear algebra were viewed as important course preparation for a successful graduate experience. A set of recommendations for departments and for new community resources includes ideas for infusing quantitative reasoning throughout the undergraduate experience and mechanisms for learning from successful experiments in both geoscience and mathematics. A full list of participants, summaries of the meeting discussion and recommendations are available at http://serc.carleton.edu/quantskills/winter06/index.html. These documents, crafted by a small but diverse group can serve as a starting point for broader community discussion of the quantitative preparation of future geoscience graduate students.

  10. EarthCube's Assessment Framework: Ensuring Return on Investment

    NASA Astrophysics Data System (ADS)

    Lehnert, K.

    2016-12-01

    EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.

  11. Linkages To Engagement At University of Wisconsin-Parkside

    NASA Astrophysics Data System (ADS)

    Evans, C. V.

    2007-12-01

    The University of Wisconsin-Parkside Department of Geosciences is a small but successful department within one of the smallest comprehensive universities in the University of Wisconsin system. Formerly a more traditional "rocks and petroleum" program, the Department was on the verge of extinction in 1999. Fortunately, a farsighted Dean intervened and proposed a change of direction for the department, filling in behind retirements with new leadership and a strong environmental focus. Several strategies have been key to resuscitating the Department to its current status, increasing majors, faculty, and SCH/FTE. First, we embraced our niche as the environmental resource, specifically offering urban or other developed settings for our focus on environmental quality. Secondly we revamped our majors' curriculum to enable our students to learn to integrate practical technological skills in sampling, analysis, instrumentation use, and civic engagement to produce positive outcomes at both physical and social levels. Thirdly, our Department has become a strong and active supporter of a teacher preparation program that is undergoing important curriculum and organizational changes. Our newest faculty addition is an atmospheric chemist with significant teaching responsibility in our campus' new Liberal Arts major for elementary school teachers. Geosciences faculty also vigorously support a certificate program in Community Based Learning, direct the campus minor in Environmental Studies, and have actively participated in campus initiatives such as First Year Experience, General Education reform, the campus' Teaching and Learning Center, and collaborative course offerings that link academic skills (math, reading, writing) courses to extra support in General Education science courses. In addition, the Department has taken campus leadership in participation in the national SENCER initiative, which links science education and civic engagement. Finally, we have also amended and upgraded our merit review criteria so that they explicitly support faculty participation in active learning approaches in the classroom, and faculty research that is applied to issues of active regional concern, and which involves our students in the research process.

  12. Expanding geothermal resource utilization through directed research, education, and public outreach: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree and contributed bridge money for four other students to finish their degrees. In total, eight graduate degrees were supported by this grant, either through the faculty seed grants or the fellowship program.« less

  13. Closing the Geoscience Talent Gap

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2007-12-01

    The geosciences, like most technical professions, are facing a critical talent gap into the future, with too few new students entering the profession and too many opportunities for that supply. This situation has evolved as a result of multiple forces, including increased commodity prices, greater strain on water resources, development encroachment on hazardous terrain, and the attrition of Baby Boomers from the workforce. Demand is not the only issue at hand, the legacy of lagging supplies of new students and consequently new professionals has enhanced the problem. The supply issue is a result of the fallout from the 1986 oil bust and the unsubstantiated hopes for an environmental boom in the 1990"s, coupled by the lengthening of academic careers, indefinitely delaying the predicted exodus of faculty. All of these issues are evident in the data collected by AGI, its Member Societies, and the federal government. Two new factors are beginning to play an increased role in the success or failure of geosciences programs: namely student attitudes towards careers and the ability for departments to successfully bridge the demands of the incoming student with the requirements for an individual to succeed in the profession. An issue often lost for geosciences departments is that 95% of geoscientists in the United States work in the private sector or for government agencies, and that those employers drive the profession forward in the long term. Departments that manage to balance the student needs with an end source of gainful employment are witnessing great success and growth. Currently, programs with strong roots in mining, petroleum, and groundwater hydrology are booming, as are graduate programs with strong technology components. The challenge is recognizing the booms, busts, and long-term trends and positioning programs to weather the changes yet retain the core of their program. This level of planning coupled with a profession-wide effort to improve initial recruitment, greater throughput of graduates into the profession, and the development of professionalism for majors will be central to the geosciences future success.

  14. The Place of Rock and Mineral Identification in Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Nicholls, J.

    2011-12-01

    Geoscience programs traditionally required a significant amount of class and laboratory time for students to learn to identify Earth materials: minerals, rocks, soils, and fossils. Two decades ago, courses devoted to the mineral sciences, mineralogy and petrology, constituted approximately 20% of a geoscience program. Today, they make up between 5% and 10% of the courses in such a program. Two decades ago students spent their laboratory time learning to identify Earth materials. Today, they do the same thing, even though the time set aside for students to achieve proficiency is limited. A typical learning objective for a geoscience program reads: Identify common Earth materials and interpret their composition, origin and uses. The three underlined words convey the essence of the objective: We ask students to identify and interpret common Earth materials, which begs the questions: Do the common Earth materials provide adequate information for interpreting the composition, origin, and use of Earth materials? Do modern curricula contain enough laboratory time for students to learn to identify Earth materials? Do all geoscientists need to be able to identify Earth materials? The assemblage kyanite plus sillimanite is crucial for interpreting metamorphic history yet they are not common minerals. The IUGS classification contains 179 rock names yet we expect students to identify only a handful of them. The upper mantle is dominated by peridotite yet do geophysicists need to be able to identify peridotite in order to study the upper mantle? All geoscientists should be able to interpret Earth materials, at least at some level, and deduce the information Earth materials provide about Earth history and processes. Only a subset of geoscientists needs to learn how to identify them. Identification skills can be learned in upper level courses designed for those who will become mineral scientists. Many of the interpretations derived from Earth materials can be learned in the lower level courses required of all geoscience students.

  15. Recruiting and Supporting Diverse Geoscience and Environmental Science Students

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Manduca, Cathy; Rhodes, Dallas

    2014-08-01

    Producing a workforce that will be successful in meeting global environmental and resource challenges requires that we attract diverse students into the geosciences, support them fully in our programs, and assist them as they move into the profession. However, geoscience has the lowest ethnic and racial diversity of any of the science, technology, engineering, and mathematics (STEM) disciplines (National Science Foundation (NSF), "Women, Minorities, and Persons with Disabilities in Science and Engineering," http://www.nsf.gov/statistics/wmpd/2013/start.cfm) and is often viewed as a difficult choice for students with physical disabilities.

  16. Summaries of FY 1995 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  17. Introducing Deep Underground Science to Middle Schoolers: Challenges and Rewards

    NASA Astrophysics Data System (ADS)

    McMahan Norris, Margaret

    2010-03-01

    Work is in progress to define the mission, vision, scope and preliminary design of the Sanford Center for Science Education (SCSE), the education arm of the Deep Underground Science and Engineering Laboratory (DUSEL), a proposed major research facility of the National Science Foundation. If final funding is approved, DUSEL will be built at the site of the former Homestake Gold Mine in Lead, South Dakota beginning in 2012. The SCSE is envisioned to serve as a model for the integration of a science education center into the fabric of a new national laboratory. Its broad mission is to share the excitement and promise of deep underground science and engineering at Homestake with learners of all ages worldwide. The science to be pursued at DUSEL, whether in physics, astronomy, geomicrobiology, or geoscience, is transformational and sparks the imagination of learners of all ages. While the SCSE is under design, an early education program has been initiated that is designed to build capacity for the envisioned center, to prototype individual programs, and to build partnerships and community support. This talk will give an overview of the middle school portion of that program and its context within the overall content development plan of the SCSE.

  18. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.

    2017-12-01

    Cloud and aerosol feedbacks remain the largest source of uncertainty in understanding and predicting Earth's climate (IPCC, 2013), and are the focus of multiple ongoing research studies. Clouds are a challenge because of their extreme variability and diversity. This is also what makes them interesting to people. Clouds may be the only essential climate variable with an Appreciation Society (https://cloudappreciationsociety.org/). As a result, clouds led me into a multi-decade effort to engage a wider public in observing and understanding our planet. A series of experiences in the mid-1990's led to a meeting with educators that resulted in the creation of the Students' Cloud Observations On-Line Project (S'COOL), which I directed for about 2 decades, and which engaged students around the world in ground truth observation and data analysis for the Clouds and the Earth's Radiant Energy System (CERES) satellite instruments. Beginning around 2003, I developed a contrail observation protocol for the GLOBE Program to serve a similar function for additional audiences. Starting in 2004, I worked with an interdisciplinary team to launch the MY NASA DATA Project, an effort to make the vast trove of NASA Earth Science data actually usable in K-12 classrooms and student projects. Later I gained key experiences around strategic partnerships as I worked from 2008 onward with tri-agency partners at NOAA and NSF to integrate activities around climate change education. Currently I serve as Program Scientist for Education & Communication in the Earth Science Division at NASA, where I have the privilege to oversee and guide these and related activities in education and public engagement around Earth system science. As someone who completed advanced degrees in aerospace engineering without ever taking an Earth science class, this ongoing engagement is very important to me. Understanding Earth processes should be integral to how all people choose to live on our planet. In my experience, the geosciences offer great opportunities for education and public engagement, because of their concrete connections to human experience. A key success factor is partnership of contributors across disciplines (education, science, IT, etc) to create authentic experiences that exploit new technologies to genuinely involve a wider community.

  19. Linking geological Heritage Conservation to Education and Research at the University of Bucharest

    NASA Astrophysics Data System (ADS)

    Andrasanu, A.

    2012-04-01

    Since Rio Conference it is recognized that if the Earth's environment is to be respected, a better understanding of the geological, biological and physical processes that have left their mark on the Earth's surface is required. A good knowledge of geodiversity and a healthy respect for what it represents is an important factor in the holistic approach for sustainable development. Promote geosciences, raise public awareness, educate decision-makers, made children to discover the Earth, and young people to pursue a career in geosciences are continuous objectives of geoscientists, universities and institutions. Development of geoeducation was a response to the need of practical use in education and public awareness of all geological assets identified and classified by different professional geological associations, ProGEO, specialists from natural parks, geoparks, museums and other working groups (Gonggrijp, 1999, Page, 1999, Fassoulas, 2003, Weber, 2003, Andrasanu, 2005). Three events could be considered as milestone for the proces: (i) the 1st International Symposium on the Conservation of our Geological Heritage, Digne, France, in 1991; (ii) creation of the European Geoparks Network (EGN), in 2000; (iii) creation of the Global Geoparks Network (GGN), in 2004 (UNESCO, 2004). The geopark concept, as we know today, is the result of continuous efforts of dedicated specialists and innovative approaches in using local geological heritage as main resource for socio-economic development with geoeducation playing a key role (Frey, 2003; Martini, 2003; Zouros, 2004). The geoparks are places of practical use in geotourism, education and public awareness of all geological assets and for an integrated approach and a better understanding of the close connection of natural environment and socio-economic needs for sustainable development plans. In different countries, over the last years partnerships of universities and geoparks developed interdisciplinary research projects, new MSc curriculum or intensive courses in geoconservation to form professionals able to provide a holistic view of nature and to work for promotion of geoscience, raise public awareness, educate decision-makers (Andrasanu, 2005, Corte Bacci, 2008, Brihlla, 2009, Zouros and Mckeever, 2009) University of Bucharest developed research and educational projects (Erasmus, Leonardo da Vinci) both for geological heritage conservation in the frame of ProGEO and also in fostering geoparks development in Romania. The paper presents geoeducation as part of the geoconservation activities, and the role teaching staff and students are playing in curriculum design, research and educational activities, sustained or developed by University of Bucharest. Three examples were selected to be detailed: (i) a new MSc program Applied Geo-biology in natural and cultural heritage conservation; (ii) Geoconservation as a case study in the frame of the European Virtual Seminar in Sustainable Development (http://www.openuniversiteit.nl), and (iii) Geosciences as part of outdoor learning activities in the frame of the international project In and Out (http://www.viauc.com).

  20. Drawing on Experience: How Domain Knowledge Is Reflected in Sketches of Scientific Structures and Processes

    ERIC Educational Resources Information Center

    Jee, Benjamin D.; Gentner, Dedre; Uttal, David H.; Sageman, Bradley; Forbus, Kenneth; Manduca, Cathryn A.; Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil

    2014-01-01

    Capturing the nature of students' mental representations and how they change with learning is a primary goal in science education research. This can be challenging in spatially intense domains, such as geoscience, architecture, and engineering. In this research, we test whether sketching can be used to gauge level of expertise in geoscience,…

  1. Creating Pathways toward Geoscience Education for Native American Youth: The Importance of Cultural Relevance and Self-Concept

    ERIC Educational Resources Information Center

    Unsworth, Sara; Riggs, Eric M.; Chavez, Marc

    2012-01-01

    Native American nations in the United States have a unique legal status that is rooted in a complex relationship between the United States federal government, individual state and local governments and tribal authorities. Although geosciences are often at the center of these relationships, especially as they pertain to the development of natural…

  2. Untapped Talent: The African American Presence in Physics and the Geosciences. AIP Report. Number R-444

    ERIC Educational Resources Information Center

    Czujko, Roman; Ivie, Rachel; Stith, James H.

    2008-01-01

    This paper presents data covering the representation of African Americans among physics and geoscience degree recipients at each stage of the educational system. The data were collected by several statistical agencies and are here provided in far more detail than has ever been available before. By placing all the data in one place, this paper…

  3. Inter-Tribal Student Services (I.S.S.): Collaborative Action Education in Building and Guiding the Future Under-represented Geosciences Workforce Through Tribal Foundations, Mentorship and Professional Development.

    NASA Astrophysics Data System (ADS)

    Bolman, J.

    2015-12-01

    Inter-Tribal Student Services (I.S.S.) was created as an Indian Self-Determination Organization to meet the every growing Tribal and under-represented minorities (URM) geosciences workforce needs. I.S.S. is one of only a few Indian Self-Determined Organizations in the U.S. with a distinct focused on buidling the Tribal and URM geosciences and natural resources workforces. In past three years, I.S.S has worked in partnership with U.S. colleges/universities, state/federal agencies (Bureau of Indian Affairs), private and International organizations and most importantly U.S. Tribal Nations to ensure emerging high school students, undergraduates, graduate students and post doctorates have the opportunities for training in supportive and unique environments, navigational mentoring, and broad professional development to build and practice the skills required for blue-collar, scientific, and managerial positions. I.S.S. has been highly successful in filling workforce opportunities within the broad range of geosciences positions. I.S.S. students are proficient in understanding and maneuvering the complex landscapes of interdisciplinary research, multidisciplinary multi-partner projects, traditional/western philosophies as well as being highly proficient in all areas of problem solving and communications. Research and on-site projects have heightened the educational experiences of all participants, in addition to addressing a perplexing geosciences challenge grounded in a Tribal environment. A number of the I.S.S. participants and students have found geosciences positions in Tribes, state/federal agencies, enterprize as well as International organizations. I.S.S. practices and has infused all research and projects with intergenerational teaching/learning, participation solution-focused initiatives, and holistic/multicultural mentoring. The presentation will highlight the vision, design, implementation, outcomes and future directions of I.S.S and participants.

  4. From Churches to Pavements: Urban Geology and Paleontology in Algarve

    NASA Astrophysics Data System (ADS)

    Azevedo Rodrigues, Luis

    2015-04-01

    Urban environments were and are tremendous consumers of geologic resources, offering excellent places for Geosciences outreach activities. Since 2011, three distinct science outreach activities were planned, produced and performed in three Algarve cities - Faro (GeoStories of Faro's Downtown), Lagos (Geology at the Corner) and Tavira (From the Museum to the Convent). Urban structures - churches, monuments, buildings and urban equipments were the starting point of the geological and paleontological stories that constitute the core of these informal education visits which also combine Art History and Heritage aspects. The urban buildings were the narrative tool to these Geosciences stories being the characters the rocks and/or the fossils as well as the city itself. Beyond the natural science element, the analyzed objects have relevant esthetical, historical or symbolic dimensions, conferring this way two levels of interpretation to the stories: the geosciences level; the other, the Historical and Architectural Heritage. The nineteen visits had 350 participants - Tavira (6; 100), Faro (4; 70) e Lagos (9; 180). Promoting and contribute to the Geosciences (Geology and Paleontology) outreach was the main objective of these walks, as well as: - modify the way that the general population looks at urban buildings; - contribute to the informal education of a general public especially among the public which is interested in Architecture, History and Heritage; - integrate different areas of human knowledge - Geosciences and Architecture, History and Heritage. The visits were tested and implemented and presently constitute one of the science outreach activities of the Ciência Viva Centers in the Algarve. As a result of these visits three bilingual books (Portuguese and English) of the Geosciences walks were edited. The guides, with 120 pages each, focus on the geological and paleontological characteristics of the visited places as well as the art history framework of the different monuments and urban areas.

  5. Building an International Geosciences Network (i-GEON) for cyberinfrastructure-based Research and Education

    NASA Astrophysics Data System (ADS)

    Seber, D.; Baru, C.

    2007-05-01

    The Geosciences Network (GEON) project is a collaboration among multiple institutions to develop a cyberinfrastructure (CI) platform in support of integrative geoscience research activities. Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, resource discovery, semantic data integration, high-end computations and 4D visualization in an easy-to-use web-based environment. The cyberinfrastructure in GEON is required to support an inherently distributed system, since the scientists, who are users as well as providers of resources, are themselves distributed. International collaborations are a natural extension of GEON; the geoscience research requires strong international collaborations. The goals of the i-GEON activities are to collaborate with international partners and jointly build a cyberinfrastructure for the geosciences to enable collaborative work environments. International partners can participate in GEON efforts, establish GEON nodes at their universities, institutes, or agencies and also contribute data and tools to the network. Via jointly run cyberinfrastructure workshops, the GEON team also introduces students, scientists, and research professionals to the concepts of IT-based geoscience research and education. Currently, joint activities are underway with the Chinese Academy of Sciences in China, the GEO Grid project at AIST in Japan, and the University of Hyderabad in India (where the activity is funded by the Indo-US Science and Technology Forum). Several other potential international partnerships are under consideration. iGEON is open to all international partners who are interested in working towards the goal of data sharing, managing and integration via IT-based platforms. Information about GEON and its international activities can be found at http:www.geongrid.org/

  6. Tsé na'alkaah: Weaving Native and Mainstream Earth and Environmental Science into Place-Based Teacher Professional Development on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Godsey, H. S.; Tsosie, W. B., Jr.

    2017-12-01

    Place-based, culturally-integrated approaches to teaching geoscience and environmental science are aligned with traditional indigenous education, and illustrate the premise that leveraging the cultural capital of Native Americans and other underrepresented groups renders more inclusive and relevant teaching. Situating learning within local landscapes, environments, and communities; and meaningfully connecting mainstream science with Native science and knowledge of place enables students to construct new knowledge that is scaffolded by their own worldview and experiences, and helps lessen any sense of discontinuity that may arise from apparently disparate interpretations of Earth processes. We drew on this philosophy in implementing a multi-year program of summer professional-development workshops for K-12 teachers in the Colorado Plateau and Intermountain regions, many of whom work in schools that serve majority Native American student populations. Through collaboration of geoscientists, Diné (Navajo) cultural experts, and master teachers, we developed and implemented inquiry-rich field excursions in which learning about Earth-system features and processes on the Plateau utilized factual and conceptual knowledge from mainstream geoscience and Diné geoscience (tsé na'alkaah) alike, as well as on other forms of local place knowledge such as Diné toponymy and history. Participants used concepts such as the dynamic interactions of Earth (Nahasdzaan) and Sky (Yádilhil) systems and the natural order (nitsahakees, nahat'a, iina, siihasin) to interpret natural landscape features (e.g., desert landforms, Plateau stratigraphy, Laramide structures) as well as anthropogenic impacts (e.g., uranium extraction and its environmental and health effects) in the field. We will share specific examples of place-based, culturally integrated curriculum and assessment from this program.

  7. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a practice sessions at the University and then in an actual competition in a Regional High School Science Fair at which they could qualify to compete at the Intel International Science and Engineering fair. Thirty-four teachers, 30 high school students (over 40 percent of whom were Alaska Native) and over 1000 middle school students (25 percent Alaska natives) participated in EDGE activities, increasing their knowledge of Earth science, GIS skills, and data management and analysis. More information on the EDGE project is available at www.edge.alaska.edu.

  8. Academic provenance: Investigation of pathways that lead students into the geosciences

    NASA Astrophysics Data System (ADS)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical incidents) or to alter behavior as to change or make an initial decision (behavior altering critical incidents). Comparing and contrasting populations' distinct pathways resulted in valuable discussion for recruitment and retention initiatives for the geoscience.

  9. On the Cutting Edge: Workshops, Online Resources, and Community Development

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Fox, S.; Iverson, E. A. R.; Beane, R. J.; Mcconnell, D. A.; Wiese, K.; Wysession, M. E.

    2014-12-01

    On the Cutting Edge, funded by NSF since 2002, offers a comprehensive professional development program for geoscience faculty. The program includes an annual integrated in-person and virtual workshop series, has developed an extensive collection of peer-reviewed instructional activities and related online resources, and supports continuing community development through sponsorship of webinars, listservs, opportunities for community contributions, and dissemination of resources to keep faculty current in their science and pedagogic practices. On the Cutting Edge (CE) has offered more than 100 face-to-face and virtual workshops, webinars, journal clubs, and other events to more than 3000 participants. The award-winning website has more than 5000 pages including 47 modules on career management, pedagogy, and geoscience topics. It has more than 1800 instructional activities contributed by the community, the majority of which have been peer-reviewed. The website had more than one million visitors last year. We have worked to support a community in which faculty improve their teaching by designing courses using research-based methods to foster higher-order thinking, incorporate geoscience data, and address cognitive and affective aspects of learning as well as a community in which faculty are comfortable and successful in managing their careers. The program addresses the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics that attract different groups of participants. CE workshops are interactive, model best pedagogical practices, emphasize participant learning, provide opportunities for participants to share their knowledge and experience, provide high-quality resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. On the Cutting Edge has had an impact on teaching based on data from national surveys, interview and classroom observation studies, and website usage. The Cutting Edge program is now part of the NAGT professional development program that includes face-to-face, traveling, and virtual workshops for faculty and geoscience programs of all types. http://serc.carleton.edu/NAGTWorkshops/index.html

  10. Community-Based Development of Standards for Geochemical and Geochronological Data

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.

    2007-12-01

    The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.

  11. A Global Investigation of Recent Geoscience Graduates, Beginning with Canada, the United Kingdom, and the United States of America

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's Workforce Program has successfully established AGI's Geoscience Student Exit Survey in the United States with yearly reports revealing the motivations of students for majoring in the geosciences, their experiences while working towards the degree, their future plans immediately after finishing their terminal degree, and their development in the workforce as they establish themselves in a career. The reports from 2013, 2014, and 2015 can be found at http://www.americangeosciences.org/workforce/reports. This information has provided important benchmark data to begin investigating the early-career geoscience workforce. With the increasing success of this project, discussions shifted towards a more global understanding of geoscience graduates. Collaborations were established last year with the Council of Chairs of Canadian Earth Science Departments and the Geological Society of London. AGI's Geoscience Student Exit Survey was translated to be relevant to graduates in each of these countries resulting in slightly different but very comparable results between the four countries. The surveys were distributed to the U.K. and Canada in the spring and summer of 2015. This presentation will discuss some of the issues and surprises encountered during the survey translation process and the initial comparisons seen between the recent graduates from the four different countries.

  12. From the field to classrooms: Scientists and educators collaborating to develop K-12 lessons on arctic carbon cycling and climate change that align with Next Generation Science Standards, and informal outreach programs that bring authentic data to informal audiences.

    NASA Astrophysics Data System (ADS)

    Brinker, R.; Cory, R. M.

    2014-12-01

    Next Generation Science Standards (NGSS) calls for students across grade levels to understand climate change and its impacts. To achieve this goal, the NSF-sponsored PolarTREC program paired an educator with scientists studying carbon cycling in the Arctic. The data collection and fieldwork performed by the team will form the basis of hands-on science learning in the classroom and will be incorporated into informal outreach sessions in the community. Over a 16-day period, the educator was stationed at Toolik Field Station in the High Arctic. (Toolik is run by the University of Alaska, Fairbanks, Institute of Arctic Biology.) She participated in a project that analyzed the effects of sunlight and microbial content on carbon production in Artic watersheds. Data collected will be used to introduce the following NGSS standards into the middle-school science curriculum: 1) Construct a scientific explanation based on evidence. 2) Develop a model to explain cycling of water. 3) Develop and use a model to describe phenomena. 4) Analyze and interpret data. 5) A change in one system causes and effect in other systems. Lessons can be telescoped to meet the needs of classrooms in higher or lower grades. Through these activities, students will learn strategies to model an aspect of carbon cycling, interpret authentic scientific data collected in the field, and conduct geoscience research on carbon cycling. Community outreach sessions are also an effective method to introduce and discuss the importance of geoscience education. Informal discussions of firsthand experience gained during fieldwork can help communicate to a lay audience the biological, physical, and chemical aspects of the arctic carbon cycle and the impacts of climate change on these features. Outreach methods will also include novel use of online tools to directly connect audiences with scientists in an effective and time-efficient manner.

  13. Using Scientific Visualizations to Enhance Scientific Thinking In K-12 Geoscience Education

    NASA Astrophysics Data System (ADS)

    Robeck, E.

    2016-12-01

    The same scientific visualizations, animations, and images that are powerful tools for geoscientists can serve an important role in K-12 geoscience education by encouraging students to communicate in ways that help them develop habits of thought that are similar to those used by scientists. Resources such as those created by NASA's Scientific Visualization Studio (SVS), which are intended to inform researchers and the public about NASA missions, can be used in classrooms to promote thoughtful, engaged learning. Instructional materials that make use of those visualizations have been developed and are being used in K-12 classrooms in ways that demonstrate the vitality of the geosciences. For example, the Center for Geoscience and Society at the American Geosciences Institute (AGI) helped to develop a publication that outlines an inquiry-based approach to introducing students to the interpretation of scientific visualizations, even when they have had little to no prior experience with such media. To facilitate these uses, the SVS team worked with Center staff and others to adapt the visualizations, primarily by removing most of the labels and annotations. Engaging with these visually compelling resources serves as an invitation for students to ask questions, interpret data, draw conclusions, and make use of other processes that are key components of scientific thought. This presentation will share specific resources for K-12 teaching (all of which are available online, from NASA, and/or from AGI), as well as the instructional principles that they incorporate.

  14. Strategies for Broadening Participation in the Geosciences: Lessons Learned From the UCAR-SOARSr Program

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2004-12-01

    Broadening participation in the geosciences will advance our research, enhance our education and training, and improve our ability to meet societal needs. By attracting more diverse students, we will be better postioned to provide all our students the increasingly necessary and relevant experience of working in diverse teams. Because some traditionally underrepresented groups, particularly Latinos & Hispanics, are growing much faster than the population as a whole, broader participation will enlarge the pool of talented individuals contributing to the next generation of research. Finally the geosciences will be more effective and credible when the diversity of our nation is reflected in our workforce, especially as civic discourse includes more and more complex decisions about society's interactions with the Earth and its resources. The Significant Opportunities in Atmospheric Research and Science (SOARS) seeks to broaden participation in geosciences by helping undergraduate students successfully transition to graduate programs in the atmospheric and related sciences. SOARS combines multiple research experiences, multifaceted mentoring, an encouraging community, and financial support to help students enter and succeed in graduate school. A central feature of the SOARS program is a ten-week summer immersion program in which protégés (SOARS participants) conduct scientific research at the National Center for Atmospheric Research (NCAR) or at laboratories of SOARS sponsors. During this summer research experience, SOARS protégés are supported by up to four mentors: a science research mentor, a writing mentor, a community mentor, and a peer mentor. SOARS protégés collaborate with their mentors to perform original research, prepare scientific papers, and present their research at a colloquium. SOARS also provides extensive leadership and communication training; support for conference presentations and for graduate school; and a strong scholarly community that develops from the critical mass of protégés living and working together in Boulder. Over the program's nine years, 90 protégés have participated in the SOARS. Twenty-nine protégés have completed their masters' degrees and one has successfully defended her PhD. Thirty-three SOARS protégés are enrolled in graduate programs in an atmospheric or related science. Twenty-three are enrolled in master's programs, and 10 are pursuing doctoral degrees. Sixteen protégés are currently in the professional scientific or engineering workforce. SOARS protégés have delivered over 100 posters or presentations at national or regional conferences. SOARS received the Presidential Award for Excellence in Science, Mathematics, and Engineering Mentoring in 2001 SOARS strategies can be offered for consideration by institutions seeking to develop their own programs to broaden participation. We will also report on an independent review of SOARS that will highlight other programmatic features that contribute to program success. Preliminary results suggest several key practices that include: UCARs institutional commitment to inclusiveness; personal attention to the needs of each student; opportunities for student peer interaction; and continuous program monitoring, evaluation, and adjustment.

  15. Achieving Broader Impacts Through Partnering in a Digital World

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.

    2004-12-01

    The NSF Broader Impacts review criterion has many possible dimensions: advance discovery and understanding while promoting teaching, training, and learning; broaden participation of under-represented groups; enhance infrastructure for research and education; broad dissemination to enhance scientific and technological understanding; and benefits to society (NSF OPP Advisory Committee). To effectively achieve and demonstrate broader impacts of a research project, it is essential to form meaningful partnerships among many stakeholders: scientists (i.e. content specialists) teachers/faculty, creators of educational resources, students, journalists, policy makers, institutions (e.g. schools, colleges and universities; museums, aquariums, parks), agencies (local, state and federal), and professional societies. Such partnerships are readily supported through digital information technologies and communication networks. The Science Education Resource Center (http://serc.carleton.edu) provides a number of on-line programs that are available for you to participate and contribute in a variety of E&O activities. Exemplars are in development to demonstrate effective ways to integrate research and education. The Using Data in the Classroom portal disseminates data sources, tools, activities and examples. The On the Cutting Edge professional development program will convene a workshop in July 2005 on "Teaching About the Ocean System Using New Research Techniques: Data, Models and Visualizations". The Microbial Life Education Resources digital library is in development and will focus on life in extreme environments this year, and life in the ocean system will be our emphasis in the second year. There is a registry of geochemical analytical instruments to help students and faculty gain access to instrumentation, and geophysical and geospatial analysis facilities will be added in the near future. There are also a wide range of pedagogical resources available to support E&O projects including Research on Learning; Developing Effective On-Line Educational Resources in the Geosciences; Teaching Geoscience with Visualizations: Using Images, Animations, and Models Effectively; and Tips on Assessment, Dissemination, and Partnering. Working group listservs and web-authoring services are available to support collaborations. We invite you to contribute to these collections and services to meet your broader impact goals.

  16. Pushing Traditional Publishing Boundaries in the Journal of Astronomy & Earth Science Education JAESE

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2017-12-01

    Responding to the community's need for an archival journal to document program evaluation and educational impact of programs and innovations, the Journal of Astronomy & Earth Science Education (JAESE.org) is a scholarly, peer-reviewed journal designed to serve the discipline-based astronomy, planetary, and geosciences education research community. JAESE's first issue was published on December 31, 2014 and has published four volumes and seven issues since that time. By far, the median article topic has been focused on planetarium education research, while there have only been a few articles on conventional solid-Earth geosciences education research. Although there is not yet an even distribution of topics across the field, there is a relatively even distribution among author demographics. Authors include a range of both junior and senior members of the field. There have been significantly more female authors than male authors. Submissions are distributed as blind-copies to two or three peer reviewers with authors' names and identifying information redacted from the manuscript. The average time to complete the first round of peer-review reviewers is 6.2-weeks. There have been too few manuscripts to reliably publish a "percentage acceptance rate." Taken together, JAESE's guiding Editorial Advisory Board judges this to be a successful first few years. In a purposeful effort to make JAESE authors' scholarly works as widely accessible as possible, JAESE adopted an open-access business model. JAESE articles are available to read free-of-charge over the Internet, delivered as PDFs. To date, the most common way articles are downloaded by readers is through Google Scholar. Instead of charging readers and libraries recurring subscription fees, JAESE charges authors a nominal submission fee and a small open-access fee, averaging about $700 USD. These charges are far lower than the traditional page charges and gold-package open-access fees typically charged to authors or their institutions by typical scientific journals, making JAESE an attractive publishing venue for many scholars to make their work as widely read as possible. Author guidelines and Reviewer Applications are available at http://www.jaese.org

  17. Satellite Applications for K-12 Geoscience Education

    NASA Astrophysics Data System (ADS)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.

    2007-12-01

    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an oceanographer from the Applied Physics Laboratory at the University of Washington, and satellite meteorology experts from CIMSS at UW-Madison. This AGU presentation will report on the progress of the debut semester of the geoscience course and corresponding VISITview sessions.

  18. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design and Experiential Learning Theory

    NASA Astrophysics Data System (ADS)

    Bennett, Rick; Lamb, Diedre

    2017-04-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the able bodied, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp with a focus on modern geophysical observation systems, computational thinking, and data science. In this presentation, we will report on the theoretical bases for developing the course, our experiences in teaching the course to date, and our plan for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  19. An Integrated Strategy for Promoting Geoscience Education and Research in Developing Countries through International Cooperation

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2007-12-01

    Geoscience education and research in Developing countries should aim at achieving food, water and environmental security, and disaster preparedness, based on the synergetic application of earth (including atmospheric and oceanic realms), space and information sciences through economically-viable, ecologically- sustainable and people-participatory management of natural resources. The proposed strategy involves the integration of the following three principal elements: (i) What needs to be taught: Geoscience needs to be taught as earth system science incorporating geophysical, geochemical and geobiological approaches, with focus (say, 80 % of time) on surficial processes (e.g. dynamics of water, wind and waves, surface and groundwater, soil moisture, geomorphology, landuse, crops), and surficial materials (e.g. soils, water, industrial minerals, sediments, biota). Subjects such as the origin, structure and evolution of the earth, and deep-seated processes (e.g. dynamics of the crust-mantle interaction, plate tectonics) could be taught by way of background knowledge (say, 20 % of the time), (ii) How jobs are to be created: Jobs are to be created by merging geoscience knowledge with economic instruments (say, micro enterprises), and management structures at different levels (Policy level, Technology Transfer level and Implementation level), customized to the local biophysical and socioeconomic situations, and (iii) International cooperation: Web-based instruction (e.g. education portals, virtual laboratories) through South - South and North - South cooperation, customized to the local biophysical and socioeconomic situations, with the help of (say) UNDP, UNESCO, World Bank, etc.

  20. Future Employment Opportunities for US Geoscience Graduates - a View From Historical Trends

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Milling, M. E.

    2005-12-01

    The geosciences in the United States has experienced a number of major booms and busts, but today has become, as a discipline, less dependent on the immediate fortunes of the natural resources industries. However, the actual employment distribution has not changed substantially in the last fifteen years, with the petroleum industry remaining by and far the single largest employer of geoscientists in the United States, and even more as a level of contributing to GNP. However, most of the geoscience professional ranks in industry were filled prior to and during the last major boom which ended in 1986. Most of this workforce is now heading into retirement and though total geoscience workforce demand is not likely to grow; substantial employment opportunities do and will exist as these individuals retire. However, this picture is more complicated than in the past. Most industries, both the traditional geoscience employers, such as petroleum, mining, and environment, and non-traditional, such as telecommunications, are increasingly global in their operations and perspectives. This increasing globalization means that US graduates now compete not only against graduates from other schools in the US, but throughout the world. When coupled with preferences for not hiring people in as expatriates for overseas assignment, US graduates face an increasingly competitive, but rewarding job market. The proverbial leveling of the playing field is also seen in the rapid rise in international membership of traditionally American professional and scientific societies. This internationalization is hardly discouraged within the culture of science, and is one that US students will need to embrace to compete effectively in the future for employment in the geosciences. One major change that will be necessitated is the adjustment of parts of academia to the new realities of preparing students for future employment within the discipline. Currently most US geoscience graduate programs are geared towards training students for the professoriate (of which new job opportunities are slower in coming than the private sector.) In particular, there are a suite of skill sets that geoscience programs could introduce into their curriculum to improve the competitiveness of their graduates.

  1. The New Higher Education Paradigm and the Changing Roles of Employers, Students, and Faculty in Geoscienses and Other Disciplines

    NASA Astrophysics Data System (ADS)

    Schejbal, D.

    2013-12-01

    There is a new paradigm emerging in higher education. Like all paradigm shifts, however, during the evolutionary process, it is nearly impossible to tell what the final results will be. Nevertheless, we have indications of the directions of change, and they will be significant and transformative for many academic programs, colleges, and universities. In this session, we will explore some of the most notable changes that are impacting higher education, including the industrialization and commodification of education; the focus on accountability and its implications for teaching; the impact of external pressures from legislators, employers, students and parents; and the social, national, and global contexts that are forcing transformation. Geosciences, like many other disciplines is impacted by these changes and must find new ways to navigate and adapt in order to survive and thrive in the emerging paradigm.

  2. Engaging teachers & students in geosciences by exploring local geoheritage sites

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Gierke, J. S.

    2014-12-01

    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  3. Examining the Professional Development Experiences and Non-Technical Skills Desired for Geoscience Employment

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Ricci, J.; Wilson, C. E.; Keane, C.

    2014-12-01

    Professional development experiences, such as internships, research presentations and professional network building, are becoming increasingly important to enhance students' employability post-graduation. The practical, non-technical skills that are important for succeeding during these professional development experiences, such as public speaking, project management, ethical practices and writing, transition well and are imperative to the workplace. Thereby, graduates who have honed these skills are more competitive candidates for geoscience employment. Fortunately, the geoscience community recognizes the importance of these professional development opportunities and the skills required to successfully complete them, and are giving students the chance to practice non-technical skills while they are still enrolled in academic programs. The American Geosciences Institute has collected data regarding students' professional development experiences, including the preparation they receive in the corresponding non-technical skills. This talk will discuss the findings of two of AGI's survey efforts - the Geoscience Student Exit Survey and the Geoscience Careers Master's Preparation Survey (NSF: 1202707). Specifically, data highlighting the role played by internships, career opportunities and the complimentary non-technical skills will be discussed. As a practical guide, events informed by this research, such as AGI's professional development opportunities, networking luncheons and internships, will also be included.

  4. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lamb, D. A.

    2017-12-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the non-disabled, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp for all students, with a focus on modern geophysical observation systems, computational thinking, data science, and professional development.In this presentation, we will review common pedagogical approaches in geosciences and current efforts to make the field more inclusive. We will review curricular access and inclusivity relative to a wide range of learners and provide examples of accessible course design based on our experiences in teaching a study abroad course in central Italy, and our plans for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  5. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  6. The Geoscience Diversity Enhancement Program (GDEP): A Model for Faculty and Student Engagement in Urban Geoscience Research

    NASA Astrophysics Data System (ADS)

    Ambos, E. L.; Lee, C.; Behl, R.; Francis, R. D.; Holk, G.; Larson, D.; Rodrigue, C.; Wechsler, S.; Whitney, D.

    2004-12-01

    For the past three years (2002-2004) faculty in the departments of geological sciences, geography, and anthropology at California State University, Long Beach have joined to offer an NSF-funded (GEO-0119891) eight-week summer research experience to faculty and students at Long Beach area high schools and community colleges. GDEP's goal is to increase the numbers of students from underrepresented groups (African-American, Hispanic, American Indian, Pacific Islander, and disabled) enrolling in baccalaureate degree programs in the geosciences. The major strategies to achieve this goal all tie to the concept of research-centered experiences, which might also be termed inquiry-based instruction. More than fifteen (15) separate and diverse geoscience research studies have been conducted. These include such disparate topics as geochemical studies of fault veins, GPS/GIS surveys of vegetation patterns for fire hazard assessment, and seismic studies of offshore fault systems. As the program has matured, research projects have become more interdisciplinary, and faculty research teams have expanded. Whereas the first year, each CSULB faculty member tended to lead her/his project as a separate endeavor, by the third summer, faculty were collaborating in research teams. Several projects have involved community-based research, at sites within an hour's drive from the urban Long Beach campus. For example, last summer, four faculty linked together to conduct a comprehensive geography and geology study of an Orange County wilderness area, resulting in creation of maps, brochures, and websites for use by the general public. Another faculty group conducted geophysical surveys at an historic archaeological site in downtown Los Angeles, producing maps of underground features that will be incorporated into a cultural center and museum. Over the past three summers, the program has grown to involve more than 25 high school and community college students, and more than 30 CSULB, high school, and community college faculty. Although GDEP's real legacy will ultimately be understood by longitudinal study of program participants, initial evaluation efforts provide some generalizable lessons. Students cite the benefits of "hands-on" research, fieldwork, and the opportunity to work one-on-one with faculty. Many students state in post-program interviews that GDEP caused them to aspire to graduate study: the rigorous GDEP research environment appears to build student confidence. The high school and community college faculty describe program benefits in terms of widening their knowledge both of how to use geoscience research as a centerpiece in instruction, and how to incorporate discussions of geoscience careers in student advising. Through GDEP, CSULB faculty have developed their abilities to work in interdisciplinary teams, to meld research with instruction, and to mentor students from diverse backgrounds and abilities.

  7. Archiving Spectral Libraries in the Planetary Data System

    NASA Astrophysics Data System (ADS)

    Slavney, S.; Guinness, E. A.; Scholes, D.; Zastrow, A.

    2017-12-01

    Spectral libraries are becoming popular candidates for archiving in PDS. With the increase in the number of individual investigators funded by programs such as NASA's PDART, the PDS Geosciences Node is receiving many requests for support from proposers wishing to archive various forms of laboratory spectra. To accommodate the need for a standardized approach to archiving spectra, the Geosciences Node has designed the PDS Spectral Library Data Dictionary, which contains PDS4 classes and attributes specifically for labeling spectral data, including a classification scheme for samples. The Reflectance Experiment Laboratory (RELAB) at Brown University, which has long been a provider of spectroscopy equipment and services to the science community, has provided expert input into the design of the dictionary. Together the Geosciences Node and RELAB are preparing the whole of the RELAB Spectral Library, consisting of many thousands of spectra collected over the years, to be archived in PDS. An online interface for searching, displaying, and downloading selected spectra is planned, using the Spectral Library metadata recorded in the PDS labels. The data dictionary and online interface will be extended to include spectral libraries submitted by other data providers. The Spectral Library Data Dictionary is now available from PDS at https://pds.nasa.gov/pds4/schema/released/. It can be used in PDS4 labels for reflectance spectra as well as for Raman, XRF, XRD, LIBS, and other types of spectra. Ancillary data such as images, chemistry, and abundance data are also supported. To help generate PDS4-compliant labels for spectra, the Geosciences Node provides a label generation program called MakeLabels (http://pds-geosciences.wustl.edu/tools/makelabels.html) which creates labels from a template, and which can be used for any kind of PDS4 label. For information, contact the Geosciences Node at geosci@wunder.wustl.edu.

  8. Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Mogk, D. W.; McDaris, J. R.

    2010-12-01

    Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and research results to facilitate teaching about the deep earth across the geoscience curriculum. Another goal of the workshop was to experiment with, and evaluate the effectiveness of, the virtual format. Although there are advantages to face-to-face workshops, the virtual format was remarkably effective. The interactive discussions during synchronous presentations were vibrant, and the virtual format allowed participants to introduce references, images and ideas in real-time. The virtual nature of the workshop allowed participation by those who are not able to attend a traditional workshop, with an added benefit that participants had direct access to all their research and teaching materials to share with the workshop. Some participants broadcast the workshop ‘live’ to their classes and many brought discussions directly from the presentation to the classroom. The workshop webpage includes the workshop program with links to recordings of all presentations, discussion summaries, a collection of recommended resources about deep Earth research, and collections of peer-reviewed instructional activities. http://serc.carleton.edu/NAGTWorkshops/deepearth/index.html

  9. Can Service Learning be a Component of the Geoscience PhD?

    NASA Astrophysics Data System (ADS)

    Nyquist, J. E.

    2008-12-01

    Service learning in the science and engineering has traditionally been conducted through student clubs, or student involvement with non-profit organizations such as Engineers Without Borders or Chemists Without Borders. The newly created foundation, Geoscientists Without Borders (GWB), demonstrates that the geoscience industry and professional societies are also increasingly interested in supporting philanthropic efforts. GWB proclaims that its role is to 11Connect universities and industries with communities in need through projects using applied geophysics to benefit people and the environment around the world." In 2007, NSF convened a workshop on Humanitarian Service Science and Engineering to examine research issues and how they are being addressed. Clearly, the scientific community is eager to increase its involvement. The graduate program of Temple University's Department of Earth and Environmental Science is planning to offer a PhD degree option starting in 2009. Temple University has a long history of service learning, and our department deliberating over how to make service learning a component of a geoscience PhD. Attempting to incorporate humanitarian project formally into a PhD degree program, however, raises a number of difficult questions: Is it possible to sustain a graduate program focused on research funding and publishable results while simultaneously pursuing projects of practical humanitarian benefit? Would such a program be more effective if designed in partnership with graduate studies in the social sciences? Will graduates be competitive in industry or as candidates for new faculty positions, and will such a degree open non-traditional employment opportunities within government and non-government agencies? We hope to answer these questions by studying existing degree programs, polling service learning groups and non-profit agencies, and organizing workshops and meeting sessions to discuss service learning with the geosciences community.

  10. Increasing diversity in the geosciences through the AfricaArray geophysics field course

    NASA Astrophysics Data System (ADS)

    Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.

    2014-12-01

    For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.

  11. Students as Mentors and Owners of Geoscience and Environmental Education: Advancing the Science of Climate Change in the Public Schools

    NASA Astrophysics Data System (ADS)

    Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.

    2007-12-01

    The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of scientists and science educators supplemented and further developed a well known and tested 15-year-old curriculum (Great Explorations in Math and Science, 1990) with recent data and analysis focusing on key concepts of climate change. The updated curriculum was structured using two driving questions: - How do we know the earth has experienced climate change in the past, including the ice ages and the age of the dinosaurs? - How do we know that humans have an impact on climate? Science educators and scientists also worked together to create templates that prompted the 11th and 12th grade students to first reflect on their understandings of climate change and then on how they would teach their younger peers. As students work with experiments, data sets, and news-media articles, they are also prompted to reflect on discrepancies between primary science sources and secondary media sources (Drake and Nelson, 2005). An evaluation team observed the summer workshops, administered surveys, reviewed the adapted curriculum, and participated in planning sessions. The evaluators are in the process of analyzing these multiple indicators to examine the extent to which the program aligns with its stated goals. The initial formative evaluation findings suggest that students were active participants in the workshop and that they enjoyed their experience. Areas of year-two development include improved communication and collaboration between university and secondary school units.

  12. Teaching Service Learning in the Geosciences: An On the Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Laine, E. P.; Mogk, D. W.; O'Connell, S.; Kirk, K. B.

    2010-12-01

    Service learning is an instructional method that combines community service and academic instruction within the context of an established academic course. It is a particularly effective approach that uses active and experiential learning to develop the academic skills required of a course of study and to simultaneously address authentic community needs. Service learning projects can energize and motivate students by engaging a sense of civic responsibility by working in concert with community partners. The geosciences provide abundant opportunities to develop service learning projects on topics related to natural hazards, resources, land use, water quality, community planning, public policy, and education (K-12 and public outreach). To explore the opportunities of teaching service learning in the geosciences, the On the Cutting Edge program convened an online workshop in February 2010. The goals of the workshop were to: 1) introduce the principles and practices of effective service learning instructional activities; 2) provide examples of successful service learning projects and practical advice about "what works;" 3) provide participants with the opportunity to design, develop, and refine their own service learning courses or projects; 4) develop collections of supporting resources related to the pedagogy of service learning; and 5) support a community of scholars interested in continued work on service learning in the geoscience curriculum. The workshop consisted of a series of web-based synchronous and asynchronous sessions, including presentations from experienced practitioners of service learning, panel discussions, threaded discussions, and editable web pages used to develop new material for the website. Time was also provided for small group and individual work and for participants to peer-review each others' service learning projects and to revise their own activities based on reviewer comments. Insights from the workshop were integrated into new web pages that can help others implement service learning projects in their own institutions and communities. Online resources developed by the workshop participants, conveners, and supporting staff include an assemblage of online and print resources, a searchable collection of peer-reviewed examples of service learning projects, a tutorial on using the "8-Block Model" to design and implement a service learning project, tips on finding service learning partners, advice on motivating students, departments and the community, and example assessment instruments. Faculty are encouraged to submit their own examples of additional service learning projects in the geosciences. The entire workshop program, resources and activities are available online at: http://serc.carleton.edu/NAGTWorkshops/servicelearning/index.html

  13. K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career

    NASA Astrophysics Data System (ADS)

    Slattery, W.; Antonucci, C.; Myers, R. J.

    2013-12-01

    The National Science Foundation funded project K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career is a research-based proof of concept track 1 pilot project that tests the effectiveness of an innovative model for simultaneous K-12 teacher professional development, student learning and workforce development. The project builds a network of science experiences designed to keep eighth and ninth grade students from the Ripley, Union, Lewis, Huntington (RULH) Ohio school district on the path to a geoscience career. During each summer of the ongoing two-year project teams of RULH students, parents, teachers, administrators and college faculty traveled to the facilities of the New Jersey Sea Grant Consortium at Sandy Hook, New Jersey to study science from an Earth system perspective. Teachers had the opportunity to engage in professional development alongside their students. Parents participated in the science activities alongside their children. Administrators interacted with students, parents and their teachers and saw them all learning science in an engaging, collaborative setting. During the first academic year of the project professional development was provided to RULH teachers by a team of university scientists and geoscience educators from the Earth System Science Education Alliance (ESSEA), a National Science Foundation funded project. Teachers selected for professional development were from science disciplines, mathematics, language arts and civics. The teachers selected, taught and assessed ESSEA Earth system science modules to all eighth and ninth grade students, not just those that were selected to go on the summer trips to New Jersey. In addition, all ninth grade RULH students had the opportunity to take a course that includes Earth system science concepts that will earn them both high school and college science credits. Professional development will continue through the 2013-2014 academic year. Formative assessment of the ongoing project indicates that students, teachers, parents and school administrators rank their experiences highly and that students are motivated to continue on the path to geoscience careers.

  14. Use of the Attribute Hierarchy Method for Development of Student Cognitive Models and Diagnostic Assessments in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Corrigan, S.; Brodsky, L. M.; Loper, S.; Brown, N.; Curley, J.; Baker, J.; Goss, M.; Castek, J.; Barber, J.

    2010-12-01

    There is a recognized need to better understand student learning in the geosciences (Stofflet, 1994; Zalles, Quallmalz, Gobert and Pallant, 2007). Educators, cognitive psychologists and practicing scientists have also called for instructional approaches that support deep conceptual development (Manduca, Mogk and Stillings, 2004, Libarkin and Kurdziel, 2006). In both cases there is an important role for educational measures that can generate descriptions of how student understanding develops over time and inform instruction. The presenters will suggest one way of responding to these needs by describing the Attribute Hierarchy Method (AHM) of assessment (Leighton, Gierl and Hunka, 2004; Gierl, Cui, Wang and Zhou, 2008) as enacted in a large-scale earth science curriculum development project funded by the Bill and Melinda Gates Foundation. The AHM is one approach to criterion referenced, diagnostic assessment that ties measure design to cognitive models of student learning in order to support justified inferences about students’ understanding and the knowledge required for continued development. The Attribute Hierarchy Method bears potential for researchers and practitioners interested in learning progressions and solves many problems associated with making meaningful, justified inferences about students’ understanding based on their assessment performances. The process followed to design and develop the project’s cognitive models as well as a description of how they are used in subsequent assessment task design will be emphasized in order to demonstrate how the AHM may be applied in the context of geoscience education. Results from over twenty student cognitive interviews, and two hypothesized cognitive models -- one describing a student pathway for understanding rock formation and a second describing a student pathway for increasingly sophisticated use of maps and models in the geosciences - are also described. Sample assessment items will be provided as indications of the final assessment measures. The project’s efforts to create an on-line geoscience curriculum for use in the middle school grades that adapts to student performances by customizing whole lessons, grouping assignments or student feedback will provide a broader context for the discussion.

  15. GEE-WIS Anchored Problem Solving Using Real-Time Authentic Water Quality Data

    NASA Astrophysics Data System (ADS)

    Young, M.; Wlodarczyk, M. S.; Branco, B.; Torgersen, T.

    2002-05-01

    GEE-WIS scientific problem solving consists of observing, hypothesizing, synthesis, argument building and reasoning, in the context of analysis, representation, modeling and sense-making of real-time authentic water quality data. Geoscience Environmental Education - Web-accessible Instrumented Systems, or GEE-WIS, an NSF Geoscience Education grant, has established a set of companion websites that stream real-time data from two campus retention ponds for research and use in secondary and undergraduate water quality lessons. We have targeted scientific problem solving skills because of the nature of the GEE-WIS environment, but further because they are central to state and federal efforts to establish science education curriculum standards and are at the core of performance-based testing. We have used a design experiment process to create and test two Anchored Instruction scenario problems. Customization such as that done through a design process, is acknowledged to be a fundamental component of educational research from an ecological psychology perspective. Our efforts have shared core design elements with other NSF water quality projects. Our method involves the analysis of student written scenario responses for level of scientific problem solving using a qualitative scoring rubric designed from participation in a related NSF project, SCALE (Synergy Communities: Aggregating Learning about Education). Student solutions of GEE-WIS anchor problems from Fall 2001 and Spring 2002 will be summarized. Implications are drawn for those interested in making secondary and high education geoscience more realistic and more motivating for students through the use of real-time authentic data via Internet.

  16. Post-graduation survey of the impact of geoscience service-learning courses at Wesleyan University

    NASA Astrophysics Data System (ADS)

    OConnell, S.; Ptacek, S.; Diver, K.; Ku, T. C.; Resor, P. G.; Royer, D. L.

    2016-12-01

    The benefits of service-learning courses are extolled in numerous papers and include increases in student: engagement with the material and the world, self-efficacy, and awareness of personal values. This approach to education allows students to develop skills that may not be part of many lecture-style or even laboratory class formats, such as problem solving, scientific communication, group work and reflection. Service learning requires students to move to the upper level of Bloom's taxonomy of cognitive skills: analyzing, evaluating, and creating. In a broader context, service learning offers two distinct benefits for the geosciences. First, service learning offers an opportunity for both the students and community to see the utility of geoscience in their lives and what geoscientists do. Considering the general lack of knowledge about geosciences this is an important public relations opportunity. Second, some studies have shown that the benefits of a service-learning approach to education results in higher performance by underrepresented minority students, students that the geosciences need to attract in an increasingly diverse society. Since 2006, four different service-learning courses have been offered by the Department of Earth & Environmental Sciences at Wesleyan University to both majors and non-majors. They are Environmental Geochemistry (core course), Geographic Information Systems (elective), Science on the Radio (first-year seminar), and Soils (elective). Almost 250 graduates have taken these courses. Graduates were surveyed to discover what they gained by taking a service-learning course and if, and how, they use the skills they learned in the course in their post-college careers.

  17. Collaboration and Perspectives on Identity Management and Access from two Geoscience Cyberinfrastructure Programs

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2016-12-01

    Increasingly, the conduct of science requires close international collaborations to share data, information, knowledge, expertise, and other resources. This is particularly true in the geosciences where the highly connected nature of the Earth system and the need to understand global environmental processes have heightened the importance of scientific partnerships. As geoscience studies become a team effort involving networked scientists and data providers, it is crucial that there is open and reliable access to earth system data of all types, software, tools, models, and other assets. That environment demands close attention to security-related matters, including the creation of trustworthy cyberinfrastructure to facilitate the efficient use of available resources and support the conduct of science. Unidata and EarthCube, both of which are NSF-funded and community-driven programs, recognize the importance of collaborations and the value of networked communities. Unidata, a cornerstone cyberinfrastructure facility for the geosciences, includes users in nearly 180 countries. The EarthCube initiative is aimed at transforming the conduct of geosciences research by creating a well-connected and facile environment for sharing data and in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. We will present the Unidata and EarthCube community perspectives on the approaches to balancing an environment that promotes open and collaborative eScience with the needs for security and communication, including what works, what is needed, the challenges, and opportunities to advance science.

  18. OERL: A Tool For Geoscience Education Evaluators

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have been funded by NSF to carry out curriculum development, teacher education, faculty development, and increased access, retention, and preparation of under-represented student populations in science. Over the next two years, additional plans, instruments, and reports from other projects will be added to the OERL collection. Also to be added are more professional development modules and online coaches for constructing key evaluation documents. The presentation overviews the structure of OERL, describes some of the geoscience projects in the collection, and provides some examples of how its resources can be used and adapted for other geoscience education evaluations.

  19. A Model Collaborative Platform for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically generated author profiles highlight the contributions an individual has made through any of the projects with an option for customization by the author. An overarching portal site provides a unified view of resources within this diverse set of geoscience education projects. The SERC CMS provides a common platform upon which individual projects can build their own identities, while allowing cross-project pollination and synergies to be realized without significant extra investment by each project. This is a sustainable model for a collaborative platform that takes advantage of the energy and resources of individual projects to advance larger community goals.

  20. On the Cutting Edge Professional Development Program - An effective model built from years of experience

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.

    2015-12-01

    The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene

  1. Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Keane, C. M.; Wilson, C. E.

    2012-12-01

    Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who want to share their knowledge with students may be more inclined to pursue academic positions. Indicators, like these, expand the pathway model and foster the development of a more robust framework for recruitment and retention in academia, as well as industry.

  2. The Person Behind the Picture: Influence of Social and Cultural Capital on Geoscience Career Pathways

    NASA Astrophysics Data System (ADS)

    Rappolee, E.; Libarkin, J. C.; McCallum, C.; Kurz, S.

    2017-12-01

    The amalgamation of fields in the geosciences share one desire: a better understanding of the natural world and the relationship humans have with that world. As issues such as climate change and clean water become globally recognized the geoscience job market grows. To insure these issues are resolved in ways that are fully representative of the entire human population, attention has been turned to increasing diversity of scientists in the geosciences. This study is based in the theory of social and cultural capital, types of non-financial wealth obtained by individuals and groups through connections and experiences. In particular, we investigated how individuals accessed specific resources and opportunities which eventually led to their entering the geosciences. Surveys were distributed to volunteers at a multinational geoscience conference held in fall of 2016. These surveys asked participants to "draw a picture of the people and experiences that have influenced your career up to this point." Nearly 150 completed drawings were coded through a thematic content analysis, wherein salient characteristics of drawings were documented and later grouped into common themes. We found that specific people (family, professors, peers) provided access to resources (education, museums, parks) as well as experiences (camping, traveling, research) that were instrumental in career building. Correlation analysis revealed two representative models of the drawings. These models aligned with the constructs of social and cultural capital. Cultural capital was more prevalent in majority white than nonwhite participants, suggesting different pathways into geoscience careers. We hope this research will inspire future work as well as highlight ways in which social and cultural capital can become accessible to future generations to produce a system with equal opportunities and increase diversity in the geosciences, resulting in better decision-making on global issues.

  3. Leveraging biology interest to broaden participation in the geosciences

    NASA Astrophysics Data System (ADS)

    Perin, S.; Conner, L.; Oxtoby, L.

    2017-12-01

    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  4. Building a Network of Internships for a Diverse Geoscience Community

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Haacker-Santos, R.; Pandya, R.

    2011-12-01

    Individual undergraduate internship programs, however effective, are not sufficient to address the lack of diversity in the geoscience workforce. Rather than competing with each other for a small pool of students from historically under-represented groups, REU and internship programs might share recruiting efforts and application processes. For example, in 2011, the RESESS program at UNAVCO and the SOARS program at UCAR shared recruiting websites and advertising. This contributed to a substantial increase in the number of applicants to the RESESS program, the majority of which were from historically under-represented groups. RESESS and SOARS shared qualified applications with other REU/internship programs and helped several additional minority students secure summer internships. RESESS and SOARS also leveraged their geographic proximity to pool resources for community building activities, a two-day science field trip, a weekly writing workshop, and our final poster session. This provided our interns with an expanded network of peers and gave our staff opportunities to work together on planning. Recently we have reached out to include other programs and agencies in activities for our interns, such as mentoring high-school students, leading outreach to elementary school students, and exposing our interns to geoscience careers options and graduate schools. Informal feedback from students suggests that they value these interactions and appreciate learning with interns from partner programs. Through this work, we are building a network of program managers who support one another professionally and share effective strategies. We would like to expand that network, and future plans include a workshop with university partners and an expanded list of REU programs to explore further collaborations.

  5. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  6. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  7. Launching an Academic Career: On the Cutting Edge Resources for Geoscience Graduate Students, Post-doctoral Fellows, and Early Career Faculty

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Ormand, C. J.; MacDonald, H.; Dunbar, R. W.; Allen-King, R. M.; Manduca, C. A.

    2010-12-01

    Launching an academic career presents a number of challenges. A recent article in the Chronicle of Higher Education depicts academia as an “ivory sweatshop,” citing rising standards for tenure. Most graduate programs provide minimal training for life beyond graduate school. The professional development program “On the Cutting Edge” fills this gap by providing workshops and web resources on academic careers for graduate students, postdoctoral fellows, and early career faculty. These workshops and web resources address a wide range of topics related to teaching, research, and managing one’s career, tailored for each group. The Preparing for an Academic Career in the Geosciences workshop to help graduate students and postdoctoral fellows make the transition into an academic career has been offered annually since 2003. It provides a panel on academic careers in different institutional settings, sessions on research on learning, various teaching strategies, design of effective teaching activities, moving research forward to new settings, effective teaching and research statements, the job search process, negotiation, and presenting oneself to others. Complementary online resources (http://serc.carleton.edu/NAGTWorkshops/careerprep/index.html) focus on these topics. The workshops and web resources offer guidance for each step of the job search process, for developing and teaching one’s own courses, and for making the transition from being a research student to being in charge of a research program. Online resources also include case studies of successful dual career couples, documenting their job search strategies. A four-day workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career, offered annually since 1999, provides sessions on teaching strategies, course design, developing a strategic plan for research, supervising student researchers, navigating departmental and institutional politics, preparing for tenure, time and task management, and more. Complementary online resources (http://serc.carleton.edu/NAGTWorkshops/earlycareer/index.html) also address these topics. The workshops and web resources offer guidance for becoming an efficient and effective teacher, for developing a thriving research program, for staying on track for tenure, and for managing a balance of one’s personal and professional lives. Online resources feature a collection of successful grant proposals, profiles of successful researchers and their collaborations with their students, and profiles of geoscience faculty from a variety of institutions describing how they achieve balance in their lives. Participants in both workshops overwhelmingly report that the workshop met or exceeded their expectations, that they feel much better prepared to move forward in their careers as a result of the workshops, and that they will use the website in the future. The two sets of web pages receive more than 7,000 visitors each month.

  8. Geoscience Information for Teachers (GIFT) Workshops at the European Geoscience Union General Assembly

    NASA Astrophysics Data System (ADS)

    Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert

    2016-04-01

    GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water", "Evolution and Biodiversity" and "Energy and Sustainable Development". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/

  9. Drawing on Experience: How Domain Knowledge Is Reflected in Sketches of Scientific Structures and Processes

    NASA Astrophysics Data System (ADS)

    Jee, Benjamin D.; Gentner, Dedre; Uttal, David H.; Sageman, Bradley; Forbus, Kenneth; Manduca, Cathryn A.; Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil

    2014-12-01

    Capturing the nature of students' mental representations and how they change with learning is a primary goal in science education research. This can be challenging in spatially intense domains, such as geoscience, architecture, and engineering. In this research, we test whether sketching can be used to gauge level of expertise in geoscience, using new technology designed to facilitate this process. We asked participants with differing levels of geoscience experience to copy two kinds of geoscience images—photographs of rock formations and causal diagrams. To permit studying the process of sketching as well as the structure and content of the sketches, we used the CogSketch system (Forbus et al. 2011, Topics in Cognitive Science 3:648-666) to record the time course of sketching and analyze the sketches themselves. Relative to novices, geoscience students included more geological structures and relational symbols in their sketches of geoscience materials and were more likely to construct their sketches in a sequence consistent with the order of causal events. These differences appear to stem from differences in domain knowledge, because they did not show up in participants' sketches of materials from other fields. The findings and methods of this research suggest new ways to promote and assess science learning, which are well suited to the visual-spatial demands of many domains.

  10. Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Gonzales, L. M.; Keane, C. M.

    2011-12-01

    Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.

  11. Sustaining Retention of Nontraditional Students in the Geosciences in 2YC; Practices and Ideas

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.; Doser, D. I.

    2012-12-01

    As the role of 2YC (two-year colleges/community colleges) changes in the academic pipeline of higher education new practices and ideas to engage and retain students in the geosciences at the 2YC level need to be explored. 2YC typically have a student body composed of non-traditional students ranging from second career students, single parents, students with disabilities, seniors, and minorities. Currently, 2YCs serve 44% of all undergraduate students and 45% of all of all first time freshmen in the US. These statistics show the potential community colleges hold to encourage entering students to the STEM (Science Technology Engineering and Math) fields as a possible career choice. But the reality is the number of STEM degrees awarded at community colleges has not followed the same trends in student enrollment. Over the past four years El Paso Community College (EPCC) in conjunction with The University of Texas at El Paso (UTEP) has implemented several initiatives in our effort to increase the number of Geological Science majors at EPCC and to ensure a successful transition to UTEP. These efforts are aimed to decrease attrition rates of science majors by; articulating degree plans between institutions, introduce field-based research projects to allow hands on experience for students, develop a working relationship between students and university faculty, diversify geology courses offered at EPCC, and strengthening the educational-bridge between the geological science departments of EPCC and UTEP through the aid of federally funded programs. The success of the these efforts have been seen by; the increase in geology majors in our A.S. degree program, the number of degrees conferred at EPCC, the successful transition of students to UTEP, and graduation of students from UTEP with advanced degrees.

  12. Iain Stewart Receives 2013 Athelstan Spilhaus Award: Citation

    NASA Astrophysics Data System (ADS)

    Wright, Tim

    2014-01-01

    It is a great pleasure and an honor to give the citation for the 2013 Athelstan Spilhaus awardee, Iain Stewart, professor of geoscience communication at the University of Plymouth, recognizing his truly exceptional work over the last decade in communicating geoscience to the general public. Iain has been making documentaries for the BBC, National Geographic, and Discovery for nearly a decade. These programs have huge international audiences and wide-reaching impact.

  13. Partnering with a Community College and Research University to attract Underrepresented Students to the Geosciences: The Student Experience

    NASA Astrophysics Data System (ADS)

    Wickham, J. S.; Saunders, D.; Smith, G.

    2015-12-01

    A NSF sponsored partnership between the University of Texas at Arlington and the Tarrant County College District aimed to attract underrepresented lower-division students interested in STEM to the geosciences. The program recruited 32 students over 3 years, developed an innovative field course, provided tutoring and mentoring programs, and offered research assistantships for students to work with the research university faculty on funded projects. Under-represented students were 66% of the group. The data was gathered via a web-based survey from April 2nd to April 17th, 2015, using both open ended and item-level responses. Out of 32 participants, the response rate was a significant 50%. Some of the survey results include: 1) Most students heard about the program from faulty who recruited them in introductory level classes; 2) Almost all agreed that the geosciences were interesting, fun, important and a good career path; 3) 92% of the community college respondents found transferring to a research university somewhat or not too difficult; 4) The most helpful parts of the program included faculty mentors, the field course, research assistant experiences and relationships with faculty. The least helpful parts included the tutoring services, relationships with other students, and the semester kickoff meetings; 5) over 60% of the students felt very confident in research skills, formulating research questions, lab skills, quantitative skills, time management, collaborating and working independently. They were less confident in planning research, graphing results, writing papers and making oral presentations; 6) most found the faculty very helpful in advising and mentoring, and 86% said they were comfortable asking at least one faculty member for a reference letter; 7) 93% said they were likely to pursue a geoscience career and 86% were confident or somewhat confident they would be successful.

  14. Global Workforce Development - Addressing the Changing Geography of Investment

    NASA Astrophysics Data System (ADS)

    McElvy, G. W.; Loudin, M. G.

    2005-12-01

    The Geography of professional workforce hiring is changing significantly and rapidly in the petroleum industry, mostly in response to shifting investment patterns. These geographical changes pose daunting challenges as well as new opportunities for philanthropic institutions such as the ExxonMobil Foundation, and especially for academia. Our Angolan affiliate illustrates the challenges brought about by investment in new areas. Although we will continue to require access to numerous Angolan Geoscience graduates who can fully participate in our global Geoscience community, there is only one Angolan institution that grants a relatively small number of Geoscience degrees. Our access to other locally-educated Angolan professional graduates is similarly limited. The Petroleum sector's response to this situation has been to seek indigenous students who are already enrolled, often in North American or European academic institutions, or to sponsor Angolan students there. If one multiplies our Angolan Geoscience example by the number of competing employers in Angola, and then by the number of countries around the world that are experiencing strong economic growth, the magnitude of the unfilled demand for international educational development seems daunting. However, several academic institutions have already taken the initiative and have provided educational, linguistic, and cultural pathways that encourage Angolans and others to obtain a world-class educational preparation on their respective campuses. This strategy has indeed begun to address the need for capacity-building for many indigenous students, and has aided various industries in their efforts to build indigenous workforces. Nevertheless, growing the capacity of indigenous academic infrastructure is also essential for the long term, and only a few academic institutions have begun to explore this educational frontier. Increased engagement and collaboration in international educational activities would clearly confer benefits on all the stakeholders, including universities, private industry, and various philanthropic institutions and governmental authorities. Continued economic growth around the world will be accompanied by growth in academic capacity, and it seems likely that the established academic institutions of today that nurture and influence academic growth outside of their own countries will become tomorrow's leading institutions.

  15. Outreach, Diversity, and Education Supported by NSF Facilities LacCore and the Continental Scientific Drilling Coordination Office (CSDCO), University of Minnesota

    NASA Astrophysics Data System (ADS)

    Myrbo, A.

    2015-12-01

    Climatic and environmental change are a powerful hook to engage students and the public with geoscience. Recent lake sediments often feature visual and compositional evidence of anthropogenic changes, which can pique curiosity and serve as a gateway for interest in more remote past changes. Cores provide an integrative, place-based geoscience education/outreach platform: lake dynamics incorporate principles of chemistry, physics, and biology; lake basin formation and sedimentary signals trace back to numerous geoscience subdisciplines. Lakes reflect local changes, and so are inherently place-based and relevant to both rural and urban populations. The esthetics of lakes in the landscape and sediments under the microscope spark the artistic sensibilities of those who do not consider themselves scientists: lakes are readymade for STEAM education. LacCore has exploited the magic of lake sediment cores in its 15 years as an NSF Facility, and now expands to additional environments as the NSF Continental Scientific Drilling Coordination Office. Part of scaling up is the formalization of major support for the Broader Impacts (BI) activities of Facility users. LacCore/CSDCO now musters its collaborative experiences in site REUs and other undergrad research projects, in-depth training of students, teachers, and faculty, a long list of informal education experiences, and common-good software development, to provide assistance to researchers seeking meaningful broader impacts and educators seeking extra- or co-curricular field and laboratory research experiences for their students. Outreach, diversity, and education support includes dissemination of best practices, as well as coordination, administration, and basic capacity for such activities in collaboration with project PIs and students, through no-cost support, or collaborative proposals or supplements from NSF where necessary for project scale. Community-driven research and broadening participation are central to the vision. In the same way that LacCore/CSDCO nurtures drilling and coring project concepts through to fruition, it can foster the BI activities critical to project success in 21st century geoscience, where the challenges are profound, the answers are depressing, and real impacts may occur on the scale of only a few individuals.

  16. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  17. Reaching Beyond the Geoscience Stigma: Strategies for Success

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2004-12-01

    The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.

  18. Communicating Climate Change: the Problem of Knowing and Doing.

    NASA Astrophysics Data System (ADS)

    Wildcat, D.

    2008-12-01

    The challenge of global warming and climate change may illustrate better than any recent phenomenon that quite independent of the science associated with our assessment, modeling, mitigation strategies and adaptation to the multiple complex processes that characterize this phenomenon, our greatest challenge resides in creating systems where knowledge can be usefully communicated to the general public. Knowledge transfer will pose significant challenges when addressing a topic that often leaves the ill-informed and non-scientist overwhelmed with pieces of information and paralyzed with a sense that there is nothing to be done to address this global problem. This communication problem is very acute in North American indigenous communities where a first-hand, on-the-ground, experience of climate change is indisputable, but where the charts, graphs and sophisticated models presented by scientists are treated with suspicion and often not explained very well. This presentation will discuss the efforts of the American Indian and Alaska Native Climate Change Working Group to prepare future generations of AI/AN geoscience professionals, educators, and a geoscience literate AI/AN workforce, while insuring that our Indigenous tribal knowledges of land- and sea-scapes, and climates are valued, used and incorporated into our tribal exercise of geoscience education and research. The Working Group's efforts are already suggesting the communication problem for Indigenous communities will best be solved by 'growing' our own culturally competent Indigenous geoscience professionals.

  19. The "Planet Earth Week": a National Scientific Festival helping Italy Discover Geosciences.

    NASA Astrophysics Data System (ADS)

    Seno, S.; Coccioni, R.

    2017-12-01

    The "Planet Earth Week- Italy Discovering Geosciences: a More Informed Society is a More Engaged Society" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country (see map) are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Planet Earth Week is growing year after year: the 2016 edition proposed 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  20. US Army Research Office research in progress, July 1, 1991--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less

  1. Integrating Research and Education in NSF's Office of Polar Programs

    NASA Astrophysics Data System (ADS)

    Wharton, R. A.; Crain, R. D.

    2003-12-01

    The National Science Foundation invests in activities that integrate research and education, and that develop reward systems to support teaching, mentoring and outreach. Effective integration of research and education at all levels can infuse learning with the excitement of discovery. It can also ensure that the findings and methods of research are quickly and effectively communicated in a broader context and to a larger audience. This strategy is vital to the accomplishment of NSF's strategic goals of ensuring a world-class science and engineering workforce, new knowledge across the frontiers of science and engineering, and the tools to get the job done efficiently and effectively. The NSF's Office of Polar Programs sponsors educational projects at all levels of learning, making full use of the variety of disciplinary and interdisciplinary studies in the polar regions to attract and invigorate students. An array of efforts from the Arctic and Antarctic scientific communities link research activities with education. There has been an advance from the beneficial but isolated impacts of individual researcher visits to K-12 classrooms to large-scale developments, such as field research experiences for teachers and undergraduate students, online sharing of polar field experiences with rural classrooms, the institution of interdisciplinary graduate research programs through NSF initiatives, and opportunities for minority and underrepresented groups in polar sciences. The NSF's criterion for evaluating proposals based upon the broader impacts of the research activity has strengthened efforts to link research and education, resulting in partnerships and innovations that infuse research into education from kindergarten through postdoctoral studies and reaching out to the general public. In addition, the Office of Polar Programs partners with other directorates at NSF to broaden OPP's efforts and benefit from resources and experience in the Education and Human Resources Directorate, the Geosciences Education program, the Environmental Research and Education program and others. This presentation will provide an overview of the direction of science education in the Office of Polar Programs and highlight some important and long-lasting ventures. It is intended to encourage the Arctic and Antarctic scientific communities to look for additional avenues to bridge their research with education.

  2. Workforce Preparation - A Breakout Session for the Building Strong Geoscience Departments Visiting Workshop Program

    NASA Astrophysics Data System (ADS)

    Doser, D. I.

    2009-12-01

    We have designed a workshop breakout session and accompanying web based materials to assist geoscience departments in better preparing their students for professional careers following graduation. The session explores ways to obtain feedback about career preparation from employers and alumni that can be used to develop more effective curriculum, as well as departmental activities to better prepare students for employment opportunities. In addition, it identifies sources outside a department that can be used in the workforce preparation process and methods to assess any changes implemented to prepare students for the workforce. Concrete examples include feedback from a survey of recent (< 5 years) alumni at the University of Texas at El Paso, student run research meetings with built-in assessment opportunities, and a wealth of on-line resources. The session was initially tested in June 2009 at the Strengthening Your Strong Geoscience Department workshop. Comments from the June participants have been used to improve the session for the 2009-2010 “visiting workshop” program.

  3. The use of Web-based GIS data technologies in the construction of geoscience instructional materials: examples from the MARGINS Data in the Classroom project

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.; McIlrath, J. A.

    2008-12-01

    Web-accessible geospatial information system (GIS) technologies have advanced in concert with an expansion of data resources that can be accessed and used by researchers, educators and students. These resources facilitate the development of data-rich instructional resources and activities that can be used to transition seamlessly into undergraduate research projects. MARGINS Data in the Classroom (http://serc.carleton.edu/ margins/index.html) seeks to engage MARGINS researchers and educators in using the images, datasets, and visualizations produced by NSF-MARGINS Program-funded research and related efforts to create Web-deliverable instructional materials for use in undergraduate-level geoscience courses (MARGINS Mini-Lessons). MARGINS science data is managed by the Marine Geosciences Data System (MGDS), and these and all other MGDS-hosted data can be accessed, manipulated and visualized using GeoMapApp (www.geomapapp.org; Carbotte et al, 2004), a freely available geographic information system focused on the marine environment. Both "packaged" MGDS datasets (i.e., global earthquake foci, volcanoes, bathymetry) and "raw" data (seismic surveys, magnetics, gravity) are accessible via GeoMapApp, with WFS linkages to other resources (geodesy from UNAVCO; seismic profiles from IRIS; geochemical and drillsite data from EarthChem, IODP, and others), permitting the comprehensive characterization of many regions of the ocean basins. Geospatially controlled datasets can be imported into GeoMapApp visualizations, and these visualizations can be exported into Google Earth as .kmz image files. Many of the MARGINS Mini-Lessons thus far produced use (or have studentss use the varied capabilities of GeoMapApp (i.e., constructing topographic profiles, overlaying varied geophysical and bathymetric datasets, characterizing geochemical data). These materials are available for use and testing from the project webpage (http://serc.carleton.edu/margins/). Classroom testing and assessment of the Mini- Lessons begins this Fall.

  4. Energy Education Resources: Kindergarten through 12th Grade.

    ERIC Educational Resources Information Center

    Energy Information Administration (DOE), Washington, DC.

    This resource guide provides students, educators, and other information users with a list of generally available free or low-cost energy-related educational materials. The 163 organizations listed are each related to the subject fields of coal, electricity, energy efficiency/energy conservation, the environment, geosciences/earth sciences, natural…

  5. Student Media Production to Meet Challenges in Climate Change Science Education

    ERIC Educational Resources Information Center

    Rooney-Varga, Juliette N.; Brisk, Angelica Allende; Adams, Elizabeth; Shuldman, Elizabeth; Rath, Kenneth

    2014-01-01

    While the need for effective climate change education is growing, this area of geoscience also poses unique educational challenges. These challenges include the politicization of climate change, the psychological and affective responses it elicits, and common misconceptions, which can all create barriers to learning. Here, we present an…

  6. Texas A&M Geosciences and the growing importance of transfer students

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2012-12-01

    Texas A&M University at College Station is the flagship university for the Texas A&M System, and is a major destination for transfer students, both from inside and outside the A&M system. The College of Geosciences consists of four academic departments and organized research centers spanning geoscience disciplines of Geology & Geophysics, Geography, Oceanography and Atmospheric Sciences. Two additional interdisciplinary degree programs offer undergraduate degrees in Environmental Geosciences and Environmental Studies and graduate degrees in Water and Hydrological Sciences. The College has increased its undergraduate enrollment and graduation numbers substantially in recent years, growing from 105 Baccalaureate graduates in 2006-07 College-wide to 187 in 2010-11. This 80% growth over this time period has greatly outpaced the undergraduate degree completion growth rate of 10% for the University as a whole. While the College of Geosciences is still the smallest at A&M in terms of overall B.S. graduation rate, it is by far the fastest growing of the nine undergraduate degree-granting colleges over the last five years. A significant number of our incoming and graduating undergraduate students are transfers from primarily 2-year colleges, mostly concentrated in the southeastern portion of Texas. University-wide between 2006 and 2010, 23-25% of degree recipients entered as transfer students. In the College of Geosciences transfer students are an even more significant portion of our graduating students, making up 34-35% of graduates during the same period. Most of the recent undergraduate enrollment growth in the College, however, has come from an increase in first-time freshmen and not from an increase in transfer admissions. Recent efforts to reinvigorate transfer admissions have sharply reversed this trend. Current enrollment data shows that incoming transfer students this year once again more closely mirror historic graduation rates with 34% of our new students entering by transferring in. Beyond the numbers, there are other observations, concerns, and opportunities for partnerships between Texas A&M Geosciences and our surrounding community college students and programs. Through careful tracking of admitted transfer students, we have seen an unfortunate but consistent drop in GPAs among most transfers after arriving at Texas A&M. This results from gaps in preparation, mismatches in expectations, or curricular stumbling blocks. Recognition of this problem has provided an opportunity to spur efforts to help this incoming third of our student body reach their highest potential. Community college populations in our region also tend to be more diverse than first-time freshmen in general, and we are actively working to build stronger formal ties to community college feeder programs within the Houston metro area and other targeted regions within southeast Texas as part of our broader strategy to enhance diversity across our College. Seeing after the proper preparation and "onboarding" of this increasingly diverse and varied group of transfer students will be important for ensuring their success and the vitality of undergraduate programs in the geosciences as the entire university moves toward an increased emphasis on community college transfers.

  7. Workshop initial report: Expanding the geoscience pipeline by connecting educators with early career IODP scientists

    NASA Astrophysics Data System (ADS)

    Lewis, J. C.; Cooper, S. K.; Hovan, S. A.; Leckie, R. M.; White, L. D.

    2017-12-01

    The U.S. is facing challenges in attracting, retaining and diversifying the workforce in the geosciences. A likely contributing factor is the homogeneity of the pool of mentors/role models available both within the workforce and in the U.S. professoriate. Another probable factor is "exposure gaps" among U.S. student populations; i.e., differing access to engaging facets of science, technology, engineering and mathematics (STEM). In response, we organized an 18-day School of Rock workshop onboard the International Ocean Discovery Program (IODP) drilling vessel JOIDES Resolution during a July 2017 transit in the western Pacific. Our objectives were diversity driven, focusing on measures to broaden participation at all levels (i.e., K-12, undergraduate and beyond) in innovative ways (e.g., from place-base curriculum to longitudinal peer mentoring through extracurricular STEM communities). To accomplish this, we designed a recruiting scheme to attract pairs of participants, specifically a teacher from a diverse community and a nearby early-career scientist with an interest in IODP science. By partnering in this way we sought to foster connections that might not naturally emerge, and therein to establish new mechanisms for increased engagement, broader recruitment, enhanced support, and improved retention of students from underrepresented communities in STEM education. We report on initial workshop outcomes that include new curriculum proposals, nascent funding proposals, and innovative connections among secondary educators and early-career scientists. Survey results of our participants gauge the expected impacts of the workshop on perceptions and on plans for future actions aimed at broadening participation.

  8. Geoscientist/Educator Partnerships at the University of Colorado: Strategies and Examples

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Hare, J.; Healy, G.

    2005-05-01

    According to a study about the factors that engage and hinder scientists' involvement in education and outreach (Andrews et.al., 2005), the presence of a dedicated outreach coordinator who can provide a point of contact and lessen the burden on scientists is one of the keys to success. For the past nine years, research scientists at the Cooperative Institute for Research in Environmental Sciences (CIRES) have worked in partnership with just such a coordinating team, the CIRES Education and Outreach group. As funding agency emphasis on education and social impacts has increased, so have the opportunities to develop educational projects intrinsically linked to current geoscience research. One such effort is Ocean Interactions, a project which began as a ship-shore student communication opportunity at the initiation of the researcher. The roles of each contributor to the partnership will be described, along with the framework through which CIRES supports scientist/educator partnerships of this sort. Andrews, Elisabeth, Alexandra Weaver, Daniel Hanley, Jeff Hovermill, Ginger Melton. 2005. "Scientists and Public Outreach: Participation, Motivations and Impediments." Journal of Geoscience Education in press May 2005.

  9. What Opportunities, When?: A Framework for Student Career Development

    NASA Astrophysics Data System (ADS)

    MacDonald, H.

    2007-12-01

    Geoscience faculty and departments have an important role to play in the professional development of their students for careers in the geosciences or other fields. We can promote career development of students at different career stages (e.g., first year students, geoscience majors, and graduate students) and in various ways by 1) providing information about jobs and careers, 2) encouraging exploration of options, 3) providing experiences throughout their program that develop skills, knowledge, and attitudes, and 4) supporting students in their job search. For example, in teaching general education classes, we can provide information about jobs and careers in the geosciences, showing images of specific geoscientists and discussing what they do, providing examples of practical applications of course content, and describing job prospects and potential salaries. For majors, this type of information could be presented by seminar speakers, through career panels, and via alumni newsletters. Exploration of options could include research and/or teaching experiences, internships, informational interviews, and involvement with a campus career services center. Courses throughout the curriculum as well as co-curricular experiences serve to provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of jobs. Departments can support the job search by providing networking opportunities for students and alumni, widely distributing job announcements and encouraging individual students, offering departmental sessions on graduate school, different career options, and /or the job search process, conducting mock interviews and resume review sessions, and fostering connections between students and alumni. In all of this, we need to be supportive of student choices. Overall, faculty can help students make more informed career decisions and develop skills that will be of value in their career through a variety of strategies, work with students as an advisor or mentor to help them explore career options, and collaborate with the career service center on campus.

  10. GOLD: Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.

  11. Using Research Data to Stimulate Critical Thinking in Undergraduate Geoscience Courses: Examples and Future Directions

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.

    2007-12-01

    The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO (http://www.geomapapp.org/). Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.

  12. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences to the scientific community and interviews/classroom observations of teachers to determine the transfer of knowledge from the teacher to the students through the implementation of their Action Plans into their classroom.

  13. Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming

    NASA Astrophysics Data System (ADS)

    Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.

    2011-12-01

    Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be vulnerable to elimination believe they are in a better position to survive and thrive. All five departments reported changes to their curriculum that addressed goals such as attracting more majors, recruiting students from underrepresented groups and integrating initiatives such as service learning. Three departments reported making strides to increase their visibility by implementing new community activities, involving alumni, and using social networking. Two departments became more intentional in collecting data for assessment/external review. As one department member shared, they learned that it was not enough to just teach and to do good research, they became their own advocates for change and believe it made a significant difference in their success on campus.

  14. Paleoclimate of the Southern San Joaquin Valley, CA: Research Participation Opportunities for Improving Minority Participation and Achievement in the Geosciences

    NASA Astrophysics Data System (ADS)

    Baron, D.; Negrini, R.; Palacios-Fest, M. R.

    2004-12-01

    Numerous studies have shown that one of the best ways to draw students into geoscience programs is to expose them and their teachers to research projects designed to investigate issues relevant to their lives and communities. To be most effective, involvement in these projects should begin at the pre-college level and continue throughout their college career. Recognizing the importance of genuine research experiences, the Department of Geology at California State University, Bakersfield (CSUB), with support from the National Science Foundation's Opportunities for Enhancing Diversity in the Geosciences program, provides research participation opportunities for teachers and students from the Bakersfield City School District and the Kern High School District. Both districts have a high percentage of low-income and minority students that normally would not consider a degree or career in the geosciences. The project centers around a four-week summer research program and follow-up activities during the school year. The research investigates the climate history of the southern San Joaquin Valley as well as the frequency of flooding in the valley. Many teachers and students are familiar with periodic flooding from personal experience and are aware of the larger issue of climate change in the past and present from news reports. Thus, they can directly relate to the relevance of the research. The project draws on the faculty's expertise in paleoclimatology and geochemistry and takes advantage of CSUB's existing research facilities. Sediments in the dry lake basins of Buena Vista Lake and Kern Lake preserve a record of the regional climate history and flooding of the Kern River and its tributaries. In the first year of the project, 6 teachers and 10 high school students worked with CSUB faculty and students. Three cores from the lake basins were collected. The cores were analyzed using established geophysical, geochemical, lithological, and micropaleontological techniques. The analyses of the sediment samples range from simple tasks such as core descriptions or total organic carbon analysis to complex procedures such as the separation, identification, and chemical analysis of ostracode shells. Thus, the participants can find tasks appropriate to their diverse backgrounds and experience. CSUB students served as mentors and role models for high school students. Surveys conducted before and after the summer program indicate that knowledge of climate change and local geology of both teachers and students increased. Student's attitudes towards the geosciences and possible geoscience careers improved.

  15. Along the Virtuality Continuum - Two Showcases on how xR Technologies Transform Geoscience Research and Education

    NASA Astrophysics Data System (ADS)

    Klippel, A.; Zhao, J.; Masrur, A.; Wallgruen, J. O.; La Femina, P. C.

    2017-12-01

    We present work along the virtuality continuum showcasing both AR and VR environments for geoscience applications and research. The AR/VR project focusses on one of the most prominent landmarks on the Penn State campus which, at the same time, is a representation of the geology of Pennsylvania. The Penn State Obelisk is a 32" high, 51 ton monument composed of 281 rocks collected from across Pennsylvania. While information about its origins and composition are scattered in articles and some web databases, we compiled all the available data from the web and archives and curated them as a basis for an immersive xR experience. Tabular data was amended by xR data such as 360° photos, videos, and 3D models (e.g., the Obelisk). Our xR (both AR and VR) prototype provides an immersive analytical environment that supports interactive data visualization and virtual navigation in a natural environment (a campus model of today and of 1896, the year of the Obelisk's installation). This work-in-progress project can provide an interactive immersive learning platform (specifically, for K-12 and introductory level geosciences students) where learning process is enhanced through seamless navigation between 3D data space and physical space. The, second, VR focused application is creating and empirically evaluating virtual reality (VR) experiences for geosciences research, specifically, an interactive volcano experience based on LiDAR and image data of Iceland's Thrihnukar volcano. The prototype addresses the lack of content and tools for immersive virtual reality (iVR) in geoscientific education and research and how to make it easier to integrate iVR into research and classroom experiences. It makes use of environmentally sensed data such that interaction and linked content can be integrated into a single experience. We discuss our workflows as well as methods and authoring tools for iVR analysis and creation of virtual experiences. These methods and tools aim to enhance the utility of geospatial data from repositories such as OpenTopography.org through unlocking treasure-troves of geospatial data for VR applications. Their enhanced accessibility in education and research for the geosciences and beyond will benefit geoscientists and educators who cannot be expected to be VR and 3D application experts.

  16. The National Geological and Geophysical Data Preservation Program

    NASA Astrophysics Data System (ADS)

    Dickinson, T. L.; Steinmetz, J. C.; Gundersen, L. C.; Pierce, B. S.

    2006-12-01

    The ability to preserve and maintain geoscience data and collections has not kept pace with the growing need for accessible digital information and the technology to make it so. The Nation has lost valuable and unique geologic records and is in danger of losing much more. Many federal and state geological repositories are currently at their capacity for maintaining and storing data or samples. Some repositories are gaining additional, but temporary and substandard space, using transport containers or offsite warehouses where access is limited and storage conditions are poor. Over the past several years, there has been an increasing focus on the state of scientific collections in the United States. For example, the National Geological and Geophysical Data Preservation Program (NGGDPP) Act was passed as part of the Energy Policy Act of 2005, authorizing $30 million in funding for each of five years. The Act directs the U.S. Geological Survey to administer this program that includes a National Digital Catalog and Federal assistance to support our nation's repositories. Implementation of the Program awaits federal appropriations. The NGGDPP is envisioned as a national network of cooperating geoscience materials and data repositories that are operated independently yet guided by unified standards, procedures, and protocols for metadata. The holdings will be widely accessible through a common and mirrored Internet-based catalog (National Digital Catalog). The National Digital Catalog will tie the observations and analyses to the physical materials they come from. Our Nation's geological and geophysical data are invaluable and in some instances irreplaceable due to the destruction of outcrops, urbanization and restricted access. These data will enable the next generation of scientific research and education, enable more effective and efficient research, and may have future economic benefits through the discovery of new oil and gas accumulations, and mineral deposits.

  17. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching. Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.

  18. Video and Visualization to Communicate Current Geoscience at Museums and Science Centers

    NASA Astrophysics Data System (ADS)

    Allen, L.; Trakinski, V.; Gardiner, N.; Foutz, S.; Pisut, D.

    2012-12-01

    Science Bulletins, a current-science video exhibition program produced by the American Museum of Natural History, was developed to communicate scientific concepts and results to a wide public and educator audience. Funded by a NOAA Environmental Literacy Grant and developed in collaboration with scientists, a series of Science Bulletins pieces mixes data visualization, video, and non-narrated text to highlight recent issues and findings relevant to short and long-term change in the Earth system. Some of the pieces have been evaluated with audiences to assess learning outcomes and improve practices. Videos, evaluation results, and multiplatform dissemination strategies from this series will be shared and discussed.

  19. Geoscience Education and Public Outreach AND CRITERION 2: MAKING A BROADER IMPACT

    NASA Astrophysics Data System (ADS)

    Marlino, M.; Scotchmoor, J. G.

    2005-12-01

    The geosciences influence our daily lives and yet often go unnoticed by the general public. From the moment we listen to the weather report and fill-up our cars for the daily commute, until we return to our homes constructed from natural resources, we rely on years of scientific research. The challenge facing the geosciences is to make explicit to the public not only the criticality of the research whose benefits they enjoy, but also to actively engage them as partners in the research effort, by providing them with sufficient understanding of the scientific enterprise so that they become thoughtful and proactive when making decisions in the polling booth. Today, there is broad recognition within the science and policy community that communication needs to be more effective, more visible, and that the public communication of the scientific enterprise is critical not only to its taxpayer support, but also to maintenance of a skilled workforce and the standard of living expected by many Americans. In 1997, the National Science Board took the first critical step in creating a cultural change in the scientific community by requiring explicit consideration of the broader impacts of research in every research proposal. The so-called Criterion 2 has catalyzed a dramatic shift in expectations within the geoscience community and an incentive for finding ways to encourage the science research community to select education and public outreach as a venue for responding to Criterion 2. In response, a workshop organized by the University of California Museum of Paleontology and the Digital Library for Earth System Education (DLESE) was held on the Berkeley campus May 11-13, 2005. The Geoscience EPO Workshop purposefully narrowed its focus to that of education and public outreach. This workshop was based on the premise that there are proven models and best practices for effective outreach strategies that need to be identified and shared with research scientists. Workshop participants delineated a series of recommendations that would facilitate clarity with respect to Criterion 1, recognition and reward for involvement in EPO activities, and methods for documenting and disseminating institutional models. There was a clear focus on the need for cultural change at many levels -- a change that genuinely motivates and rewards research and education communities to work together. Such collaboration would contribute to a greater appreciation of the scientific enterprise, a broader understanding of the scientific process, and increased scientific understanding at all learning levels.

  20. Extending the Pathway: Building on a National Science Foundation Workforce Development Project for Underserved k-12 Students

    NASA Astrophysics Data System (ADS)

    Slattery, W.; Smith, T.

    2014-12-01

    With new career openings in the geosciences expected and a large number of presently employed geoscientists retiring in the next decade there is a critical need for a new cadre of geoscientists to fill these positions. A project funded by the National Science Foundation titled K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career involving Wright State University and the Ripley, Lewis, Union, Huntington k-12 school district in Appalachian Ohio took led to dozens of seventh and eighth grade students traveling to Sandy Hook, New Jersey for a one week field experience to study oceanography with staff of the New Jersey Sea Grant Consortium. Teachers, parent chaperones, administrators and university faculty accompanied the students in the field. Teachers worked alongside their students in targeted professional development during the weeklong field experience. During the two academic years of the project, both middle school and high school teachers received professional development in Earth system science so that all students, not just those that were on the summer field experience could receive enhanced science learning. All ninth grade high school students were given the opportunity to take a high school/college dual credit Earth system science course. Community outreach provided widespread knowledge of the project and interest among parents to have their children participate. In addition, ninth grade students raised money themselves to fund a trip to the International Field Studies Forfar Field Station on Andros Island, Bahamas to study a tropical aquatic system. Students who before this project had never traveled outside of Ohio are currently discussing ways that they can continue on the pathway to a geoscience career by applying for internships for the summer between their junior and senior years. These are positive steps towards taking charge of their own learning and shows promise of raising parents, teachers, administrators and other k-12 students awareness of educational opportunities in the geosciences, confidence in the ability of underserved rural students to reach their educational goals and supporting them through the critical middle and high school years towards a geoscience career.

  1. Wakimoto discusses role as NSF's incoming assistant director of geosciences

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Roger Wakimoto's adrenaline “is starting to pump,” the incoming assistant director for geosciences (GEO) at the U.S. National Science Foundation (NSF) told Eos during an exclusive interview at this month's AGU Fall Meeting in San Francisco. Wakimoto, whose scientific expertise is in extreme weather, is scheduled to take charge as head of the NSF directorate for geosciences starting in February 2013. During his 4-year appointment at NSF, Wakimoto, 59 and an avowed workaholic, will head up the GEO directorate, which has about an $880 million annual funding portfolio and provides about 55% of federal funding for geosciences basic research at U.S. academic institutions. The directorate currently includes the divisions of atmospheric and geospace sciences, Earth sciences, and ocean sciences. In addition, NSF's Office of Polar Programs is slated to become a GEO division under a realignment plan announced on 7 September; Wakimoto said that shift had “no bearing” on his decision to accept the position.

  2. Geologic Problem Solving in the Field: Analysis of Field Navigation and Mapping by Advanced Undergraduates

    ERIC Educational Resources Information Center

    Riggs, Eric M.; Lieder, Christopher C.; Ballliet, Russell

    2009-01-01

    Field instruction is a critical piece of undergraduate geoscience majors' education, and fieldwork remains a major part of the work of professional geologists. Despite the central importance of field education, there exists relatively little educational research exploring how students learn to solve problems in geological fieldwork. This study…

  3. How would you decide? Helping geoscience students consider ethical dimensions in a gescience context

    NASA Astrophysics Data System (ADS)

    Bank, C. G.; Ryan, A. M.

    2017-12-01

    This presentation shows an example of infusing ethics into geoscience teaching, and a preliminary analysis of student answers to an exam question to establish whether this example can be used in an effective way. We presented a case study on floods in two distribution geoscience courses, and provided students with criteria to come to an ethical decision. One course was taught in winter 2016 and the other in summer 2016 with a total of 358 students. Pre- and post-questionnaires allow only limited conclusions because just 33 students answered both. In the exam we asked students if they would evacuate a small aboriginal settlement to prevent flooding in a large city. We coded their answers according to the criteria (stakeholders, contributions by geoscientists, alternative options, and assumptions) they were provided in class. While students did well listing stakeholders and recalling contributions by geoscientists they struggled to provide alternative options. Still, many of them verbalized assumptions inherent in their thoughts and nearly half of students recognized that this is a complex problem. We posit that a case study is a valid way to encourage students to link ethics to a geoscience issue, and propose that our framework may empower geoscience educators who do not necessarily feel comfortable teaching ethics to add this element to their teaching toolkit.

  4. Geosciences Information for Teachers (GIFT) in Catalonia

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and produced by a team of researchers of the Marine Geosciences Research Group of the University of Barcelona, high school teachers, and professionals of multimedia communication. Key aspects of the documentaries are: - Easy language and international accessibility (Catalan, Spanish and English language); - Addressing of hot topics and highly debated issues in geosciences; - Use of the proximity of researchers to the citizens (the story is told with the help of real scientists accessible by the citizen); - Use of video footage recorded by scientists specifically trained to do so during their field work; - Avoidance of catastrophism and excessive dramatization of scientific problems; - Use of slow times and emphasis on the aspects of contemplation, beauty, and astonishment in the daily work of geoscientists. MARENOSTRUM TERRANOSTRA production to date: Ice: The historian of the Earth. 2008. DVD PAL, colour, 27 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English. 20 thousand years. The history of the last big natural climate change of the earth. 2009. DVD PAL, colour, 25 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English. Hidden Corals. 2010 (release date May 2010). DVD PAL, colour, 30 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English.

  5. Grand Canyon as a universally accessible virtual field trip for intro Geoscience classes using geo-referenced mobile game technology

    NASA Astrophysics Data System (ADS)

    Bursztyn, N.; Pederson, J. L.; Shelton, B.

    2012-12-01

    There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological question. The students must answer each question correctly in order to proceed to the next location and accrue points in the game and multiple attempts reduce the number of points earned when the correct answer is found. The questions are either multiple choice or involve touch-screen interaction to identify a specific geologic feature. Initial testing of the prototype game in Historical and Physical geology courses at Utah State University indicate that students enjoy the mobile "exploration" nature of the game as well as experiencing photographs of geologic features rather than traditional cartoons. Qualitative evaluation using anonymous surveys was conducted to help determine the usability of the game and the potential effectiveness of this technology-based approach. Students were asked about the degree of fun and difficulty of the game, content learned, and their overall response to features they liked/disliked about it. The results of these early assessments are positive, both in regard to the improvement of students' understanding of key geology concepts and their enjoyment of learning with the technology in a mobile orienteering manner. This is a positive first step in an innovative teaching tool with the power to overcome the pervasive problem of the boring first year STEM course and make world-class field trips accessible to all.

  6. Field Test of a Peer Review System for Digital Geoscience Education Resources

    NASA Astrophysics Data System (ADS)

    Mayhew, M. A.; Hall, M. K.

    2007-12-01

    We report the results of an experiment aimed at developing a rigorous peer review system for evaluating digital geoscience education resources under consideration for acceptance into a digital library. The objective is the basis for developing a digital library of the highest quality that will become a trusted resource for Earth science instructors. Our model is NSF-style review panels. Panels were convened in locations having colleges, universities, and labs: Philadelphia, Boston, Austin, St. Petersburg, Seattle, Tucson, and Portland (Maine). The conveners traveled to the sites for the panel meetings. Panelists were reputable geoscience and geoscience education experts. The panelists proved to be uniformly supportive of the process and valued both the experience of serving on the panels and the introduction to resources they could take back to their classroom; thus, the process proved to have a valuable community-building component. The resources reviewed in the experiment, grouped by theme, were provided by the Science Education Resource Center at Carleton College; they are also catalogued in DLESE and NSDL. Panelists wrote reviews that addressed the criteria: 1) scientific accuracy and currency, 2) usability, and 3) pedagogical effectiveness. Additionally, the reviews addressed the questions: 1) Does this resource make an important contribution to Earth system education? 2) Would you recommend this resource to a colleague? and If you recommend major revisions for this resource, would you be willing to review it again? Each review concluded with a recommended action: 1) Accept, 2) Accept with minor revisions, 3) Accept with major revisions, or 4) Reject. Accept with major revisions requires a review by a subset of the panel conducting the original review. Once accepted, a resource enters a reviewed collection, with a specific indicator that it has been through the peer review process. Each panel was invited to single out those resources they considered particularly exemplary, which we refer to as a gold star rating; such resources will be indicated as such in the reviewed collection. Following the panel meetings, the conveners wrote summaries of the panel discussion for each resource; these are transmitted to the creator, along with anonymous versions of the reviews. The panel process proved to be a critical filter for the reviewed resources. Relatively few resources were accepted as is. In most cases, the majority of the resources were either designated as 1) Reject or 2) Accept with major revisions. Resources were most often rejected for their lack of completeness to be used in a classroom or they contained scientific accuracies. The review process modeled provides a basis for building a trusted geoscience education digital library of the highest quality on a less-is-more foundation, as opposed to the prevailing more-is-better philosophy. project.org/isovera/peerreview

  7. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  8. History of Geoscience Research Matters to You

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2017-12-01

    The geosciences have a long, distinguished, and very useful history Today's science is tomorrow's history of science. If we don't study the past, then every decision we face will seem unprecedented. If we don't study the history of science and apply its lessons, then I don't think we can say we really understand science. Actual research results and ongoing programs will be highlighted, with a focus on public understanding and support for atmospheric science and global change.

  9. GOLD (GEO Opportunities for Leadership in Diversity): Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.

    2017-12-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.

  10. Virtual Reality as a Story Telling Platform for Geoscience Communication

    NASA Astrophysics Data System (ADS)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.

  11. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  12. From Planet Earth to Society: a new dynamics in Portugal about Geosciences Education and Outreach

    NASA Astrophysics Data System (ADS)

    Silva, Elizabeth; Abreu Sá, Artur; José Roxo, Maria

    2013-04-01

    Since the United Nations General Assembly declared the year 2008 as the International Year of Planet Earth (IYPE), during the triennium 2007-2009, under the motto Earth Sciences for Society, many impacts and changes were generated among the Portuguese society. Today is possible to say that those were due to the work of the Portuguese National Committee for the IYPE. After 2009, the Portuguese National Commission for UNESCO created the Portuguese National Committee for the International Programme of Geosciences (IGCP) with the main goal to continue the work done during the IYPE. Among those activities, a Workshop entitled "InFormation in Context" was organized by the UNESCO NatCom - Portugal, in collaboration with the IGCP National Committee and the National Public Television (RTP). This activity was created to reach specially journalists, aiming to give them more information in context, related to Earth matters, mainly related to natural hazards and Climate Change. It is essential that society knows its degree of vulnerability to the occurrence of extreme natural phenomena, which are the basis of natural catastrophes, with serious social and economic consequences. Thus, it is crucial the development of a culture of prevention and precaution, which hinges on a correct information, based in scientific knowledge on causes and consequences of extreme natural phenomena. At the same time, it is necessary the implementation of mitigation and adaptation measures, based on the analysis and cartography of risks, and in an effective monitoring process. During these workshops particular emphasis was given to the need to inform and educate the society in general, and students in particular, to the reality of living in a dynamic planet. Particular importance was given to natural hazards, such as those resulting from earthquakes landslides, floods, droughts, heat and cold waves and storms, which are those with the greatest potential danger in Portugal. An informed society is a society which, based on its intrinsic resilience, can live and deal with the inherent risk of occurring natural disasters. Because education about our dynamic planet is a key process to contribute for the awareness of our society, the Portuguese National Committee for IGCP is developing a new Educational Program, to be implemented nationwide in the 2013/14 scholar year, named "GEA - Mother Earth". This will allow the publishing of an Annual Report with the main results obtained with the work carried out by teachers and students. Simultaneously, the narrow cooperation with the Portuguese National Forum of Geoparks allows the National Committee for IGCP to develop other strategies and initiatives about education and outreach in Geosciences. In this sense, the colloquium "Geoparks: a reality of sustainable development" carried out within the framework of the Portuguese Geoparks Exhibition, that was held during an entire week, in the Portuguese Parliament, was a great step forward in order to raise the importance of these issues for decision makers. This new reality shows that a new socio-political reality about the importance of the Geosciences and the role of Geoscientists is now in progress in Portugal.

  13. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  14. Keeping informed: using surveys of graduating students and alumni as an aid to curriculum development

    NASA Astrophysics Data System (ADS)

    Eyles, C. H.; Vajoczki, S.; Benson, A.; Sharp, J.

    2005-12-01

    The School of Geography and Geology (now named the School of Geography and Earth Sciences, SGES) was created in 1998 through amalgamation of the former departments of Geography and Geology. One of the first tasks of the new School was to revise and restructure the undergraduate B.Sc. programs it offered in order to meet changing societal and employer needs and to attract more students. A series of surveys were conducted to collect information from in-program students, alumni, and potential employers regarding the most valuable characteristics of an `ideal' geoscience graduate and a successful undergraduate program. The survey results identified substantive knowledge areas, geoscience skills and personal skills that were considered to be essential for all graduating students. This information was used to help design a single B.Sc Honours program in Earth and Environmental Sciences (EES) consisting of a common `core' program, specialist streams, systematic personal skills development and opportunities for experiential learning. Although the EES program, which has been in operation since 2000, is considered to be successful in terms of student and faculty satisfaction, student employment and undergraduate enrolments, it is subject to ongoing evaluation and development. Surveys of graduating students (exit surveys) are conducted on a regular basis in order to evaluate student satisfaction with their program and perceptions of their level of preparation for future careers. Results from recent surveys indicate that students have a high level of overall satisfaction, are reasonably confident with the skills they have developed and have benefited from the educational culture of the School. A number of weaknesses in the program have also been identified, including problems with individual course content and instruction, and paucity of experiential learning opportunities in certain areas. These issues will be addressed in future program revisions. Ongoing feedback from student surveys regarding both the strengths and weaknesses of the undergraduate program has been an invaluable asset to curriculum evaluation and development in SGES. McMaster University is currently conducting a comprehensive survey of curriculum development methodologies in all faculties and disciplines and SGES has significant input into this process.

  15. Introduction to Climate Change from an Indigenous Perspective: an undergraduate course developed by and for Tribal Colleges and Universities

    NASA Astrophysics Data System (ADS)

    Mitchell, K. A.; Pandya, R. E.; Kahn-Thornbrugh, C.; Newberry, T.; Carroll, M.; Guinn, M.; Vanlopik, W.; Haines, C.; Wildcat, D.

    2010-12-01

    Thirty-six Tribal Colleges and Universities (TCUs) serve over 20,000 Native American undergraduate students across the US. TCUs were created in response to the higher education needs of American Indians and generally serve geographically isolated populations that have no other means accessing education beyond the high school level. TCUs have become increasingly important to educational opportunity for Native American students and are unique institutions that combine personal attention with cultural relevance to encourage Native Americans to overcome the barriers they face to higher education. The American Indian Higher Education Consortium (AIHEC) coordinated development of a semester-long geosciences program of study with a unique curriculum that introduces tribal college students to multiple disciplines in the geosciences within the topic of global climate change. Importantly, the curriculum structure does not parallel typical college climate change survey courses, but rather is taught from the perspective of the traditional ecological knowledge held by native peoples of North America. The richly varied history, geography, ecology, culture and scientific knowledge of Native American tribes across the US serves as the starting point from which students are taught about atmospheric and earth sciences and the connection of climate change to all our lives. In addition, examples and case studies focusing specifically on tribal lands foster the development of future Native American leaders with the scientific, technological and cultural skills required to assist tribal communities in managing their lands and maintaining their cultures as they face a climate-altered future. The "Introduction to Climate Change from an Indigenous Perspective" curriculum was developed by tribal college faculty from multiple institutions through a collaborative workshop process. The course was piloted and taught at 5 tribal colleges during spring semester 2010. This presentation provides an overview of the course goals, content and delivery.

  16. InTeGrate's model for developing innovative, adaptable, interdisciplinary curricular materials that reach beyond the geosciences

    NASA Astrophysics Data System (ADS)

    Egger, A. E.; Baldassari, C.; Bruckner, M. Z.; Iverson, E. A.; Manduca, C. A.; Mcconnell, D. A.; Steer, D. N.

    2013-12-01

    InTeGrate is NSF's STEP Center in the geosciences. A major goal of the project is to develop curricula that will increase the geoscience literacy of all students such that they are better positioned to make sustainable decisions in their lives and as part of the broader society. This population includes the large majority of students that do not major in the geosciences, those historically under-represented in the geosciences, and future K-12 teachers. To achieve this goal, we established a model for the development of curricular materials that draws on the distributed expertise of the undergraduate teaching community. Our model seeks proposals from across the higher education community for courses and modules that meet InTeGrate's overarching goals. From these proposals, we select teams of 3-5 instructors from three or more different institutions (and institution types) and pair them with assessment and web experts. Their communication and development process is supported by a robust, web-based content management system (CMS). Over two years, this team develops materials that explicitly address a geoscience-related societal challenge, build interdisciplinary problem-solving skills, make use of real geoscience data, and incorporate geoscientific and systems thinking. Materials are reviewed with the InTeGrate design rubric and then tested by the authors in their own courses, where student learning is assessed. Results are reviewed by the authors and our assessment team to guide revisions. Several student audiences are targeted: students in general education and introductory geoscience courses, pre-service K-12 teachers, students in other science and engineering majors, as well as those in the humanities and social sciences. Curriculum development team members from beyond the geosciences are critical to producing materials that can be adopted for all of these audiences, and we have been successful in engaging faculty from biology, economics, engineering, sociology, Spanish, and other disciplines. In its first year, InTeGrate engaged 20 individuals from 17 different institutions on materials development teams. During interviews and responses to open-ended survey questions, first-year team members provided feedback about the challenges and successes of the model. Several described that the materials design rubric was a useful tool in guiding their work and pushed them in directions they may not have otherwise gone. Most responded that working as part of a team with members from different institutions created numerous challenges, but was ultimately beneficial in sharing ideas and resulted in a better product. Other key components to model success are the development of resources by the web experts to support use of the CMS and frequent feedback from the assessment team. All feedback was used to refine the model for the second year, during which 56 additional authors have begun to develop materials. By engaging this broad and diverse community in innovative curriculum development, we anticipate widespread adoption of InTeGrate materials.

  17. The Right Tools for the Job: The Challenges of Theory and Method in Geoscience Education Research

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2011-12-01

    As geoscience education has matured as a research field over the last decade, workers in this area have been challenged to adapt methodologies and theoretical approaches to study design and data collection. These techniques are as diverse as the earth sciences themselves, and researchers have drawn on established methods and traditions from science education research, social science research, and the cognitive and learning sciences. While the diversity of methodological and theoretical approaches is powerful, the challenge is to ground geoscience education research in rigorous methodologies that are appropriate for the epistemological and functional realities of the content area and the environment in which the research is conducted. The issue of theory is the first hurdle. After techniques are proven, earth scientists typically need not worry much about the theoretical value or theory-laden nature of measurements they make in the field or laboratory. As an example, a field geologist does not question the validity of the gravitational field that levels the spirit level within a Brunton compass. However, in earth science education research, these issues are magnified because a theoretical approach to a study affects what is admitted as data and the weight that can be given to conclusions. Not only must one be concerned about the validity of measurements and observations, but also the value of this information from an epistemological standpoint. The assigning of meaning to student gestures, utterances, writing and actions all carries theoretical implications. For example, working with geologists learning or working in the field, purely experimental research designs are very difficult, and the majority of the work must be conducted in a naturalistic environment. In fact dealing with time pressure, distractions, and complexity of a field environment is part of intellectual backdrop for field geology that separates experts from novices and advanced students from beginners. Thus researchers must embrace the uncontrolled nature of the setting, the qualitative nature of the data collected, and the researcher's role in interpreting geologically appropriate actions as evidence of successful problem solving and investigation. Working to understand the role of diversity and culture in the geosciences also involves a wide array of theory, from affective issues through culturally and linguistically-influenced cognition, through gender, self-efficacy, and many other areas of inquiry. Research in understanding spatial skills draws heavily on techniques from cognition research but also must involve the field-specific knowledge of geoscientists to infuse these techniques with exemplars, a catalog of meaningful actions by students, and an understanding of how to recognize success. These examples illustrate briefly the wide array of tools from other fields that is being brought to bear to advance rigorous geoscience education research. We will illustrate a few of these and the insights we have gained, and the power of theory and method from other fields to enlighten us as we attempt to educate a broader array of earth scientists.

  18. The Cape Town Statement on Geoethics

    NASA Astrophysics Data System (ADS)

    Di Capua, Giuseppe; Peppoloni, Silvia; Bobrowsky, Peter

    2017-04-01

    The interest of geoscientists in (geo)ethical aspects of geoscience knowledge, education, research and practice is rising and today geoethics has a significant visibility. This prominence is the result of hard work done in the last 4 years by the IAPG - International Association for Promoting Geoethics (http://www.geoethics.org), a not-for-profit, multidisciplinary, scientific network (with more than 1350 members in 107 countries) established for widening the discussion and creating awareness about problems of ethics applied to the geosciences. IAPG has produced a strong conceptual substratum on which to base the future development of geoethics, by clarifying the meaning of the word Geoethics, formalizing its definition, and identifying a framework of reference values on which the geoscience community can base more effective codes of conduct. IAPG members have published numerous books and articles in peer reviewed international journals, and organized scientific sessions to bring geoethics at the most important geoscience conferences. Geoethical issues have been included in the European project ENVRI-Plus, dedicated to the environmental and solid Earth research infrastructures. Moreover, the most prestigious geoscience organizations around the world now recognize geoethics as an important issue that warrants attention. This success was confirmed by the high quality of contents and the large participation of scientists in the 6 technical sessions and single panel session on geoethics organized by IAPG at the 35th IGC - International Geological Congress, held in 2016 in Cape Town (South Africa), with the cooperative work of different geoscience organizations (IUGS-TGGP - Task Group on Global Geoscience Professionalism; GSL - Geological Society of London; EFG - European Federation of Geologists; EGS - EuroGeoSurveys; AGI - American Geosciences Institute; AGU - American Geophysical Union, and AAWG - African Association of Women in Geosciences). IAPG considers the 35th IGC the scientific event that opened a new phase for Geoethics and for the Association. In order to celebrate this passage, the IAPG has produced the "Cape Town Statement on Geoethics" (CTSG), a document recognized as the result of an international effort to focus the attention of geoscientists on the development of shared policies, guidelines, strategies and tools, with the long-range goal of fostering the regular adoption of ethical values and practices in the geoscience community. The final document (available at http://www.geoethics.org/ctsg) sums the values, concepts, and contents developed in the first 4-year activity of IAPG, giving a perspective for the future development of geoethics. This presentation illustrates the content of the "Cape Town Statement on Geoethics", that is now supported officially by several geoscience organizations.

  19. Geoscience salaries up by 10.8%

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  20. MOSES: a Symbiosis Between the Lagos Ciência Viva Science Centre and a Research Project from the University of the Algarve

    NASA Astrophysics Data System (ADS)

    Leote, Catarina; Moura, Delminda; Azevedo Rodrigues, Luis

    2017-04-01

    Geoscience education is key for the understanding of our home, the planet Earth. The Lagos Ciência Viva Science Centre (CCVL) in Portugal develops various geoscience activities including astronomy sessions, geology, paleontology and oceanography field trips, complementary primary school classes, seminars and numerous workshops for a public ranging from pre-schoolers to seniors . Our experience in geoscience communication and informal education also includes a formal partnership with a research centre from the University of the Algarve, the CIMA - Centre for Marine and Environmental Research, through the project MOSES, which focuses on sand transport along crenulated coasts. Based on the project goals, methods and results, the CCVL team designed a communication and outreach plan including a seminar, a field trip and a workshop, to alert for the subjects of coastal erosion and management, both highly relevant in the Algarve. This partnership was highly beneficial for both parts as it facilitated the communication of a scientific project to the public, while the CCVL had the opportunity to update and expand its educational offer. This type of interaction between universities/research institutes and science centres/museums allows scientists to focus on their research work, reducing their need to invest in communication, and provides good and updated scientific contents to science communicators, ensuring a direct channel between scientific research and the public.

Top