Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop
NASA Technical Reports Server (NTRS)
Green, Robert O. (Editor)
1993-01-01
This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).
Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob (Editor)
1993-01-01
This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.
Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J. (Editor)
1993-01-01
This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.
Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J. (Editor)
1992-01-01
This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.
Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob (Editor)
1992-01-01
This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.
Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop
NASA Technical Reports Server (NTRS)
Green, Robert O. (Editor)
1992-01-01
This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.
Building Strong Geoscience Departments Through the Visiting Workshop Program
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.
2011-12-01
The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10 points. Workshops resulted in changes in faculty attitudes and planned changes in programming. Participants wrote that they felt a greater ownership of their curricula and had a deeper understanding of the importance of general education offerings; they recognized a need for improvement; and they recognized a need to communicate the value of the geosciences to their institutions. Planned programmatic changes focused on curriculum revision, program assessment, student recruitment, and interactions with the institutional administration and the public. Leaders noted that the most effective workshops were those where the faculty cancelled all other activities for the duration of the workshop to focus on workshop goals.
NASA Astrophysics Data System (ADS)
Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.
2017-12-01
Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who then incorporate aspects of the session in workshops they lead for their regional faculty networks. Both projects prepare faculty to lead workshops on inclusive practices and programs as a strategy to diversify the geosciences by pervasively changing the way that faculty and departments support students.
The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers
NASA Astrophysics Data System (ADS)
Hubenthal, M.; LaDue, N.; Taber, J.
2015-12-01
The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued opportunities to discuss the boundaries of outreach, evaluation, and research and the potential next steps to advance geoscience education. Recommendations from the workshop are well aligned with earlier reports, and along with those documents, contributes to a path forward for geoscience education.
DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube
NASA Astrophysics Data System (ADS)
Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.
2015-12-01
One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.
Building Strong Geoscience Departments: Resources and Opportunities
NASA Astrophysics Data System (ADS)
Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. M.; Ormand, C. J.
2008-12-01
The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources, offered workshops on topics from recruiting students to developing a curriculum for the future, and hosted on-line discussion of high interest topics including accreditation. Online resources (http://serc.carleton.edu/departments/index.html) feature successful strategies and specific examples from a wide variety of geoscience departments across North America. These resources address student recruitment, development and assessment of curricula and programs, preparing students for careers, and the future of geoscience. This year the program will offer two new workshops (http://serc.carleton.edu/departments/workshops/index.html). The first, in February, will focus on assessing geoscience programs. Departments are increasingly called upon to assess the impact of their programs on students and to measure the degree to which they meet stated goals. This workshop will showcase the methods and instruments that geoscience departments are using for this assessment, as well as providing opportunities to learn more about evaluation theory and practice from experts in the field. The second workshop, in June, is designed to help departmental teams develop practical solutions to the challenges they currently face. Building on past workshops in this series, participants will help shape the focus of the workshop to meet their needs in areas such as curriculum, assessment, programming, recruitment, or management. A goal of this workshop is to put into broader use the wealth of examples and ideas documented on the project website.
NASA Astrophysics Data System (ADS)
MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.
2004-12-01
Recognizing that many college and university faculty receive little formal training in teaching, are largely unaware of advances in research on teaching and learning, and face a variety of challenges in advancing in academic careers, the National Science Foundation-funded program On the Cutting Edge provides professional development for current and future faculty in the geosciences at various stages in their careers. The program includes a series of six multi-day workshops, sessions and one-day workshops at professional meetings, and a website with information about workshop opportunities and a variety of resources that bring workshop content to faculty (http://serc.carleton.edu/NAGTWorkshops). The program helps faculty improve their teaching and their job satisfaction by providing resources on instructional methods, geoscience content, and strategies for career planning. Workshop and website resources address innovative and effective practices in teaching, course design, delivery of instructional materials, and career planning, as well as approaches for teaching particular topics and strategies for starting and maintaining a research program in various institutional settings. Each year, special workshops for graduate students and post-doctoral fellows interested in academic careers and for early career faculty complement offerings on course design and emerging topics that are open to the full geoscience community. These special workshops include sessions on topics such as dual careers, gender issues, family-work balance, interviewing and negotiating strategies. The workshops serve as opportunities for networking and community building, with participants building connections with other participants as well as workshop leaders. Workshop participants reflect the full range of institutional diversity as well as ethnic and racial diversity beyond that of the geoscience faculty workforce. More than 40 percent of the faculty participants are female. Of the faculty participants in workshops offered July 2002 through June 2004, workshop participants have come from more than 250 colleges and universities in 49 states and the District of Columbia. Workshop evaluations indicate that the workshops are well received with faculty particularly appreciating the content of the workshops and the opportunities for networking. An important aspect of the program is involvement of the geoscience community in workshop leadership. Leadership roles include serving as co-conveners, invited speakers, demonstration leaders, working group leaders, co-conveners of post-workshop sessions at professional meetings, and contributors to the website.
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Keane, C. M.; Seadler, A. R.; Wilson, C. E.
2012-12-01
A professional development workshop for underrepresented minority, future and early-career faculty in the geosciences was held in April of 2012. Twenty seven participants traveled to the Washington DC metro area and attended this 2.5 day workshop. Participants' career levels ranged from early PhD students to Assistant Professors, and they had research interests spanning atmospheric sciences, hydrology, solid earth geoscience and geoscience education. Race and ethnicity of the participants included primarily African American or Black individuals, as well as Hispanic, Native American, Native Pacific Islanders and Caucasians who work with underrepresented groups. The workshop consisted of three themed sessions led by prestigious faculty members within the geoscience community, who are also underrepresented minorities. These sessions included "Guidance from Professional Societies," "Instructional Guidance" and "Campus Leadership Advice." Each session lasted about 3 hours and included a mixture of presentational materials to provide context, hands-on activities and robust group discussions. Two additional sessions were devoted to learning about federal agencies. For the morning session, representatives from USGS and NOAA came to discuss opportunities within each agency and the importance of promoting geoscience literacy with our participants. The afternoon session gave the workshop attendees the fortunate opportunity to visit NSF headquarters. Participants were welcomed by NSF's Assistant Director for Geosciences and took part in small group meetings with program officers within the Geosciences Directorate. Participants indicated having positive experiences during this workshop. In our post-workshop evaluation, the majority of participants revealed that they thought the sessions were valuable, with many finding the sessions extremely valuable. The effectiveness of each session had similar responses. Preliminary results from 17 paired sample t-tests show increased knowledge gained from each of our themed sessions, with "Familiarity with Federal Agencies" and "Success in Grant Applications" demonstrating statistically significant improvement.
NASA Astrophysics Data System (ADS)
Ryan, J. G.; Eriksson, S. C.
2010-12-01
Inspired by the recommendations of the NSF report “Fostering Learning in the Networked World: The Cyberlearning Opportunity and Challenge” (NSF08204), the NSF National STEM Digital Learning program funded “Planning for the Future of Geocybereducation” Workshop sought to bring together leaders from the geoscience education community, from major geoscience research initiatives, and from the growing public- and private-sector geoscience information community. The objectives of the workshop were to begin conversations aimed at identifying best practices and tools for geoscience cyber-education, in the context of both the changing nature of learners and of rapidly evolving geo-information platforms, and to provide guidance to the NSF as to necessary future directions and needs for funding. 65 participants met and interacted live for the two-day workshop, with ongoing post-meeting virtual interactions via a collaborative workspace (www.geocybered.ning.com). Topics addressed included the rapidly changing character of learners, the growing capabilities of geoscience information systems and their affiliated tools, and effective models for collaboration among educators, researchers and geoinformation specialists. Discussions at the meeting focused on the implications of changing learners on the educational process, the challenges for teachers and administrators in keeping pace, and on the challenges of communication among these divergent professional communities. Ongoing virtual discussions and collaborations have produced a draft workshop document, and the workshop conveners are maintaining the workshop site as a venue for ongoing discussion and interaction. Several key challenges were evident from the workshop discussions and subsequent interactions: a) the development of most of the large geoinformatics and geoscience research efforts were not pursued with education as a significant objective, resulting in limited financial support for such activities after the fact; b) the “playing field” of cybertechnologies relevant to geoscience education, research and informatics changes so rapidly that even committed “players” find that staying current is challenging; c) the scholarly languages of geoscience education, geoscience research, and geoinformatics are different, making easy communication about respective needs and constraints surprisingly difficult; and d) the impact of “everyday” cybertechnologies on learner audiences is profound and (so far) not well addressed by educators. Discussions on these issues are ongoing in a number of other venues.
GIRAF 2009 - Taking action on geoscience information across Africa
NASA Astrophysics Data System (ADS)
Asch, Kristine
2010-05-01
A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a more active part of the international geoscience information community. The programme for the GIRAF 2009 workshop was designed to explore each of these aspects to improve the way geoscience information contributes to improve the health and prosperity of the people in Africa. The Programme The aim of the week wasto better understand the reality of the status of geoscience information management, delivery, and systems from the perspective of the practitioners across Africa. To do that, in addition to VIP welcome speeches and presentations from across the continent, the programme included two sets of breakout sessions allowing more detailed discussion of specific issues, and each day, a novel "Question of the day", where individual feedback was sought on three pointed questions. These exercises ensured that everyone was able to contribute their views and experiences. The conclusion - a 15 point GIRAF 2009 Strategy and Agreement The results were intense discussion of the issues which the participants felt were key to developing and improving the way geoscience information could be managed and delivered in Africa. The very tangible outcome of a hardworking but fruitful week was the unanimous endorsement of a series of fifteen practical recommendations - the GIRAF Strategy and Agreement. Our week together provided new and valuable experience and new contacts, networks and friendships and most importantly the base for a sustainable initiative to improve the way geoscience information will be managed and delivered in Africa. We now look forward and are working on to taking those important recommendations forward.
NASA Astrophysics Data System (ADS)
Macdonald, H.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.; Iverson, E. A.; Kirk, K. B.; Beane, R. J.; McConnell, D.; Wiese, K.; Wysession, M. E.
2011-12-01
On the Cutting Edge, a comprehensive, discipline-wide professional development program for current and future geoscience faculty, aims to develop a geoscience professoriate committed to high-quality instruction based on currency in scientific knowledge, good pedagogic practice, and research on learning. Our program provides an integrated workshop series and online teaching resources. Since 2002, we have offered more than 80 face-to-face workshops, virtual workshops and webinars, and hybrid events. Participants come from two-year colleges and four-year colleges and universities. The workshop series is designed to address the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics and create opportunities of interest to faculty. We offer workshops on course design, new geoscience research and pedagogical topics, core geoscience curriculum topics, and introductory courses as well as workshops for early career faculty and for future faculty. Our workshops are designed to model good teaching practice. We set workshop goals that guide workshop planning and evaluation. Workshops are interactive, emphasize participant learning, provide opportunities for participants to interact and share experience/knowledge, provide good resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. We emphasize the importance of adaptation in the context of their specific situations. For virtual workshops and webinars we use icebreakers and other structured interactions to build a comfortable workshop community; promote interaction through features on webinar software, chat-aided question and answer, small-group synchronous interactions, and/or discussion boards; plan detailed schedules for workshop events; use asynchronous discussions and recordings of synchronous events given that participants are busy with their daily commitments; and provide sufficient technical support for participants and leaders. The importance of making the workshop useful and immediately applicable does not diminish with virtual events. One key lesson is the need to be purposeful with virtual communication strategies; the discussion boards, chat-aided discussion, and small group interactions need a specific focus, purpose, or product. Both face-to-face and virtual workshops that appear to flow spontaneously reflect extensive planning, a clear understanding of the program and its objectives by everyone involved, and realistic estimates for how long activities will really take. The workshop content and structures that we have developed result in high rates of satisfaction by participants.
The Role of Introductory Geosciences in Students' Quantitative Literacy
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Manduca, C.; Baer, E. M.
2006-12-01
Quantitative literacy is more than mathematics; it is about reasoning with data. Colleges and universities have begun to recognize the distinction between mathematics and quantitative literacy, modifying curricula to reflect the need for numerate citizens. Although students may view geology as 'rocks for jocks', the geosciences are truthfully rife with data, making introductory geoscience topics excellent context for developing the quantitative literacy of students with diverse backgrounds. In addition, many news items that deal with quantitative skills, such as the global warming phenomenon, have their basis in the Earth sciences and can serve as timely examples of the importance of quantitative literacy for all students in introductory geology classrooms. Participants at a workshop held in 2006, 'Infusing Quantitative Literacy into Introductory Geoscience Courses,' discussed and explored the challenges and opportunities associated with the inclusion of quantitative material and brainstormed about effective practices for imparting quantitative literacy to students with diverse backgrounds. The tangible results of this workshop add to the growing collection of quantitative materials available through the DLESE- and NSF-supported Teaching Quantitative Skills in the Geosciences website, housed at SERC. There, faculty can find a collection of pages devoted to the successful incorporation of quantitative literacy in introductory geoscience. The resources on the website are designed to help faculty to increase their comfort with presenting quantitative ideas to students with diverse mathematical abilities. A methods section on "Teaching Quantitative Literacy" (http://serc.carleton.edu/quantskills/methods/quantlit/index.html) focuses on connecting quantitative concepts with geoscience context and provides tips, trouble-shooting advice and examples of quantitative activities. The goal in this section is to provide faculty with material that can be readily incorporated into existing introductory geoscience courses. In addition, participants at the workshop (http://serc.carleton.edu/quantskills/workshop06/index.html) submitted and modified more than 20 activities and model courses (with syllabi) designed to use best practices for helping introductory geoscience students to become quantitatively literate. We present insights from the workshop and other sources for a framework that can aid in increasing quantitative literacy of students from a variety of backgrounds in the introductory geoscience classroom.
Teaching Introductory Geoscience: A Cutting Edge Workshop Report
NASA Astrophysics Data System (ADS)
Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.
2008-12-01
Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.
NASA Astrophysics Data System (ADS)
Hill, T. M.; Beane, R. J.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Allen-King, R. M.; Yuretich, R.; Richardson, R. M.; Ormand, C. J.
2015-12-01
A vital strategy to educate future geoscientists is to support faculty at the beginning of their careers, thus catalyzing a career-long impact on the early-career faculty and on their future students. New faculty members are at a pivotal stage in their careers as they step from being research-focused graduate students and post-doctoral scholars, under the guidance of advisors, towards launching independent careers as professors. New faculty commonly, and not unexpectedly, feel overwhelmed as they face challenges to establish themselves in a new environment, prepare new courses, begin new research, and develop a network of support. The workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career has been offered annually in the U.S. since 1999. The workshop is currently offered through the National Association of Geoscience Teachers On the Cutting Edge professional development program with support from the NSF, AGU and GSA. This five-day workshop, with associated web resources, offers guidance for incorporating evidence-based teaching practices, developing a research program, and managing professional responsibilities in balance with personal lives. The workshop design includes plenary and concurrent sessions, individual consultations, and personalized feedback from workshop participants and leaders. Since 1999, more than 850 U.S. faculty have attended the Early Career Geoscience Faculty workshop. Participants span a wide range of geoscience disciplines, and are in faculty positions at two-year colleges, four-year colleges, comprehensive universities and research universities. The percentages of women (~50%) and underrepresented participants (~8%) are higher than in the general geoscience faculty population. Multiple participants each year are starting positions after receiving all or part of their education outside the U.S. Collectively, participants report that they are better prepared to move forward with their careers as a result of the workshop, that they plan to incorporate evidence-based teaching in their classrooms, and that they leave the workshop with a network of support and the resources needed to enable them succeed. http://serc.carleton.edu/NAGTWorkshops/earlycareer
NASA Astrophysics Data System (ADS)
Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.
2011-12-01
Two-year colleges (2YCs) play a critical role in geoscience education in the United States. Nearly half of the undergraduate students who take introductory geoscience do so at a 2YC. With awide reach and diverse student populations, 2YCs may be key to producing a well-trained, diverse and sufficiently large geoscience workforce. However, faculty at 2YCs often face many barriers to professional development including lack of financial resources, heavy and inflexible teaching loads, lack of awareness of opportunities, and few professional development resources/events targeted at their needs. As an example, at the 2009 GSA meeting in Portland, fewer than 80 of the 6500 attendees were from community colleges, although this was more than twice the 2YC faculty attendance the previous year. Other issues include the isolation described by many 2YC geoscience faculty who may be the only full time geoscientist on a campus and challenges faced by adjunct faculty who may have even fewer opportunities for professional development and networking with other geoscience faculty. Over the past three years we have convened several workshops and events for 2YC geoscience faculty including technical sessions and a workshop on funding opportunities for 2YC faculty at GSA annual meetings, a field trip and networking event at the fall AGU meeting, a planning workshop that examined the role of 2YCs in geoscience education and in broadening participation in the geosciences, two workshops supporting use of the 'Math You Need, When You Need It' educational materials that included a majority of 2YC faculty, and marine science summer institutes offered by COSEE-Pacific Partnerships for 2YC faculty. Our experience indicates that 2YC faculty desire professional development opportunities when the experience is tailored to the needs and character of their students, programs, and institutions. The content of the professional development opportunity must be useful to 2YC faculty -workshops and materials aimed at K-12 or at faculty teaching geoscience majors tend not to attract 2YC faculty. Conducting a needs assessment and including 2YC faculty in workshop planning helps ensure that the outcomes of professional development opportunities for 2YC faculty are achieved. Financial support for travel seems to be important, although typically it is not necessary to compensate 2YC faculty beyond expenses. 2YC faculty availability varies significantly during the summer as well as during the academic year, so offering multiple opportunities throughout the year and/or virtual events is important. The Geo2YC website at SERC is a resource for geoscience education at two-year colleges and the associated Geo2YC mailing has facilitated the targeted marketing of opportunities for this important group of educators.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Adams, A. S.; Barnes, R. T.; Burt, M. A.; Clinton, S. M.; Godfrey, E.; Hernandez, P.; Bloodhart, B.; Donaldson, L.; Henderson, H.; Sayers, J.; Sample McMeeking, L. B.; Bowker, C.; Fischer, E. V.
2015-12-01
In the United States, men outnumber women in many science and engineering fields by nearly 3 to 1. In fields like physics or the geosciences, the gender gap can be even wider. Previous studies have identified the early college years as a critical point where many women exit STEM disciplines. An interdisciplinary team including experts in the geosciences, psychology, education, and STEM persistence have recently begun a 5-year project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring first and second year female undergraduate students from three universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields and both in-person and virtual peer networks. The first weekend workshops will be held in October 2015. We will present an overview of the major components and lessons learned from these workshops and showcase the web center, including the online peer-networking forum.
National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards
NASA Astrophysics Data System (ADS)
Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.
2014-12-01
The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes an upcoming workshop in collaboration with the American Geosciences Institute, deep collections of relevant digital learning resources, pertinent interest groups within the membership, professional development workshops, and more. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.
NASA Astrophysics Data System (ADS)
Wiese, K.; Mcconnell, D. A.
2014-12-01
Do you use video in your teaching? Do you make your own video? Interested in joining our growing community of geoscience educators designing and using video inside and outside the classroom? Over four months in Spring 2014, 22 educators of varying video design and development expertise participated in an NSF-funded On the Cutting Edge virtual workshop to review the best educational research on video design and use; to share video-development/use strategies and experiences; and to develop a website of resources for a growing community of geoscience educators who use video: http://serc.carleton.edu/NAGTWorkshops/video/workshop2014/index.html. The site includes links to workshop presentations, teaching activity collections, and a growing collection of online video resources, including "How-To" videos for various video editing or video-making software and hardware options. Additional web resources support several topical themes including: using videos to flip classes, handling ADA access and copyright issues, assessing the effectiveness of videos inside and outside the classroom, best design principles for video learning, and lists and links of the best videos publicly available for use. The workshop represents an initial step in the creation of an informal team of collaborators devoted to the development and support of an ongoing network of geoscience educators designing and using video. Instructors who are interested in joining this effort are encouraged to contact the lead author.
Impact of the On the Cutting Edge Professional Development Program on U.S. Geoscience Faculty
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Iverson, E. A.; Czujko, R.; Macdonald, H.; Mogk, D. W.; Tewksbury, B. J.; McLaughlin, J.; Sanford, C.; Greenseid, L.; Luxenberg, M.
2011-12-01
Transforming STEM education from a dominantly lecture-based format focused on facts to classrooms where students engage with the process of understanding the world through science is a primary goal of faculty development. On the Cutting Edge seeks to support this transformation by using workshops and a website to build a community of geoscience faculty who learn from one another. In order to assess the impact of the On the Cutting Edge program, we surveyed 5917 U.S. geoscience faculty in 2009 and received 2874 completed responses (49% response rate). We looked at the differences in responses between workshop participants who also use the website, website users who have not attended a Cutting Edge workshop, and survey respondents who had neither attended a Cutting Edge workshop nor used the Cutting Edge website. The number of respondents who had attended a Cutting Edge workshop and had not used the website was too small to analyze. Courses described by Cutting Edge workshop participants make significantly less use of lecture and more use of small group discussion and in-class activities. While all faculty respondents routinely update their courses, workshop participants are more likely to have changed their teaching methods in the two years leading up to the survey. When making changes to their teaching methods, workshop participants are more likely than other populations to seek information about teaching on the web, consult journal articles about teaching, and seek advice from colleagues outside their department and from nationally known leaders in geoscience education. Workshop participants are also more likely to tell a colleague when they do something that is particularly successful in class. End-of-workshop survey and follow-up interview data indicate that participants leave workshops reinvigorated, with a new or renewed commitment to student-centered teaching, and that they make use of the website as they implement ideas for changing their teaching following the workshop. Participants can identify specific ideas, techniques, and materials from workshops and the website that they have used in their teaching, and they attribute substantial improvements in their teaching to the Cutting Edge professional development experience. While the differences in behavior reported in the survey results may in part reflect the choice to attend workshops by faculty inclined to improve their teaching, the combination of motivation, attitude, and information developed through the workshop experience is amplifying this effect.
InTeGrate: Transforming the Teaching of Geoscience and Sustainability
NASA Astrophysics Data System (ADS)
Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.
2012-12-01
InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is assisting the development teams in incorporation of research-based teaching methods and embedded assessments to document learning. The assessment team will also evaluate the success of these materials in meeting learning outcomes prior to broad dissemination. Additional opportunities for faculty to propose and develop needed materials are currently available.
Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.
2017-12-01
The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses during the simulations. Follow-up activities include monthly online meetings to engage problem solving and strategy-building skills for catalyzing institutional culture change within departments. This talk will specifically focus on workshop observations and preliminary reactions to the training.
Undergraduate Research in Earth Science Classes: Engaging Students in the First Two Years
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Wysession, M. E.; Beauregard, A.; Reinen, L. A.; Surpless, K.; O'Connell, K.; McDaris, J. R.
2014-12-01
The recent PCAST report (2012), Engage to Excel, calls for a major shift in instructional modes in introductory (geo)science courses by "replacing standard laboratory courses with discovery-based research courses". An increased emphasis is recommended to engage students in experiments with the possibility of true discovery and expanded use of scientific research courses in the first two years. To address this challenge, the On the Cutting Edge program convened a workshop of geoscience faculty to explore the many ways that true research experiences can be built into introductory geoscience courses. The workshop goals included: consideration of the opportunities, strategies and methods used to provide research experiences for students in lower division geoscience courses; examination of ways to develop students' "geoscience habits of mind" through participation in authentic research activities; exploration of ways that student research projects can be designed to contribute to public science literacy with applications to a range of issues facing humanity; and development of strategies to obtain funding for these research projects, to make these programs sustainable in departments and institutions, and to scale-up these programs so that all students may participate. Access to Earth data, information technology, lab and field-based instrumentation, and field experiences provide unprecedented opportunities for students to engage in authentic research at early stages in their careers. Early exposure to research experiences has proven to be effective in the recruitment of students to the geoscience disciplines, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Workshop outcomes include an online collection of tested research projects currently being used in geoscience classes, resources related to effective design, implementation and assessment of student research projects, and all workshop activities are posted on the website: http://serc.carleton.edu/74960
New Resources on the Building Strong Geoscience Departments Website
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Manduca, C. A.; MacDonald, H.
2009-12-01
The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources and offered workshops on high-interest topics, such as recruiting students, curriculum development, and program assessment. The Building Strong Geoscience Departments website has a growing collection of resources, drawn from workshop discussions and presentations, showcasing how geoscience departments approach curriculum revision, student recruitment, and program assessment. Recruitment resources consist of specific examples of a wide variety of successful approaches to student recruitment from departments at a wide array of institutions. Curricular feature pages framing the process of curriculum development or revision and a collection of dozens of geoscience curricula, searchable by degree program name. Each curriculum in the collection includes a diagram of the course sequence and structure. Program assessment resources include a collection of assessment instruments, ranging from alumni surveys and student exit interviews to course evaluations and rubrics for assessing student work, and a collection of assessment planning documents, ranging from mission and vision statements through student learning goals and outcomes statements to departmental assessment plans and guidelines for external reviews. These recruitment strategies, curricula, and assessment instruments and documents have been contributed by the geoscience community. In addition, we are developing a collection of case studies of individual departments, highlighting challenges they have faced and the strategies they have used to successfully overcome those challenges. We welcome additional contributions to all of these collections. These online resources support the Building Strong Geoscience Departments Visiting Workshop program, which we launched in the fall of 2009.
A Personal Perspective on the Impact of Professional Development Workshops within the Geosciences
NASA Astrophysics Data System (ADS)
Soule, D. C.
2014-12-01
In June of 2014 I attended the Cutting Edge workshop "Preparing for an Academic Career in the Geosciences," designed to mentor graduate students, post-doctoral fellows, and others who are interested in pursuing academic careers in the geosciences. Faculty members and administrators provided guidance and information that helped me become a stronger candidate for academic positions. Session topics focused on becoming both a successful teacher and researcher. In addition to the opportunity to network extensively with peers and academic leaders in the geosciences, I was helped to develop a plan for how to best use my final graduate school to optimize the transition to my next career stage. I will present both qualitative descriptions and quantitative measures of the effect this experience has had on my activities both pre- and post-participation. I will discuss how the workshop has impacted my perceptions on the job search process and my teaching beliefs. I will support my qualitative perceptions with the results of my pre- and post-workshop questionnaire "Beliefs About Reformed Science Teaching and Learning" (BARSTL). I will discuss the ways in which this experience has given me take home ideas that will improve my teaching immediately, supports my successful transition from school to career, and provides some of the tools needed to succeed in academic jobs.
NASA Astrophysics Data System (ADS)
Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.
2016-12-01
Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop syntheses that highlights best practices, a set of webpages to support teaching with software such as MATLAB, and an interest group actively discussing aspects these issues in Geoscience and allied fields. Learn more and view the resources at http://serc.carleton.edu/matlab_computation2016/index.html
A Best Practices Approach to Working with Undergraduate Women in the Geosciences
NASA Astrophysics Data System (ADS)
Godfrey, E. S.; Clinton, S. M.; Adams, A. S.; Pollack, I. B.; Barnes, R.; Bloodhart, B.; Bowker, C.; Burt, M. A.; Henderson, H.; Hernandez, P. R.; Maertens, J.; Sample McMeeking, L. B.; Sayers, J.; Fischer, E. V.
2017-12-01
Many projects and programs aim to increase female participation in STEM fields, but there is little existing literature about the best practices for implementing such programs. An NSF-sponsored project, PROmoting Geoscience Research, Education & SuccesS (PROGRESS), aims to assess the effectiveness of a professional development and peer-mentoring program on undergraduate students' interest and persistence in geoscience-related fields and on self-perceptions as a scientist. We held workshops in off-campus locations in the Carolinas and the Colorado/Wyoming Front Range in 2015 (2016) for students at seven (nine) universities. Recruiting 1st and 2nd year female STEM students, however, proved challenging, even though all transportation and expenses were provided at no cost to participants. The initial acceptance rate to attend the workshop was surprisingly low (less than 30%) and was further impacted by a high number of cancellations ( 1/3 of acceptees) in the days leading up to each workshop. However, 88% of students who completed an online strength assessment beforehand attended the workshop. Thus, an activity that requires student effort in advance can be used to gauge the likelihood of participation. The PROGRESS model is proving to be effective and beneficial for undergraduate students. Post-workshop evaluations revealed that nearly all participants would recommend the workshop to others. Students found it successful in both establishing a support system in the geosciences and increasing their knowledge of geoscience opportunities. Participant surveys show that panel discussions on career paths and the mentoring experiences of working geoscientists were the most favorably-viewed workshop components. It's not enough to offer excellent programs, however; interventions are required to recruit and incentivize participants and to help students recognize the value of a mentoring program. A successful program will devote significant time toward maintaining frequent contact with participants using a variety of media (i.e., email, texting, and/or phone calls). This presentation will discuss the challenges of recruiting students and maintaining their interest and involvement in a mentoring program, as well as the potential best practices for implementing similar programs.
NASA Astrophysics Data System (ADS)
Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.
2012-12-01
Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education. Sustainability also provides a productive bridge from global to local issues, and vice versa. It has the potential to raise the value placed on faculty engagement with local resources and research questions, and to bring community-based stakeholders outside of academia into the classroom. There are many challenges that participants from geographically diverse parts of the country have in common, including the creation of new courses, and teaching interdisciplinary material beyond one's area of expertise. However, one of the greatest opportunities of using a sustainability theme is that it can be integrated into existing courses. It was also clear that incorporating one module on a sustainability topic can be stimulating and powerful mechanism for linking course content to real world issues. Two of the most important outcomes from the workshop were the creation of an online collection of activities and courses (http://serc.carleton.edu/integrate/workshops/sustainability2012/index.html) as well as the development of a community that can support integration of geoscience and issues of sustainability across the curriculum.
Engaging secondary students in geoscience investigations through the use of low-cost instrumentation
NASA Astrophysics Data System (ADS)
Dunn, A. L.; Hansen, W.; Healy, S.
2010-12-01
Many of the future challenges facing the United States, such as climate change, securing energy resources, soil degradation, water resources, and atmospheric pollution, are part of the domain of geosciences. Currently, our colleges and universities are not graduating enough geoscience majors to meet this demand, with only 0.27% of all bachelor's degrees granted in geoscience fields in 2006, the fewest in any scientific field (NSF 2008). Moreover, undergraduate recruitment in geosciences from traditionally underrepresented groups is significantly poorer than other STEM fields, with underrepresented groups comprising just 5% of total geoscience bachelor’s degrees awarded (Czujko 2004). Undergraduate geoscience programs therefore have a critical need to not just grow in size, but to expand the spectrum of students within their programs to better reflect the country’s diversity. In 2009, Worcester State College (WSC) initiated an effort as part of NSF's Opportunities for Enhancing Diversity in the Geosciences Program to address this problem on a local scale. Through this program, we are creating a pipeline for diversity in the geosciences through a multi-faceted approach involving teacher training, high school internships, and a co-enrollment and scholarship program between Worcester Public Schools and WSC. Worcester, Massachusetts has a median household income of 43,779, 13,902 below the median household income for Massachusetts, and 24% of the city’s children live below the poverty line. Worcester is a diverse city: 19% of the population is Latino, 9% African-American, and 7% Asian-American, with over 18% foreign-born residents. This diversity is reflected in the city’s school system, where over 80 languages are spoken. In July 2010, the program was initiated with a week-long teacher training workshop. The participants were middle and high school science teachers from Worcester and the surrounding area. The workshop focused on issues of sustainability related to the geosciences, such as solar and wind power, water and soil quality, and assessing land-use change through remote sensing and geospatial tools. The goal of the workshop was to give the teachers tools to engage students in investigating these concepts in the classroom, thereby stimulating an interest in geosciences that would carry over into undergraduate education. As part of the workshop, we provided a low-cost set of tools to give to the teachers for hands-on use in the classroom. We developed a compact, rugged system for measuring solar insolation and temperature, and combined it with a datalogger to collect a continuous timeseries of data. We also built a standalone anemometer for measuring wind speed. These instruments offer entry points for multiple types of classroom investigations into weather, climate, and renewable energy potential. They also provide a platform for practicing mathematical and computer skills such as timeseries graphing, data analysis, spreadsheet use, etc. The cost of the pyranometer, datalogger, and anemometer setup was $229 per user. Feedback from workshop participants was very positive, and the teachers were confident that the instrumentation would give them a new way to engage students in geoscience topics.
NASA Astrophysics Data System (ADS)
Whitman, D.; Hickey-Vargas, R.; Gebelein, J.; Draper, G.; Rego, R.
2013-12-01
Growing Community Roots for the Geosciences is a 2-year pilot recruitment project run by the Department of Earth and Environment at Florida International University (FIU) and funded by the NSF OEDG (Opportunities for Enhancing Diversity in the Geosciences) program. FIU, the State University of Florida in Miami is a federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. The goal of this project is to inform students enrolled in the local middle and high schools to career opportunities in the geosciences and to promote pathways for underrepresented groups to university geoscience degree programs. The first year's program included a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students in the public school system. The teacher workshop was attended by 20 teachers who taught comprehensive and physical science in grades 6-8. It included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, interpretation of landform with Google Earth imagery, and a field trip to a local working limestone quarry. On the first day of the workshop, participants were surveyed on their general educational background in science and their familiarity and comfort with teaching basic geoscience concepts. On the final day, the teachers participated in a group discussion where we discussed how to make geoscience topics and careers more visible in the school curriculum. The 2-week summer camp was attended by 21 students entering grades 9-12. The program included hands on exercises on geoscience and GIS concepts, field trips to local barrier islands, the Everglades, a limestone quarry and a waste to energy facility, and tours of the NOAA National Hurricane Center and the FIU SEM lab. Participants were surveyed on their general educational background in math and science as well as their general interest in geoscience careers. In separate focus groups, participants were queried on better ways of interesting high school students in geoscience majors. Suggestions included visits by faculty and college students to high schools and using social media promote events and activities
NASA Astrophysics Data System (ADS)
Laj, Carlo; Cifelli, Francesca
2015-04-01
The Alexander von Humboldt Conference Series of the European Geosciences Union are a series of meetings held outside of Europe, in particular in South America, Africa or Asia, on selected topics of geosciences with a socio-economic impact for regions on these continents, jointly organised with the scientists and their institutes and the institutions of these regions. Given the increasing success of the GIFT workshops held in conjunction with the General Assemblies, since 2010 EGU has also developed a series of GIFT workshops held in conjunction with AvH conferences. Associated GIFT workshops were held in Merida, Yucatan, on the theme of Climate Change, Natural Hazards and Societies (March 2010), then in Penang, Malaysia (June 2011) on the theme of Ocean Acidification, in November 2012 in Cusco (Peru) on the theme of Natural Disasters, Global Change and the Preservation of World Heritage Sites, finally in Istanbul (March 2014) on "High Impact Natural Hazards Related to the Euro-Mediterranean Region. The next GIFT workshop is already planned for October 2015 in Adis Ababa (Ethiopia) on the theme "Water". In each case, the GIFT workshop was held on the last two days of the AvH conference and reunited 40-45 teachers from the nation where the AvH was held. Keynote speakers from AvH were speakers to the GIFT workshops which also included hands-on activities animated by sciences educators. These GIFT workshops represented the first workshops specifically aimed at teachers held in the country, and therefore represents a significant Earth Sciences contribution to secondary education in non European countries.
ERIC Educational Resources Information Center
Murray, Kent S.; Napieralski, Jacob; Luera, Gail; Thomas-Brown, Karen; Reynolds-Keefer, Laura
2012-01-01
The Geosciences Institute for Research and Education at the University of Michigan-Dearborn has been an example of a successful and effective model in increasing the participation of underrepresented groups in the geosciences. The program emphasizes involving middle school and at-risk high school students from the Detroit area public schools,…
Geoscience and the 21st Century Workforce
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.
2013-12-01
Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical work takes place both inside and outside of the classroom and occurs as a progression throughout the course of study. Professional skills were recognized as an area where outcomes could be strengthened. The challenge faced by geoscience programs is developing pathways into the workforce for students who bring different skills and interests to their studies. Workforce data suggest that in the past only 30% of undergraduate graduates have remained in the geosciences indicating that geoscience programs are playing an important role in developing the workforce beyond the geosciences. A collection of program descriptions describes what is known about career pathways from the programs represented at the workshop.
Workshop Results: Teaching Geoscience to K-12 Teachers
NASA Astrophysics Data System (ADS)
Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.
2012-12-01
A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these activities and intend to use them in their classes in the future. Copies of the materials used in this workshop are available upon request.
NASA Astrophysics Data System (ADS)
Winkler, H.; Carbajales-Dale, P.; Alschbach, E.
2013-12-01
Geoscience and energy research has essentially separate and diverse tracks and traditions, making the education process labor-intensive and burdensome. Using a combined forces approach to training, a multidisciplinary workshop on information and data sources and research skills was developed and offered through several departments at Stanford University. The popular workshops taught required skills to scientists - giving training on new technologies, access to restricted energy-related scientific and government databases, search strategies for data-driven resources, and visualization and geospatial analytics. Feedback and data suggest these workshops were fundamental as they set the foundation for subsequent learning opportunities for students and faculty. This session looks at the integration of the information workshops within multiple energy and geoscience programs and the importance of formally cultivating research and information skills.
Developing Geoscience Students' Quantitative Skills
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Hancock, G. S.
2005-12-01
Sophisticated quantitative skills are an essential tool for the professional geoscientist. While students learn many of these sophisticated skills in graduate school, it is increasingly important that they have a strong grounding in quantitative geoscience as undergraduates. Faculty have developed many strong approaches to teaching these skills in a wide variety of geoscience courses. A workshop in June 2005 brought together eight faculty teaching surface processes and climate change to discuss and refine activities they use and to publish them on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills) for broader use. Workshop participants in consultation with two mathematics faculty who have expertise in math education developed six review criteria to guide discussion: 1) Are the quantitative and geologic goals central and important? (e.g. problem solving, mastery of important skill, modeling, relating theory to observation); 2) Does the activity lead to better problem solving? 3) Are the quantitative skills integrated with geoscience concepts in a way that makes sense for the learning environment and supports learning both quantitative skills and geoscience? 4) Does the methodology support learning? (e.g. motivate and engage students; use multiple representations, incorporate reflection, discussion and synthesis) 5) Are the materials complete and helpful to students? 6) How well has the activity worked when used? Workshop participants found that reviewing each others activities was very productive because they thought about new ways to teach and the experience of reviewing helped them think about their own activity from a different point of view. The review criteria focused their thinking about the activity and would be equally helpful in the design of a new activity. We invite a broad international discussion of the criteria(serc.Carleton.edu/quantskills/workshop05/review.html).The Teaching activities can be found on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills/). In addition to the teaching activity collection (85 activites), this site contains a variety of resources to assist faculty with the methods they use to teach quantitative skills at both the introductory and advanced levels; information about broader efforts in quantitative literacy involving other science disciplines, and a special section of resources for students who are struggling with their quantitative skills. The site is part of the Digital Library for Earth Science Education and has been developed by geoscience faculty in collaboration with mathematicians and mathematics educators with funding from the National Science Foundation.
NASA Astrophysics Data System (ADS)
Laj, C. E.; Cifelli, F.
2014-12-01
Given the increasing success of the GIFT workshops held in conjunction with the General Assemblies, since 2010 EGU has also developed a series of GIFT workshops held in conjunction with AvH conferences. The Alexander von Humboldt Conference Series of the European Geosciences Union are a series of meetings held outside of Europe, in particular in South America, Africa or Asia, on selected topics of geosciences with a socio-economic impact for regions on these continents, jointly organised with the scientists and their institutes and the institutions of these regions. Associated GIFT workshops were held in Merida, Yucatan, on the theme of Climate Change, Natural Hazards and Societies (March 2010), then in Penang, Malaysia (June 2011) on the theme of Ocean Acidification, in November 2012 in Cusco (Peru) on the theme of Natural Disasters, Global Change and the Preservation of World Heritage Sites, finally in Istanbul (March 2014) on "High Impact Natural Hazards Related to the Euro-Mediterranean Region. The next GIFT workshop is already planned for October 2015 in Adis Ababa (Ethiopia) on the theme "Water". In each case, the GIFT workshop was held on the last two days of the AvH conference and reunited 40-45 teachers from the nation where the AvH was held. Keynote speakers from AvH were speakers to the GIFT workshops which also included hands-on activities animated by sciences educators. In 3 cases of the 4 cases, these GIFT workshops represented the first workshop specifically aimed at teachers held in the country, and therefore represents a significant Earth Sciences contribution to secondary education in non European countries.
The Role of Geoscience Departments in Preparing Future Geoscience Professionals
NASA Astrophysics Data System (ADS)
Ormand, C. J.; MacDonald, H.; Manduca, C. A.
2010-12-01
The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational interviews of geoscientists, and department faculty can support these activities simply by suggesting them to students and offering encouragement. Departments can also help students expand their career options by developing networks of alumni and potential employers. Alumni networks offer real-life examples of abstract career options, while networks of employers offer internship opportunities and a direct line to job openings. Finally, the power of simply talking to students directly should not be underestimated. Asking students about their career plans, offering them information on available options, encouraging them to apply for particular internships or jobs, or inviting them to meet with alumni who are visiting campus, can have a powerful impact. In all of this, we need to be supportive of student choices. Overall, faculty can help students make more informed career decisions and develop skills that will be of value in their career through a variety of strategies, working with students as an advisor or mentor to help them explore career options. Our website provides many examples of how geoscience departments across the country work toward these goals, as well as background information on topics such as geoscience employment trends.
NASA Astrophysics Data System (ADS)
Doser, D. I.
2009-12-01
We have designed a workshop breakout session and accompanying web based materials to assist geoscience departments in better preparing their students for professional careers following graduation. The session explores ways to obtain feedback about career preparation from employers and alumni that can be used to develop more effective curriculum, as well as departmental activities to better prepare students for employment opportunities. In addition, it identifies sources outside a department that can be used in the workforce preparation process and methods to assess any changes implemented to prepare students for the workforce. Concrete examples include feedback from a survey of recent (< 5 years) alumni at the University of Texas at El Paso, student run research meetings with built-in assessment opportunities, and a wealth of on-line resources. The session was initially tested in June 2009 at the Strengthening Your Strong Geoscience Department workshop. Comments from the June participants have been used to improve the session for the 2009-2010 “visiting workshop” program.
Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming
NASA Astrophysics Data System (ADS)
Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.
2011-12-01
Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be vulnerable to elimination believe they are in a better position to survive and thrive. All five departments reported changes to their curriculum that addressed goals such as attracting more majors, recruiting students from underrepresented groups and integrating initiatives such as service learning. Three departments reported making strides to increase their visibility by implementing new community activities, involving alumni, and using social networking. Two departments became more intentional in collecting data for assessment/external review. As one department member shared, they learned that it was not enough to just teach and to do good research, they became their own advocates for change and believe it made a significant difference in their success on campus.
Virtual Workshop Experiences for Faculty: Lessons Learned from On the Cutting Edge
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Kirk, K. B.; Mogk, D. W.; Bruckner, M. Z.
2010-12-01
The On the Cutting Edge professional development program for geoscience faculty has begun offering online workshops as a supplement to its face-to-face workshop series. Following a few initial forays since 2005, Cutting Edge launched a suite of four virtual workshops in 2010: Teaching Geoscience with Service Learning, Understanding the Deep Earth, Designing Effective and Innovative Courses in the Geosciences, and Teaching Geoscience Online. Each workshop was presented over 1-2 weeks and included pre-workshop web postings, synchronous whole-group presentations, live small-group discussions, asynchronous input via threaded discussions or editable web pages, and personal time for reflection and writing. Synchronous sessions were facilitated through the Elluminate software platform which includes tools for viewing presentations, screen sharing, real-time participant response, and an ongoing chat-room discussion. Audio was provided through a separate telephone conference service. In addition, many asynchronous conversations on workshop topics were held via a threaded discussion board on the Cutting Edge website and in Wiki-like, editable web pages designed to support collaborative work. A number of challenges to running online workshops exist, primarily involving participants’ time management. It is difficult for participants to set aside enough time to complete workshop activities when they are still enmeshed in their everyday lives. It also requires new skills for speakers, participants and support staff to prepare web-based materials and navigate the technology required for the online presentations. But there are also a number of opportunities presented by these experiences. With no travel needed, an online workshop is less expensive for participants, which allows Cutting Edge to extend its commitment to providing workshop materials to a wider audience of interested faculty. Also, synchronous sessions can be recorded and posted on the website for broader community access. In terms of best practices, the most important lesson learned is the need to make the experience as “real” as possible so that participants stay engaged and feel connected to the workshop experience. This can be accomplished by making the presentations interactive, continued leader participation in threaded discussions and break out groups, and providing multiple channels for contribution and participation. Despite some initial hesitation in jumping into a virtual environment, participants gained experience and became more comfortable with collaboration via online technologies. Participants had access to their own scientific and instructional materials at their home offices, and as a result could design and complete new teaching resources more effectively during the workshop. Peer review of new instructional resources was also completed during the workshop, and virtual networks were established to support continuing work. Online workshops can be used to effectively minimize costs, extend participation, build and sustain community networks, and develop thematic collections of instructional resources and activities. Based on the success of the 2010 workshops, more online workshops are planned for the coming years.
NASA Astrophysics Data System (ADS)
Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily
2017-04-01
Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.
NASA Astrophysics Data System (ADS)
McNeal, K.; Buell, R.; Eiland, L.
2009-12-01
Teacher professional development centered about the Geosciences is necessary in order to train K-12 teachers about this science field and to effectively educate K-12 students about Earth processes. The partnership of industries, universities, and K-12 schools is a collaborative pathway to support these efforts by providing teachers access to technology, inquiry-based learning, and authentic field experiences within the Geosciences context. This research presents the results of Project SMARTER (Science and Mathematics Advancement and Reform utilizing Technology and Enhanced Resources), a co-lead industry-university partnership and teacher professional development workshop program that focused on technology and inquiry-based learning in the Geosciences. The workshop included fifteen teachers from five distressed counties in Mississippi as defined by the Appalachian Regional Commission. Three (one science, once math, one technology) 7-12 grade teachers were selected from each school district and worked together during activities as a team to foster a cooperative learning experience. The two week workshop trained teachers on the use of a variety of technologies including: Vernier Probes and software, TI-calculators and presenter, Mimio Boards, GPS receivers, Google Earth, Excel, PowerPoint, projectors, and the use of historic geologic datasets. Furthermore, teachers were trained on proper field collection techniques, the use of Hach Kits and field probes, and the interpretation of geologic data. Each daily program incorporated the use of technology-rich and inquiry-based activities into one of the five Earth spheres: atmosphere, lithosphere, biosphere, hydrosphere, and anthrosphere. Results from the pre-post technology attitude survey showed that participating teachers significantly (p < 0.05) increased their confidence level in using technology. Furthermore, all participants self-reflected that the workshop both increased their interest in the Geosciences and their plans to integrate technology in future classroom activities. Qualitative responses from daily feedback forms and journal entries indicated that participating teachers were enthusiastic about inquiry-, technology-, and field-based learning activities and were willing to incorporate cross-discipline lesson plans. Evaluation of final lesson plans developed by the teachers during the workshop combined with follow-up classroom visits illustrated that the teachers appropriately developed classroom lessons to incorporate inquiry and technology and that they successfully implemented these lesson plans in their own classroom as a direct result of participating in workshop activities.
On the Cutting Edge: Workshops, Online Resources, and Community Development
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Fox, S.; Iverson, E. A. R.; Beane, R. J.; Mcconnell, D. A.; Wiese, K.; Wysession, M. E.
2014-12-01
On the Cutting Edge, funded by NSF since 2002, offers a comprehensive professional development program for geoscience faculty. The program includes an annual integrated in-person and virtual workshop series, has developed an extensive collection of peer-reviewed instructional activities and related online resources, and supports continuing community development through sponsorship of webinars, listservs, opportunities for community contributions, and dissemination of resources to keep faculty current in their science and pedagogic practices. On the Cutting Edge (CE) has offered more than 100 face-to-face and virtual workshops, webinars, journal clubs, and other events to more than 3000 participants. The award-winning website has more than 5000 pages including 47 modules on career management, pedagogy, and geoscience topics. It has more than 1800 instructional activities contributed by the community, the majority of which have been peer-reviewed. The website had more than one million visitors last year. We have worked to support a community in which faculty improve their teaching by designing courses using research-based methods to foster higher-order thinking, incorporate geoscience data, and address cognitive and affective aspects of learning as well as a community in which faculty are comfortable and successful in managing their careers. The program addresses the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics that attract different groups of participants. CE workshops are interactive, model best pedagogical practices, emphasize participant learning, provide opportunities for participants to share their knowledge and experience, provide high-quality resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. On the Cutting Edge has had an impact on teaching based on data from national surveys, interview and classroom observation studies, and website usage. The Cutting Edge program is now part of the NAGT professional development program that includes face-to-face, traveling, and virtual workshops for faculty and geoscience programs of all types. http://serc.carleton.edu/NAGTWorkshops/index.html
NASA Astrophysics Data System (ADS)
Ryan, J. G.; Singer, J.
2013-12-01
The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted that their institutions did not recognize the value of education-related scholarly activities, or undervaluing it compared to more traditional research activities. Given this reality, faculty desire strategies for balancing their time to allow time to pursue both. The current restructuring of NSF educational programs raises questions regarding future directions and the scale of support that may be available from the proposed Catalyzing Advances in Undergraduate STEM Education (CAUSE) Program. At the time of writing this abstract, specific details have not been communicated, but it appears that CAUSE could encompass components from several programs within the Division of Undergraduate Education's TUES, STEP, and WIDER programs, as well as the Geoscience Education and OEDG programs in the Geosciences Directorate. The RTUGeoEd project will continue to provide support to faculty seeking CAUSE (and other educational funding within DUE).
Fifteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.
Teachers Explore Earth Science in South America
NASA Astrophysics Data System (ADS)
Passow, Michael; Krusche, Nisia; Carneiro, Celso D. R.
2010-11-01
Rain, Rocks, and Climate: A Geophysical Information for Teachers Workshop; Foz do Iguaçu, Brazil, 8-9 August 2010; Classroom teachers and university professors from two continents joined to learn about “rocks, rain, and climate” in the Geophysical Information for Teachers (GIFT) workshop at the AGU Meeting of the Americas held in Brazil. This was the first GIFT workshop in South America. GIFT workshops have long been part of AGU Fall Meetings in San Francisco, European Geosciences Union Spring Meetings in Vienna, and other AGU conferences. Two Brazilian geoscience professors, Celso Dal Ré Carneiro of State University of Campinas and Nisia Krusche of Federal University of Rio Grande, organized the program, together with a high-school teacher from the United States, Michael J. Passow of Dwight Morrow High School, Englewood, N. J. Joining the presenters were 15 Brazilian teachers and another teacher from New Jersey.
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Beane, R. J.; Whitney, D. L.; Nicolaysen, K. E.; Panero, W. R.; Peck, W. H.
2011-12-01
Mineralogy, petrology and geochemistry (MPG) are pillars of the geoscience curriculum because of their relevance in interpreting Earth history and processes, application to geo-hazards, resources, and environmental issues, and contributions to emerging fields such as geology and human health. To keep faculty current in scientific advances in these fields, and in modern instructional methods, the On the Cutting Edge program convened a workshop at the University of Minnesota in August, 2011. This workshop builds on the previous 15 year's work that has been focused on identifying, aggregating, and developing high-quality collections of teaching activities and related resources, and in building a community of scholars in support of excellence in instruction in MPG courses. The goals of the workshop were to: a) develop an integrated, comprehensive and reviewed curriculum for MPG courses, and to seek ways to make connections with the larger geoscience curriculum; b) to explore emerging topics in MPG such as geobiology and climate change; c) demonstrate effective methods in teaching MPG in the context of Earth system science; d) share effective teaching activities and strategies for the classroom, laboratory and field including advances in pedagogy, assessments and research on learning; e) keep faculty current on recent advances in mineralogy, petrology and geochemistry research and to apply these findings to our teaching; f) explore and utilize current societal and global issues that intersect mineralogy, petrology and geochemistry to heighten the relevancy of course content for students; and h) meet colleagues and foster future teaching and research collaborations. A significant outcome of this workshop is a peer reviewed of collection of 300+ existing teaching activities, and a gap analysis to identify teaching activities needed to make these collections comprehensive and coherent. In addition, a series of thematic collections were developed to assist high priority areas of teaching MPG (e.g. MPG in Introductory Geoscience Courses-Beyond "Rocks in a Box"; thermobarometry programs). All demonstrations and presentations made at the workshop are accessible from the workshop webpage, including a wide variety of active learning exercises and demonstrations of modern computer applications (e.g. SHAPE, ATOMS, CrystalMaker, MELTS, Theriak-Domino, Perplex, TWQ, Google Earth and Gigapans, and PHREEQC). A post-workshop field trip to the Precambrian rocks of northern Minnesota focused on effective teaching and learning in the field. We encourage the geoscience community to use these online resources, and please consider contributing additional teaching activities and resources to these collections.
Teaching Service Learning in the Geosciences: An On the Cutting Edge Workshop Report
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; Laine, E. P.; Mogk, D. W.; O'Connell, S.; Kirk, K. B.
2010-12-01
Service learning is an instructional method that combines community service and academic instruction within the context of an established academic course. It is a particularly effective approach that uses active and experiential learning to develop the academic skills required of a course of study and to simultaneously address authentic community needs. Service learning projects can energize and motivate students by engaging a sense of civic responsibility by working in concert with community partners. The geosciences provide abundant opportunities to develop service learning projects on topics related to natural hazards, resources, land use, water quality, community planning, public policy, and education (K-12 and public outreach). To explore the opportunities of teaching service learning in the geosciences, the On the Cutting Edge program convened an online workshop in February 2010. The goals of the workshop were to: 1) introduce the principles and practices of effective service learning instructional activities; 2) provide examples of successful service learning projects and practical advice about "what works;" 3) provide participants with the opportunity to design, develop, and refine their own service learning courses or projects; 4) develop collections of supporting resources related to the pedagogy of service learning; and 5) support a community of scholars interested in continued work on service learning in the geoscience curriculum. The workshop consisted of a series of web-based synchronous and asynchronous sessions, including presentations from experienced practitioners of service learning, panel discussions, threaded discussions, and editable web pages used to develop new material for the website. Time was also provided for small group and individual work and for participants to peer-review each others' service learning projects and to revise their own activities based on reviewer comments. Insights from the workshop were integrated into new web pages that can help others implement service learning projects in their own institutions and communities. Online resources developed by the workshop participants, conveners, and supporting staff include an assemblage of online and print resources, a searchable collection of peer-reviewed examples of service learning projects, a tutorial on using the "8-Block Model" to design and implement a service learning project, tips on finding service learning partners, advice on motivating students, departments and the community, and example assessment instruments. Faculty are encouraged to submit their own examples of additional service learning projects in the geosciences. The entire workshop program, resources and activities are available online at: http://serc.carleton.edu/NAGTWorkshops/servicelearning/index.html
Fourteenth workshop geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.
1989-01-01
The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.
Fourteenth workshop geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.
The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.
NASA Astrophysics Data System (ADS)
Laj, C. E.
2017-12-01
As a research scientist I have always been interested in sharing whatever I knew with the general public and with teachers, who have the responsibility of forming young people, our ambassadors to the future. The turning point in my educational activities was in 2002, when the European Geosciences Union (EGU) welcomed my proposition to develop a Committee on Education. One of the committee's main activities is the organisation of GIFT (Geosciences Information for Teachers) workshops, held annually during the EGU General Assembly. Typically, these workshops bring together about 80 teachers from 20-25 different countries around a general theme that changes every year. Teachers are offered a mixture of keynote presentations by renowned scientists, and participate to classroom hands-on activities led by high-class educators. They also participate to a poster session, open to every participant to the GA, in which they can show to everyone the activities they have developed in their classroom. Therefore, EGU GIFT workshops spread first-hand scientific information to science teachers, and also offer teachers an exceptional way to networking with fellow teachers worldwide. Speakers are chosen from the academic world, national geosciences organisations such as BGS (UK), BRGM (France), INGV (Italy), the European Space Agency (ESA), CEA (France), from private companies (Total), or from International Organizations for policy makers such as the International Energy Agency (IEA), and IPCC. Since 2010, EGU GIFT workshops have been organized beyond Europe, in connection with EGU Alexander von Humboldt Conferences and other major International Conferences, or in collaboration with local or international organisations. A `Teachers at Sea' program has also been developed for teachers to be able to take part in an Oceanographic cruise. Also, in collaboration with the media manager of EGU the Committee has participated in "Planet Press", a program of geoscience press releases for children.
Teaching Geoethics Across the Geoscience Curriculum
NASA Astrophysics Data System (ADS)
Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel
2015-04-01
Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences? 2) Geoethics and the geoscience profession: what are the ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice expected of the profession? 3) Geoethics and society: what are the responsibilities of geoscientists to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect the health, safety, and economic security of humanity? 4) Geoethics and Earth: what are the responsibilities of geoscientists to provide good stewardship of Earth based on their knowledge of Earth's composition, architecture, history, dynamic processes, and complex systems? Consideration of these components of geoethics will prepare students to recognize ethical dilemmas, and to master the skills needed for ethical decision-making in their professional lives. Collections of resources, case studies, presentations and working group summaries of the workshop can be accessed at: http://serc.carleton.edu/geoethics/index.html
Proceedings of the 25th Himalaya-Karakoram-Tibet Workshop
Leech, Mary L.; Klemperer, Simon L.; Mooney, Walter D.
2010-01-01
For a quarter of a century the Himalayan-Karakoram-Tibet (HKT) Workshop has provided scientists studying the India-Asia collision system a wonderful opportunity for workshop-style discussion with colleagues working in this region. In 2010, HKT returns to North America for the first time since 1996. The 25th international workshop is held from June 7 to10 at San Francisco State University, California. The international community was invited to contribute scientific papers to the workshop, on all aspects of geoscience research in the geographic area of the Tibetan Plateau and its bounding ranges and basins, from basic mapping to geochemical and isotopic analyses to large-scale geophysical imaging experiments. In recognition of the involvement of U.S. Geological Survey (USGS) scientists in a wide range of these activities, the USGS agreed to publish the extended abstracts of the numerous components of HKT-25 as an online Open-File Report, thereby ensuring the wide availability and distribution of these abstracts, particularly in the HKT countries from which many active workers are precluded by cost from attending international meetings. In addition to the workshop characterized by contributed presentations, participants were invited to attend a pre-meeting field trip from the Coast Ranges to the Sierra Nevada, to allow the international group to consider how the tectonic elements of the Pacific margin compare to those of the Himalayan belt. Following the workshop, the National Science Foundation (NSF) sponsored a workshop on the 'Future directions for NSF-sponsored geoscience research in the Himalaya/Tibet' intended to provide NSF Program Directors with a clear statement and vision of community goals for the future, including the scientific progress we can expect if NSF continues its support of projects in this geographic region, and to identify which key geoscience problems and processes are best addressed in the Himalaya and Tibet, what key datasets are needed, and how NSF can best support the evolving need for interdisciplinary investigations. This workshop also has clear societal relevance. Recent earthquakes have brought international attention to active tectonics and earthquake hazards in the HKT region. Prominent examples include the Mw 7.8 Kokoxili (Qinghai, China) earthquake of 2001, the Mw 7.6 Kashmir (Pakistan) earthquake of 2005, the Mw 7.9 Wenchuan (Sichuan, China) earthquake of 2008, and this year the Mw 6.9 Yushu (Qinghai, China) earthquake. Geological and geophysical field work conducted both before these earthquakes, as well as in response to them, has helped to define the active faults and regional tectonics in the HKT region. The research presented at this workshop provides the framework necessary for improved seismic hazard assessments in this region. The organizers gratefully acknowledge the support of NSF's Continental Dynamics Program and its Office of International Science and Engineering, through award EAR-0965796. We thank San Francisco State University's Sheldon Axler, Dean of the College of Science and Engineering, and Toby Garfield, Director of the Romberg Tiburon Center, for use of their conference facilities; and the Department of Geosciences, particularly Deb Shulman and Miriam Knof, for administrative support. The California Academy of Sciences generously hosted a reception for visiting delegates, and Brad Ritts (Chevron Exploration Technology Company), Todd Greene (California State University, Chico) and John Shervais (Utah State University) together co-led the pre-conference field trip. Technical editing of this volume was led by Roxanne Renedo (U.S. Geological Survey) with assistance from Margaret Milia (Stanford University). We are grateful to the U.S. Geological Survey (USGS) Earthquake Hazards Program and the USGS Menlo Park (California) Publishing Service Center for making this online report possible.
Teaching GeoEthics Across the Geoscience Curriculum
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.
2014-12-01
Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic security; (4) GeoEthics and Earth: explicating geoscientists' responsibilities to provide stewardship towards of the Earth based on their knowledge of Earth's composition, architecture, history, dynamic processes, and complex systems. Workshop resources can be accessed at serc.carleton.edu/geoethics/
NASA Astrophysics Data System (ADS)
Kovacs, T.; Robinson, D.; Suleiman, A.; Maggi, B.
2004-12-01
A bridging program to increase the diversity in the geosciences was created at Hampton University (HU) to inspire underrepresented minorities to pursue an educational path that advances them towards careers in the geosciences. Three objectives were met to achieve this goal. First, we inspired a diverse population of middle and high school students outside of the classroom by providing an after school geoscience club, a middle school geoscience summer enrichment camp, and a research/mentorship program for high school students. Second, we helped fill the need for geoscience curriculum content requested of science teachers who work primarily with underrepresented middle school populations by providing a professional development workshop at HU led by geoscience professors, teachers, and science educators. Third, we built on the successful atmospheric sciences research and active Ph.D. program by developing our geoscience curriculum including the formation of a new space, earth, and atmospheric sciences minor. All workshops, camps, and clubs have been full or nearly full each year despite restrictions on participants repeating any of the programs. The new minor has 11 registered undergraduates and the total number of students in these classes has been increasing. Participants of all programs gave the quality of the program good ratings and participant perceptions and knowledge improved throughout the programs based on pre-, formative, and summative assessments. The ultimate goal is to increase the number of degrees granted to underrepresented minorities in the geosciences. We have built a solid foundation with our minor that prepares students for graduate degrees in the geosciences and offer a graduate degree in physics with a concentration in the atmospheric sciences. However, it's from the geoscience pipeline that students will come into our academic programs. We expect to continue to develop these formal and informal education programs to increase our reputation and utilize the network of schools with which we have built relationships to recruit underrepresented minority students into our academic programs. We also plan to continue to enhance our undergraduate minor and graduate degree programs to build a self-sustaining graduate degree-granting program in the geosciences.
Developing Students' Understanding of Complex Systems in the Geosciences (Invited)
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.; Bice, D. M.; Pyle, E.; Slotta, J.
2010-12-01
Developing a systems perspective is a commonly cited goal for geosciences courses and programs. This perspective is a powerful tool for critical thinking, problem solving and integrative thinking across and beyond the sciences. In April 2010, a NSF funded ‘On the Cutting Edge’ workshop brought together 45 geoscience faculty, education and cognitive science researchers, and faculty from other STEM and social science disciplines that make use of a complex systems approach. The workshop participants focused on understanding the challenges inherent in developing an understanding of complex systems and the teaching strategies currently in use across the disciplines. These include using models and visualizations to allow students to experiment with complex systems, using projects and problems to give students experience with data and observations derived from a complex system, and using illustrated lectures and discussions and analogies to illuminate the salient aspects of complex systems. The workshop website contains a collection of teaching activities, instructional resources and courses that demonstrate these approaches. The workshop participants concluded that research leading to a clear articulation of what constitutes understanding complex system behavior is needed, as are instruments and performance measures that could be used to assess this understanding. Developing the ability to recognize complex systems and understand their behavior is a significant learning task that cannot be achieved in a single course. Rather it is a type of literacy that should be taught in a progression extending from elementary school to college and across the disciplines. Research defining this progression and its endpoints is needed. Full information about the workshop, its discussions, and resulting collections of courses, activities, references and ideas are available on the workshop website.
LaURGE: Louisiana Undergraduate Recruitment and Geoscience Education
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Agnew, J.
2009-12-01
NSF and the Shell Foundation sponsor a program called Louisiana Undergraduate Recruitment and Geoscience Education (LaURGE). Goals of LaURGE are: 1) Interweave geoscience education into the existing curriculum; 2) Provide teachers with lesson plans that promote interest in geoscience, critical thinking by students, and are consistent with current knowledge in geoscience; and 3) Provide teachers with supplies that make these lessons the highlights of the course. Biology workshops were held at LSU in Baton Rouge and Centenary College in Shreveport in July 2009. 25 teachers including 5 African-Americans attended the workshops. Teachers were from public and private schools in seven different parishes. Teacher experience ranged from 3 years to 40 years. Courses impacted are Biology, Honors Biology, AP Biology, and Environmental Science. The workshops began with a field trip to Mississippi to collect fossil shark teeth and create a virtual field trip. After the field trip, teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic concepts such as geologic time, superposition, and faunal succession. Teachers were also given a $200 budget from which to select fossils for use in their classrooms. One of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth have an excellent fossil record and show continuous transitions in morphology from the Eocene to Pliocene. We take advantage of the curiosity of sharks shared by most people, and allow teachers to explore the variations among different shark teeth and to explain the causes of those variations. Objectives are to have teachers (and their students): 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. The exercise concludes with discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused evolutionary changes in the megatooth shark’s teeth. Other topics covered include radiometric age dating, biogeochemical cycles, and human impact on the carbon and sulfur cycles. Pretests and posttests were administered to assess effectiveness of the program as well as identify teacher misconceptions. This information will be used in future workshops. NSF funding will allow the biology workshops to be repeated in 2010. In addition, a new workshop for physics teachers will be introduced in 2010.
Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM
NASA Astrophysics Data System (ADS)
Blake, R.; Liou-Mark, J.
2012-12-01
An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks, effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.
Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop
NASA Astrophysics Data System (ADS)
Williams, M. L.; Mogk, D. W.; McDaris, J. R.
2010-12-01
Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and research results to facilitate teaching about the deep earth across the geoscience curriculum. Another goal of the workshop was to experiment with, and evaluate the effectiveness of, the virtual format. Although there are advantages to face-to-face workshops, the virtual format was remarkably effective. The interactive discussions during synchronous presentations were vibrant, and the virtual format allowed participants to introduce references, images and ideas in real-time. The virtual nature of the workshop allowed participation by those who are not able to attend a traditional workshop, with an added benefit that participants had direct access to all their research and teaching materials to share with the workshop. Some participants broadcast the workshop ‘live’ to their classes and many brought discussions directly from the presentation to the classroom. The workshop webpage includes the workshop program with links to recordings of all presentations, discussion summaries, a collection of recommended resources about deep Earth research, and collections of peer-reviewed instructional activities. http://serc.carleton.edu/NAGTWorkshops/deepearth/index.html
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; King, Chris; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2017-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly in Vienna, and also elsewhere in the world usually associated with large geoscience conferences. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "The solar system and beyond", "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water" and "Evolution and Biodiversity". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 800 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.; Houlton, H. R.
2012-12-01
The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through a second pilot testing with Spring 2012 graduates from 45 departments across the United States. These graduating students from undergraduate and graduate programs answered questions about their earth science education experiences at the high school, community college, and university levels; their quantitative skills; their research and internship experiences and their immediate plans after graduation. Out of the 294 complete responses to the survey, 233 were from undergraduate students. This presentation will focus on the responses of these undergraduate students. AGI hopes to fully deploy this survey broadly to geosciences departments across the country in Spring 2013. AGI will also begin longitudinally participants from the previous Exit Survey efforts in order to understand their progression through their chosen career paths.
NASA Astrophysics Data System (ADS)
2012-04-01
Early-career researchers and postgraduates are invited to attend an Author Workshop at the 2012 European Geosciences Union General Assembly in Vienna. The following were elected Fellows of the Society on 10 February 2012:
A framework for high-school teacher support in Geosciences
NASA Astrophysics Data System (ADS)
Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.
2012-04-01
To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.
NASA Astrophysics Data System (ADS)
Richardson, R. M.; Ormand, C. J.; MacDonald, H.; Dunbar, R. W.; Allen-King, R. M.; Manduca, C. A.
2010-12-01
Launching an academic career presents a number of challenges. A recent article in the Chronicle of Higher Education depicts academia as an “ivory sweatshop,” citing rising standards for tenure. Most graduate programs provide minimal training for life beyond graduate school. The professional development program “On the Cutting Edge” fills this gap by providing workshops and web resources on academic careers for graduate students, postdoctoral fellows, and early career faculty. These workshops and web resources address a wide range of topics related to teaching, research, and managing one’s career, tailored for each group. The Preparing for an Academic Career in the Geosciences workshop to help graduate students and postdoctoral fellows make the transition into an academic career has been offered annually since 2003. It provides a panel on academic careers in different institutional settings, sessions on research on learning, various teaching strategies, design of effective teaching activities, moving research forward to new settings, effective teaching and research statements, the job search process, negotiation, and presenting oneself to others. Complementary online resources (http://serc.carleton.edu/NAGTWorkshops/careerprep/index.html) focus on these topics. The workshops and web resources offer guidance for each step of the job search process, for developing and teaching one’s own courses, and for making the transition from being a research student to being in charge of a research program. Online resources also include case studies of successful dual career couples, documenting their job search strategies. A four-day workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career, offered annually since 1999, provides sessions on teaching strategies, course design, developing a strategic plan for research, supervising student researchers, navigating departmental and institutional politics, preparing for tenure, time and task management, and more. Complementary online resources (http://serc.carleton.edu/NAGTWorkshops/earlycareer/index.html) also address these topics. The workshops and web resources offer guidance for becoming an efficient and effective teacher, for developing a thriving research program, for staying on track for tenure, and for managing a balance of one’s personal and professional lives. Online resources feature a collection of successful grant proposals, profiles of successful researchers and their collaborations with their students, and profiles of geoscience faculty from a variety of institutions describing how they achieve balance in their lives. Participants in both workshops overwhelmingly report that the workshop met or exceeded their expectations, that they feel much better prepared to move forward in their careers as a result of the workshops, and that they will use the website in the future. The two sets of web pages receive more than 7,000 visitors each month.
Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.
2013-12-01
Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before and after transfer, research opportunities, and 2YC-4YC collaborations. Improving student success is an important priority at most 2YCs, and is especially challenging because students who enroll at a 2YC arrive with a wide range of abilities, preparation, and goals. Web resources that build on research from education, cognitive science, and psychology address topics such as stereotype threat, solo status, the affective domain, and effective teaching approaches. Other materials describe how to work with various student populations (e.g., English-language learners, students with disabilities, veterans), approaches to strengthening students' ability to monitor their own learning, and other strategies for supporting student success. Programs that support student success in general are important for the more specific goal of developing the geoscience workforce.
NASA Astrophysics Data System (ADS)
Whitman, D.; Hickey-Vargas, R.; Draper, G.; Rego, R.; Gebelein, J.
2014-12-01
Florida International University (FIU), the State University of Florida in Miami is a large enrollment, federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. Recruiting local students into the geosciences is challenging because geology is not well integrated into the local school curriculum, the geology is poorly exposed in the low-relief south Florida region and many first generation college students are reluctant to enter unfamiliar fields. We describe and present preliminary findings from Growing Community Roots for the Geosciences in Miami, FL, a 2-year, NSF funded project run by the Department of Earth and Environment at FIU which aims to inform students enrolled in the local middle and high schools to educational and career opportunities in the geosciences. The project takes a multi-faceted approach which includes direct outreach through social media platforms and school visits, a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students. An outreach team of undergraduate geoscience majors were recruited to build and maintain informational resources on Facebook, Instagram, Twitter and Google Plus and to accompany FIU faculty on visits to local middle schools and high schools. Both the teacher workshop and the summer camp included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, exercises with Google Earth imagery and GIS, and field trips to local geological sites and government facilities. Participants were surveyed at the beginning of the programs on their general educational background in math and science and their general attitudes of and interest in geoscience careers. Post program surveys showed significant increases in the comfort of teaching topics in geoscience among teachers and an increased interest in majoring in geoscience among students. On the final day of the programs, participants were queried on better ways of interesting high school to major in geoscience. Suggestions included visits by faculty and college students to high schools and using social media to promote events and activities.
Website Resources and Support for Two-Year College Geoscience Educators
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Macdonald, H.; Blodgett, R. H.; Manduca, C. A.; Maier, M.
2011-12-01
Geoscience faculty at two-year colleges (2YC) face a number of challenges, from the wide diversity of the student population to being isolated from other geoscience faculty. Several projects have developed web resources that address some of these issues by providing professional development, teaching materials, and opportunities to connect with their colleagues at other institutions. The Role of Two-Year Colleges in Geoscience Education and in Broadening Participation in the Geosciences project brought together 2YC faculty from across the country for a planning workshop to discuss these issues and propose strategies and mechanisms to strengthen the 2YC geoscience education community (http://serc.carleton.edu/geo2yc/index.html). The website now hosts more than 30 essays on the state of 2YC education, teaching activities, and course descriptions submitted by 2YC faculty as well as an email discussion list and other ways of networking and discussing important. One outcome of this work is that the National Association of Geoscience Teachers has created a division for 2YC faculty so that members can network with each other and discuss solutions to pressing issues. (http://nagt.org/nagt/divisions/2yc/index.html) The On the Cutting Edge program has an array of professional development resources available (http://serc.carleton.edu/NAGTWorkshops/). Over its decade of work, the program has developed resources on topics of interest to 2YC faculty including: teaching introductory courses, the affective domain, teaching with data, metacognition, online courses, teaching about hazards, and many others. There are also extensive collections of teaching activities and visualizations. In addition, the program continues to hold face-to-face and virtual professional development workshops and webinars that are accessible to 2YC faculty and can help them feel less isolated The Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo) website is specifically aimed at all those teaching introductory classes, including two-year college faculty. This website includes information about a variety of teaching strategies (e.g., lecture tutorials, service learning, just-in-time teaching) and a set of geoscience teaching examples. This is valuable for faculty interested in new approaches to teaching or who want to see examples of activities they can adopt or adapt. The interdisciplinary project Two-year College Outreach Across the Disciplines (http://serc.carleton.edu/econ/2yc/disciplines/index.html) summarizes best practices in nine disciplines, including the geosciences. At a 2011 workshop, sponsored by Economics at Community Colleges, faculty compared notes on what has worked and what hasn't in terms of strengthening disciplinary and interdisciplinary education at 2YCs. (http://serc.carleton.edu/econ/2yc/index.html) These and other projects have developed resources for supporting and enhancing the efforts of two-year college faculty in the geosciences. A variety of these materials is available via the Teach the Earth portal at http://serc.carleton.edu/teachearth/.
Making Geoscience Data Relevant for Students, Teachers, and the Public
NASA Astrophysics Data System (ADS)
Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.
2009-12-01
The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis within the structure of the Federation of Earth Science Information Partners (ESIP Federation), leveraging their semi-annual meetings. In this presentation we will describe the AccessData model of making geoscience data accessible and usable in educational contexts from the perspective of both the organizers and from a team. We will also describe how this model has been adapted to other contexts to facilitate a broader reach of geoscience data.
Abstracts for the Venus Geoscience Tutorial and Venus Geologic Mapping Workshop
NASA Technical Reports Server (NTRS)
1989-01-01
Abstracts and tutorial are presented from the workshop. Representative titles are: Geology of Southern Guinevere Planitia, Venus, Based on Analyses of Goldstone Radar Data; Tessera Terrain: Characteristics and Models of Origin; Venus Volcanism; Rate Estimates from Laboratory Studies of Sulfur Gas-Solid Reactions; and A Morphologic Study of Venus Ridge Belts.
Fourth Airborne Geoscience Workshop
NASA Technical Reports Server (NTRS)
1991-01-01
The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.
NASA Astrophysics Data System (ADS)
Fox, L. K.; Guertin, L. A.
2013-12-01
The Geosciences Division of the Council of Undergraduate Research (GeoCUR, http://curgeoscience.wordpress.com/) has a long history of supporting faculty who engage in undergraduate research. The division has held faculty development workshops at national meetings of the GSA and AGU for over 15 years. These workshops serve faculty at all career stages and cover multiple aspects of the enterprise of engaging students in undergraduate research. Topics covered include: getting a job (particularly at a primarily undergraduate institution), incorporating research into classes, mentoring independent research projects and identifying sources of internal and external funding. Originally, these workshops were funded through CUR and registration income. When the administrative costs to run the workshops increased, we successfully sought funding from the NSF Course, Curriculum, and Laboratory Improvement (CCLI) program. This CCLI Type 1 special project allowed the expansion of the GSA workshops from half-day to full-day and the offering of workshops to other venues, including the annual meeting of the Association of American Geographers and sectional GSA meetings. The workshops are organized and led by GeoCUR councilors, some of whom attended workshops as graduate students or new faculty. Current and past Geoscience program officers in the NSF Division of Undergraduate Education (DUE) have presented on NSF funding opportunities. Based on participant surveys, the content of the workshops has evolved over time. Workshop content is also tailored to the particular audience; for example, AGU workshops enroll more graduate students and post-docs and thus the focus is on the job ';search' and getting started in undergraduate research. To date, this CCLI Type 1 project has supported 15 workshops and a variety of print and digital resources shared with workshop participants. This presentation will highlight the goals of this workshop proposal and also provide insights about strategies for funding professional development, impact of workshops on initiating and sustaining undergraduate research programs, and future directions of this program.
A Unique Partnership to Promote Diversity in the Geosciences, San Jose, California
NASA Astrophysics Data System (ADS)
Sedlock, R.; Metzger, E.; Johnson, D.
2006-12-01
We report here on a particularly satisfying partnership of academic institutions that focuses on enhancing the participation of underrepresented students in the geosciences. The Bay Area Earth Science Institute (BAESI) at San José State University (SJSU) has provided professional development opportunities to over 1,500 area teachers since 1990. BAESI offerings include summer and weekend workshops, field trips, classroom visits, and a lending library of curricula, sample sets, A/V materials, and equipment. The National Hispanic University (NHU) is a private, non-profit university that enrolls about 700 students, 80% of whom are of Hispanic descent. Another 13% are from other minority groups, 74% are from low-income families, and 70% are women. NHU houses the Latino College Preparatory Academy (LCPA), a charter high school that provides an alternative for students who struggle in traditional schools due to language issues. In the 1990s, administrators at SJSU and NHU set up formal agreements about course articulation, reciprocity, and joint degree programs. In 2002, informal discussions between BAESI and NHU staff led to collaboration on an NSF proposal to strengthen NHU's geoscience curriculum. Since then, the scope of BAESI-NHU actions has expanded greatly: (1) NHU and LCPA staff attended a week-long BAESI professional development workshop funded by NSF, and have attended numerous BAESI field trips. (2) BAESI staff visit NHU and LCPA classrooms to showcase SJSU's Geology Department and to enrich existing Chemistry and Physics classes with geoscience applications. (3) A nascent "Geologist-In-Residence" program pairs SJSU geology students with teachers at LCPA. (4) NHU students have interned with Metzger on local research projects. (5) BAESI brokered donation of an extensive USGS rock collection to NHU. (6) NHU, BAESI, and NASA-Ames staff collaborate on an online Earth Science curriculum for middle-school teachers. (7) We will adapt BAESI summer workshops to a one-week course in effective teaching of high-school science that will be taught during intersession in NHU's Teacher Education Department. We have recently received funding for a collaborative project from NSF's Geoscience Education program to create a joint degree program wherein NHU offers the lower division coursework and bestows an A.S. degree in mathematics and science with geoscience emphasis, and SJSU offers the upper-division coursework and the B.S. degree in geoscience. Our collaborations focus on providing teachers with professional development and educational resources to help underrepresented students receive quality instruction in the geosciences. Participation of NHU teachers- in-training provides a long-term means for spreading quality geoscience teaching to precollege classrooms throughout Santa Clara County, including the largely minority classrooms that NHU teachers are specially trained to staff.
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.
2011-12-01
Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research problem, to make collaborative decisions, and to collectively problem solve. The development of this shared understanding is a primary result of the past decade of work. It has been developed through geoscience hosted events like the On the Cutting Edge emerging theme workshops and the Synthesis of Research on Thinking and Learning in the Geosciences project, complementary events in cognitive science and education that include geoscientists like the Gordon Conferences on Visualization in Science & Education or the Spatial Cognition conference series, and the interactions within and among geoscience education research projects like the Spatial Intelligence and Learning Center, the GARNET project, and many others. With this common ground in place, effective collaborations that bring together deep knowledge of psychology and brain function, of educational design and testing, and of time tested learning goals, teaching methods, and measures of success can flourish. A strong and accelerating research field has emerged that spans from work on basic cognitive skills important in geoscience, to studies of specific teaching strategies.
Geoscience Education Research: A Brief History, Context and Opportunities
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Manduca, C. A.; Kastens, K. A.
2011-12-01
DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching with visualizations, the affective domain, observing and assessing student learning, metacognition, and understanding complex systems. Geoscience education research is a growing and thriving field of scholarship that includes new PhD programs in geocognition (e.g. Michigan State Univ., Purdue Univ., Arizona State Univ., North Carolina State Univ.), and numerous collaborative research consortia (e.g. Synthesis of Research on Learning in the Geosciences; Spatial Intelligence and Learning Center, Geoscience Affective Research Network). The results of geoscience education research are presently being incorporated into the geoscience curriculum through teaching activities and textbooks. These many contributions reveal the need for sustained research on related topics: assessments of student learning, learning environments (lab and field), "what works" for different learning audiences, learning in upper division disciplinary courses, the nature of geoscience expertise. The National Research Council is currently reviewing the Status, Contributions, and Future Direction of Discipline-Based Education Research (DBER), see: http://www7.nationalacademies.org/bose/DBER_Homepage.html
NASA Astrophysics Data System (ADS)
Carley, S.; Tuddenham, P.; Bishop, K. O.
2008-12-01
In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?
Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources
NASA Astrophysics Data System (ADS)
Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.
2011-12-01
Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with campus career centers, incorporate career advising and mentoring throughout the degree program, and recognize that co-curricular experiences are also important avenues through which students can also develop as professionals. Graduate students and post-doctoral fellows have many questions about academic jobs and the academic job search process and many are uncertain about the nature of academic positions at different kinds of educational institutions (two-year colleges, primarily undergraduate institutions, and research universities). On the Cutting Edge workshops and webinars provide insights into academic careers in different institutional settings, various teaching strategies and course design, strategies for moving research forward, effective teaching and research statements, the job search process, and negotiation. The website provides resources on these topics as well as others and includes screen casts of the webinar sessions, making these resources available to all.
A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.
2016-12-01
The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.
2009-12-01
Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role-playing, inquiry-based learning via online data sets, and the use of computer models. The website houses course descriptions and syllabi for both introductory-level and upper-level climate courses contributed by faculty. Collections of climate visualizations and recommended references help faculty navigate to online materials that are best suited for their classroom. The On the Cutting Edge program features a biennial workshop series about teaching climate change, held in conjunction with the American Quaternary Association. Presentations, teaching ideas and references from the 2006 and 2008 workshops are available, along with applications for the upcoming workshop to be held in August 2010. All of these materials can be found at http://serc.carleton.edu/NAGTWorkshops/energy and http://serc.carleton.edu/NAGTWorkshops/climatechange. Faculty are encouraged to submit their own teaching materials to the web collections via on-line forms for submitting information and uploading files.
Delivering accessible fieldwork: preliminary findings from a collaborative international study
NASA Astrophysics Data System (ADS)
Stokes, Alison; Atchison, Christopher; Feig, Anthony; Gilley, Brett
2017-04-01
Students with disabilities are commonly excluded from full participation in geoscience programs, and encounter significant barriers when accessing field-learning experiences. In order to increase talent and diversity in the geoscience workforce, more inclusive learning experiences must be developed that will enable all students to complete the requirements of undergraduate degree programs, including fieldwork. We discuss the outcomes of a completely accessible field course developed through the collaborative effort of geoscience education practitioners from the US, Canada and the UK. This unique field workshop has brought together current geoscience academics and students with disabilities to share perspectives on commonly-encountered barriers to learning in the field, and explore methods and techniques for overcoming them. While the student participants had the opportunity to learn about Earth processes while situated in the natural environment, participating geoscience instructors began to identify how to improve the design of field courses, making them fully inclusive of learners with disabilities. The outcomes from this experience will be used to develop guidelines to facilitate future development and delivery of accessible geoscience fieldwork.
Supporting REU Leaders and Effective Workforce Development in the Geosciences
NASA Astrophysics Data System (ADS)
Sloan, V.; Haacker, R.
2014-12-01
Research shows that research science experiences for undergraduates are key to the engagement of students in science, and teach critical thinking and communication, as well as the professional development skills. Nonetheless, undergraduate research programs are time and resource intensive, and program managers work in relative isolation from each other. The benefits of developing an REU community include sharing strategies and policies, developing collaborative efforts, and providing support to each other. This paper will provide an update on efforts to further develop the Geoscience REU network, including running a national workshop, an email listserv, workshops, and the creation of online resources for REU leaders. The goal is to strengthen the connections between REU community members, support the sharing of best practices in a changing REU landscape, and to make progress in formalizing tools for REU site managers.
Geoscience Education and Public Outreach AND CRITERION 2: MAKING A BROADER IMPACT
NASA Astrophysics Data System (ADS)
Marlino, M.; Scotchmoor, J. G.
2005-12-01
The geosciences influence our daily lives and yet often go unnoticed by the general public. From the moment we listen to the weather report and fill-up our cars for the daily commute, until we return to our homes constructed from natural resources, we rely on years of scientific research. The challenge facing the geosciences is to make explicit to the public not only the criticality of the research whose benefits they enjoy, but also to actively engage them as partners in the research effort, by providing them with sufficient understanding of the scientific enterprise so that they become thoughtful and proactive when making decisions in the polling booth. Today, there is broad recognition within the science and policy community that communication needs to be more effective, more visible, and that the public communication of the scientific enterprise is critical not only to its taxpayer support, but also to maintenance of a skilled workforce and the standard of living expected by many Americans. In 1997, the National Science Board took the first critical step in creating a cultural change in the scientific community by requiring explicit consideration of the broader impacts of research in every research proposal. The so-called Criterion 2 has catalyzed a dramatic shift in expectations within the geoscience community and an incentive for finding ways to encourage the science research community to select education and public outreach as a venue for responding to Criterion 2. In response, a workshop organized by the University of California Museum of Paleontology and the Digital Library for Earth System Education (DLESE) was held on the Berkeley campus May 11-13, 2005. The Geoscience EPO Workshop purposefully narrowed its focus to that of education and public outreach. This workshop was based on the premise that there are proven models and best practices for effective outreach strategies that need to be identified and shared with research scientists. Workshop participants delineated a series of recommendations that would facilitate clarity with respect to Criterion 1, recognition and reward for involvement in EPO activities, and methods for documenting and disseminating institutional models. There was a clear focus on the need for cultural change at many levels -- a change that genuinely motivates and rewards research and education communities to work together. Such collaboration would contribute to a greater appreciation of the scientific enterprise, a broader understanding of the scientific process, and increased scientific understanding at all learning levels.
NASA Astrophysics Data System (ADS)
Tewksbury, B. J.; MacDonald, R. H.
2004-12-01
As part of a professional development program for faculty in the geosciences, the NSF-funded program On the Cutting Edge (http://serc.carleton.edu/NAGTWorkshops/) has developed and offered workshops for geoscience faculty that guide participants through a stimulating process designed to help faculty members articulate goals and design effective and innovative courses that both meet those goals and assess outcomes. Of approximately 150 faculty members who have participated in the workshops, more than 120 have designed introductory courses in topics ranging from physical geology to Earth systems to historical geology to oceanography. The method of course design taught through these workshops leads to the development of rigorous, student-centered introductory courses. Our method of course design begins, not with a list of content items, but with setting goals by answering the question, "What do I want my students to be able to do on their own when they are done with my class?", rather than the question, "What do I want my students to know in this subject?" Focusing on what faculty members want students to be able to do, rather than on what topics should be covered by the faculty member, promotes designing courses in which students are actively engaged in doing geoscience. This course design method emphasizes setting goals for students involving higher order thinking skills (e.g., analysis, synthesis, design, formulation, prediction, interpretation, evaluation), rather than lower order thinking skills (e.g., identification, description, recognition, classification). For example, the goal of having students be able to evaluate the geologic hazards in an unfamiliar region involves higher order thinking skills and engages the student in deeper analysis than simply asking students to recall and describe examples of geologic hazards covered in class. This goal also has imbedded in it many lower order thinking skills tasks (e.g., identification, description). Rigor comes in having the students involved in doing significant and meaningful geologic tasks. Long-term value comes from improving students' abilities for future challenges, rather focusing on having students pass the final exam. Goals for courses of many different types can be found in the Cutting Edge goals/syllabus database at http://serc.carleton.edu/NAGTWorkshops/coursedesign/browse.html. The workshop also introduces participants to a wide range of teaching and assessment tools so that faculty members will leave the workshop with a larger toolbox of techniques to choose from when deciding how to give students practice during the semester in tasks relevant to the goals of the course and how to evaluate students' progress toward the goals. Most of the techniques emphasize student engagement, which promotes development of more rigorous courses. Over 100 institutions now have introductory geoscience courses designed by faculty members who have participated in our course design workshops. Participants have stated repeatedly in evaluations that the workshop transformed their views of the course design process and that they will carry the focus on goals, student engagement, and rigor into designing other courses and assessing curricula in their departments. On the Cutting Edge is in the process of developing a web-based course design workshop so that faculty who cannot attend our face-to-face workshops can go through our course design process.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Adams, A. S.; Barnes, R.; Bloodhart, B.; Bowker, C.; Burt, M. A.; Clinton, S. M.; Godfrey, E.; Henderson, H.; Hernandez, P. R.; Sample McMeeking, L. B.; Sayers, J.; Fischer, E. V.
2016-12-01
In fall 2015, an interdisciplinary team with expertise in the geosciences, psychology, education, and STEM persistence began a five-year longitudinal project focused on understanding whether a multi-part mentoring program can increase the persistence of undergraduate women in the geosciences. The program focuses on mentoring 1st and 2nd year female undergraduate students from five universities in Colorado and Wyoming and four universities in North and South Carolina, and includes a weekend workshop, mentoring by professional women across geoscience fields, and both in-person and virtual peer networks. In fall 2015, we recruited 85 students from both regions into cohort 1 as well as a propensity score matched group of 255 female students that did not participate in the program. An equal or greater number of students are anticipated for cohort 2 from recruitment in fall 2016. Both cohorts will have attended weekend-long workshops (cohort 1 in October 2015, and cohort 2 in October 2016), which aimed to introduce students to various careers and lifestyles of those working in the geosciences, guide students through their strengths and interests, and address gender biases that students may face. Early analyses indicate that students who are interested in participating in the program are more likely to reject stereotypes and beliefs that the sciences are masculine, and to see science as being compatible with benefitting society. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in fall 2015 and is used by both cohorts. We will present an overview of the major components of the program, early findings from focus group and survey-based feedback from participants, and discuss lessons learned during 2015 that were applied to 2016.
Geoscience Digital Data Resource and Repository Service
NASA Astrophysics Data System (ADS)
Mayernik, M. S.; Schuster, D.; Hou, C. Y.
2017-12-01
The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Environmental GeoSciences Lectures and Transversal Public Workshops
NASA Astrophysics Data System (ADS)
Redondo, J. M.; Redondo, A.; Babiano, A.
2010-05-01
Co/organized by the Campus Universitari de la Mediterrania, which is a consortium between the City hall of Vilanova i la Geltru, The Universitat Politecnica de Catalunya and the Generalitat. A series of high level workshops and summer schools have been used to prepare specific, hands on science and scientific, divulgation material aimed at different types of public. Some of the most attractive topics in geosciences, prepared by well established scientists in collaboration with primary and secondary school teachers are used to stimulate science and environmental topics in the clasroom. A collection of CDs with lectures, videos and experimental visual results cover a wide range of topics such as: Cloud shape analysis, Cetacean Acoustics, Turbulence, Soil percolation, Dynamic Oceanograpy, Oil Pollution, Solar Physics, Rainbows and colour, Snail shell structure, etc.. Some of the most popular themes are chosen, studied and presented by the diferent aged pupils from local schools.
NASA Astrophysics Data System (ADS)
Messina, P.; Metzger, E. P.
2007-12-01
Pre- and in-service teachers nationwide face increasing qualification and credentialing demands. This may be particularly true for secondary (9-12) science teachers and multiple subject (K-8) faculty. Traditional B.S. programs in Physics, Chemistry, Biology rarely require geoscience courses, yet those candidates wishing to pursue high school teaching may need to demonstrate Earth science content competency to qualify for a credential. If successful, they will likely be asked to teach a geoscience course at some point during their careers. Even more daunting is the plight of those in the K-8 arena: many current and prospective teachers have been forced to minimize science electives in lieu of increasing education requirements. National, state, and local teaching standards call for escalating emphases on the four geoscience sub- disciplines: geology, meteorology, oceanography, and space science. How can current and future teachers establish geoscience content and pedagogy competency when undergraduate curricula often substitute other (albeit valuable) requirements? How can current and future K-12 educators supplement their academic knowledge to substantiate "highly qualified" status, and (perhaps more importantly) to feel comfortable enough to share geoscience concepts with their students? How can we in higher education assist this population of already overcommitted, less experienced teachers? San Jose State University has developed a multi-pronged approach to meet several concurrent demands. Faculty from SJSU's Geology Department and Program in Science Education developed a course, Earth Systems and the Environment, that satisfies all four geoscience sub-disciplines' required content for teachers. While it is intended for future K-8 educators, it also carries general education certification, and has been adapted and delivered online since 2005. SJSU's in-service community can enroll in the 3 graduate credit, ESSEA (Earth Systems Science Education Alliance) courses for middle- and high-school teachers. These curricula use jig-saw and cooperative learning strategies to enhance educators' understanding, and to build confidence in teaching geoscience ideas by modeling effective pedagogy. The Bay Area Earth Science Institute (BAESI) augments these formal education options, offering summer and weekend workshops for which teachers may earn inexpensive university credit. Established in 1990, BAESI has served more than 1500 teachers with geoscientist- and master teacher-led workshops that supply standards- based Earth science concepts and effective strategies for teaching them.
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2016-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water", "Evolution and Biodiversity" and "Energy and Sustainable Development". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/
NASA Astrophysics Data System (ADS)
Macko, S. A.; Arnold, E. M.; Barnikel, F.; Berenguer, J. L.; Cifelli, F.; Funiciello, F.; Schwarz, A.; Smith, P.; Summesberger, H.; Laj, C. E.
2015-12-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our Changing Planet", "Natural Hazards", "Water" and "Biodiversity and Evolution". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs, presentations and Web streaming of past GIFT workshops are available at: http://www.egu.eu/education/gift/workshops/
Engaging teachers & students in geosciences by exploring local geoheritage sites
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Gierke, J. S.
2014-12-01
Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.
OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTON, TEXAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott W. Tinker; Beverly Blakeney DeJarnett; Laura C. Zahm
2005-04-01
The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the U. S., and even the world. As reported in the 2003-2004 technical progress report to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently houses over 500,000 boxes of rock material, and has space to hold approximately 400,000 more boxes. Use of the facility has continued to increasemore » during this third year of operation; over the past twelve months the HRC has averaged approximately 200 patrons per month. This usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. The BEG/HRC secured several substantial donations of rock materials and/or cash during this operating period. All of these funds went directly into the endowment. Outreach during 2004 and 2005 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year involve securing more donations of rock material and cash in order to fully fund the HRC endowment. BEG will also continue to increase the number of patrons using the facility, and we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library.« less
NASA Astrophysics Data System (ADS)
Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Camerlenghi, Angelo; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert
2015-04-01
GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Water!", "Natural Hazards", "Biodiversity and Evolution", "The Polar Regions", "The Carbon Cycle" and "The Earth from Space". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 600 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
A new Model for the Preparing for an Academic Career in the Geosciences Workshop
NASA Astrophysics Data System (ADS)
Gilbert, L. A.; Marin-Spiotta, E.; LeMay, L.; Reed, D. E.; Desai, A. R.; Macdonald, H.
2016-12-01
The NAGT/On the Cutting Edge program has offered annual workshops on Preparing for an Academic Career in the Geosciences since 2003, providing professional development for more than 800 graduate students and post-docs. In July 2016, the multi-day workshop was modified to be integrated into a larger conference, the Earth Educators' Rendezvous. This new format brought both challenges and opportunities. Like prior workshops, participants engaged with peers and workshop leaders from a range of educational settings to improve their application and interview skills for academic jobs, become more effective at goal-setting and time management, and broaden their network of colleagues and resources to jump-start teaching and research as a faculty member. They learned about academic careers in different educational settings (two-year colleges, primarily undergraduate institutions, and research-focused universities), and developed plans and goals for their next career stage. The biggest challenge of the new workshop format was paring down material from 2.5 full days. Thus, in addition to the 3 morning sessions allocated for the workshop, leaders added a 3-hour teaching statement review dinner, an optional evening session to discuss finances and work-life balance, and optional small group lunch discussions on all 3 days, which were all well attended. Participants were then able to take advantage of afternoon sessions at the Rendezvous, including demonstrations of exemplary teaching, plenary talks, poster sessions, and mini-workshops on topics from curriculum design to proposal writing. Participant reviews were positive and nearly all aspects were ranked as most valuable, with an overall satisfaction mean of 9.1 on a scale from 1-10, with 10 being "Very satisfied." Participants particularly valued the sessions related to careers and the job search process. Some wished the workshop had been longer to cover more material. Participants enjoyed the opportunity to gain more skills at the Rendezvous afternoon sessions and several participants mentioned the Rendezvous afforded them the possibility of attending the Career Prep workshop. Our experiment showed that a career preparation workshop can survive when embedded into a larger conference.
Chair Talk: Resources to Maximize Administrative Efforts
NASA Astrophysics Data System (ADS)
MacDonald, H.; Chan, M. A.; Bierly, E. W.; Manduca, C. A.; Ormand, C. J.
2009-12-01
Earth science department chairs are generally scientists who have little/no formal administrative training. The common rotation of faculty members in three-six year cycles distributes the heavy leadership responsibilities but involves little preparation beforehand to deal with budgets, fundraising, personnel issues, confrontations, and crises. The amount of information exchange and support upon exit and handoff to the next chair is variable. Resources for chairs include workshops, meetings (ranging from annual meetings of geoscience chairs to monthly meetings of small groups of chairs from various disciplines on a campus), discussions, and online resources. These resources, some of which we designed in the past several years, provide information and support for chairs, help them share best practices, and reduce time spent “reinventing the wheel”. Most of these resources involve groups of chairs in our discipline who meet together. The AGU Board of Heads and Chairs of Earth and Space Science Departments offers annual one-day workshops at the Fall AGU meeting. The specific topics vary from year to year; they have included goals and roles of heads and chairs, fundraising and Advisory Boards, student recruitment, interdisciplinarity, dual-career couples, and undergraduate research. The workshop provides ample opportunities for open discussion. Annual one-two day meetings of groups of geoscience department chairs (e.g., research universities in a particular region) provide an opportunity for chairs to share specific data about their departments (e.g., salaries, graduate student stipends, information about facilities) and discuss strategies. At the College of William and Mary, a small group of chairs meets monthly throughout the year; each session includes time for open discussion as well as a more structured discussion on a particular topic (e.g., merit review, development and fundraising, mentoring early career faculty and the tenure process, leadership styles, dealing with difficult situations, working with alumni). Through the Association for Women Geoscientists, we have offered annual one-hour lunch discussions at AGU and GSA meetings on issues facing women chairs and deans. Focusing on a different topic each year, these discussions include sharing good solutions, problem solving on various case scenarios, and so forth. In addition, the Building Strong Geoscience Departments program has offered workshops on different aspects of building strong geoscience departments, distributed reports, and made a variety of materials that would be useful to geoscience chairs available on their website. These programs and resources should continue and build to provide more continuity within departments and to increase a broader experience base of faculty. One of the greatest resources for chairs is to have personal connections with other chairs (via these programs), who can be called upon for advice, ideas, or general support. The sense of collective community could act in a powerful way to inspire and encourage more innovations and creative solutions to promote stronger departments.
Illuminate Knowledge Elements in Geoscience Literature
NASA Astrophysics Data System (ADS)
Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.
2015-12-01
There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.
AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences
NASA Astrophysics Data System (ADS)
Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists
2011-12-01
The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.
NASA Astrophysics Data System (ADS)
Arnold, E. M.; Macko, S. A.; Barnikel, F.; Berenguer, J. L.; Cifelli, F.; Funiciello, F.; Laj, C. E.; Schwarz, A.; Smith, P.; Summesberger, H.
2016-12-01
GIFT workshops are teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program focuses on a different general theme each year. Past themes have included, for example, "Water!", "Energy and Sustainable Development", "The Carbon Cycle", "Mineral Resources" and "The Solar System And Beyond". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
NASA Astrophysics Data System (ADS)
Macko, S. A.; Arnold, E. M.; Laj, C. E.; Barnikel, F.; Berenguer, J. L.; Schwarz, A.; Cifelli, F.; Smith, P.; Funiciello, F.; Summesberger, H.
2017-12-01
GIFT workshops are teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program focuses on a different general theme each year. Past themes have included, for example, "Energy and Sustainable Development", "The Carbon Cycle", "Mineral Resources", "The Solar System And Beyond" and "The Mediterranean". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html
Increasing Scientific Literacy at Minority Serving Institutions Nationwide
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Moran, J. M.; Mills, E. W.; Nugnes, K. A.
2012-12-01
It is vital to increase the scientific literacy of all students, including those at minority serving institutions (MSIs). With support from NSF, NASA, and NOAA, the American Meteorological Society (AMS) Education Program has developed scientifically authentic, introductory, undergraduate courses that engage students in the geosciences through the use of real-world environmental data. AMS Climate, Weather, and Ocean Studies have already been adopted by more than 600 institutions across the U.S. With additional support from NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the first AMS Climate Studies Diversity Project was held in May 2012 in Washington, D.C. Thirty faculty members from 16 different states, Puerto Rico, and Washington, D.C. attended the week-long workshop. They were immersed in the course materials, received presentations from high-level speakers such as Dr. Thomas Karl, Rear Admiral David Titley, and Dr. Peter Hildebrand, and were trained as change agents for their local institution. Afterwards, faculty work within their MSI to introduce and enhance geoscience curricula and offer the AMS Climate Studies course in the year following workshop attendance. They are also encouraged to implement the AMS Weather and Ocean Studies courses. Subsequent workshops will be held throughout the next 3 years, targeting 100 MSIs. The AMS Climate Studies Diversity Project followed the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects. Evaluation results are extremely favorable with 96% of the participants rating the workshop as outstanding and all would recommend the workshop to other AMS Climate Studies faculty. More in depth results will be discussed in our presentation. AMS Climate Studies explores the fundamental science of Earth's climate system while addressing the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, participants use the AMS Conceptual Energy Model to differentiate between climate variability and climate change. Additionally, the AMS Education Program, James Madison University (JMU), and Los Angeles Valley College (LAVC), are working in collaboration with the Consortium for Ocean Leadership/Integrated Ocean Drilling Program's (IODP) Deep Earth Academy (DEA) to integrate investigations of ocean core data of paleoclimates into course curricula of MSIs. In June 2012, this team participated in a workshop to gain direct experience with ocean core investigations. The goal is to form a trained team to help guide the future, large-scale integration of scientific ocean drilling paleoclimate research into existing MSI geoscience courses, and the development of new course offerings. The AMS is excited to bring meteorology, oceanography, and climate science course work to more students, strengthening the pathway towards advanced geoscience study and careers.
Eighteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.
1993-01-28
PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan.more » The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook« less
NASA Astrophysics Data System (ADS)
McGill, S. F.; Benthien, M. L.; Castillo, B. A.; Fitzsimmons, J.; Foutz, A.; Keck, D.; Manduca, C. A.; Noriega, G. R.; Pandya, R. E.; Taber, J. J.; Vargas, B.
2017-12-01
The EarthConnections San Bernardino Alliance is one of three regional alliances supported by the national EarthConnections Collective Impact Alliance, funded by a pilot grant from the National Science Foundation INCLUDES program. All three of the regional alliances share a common vision, focused on developing a diverse geoscience workforce through connecting existing programs and institutions into regional pathways that support and guide students from engagement at an early age with Earth science linked to issues facing the local community, through the many steps and transitions to geoscience-related careers. The San Bernardino Alliance began with collaboration between one university, one community college and one high school and also includes the Southern California Earthquake Center as well as professional geologists in the region. Based on discussions at an opening round table event, the Alliance has chosen to capitalize on existing geology student clubs and deeply engaged faculty and alumni at the founding high school, community college and university members of the Alliance to plan joint field trips, service learning projects, guest speakers, and visits to dinner meetings of the local professional societies for students at participating institutions at various stages along the pathway. The underlying motivation is to connect students to their peers and to mentors at institutions that represent the next step on the pathway, as well as to expose them to careers in geology and to geoscience issues that impact the local community. A second type of intervention we are planning is to promote high quality teaching in introductory Earth science courses at the university, community college and high school levels, including the development of high school honors courses in Earth science. To this end we are hosting an NAGT traveling workshop focused on using active learning and societally relevant issues to develop engaging introductory geoscience courses. This teaching workshop will also serve as an opportunity to expand our alliance to include additional educational institutions in the region. We are also planning interviews with local community leaders to identify geoscience issues of local importance that could become a focus for joint service learning projects for students at various stages along the pathway.
Teaching Coastal Hazard, Risk, and Environmental Justice
NASA Astrophysics Data System (ADS)
Orr, C. H.; Manduca, C. A.; Blockstein, D.; Davis, F.; McDaris, J. R.
2015-12-01
Geoscience literacy and expertise play a role in all societal issues that involve the Earth. Issues that range from environmental degradation and natural hazards to creating sustainable economic systems or livable cities. Human health and resilience also involves the Earth. Environmental hazard issues have dimensions and consequences that have connections to environmental justice and disproportionate impacts on people based on their ethnicity, gender, cultural and socioeconomic conditions. Often these dimensions are hidden or unexplored in common approaches to teaching about hazards. However, they can provide importance context and meaning to students who would not otherwise see themselves in STEM disciplines. Teaching geoscience in a framework of societal issues may be an important mechanism for building science and sustainability capacity in future graduates. In May 2015, the NSF STEP center InTeGrate held a workshop in New Orleans, LA on teaching about Coastal Hazards, Risk and Environmental Justice. This was an opportunity to bring together people who use these topics as a powerful topic for transdisciplinary learning that connects science to local communities. This workshop was tailored for faculty members from minority-serving institutions and other colleges and universities that serve populations that are under-represented in the geosciences and related fields. The workshop outcome was a set of strategies for accomplishing this work, including participants' experience teaching with local cases, making connections to communities, and building partnerships with employers to understand workforce needs related to interdisciplinary thinking, sustainability science and risk. The participants articulated both the great need and opportunity for educators to help learners to explore these dimensions with their students as well as the challenge of learning to teach across disciplines and using controversial topics.
U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011
Kuniansky, Eve L.
2011-01-01
This fifth workshop is a joint workshop of the USGS Karst Interest Group and University of Arkansas HydroDays workshop, sponsored by the USGS, the Department of Geosciences at the University of Arkansas in Fayetteville. Additional sponsors are: the National Cave and Karst Research Institute, the Edwards Aquifer Authority, San Antonio, Texas, and Beaver Water District, northwest Arkansas. The majority of funding for the proceedings preparation and workshop was provided by the USGS Groundwater Resources Program, National Cooperative Mapping Program, and the Regional Executives of the Northeast, Southeast, Midwest, South Central and Rocky Mountain Areas. The University of Arkansas provided the rooms and facilities for the technical and poster presentations of the workshop, vans for the field trips, and sponsored the HydroDays banquet at the Savoy Experimental Watershed on Wednesday after the technical sessions.
NASA Astrophysics Data System (ADS)
Moosavi, S. C.
2017-12-01
By their very nature, the geosciences address societal challenges requiring a complex interplay between the research community, geoscience educators and public engagement with the general population to build their knowledge base and convince them to act appropriately to implement policies guided by scientific understanding. The most effective responses to geoscience challenges arise when strong collaborative structures connecting research, education and the public are in place to afford rapid communication and trust at all stages of the investigative and policy implementation processes. Educational programs that involve students and scientists via service learning exploring high profile issues of community interest and outreach to teachers through professional development build the network of relationships with geoscientists to respond rapidly to solve societal problems. These pre-existing personal connections simultaneously hold wider credibility with the public than unfamiliar scientific experts less accustomed to speaking to general audiences. The Geological Society of America is leveraging the research and educational experience of its members to build a self-sustaining state/regional network of K-12 professional development workshops designed to link the academic, research, governmental and industrial communities. The goal is not only to improve the content knowledge and pedagogical skills which teachers bring to their students, but also to build a diverse community of trust capable of responding to geoscience challenges in a fashion relevant to local communities. Dr. Moosavi is building this program by drawing on his background as a biogeochemistry researcher with 20 years experience focused on use of place-based approaches in general education and pre- and in-service teacher preparation in Research 1 and comprehensive universities, liberal arts and community colleges and high school. Experience with K-12 professional development working with the Minnesota Mineral Education Workshop and an undergraduate service learning research program related to beach erosion and the BP Oil Spill on Grand Isle, Louisiana are of particular value to this effort.
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.
2002-12-01
One of the hallmarks of geoscience research is the process of moving between observations and interpretations on local and global scales to develop an integrated understanding of Earth processes. Understanding this interplay is an important aspect of student geoscience learning which leads to an understanding of the fundamental principles of science and geoscience and of the connections between local natural phenomena or human activity and global processes. Several techniques that engage students in inquiry and discovery (as recommended in the National Science Education Standards, NRC 1996, Shaping the Future of Undergraduate Earth Science Education, AGU, 1997) hold promise for helping students make these connections. These include the development of global data sets from local observations (e.g. GLOBE); studying small scale or local phenomenon in the context of global models (e.g. carbon storage in local vegetation and its role in the carbon cycle); or an analysis of local environmental issues in a global context (e.g. a comparison of local flooding to flooding in other countries and analysis in the context of weather, geology and development patterns). Research on learning suggests that data-rich activities linking the local and global have excellent potential for enhancing student learning because 1) students have already developed observations and interpretations of their local environment which can serve as a starting point for constructing new knowledge and 2) this context may motivate learning and develop understanding that can be transferred to other situations. (How People Learn, NRC, 2001). Faculty and teachers at two recent workshops confirm that projects that involve local or global data can engage students in learning by providing real world context, creating student ownership of the learning process, and developing scientific skills applicable to the complex problems that characterize modern science and society. Workshop participants called for increased dissemination of examples of effective practice, evaluation of the impact of data-rich activities on learning, and further development of data access infrastructure and services. (for additional workshop results and discussion see http://serc.carleton.edu/research_education/usingdata)
Supporting Success for All Students
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Macdonald, H.; McDaris, J. R.; Weissmann, G. S.
2015-12-01
The geoscience student population in the United States today does not reflect the diversity of the US population. Not only does this challenge our ability to educate sufficient numbers of students in the geosciences, it also challenges our ability to address issues of environmental justice, to bring geoscience expertise to diverse communities, and to pursue a research agenda reflecting the needs and interests of our nation as a whole. Programs that are successful in supporting students from underrepresented groups attend to the whole student (Jolly et al, 2004) as they develop not only knowledge and skills, but a sense of belonging and a drive to succeed in geoscience. The whole student approach provides a framework for supporting the success of all students, be they members of underrepresented groups or not. Important aspects of support include mentoring and advising, academic support, an inclusive learning community, and opportunities to learn about the profession and to develop geoscience and professional skills. To successfully provide support for the full range of students, it is critical to consider not only what opportunities are available but the barriers different types of students face in accessing these opportunities. Barriers may arise from gaps in academic experiences, crossing into a new and unfamiliar culture, lack of confidence, stereotype threat, implicit bias and other sources. Isolation of geoscience learning from its application and social context may preferentially discourage some groups. Action can be taken to increase support for all students within an individual course, a department or an institution. The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges program and the On the Cutting Edge Professional Development for Geoscience Faculty program all provide resources for individuals and departments including on line information, program descriptions, and workshop opportunities.
Learning from One Another: On-line Resources for Geoscience Departments
NASA Astrophysics Data System (ADS)
Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. R.; Ormand, C.
2007-12-01
Geoscience departments are facing times of great change, bringing both opportunity and challenge. While each department is unique with its own mission, institutional setting, strengths and assets, they share much in common and are all much better positioned to maximize gains and minimize losses if they are well informed of the experiences of other geoscience departments. To this end, over the past four years the Building Strong Geoscience Departments project has offered workshops and sessions at professional society meetings to foster sharing and discussion among geoscience departments in the United States and Canada. Topics that have sparked extended discussion include: Where are the geosciences headed from the standpoints of scientific research and employment? How are departments responding to new interdisciplinary opportunities in research and teaching? What are the threats and opportunities facing geoscience departments nationwide? How are departments recruiting students and faculty? What do geoscience department programs look like both from the standpoint of curriculum and activities beyond the curriculum? How do geoscience programs prepare students for professional careers? What makes a department strong in the eyes of the faculty or the eyes of the institution? This rich discussion has included voices from community colleges, four year colleges and universities, comprehensive and research universities, and minority serving institutions. Participants agree that these discussions have helped them in thinking strategically about their own departments, have provided valuable ideas and resources, and have lead to changes in their program and activities. A central aspect of the project has been the development of a website that captures the information shared at these meetings and provides resources that support departments in exploring these topics. The website (serc.carleton.edu/departments) is a community resource and all departments are invited to both learn from and contribute to its collections.
Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J. (Editor)
1995-01-01
This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.
NASA Astrophysics Data System (ADS)
Poland, M. P.; Teasdale, R.; Kraft, K.
2010-12-01
Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes and seminar-style upper division and graduate-level classes. Overall workshop goals were for participants to learn how to interpret each of the VEPP data types, become proficient in the use of the VEPP Web site, provide feedback on site content, and create teaching modules that integrate the site into college and university geoscience curriculum. By the end of the workshop, over 20 new teaching modules were developed and the VEPP Web site was modified based on participant feedback. Teaching activities are available via the VEPP Workshop section of the Science Education Resource Center (SERC) Web site (http://www.nagt.org/nagt/vepp/index.html).
Can Service Learning be a Component of the Geoscience PhD?
NASA Astrophysics Data System (ADS)
Nyquist, J. E.
2008-12-01
Service learning in the science and engineering has traditionally been conducted through student clubs, or student involvement with non-profit organizations such as Engineers Without Borders or Chemists Without Borders. The newly created foundation, Geoscientists Without Borders (GWB), demonstrates that the geoscience industry and professional societies are also increasingly interested in supporting philanthropic efforts. GWB proclaims that its role is to 11Connect universities and industries with communities in need through projects using applied geophysics to benefit people and the environment around the world." In 2007, NSF convened a workshop on Humanitarian Service Science and Engineering to examine research issues and how they are being addressed. Clearly, the scientific community is eager to increase its involvement. The graduate program of Temple University's Department of Earth and Environmental Science is planning to offer a PhD degree option starting in 2009. Temple University has a long history of service learning, and our department deliberating over how to make service learning a component of a geoscience PhD. Attempting to incorporate humanitarian project formally into a PhD degree program, however, raises a number of difficult questions: Is it possible to sustain a graduate program focused on research funding and publishable results while simultaneously pursuing projects of practical humanitarian benefit? Would such a program be more effective if designed in partnership with graduate studies in the social sciences? Will graduates be competitive in industry or as candidates for new faculty positions, and will such a degree open non-traditional employment opportunities within government and non-government agencies? We hope to answer these questions by studying existing degree programs, polling service learning groups and non-profit agencies, and organizing workshops and meeting sessions to discuss service learning with the geosciences community.
NASA Astrophysics Data System (ADS)
Leote, Catarina; Moura, Delminda; Azevedo Rodrigues, Luis
2017-04-01
Geoscience education is key for the understanding of our home, the planet Earth. The Lagos Ciência Viva Science Centre (CCVL) in Portugal develops various geoscience activities including astronomy sessions, geology, paleontology and oceanography field trips, complementary primary school classes, seminars and numerous workshops for a public ranging from pre-schoolers to seniors . Our experience in geoscience communication and informal education also includes a formal partnership with a research centre from the University of the Algarve, the CIMA - Centre for Marine and Environmental Research, through the project MOSES, which focuses on sand transport along crenulated coasts. Based on the project goals, methods and results, the CCVL team designed a communication and outreach plan including a seminar, a field trip and a workshop, to alert for the subjects of coastal erosion and management, both highly relevant in the Algarve. This partnership was highly beneficial for both parts as it facilitated the communication of a scientific project to the public, while the CCVL had the opportunity to update and expand its educational offer. This type of interaction between universities/research institutes and science centres/museums allows scientists to focus on their research work, reducing their need to invest in communication, and provides good and updated scientific contents to science communicators, ensuring a direct channel between scientific research and the public.
NASA Astrophysics Data System (ADS)
Niemi, T. M.; Adegoke, J.; Stoddard, E.; Odom, L.; Ketchum, D.
2007-12-01
The GEOPATHS project is a partnership between the University of Missouri Kansas City (UMKC) and the Kansas City Missouri School District (KCMSD). The goal of GEOPATHS is to raise enrollment in the Geosciences, especially among populations that are traditionally underrepresented in the discipline. We are addressing this goal by expanding dual-credit and Advanced Placement (AP) opportunities for high school students and also by serving teachers through enhancing their understanding of geoscience content and inquiry teaching methods using GLOBE resources and protocols. Our focus in the first two years of the project is to increase the number of teachers that are certified to teach AP Environmental Science by offering specially designed professional development workshops for high school teachers in the Kansas City Metropolitan Area. The structure of the workshop for each year is divided into two weeks of content knowledge exploration using the learning cycle and concept mapping, and one week of inquiry-based experiments, field projects, and exercises. We are also supporting teachers in their use of these best-practice methods by providing materials and supplies along with lesson plans for inquiry investigations for their classes. The lesson plans include activities and experiments that are inquiry-based. The last two years of the project will include direct engagement/recruiting of promising minority high school students via paid summer research internships and scholarship offers.
Universal Skills and Competencies for Geoscientists
NASA Astrophysics Data System (ADS)
Mosher, S.
2015-12-01
Geoscience students worldwide face a changing future workforce, but all geoscience work has universal cross-cutting skills and competencies that are critical for success. A recent Geoscience Employers Workshop, and employers' input on the "Future of Undergraduate Geoscience Education" survey, identified three major areas. Geoscience work requires spatial and temporal (3D & 4D) thinking, understanding that the Earth is a system of interacting parts and processes, and geoscience reasoning and synthesis. Thus, students need to be able to solve problems in the context of an open and dynamic system, recognizing that most geoscience problems have no clear, unambiguous answers. Students must learn to manage uncertainty, work by analogy and inference, and make predations with limited data. Being able to visualize and solve problems in 3D, incorporate the element of time, and understand scale is critical. Additionally students must learn how to tackle problems using real data, including understand the problems' context, identify appropriate questions to ask, and determine how to proceed. Geoscience work requires integration of quantitative, technical, and computational skills and the ability to be intellectually flexible in applying skills to new situations. Students need experience using high-level math and computational methods to solve geoscience problems, including probability and statistics to understand risk. Increasingly important is the ability to use "Big Data", GIS, visualization and modeling tools. Employers also agree a strong field component in geoscience education is important. Success as a geoscientist also requires non-technical skills. Because most work environments involve working on projects with a diverse team, students need experience with project management in team settings, including goal setting, conflict resolution, time management and being both leader and follower. Written and verbal scientific communication, as well as public speaking and listening skills, are important. Success also depends on interpersonal skills and professionalism, including business acumen, risk management, ethical conduct, and leadership. A global perspective is increasingly important, including cultural literacy and understanding societal relevance.
Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Keane, C. M.; Wilson, C. E.
2012-12-01
Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who want to share their knowledge with students may be more inclined to pursue academic positions. Indicators, like these, expand the pathway model and foster the development of a more robust framework for recruitment and retention in academia, as well as industry.
Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob (Editor)
1995-01-01
This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.
Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop
NASA Technical Reports Server (NTRS)
Green, Robert O. (Editor)
1995-01-01
This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.
The DLESE Evaluation Toolkit Project
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Barker, L. J.; Marlino, M.
2002-12-01
The Evaluation Toolkit and Community project is a new Digital Library for Earth System Education (DLESE) collection designed to raise awareness of project evaluation within the geoscience education community, and to enable principal investigators, teachers, and evaluators to implement project evaluation more readily. This new resource is grounded in the needs of geoscience educators, and will provide a virtual home for a geoscience education evaluation community. The goals of the project are to 1) provide a robust collection of evaluation resources useful for Earth systems educators, 2) establish a forum and community for evaluation dialogue within DLESE, and 3) disseminate the resources through the DLESE infrastructure and through professional society workshops and proceedings. Collaboration and expertise in education, geoscience and evaluation are necessary if we are to conduct the best possible geoscience education. The Toolkit allows users to engage in evaluation at whichever level best suits their needs, get more evaluation professional development if desired, and access the expertise of other segments of the community. To date, a test web site has been built and populated, initial community feedback from the DLESE and broader community is being garnered, and we have begun to heighten awareness of geoscience education evaluation within our community. The web site contains features that allow users to access professional development about evaluation, search and find evaluation resources, submit resources, find or offer evaluation services, sign up for upcoming workshops, take the user survey, and submit calendar items. The evaluation resource matrix currently contains resources that have met our initial review. The resources are currently organized by type; they will become searchable on multiple dimensions of project type, audience, objectives and evaluation resource type as efforts to develop a collection-specific search engine mature. The peer review criteria and process for ensuring that the site contains robust and useful resources has been drafted and received initial feedback from the project advisory board, which consists of members of every segment of the target audience. The review criteria are based upon DLESE peer review criteria, the MERLOT digital library peer review criteria, digital resource evaluation criteria, and evaluation best practices. In geoscience education, as in most endeavors, improvements are made by asking questions and acting upon information about successes and failures; project evaluation can be thought of as the systematic process of asking these questions and gathering the right information. The Evaluation Toolkit seeks to help principal investigators, teachers, and evaluators use the evaluation process to improve our projects and our field.
ERIC Educational Resources Information Center
Kastens, Kim; Krumhansl, Ruth
2017-01-01
The geoscience education research (GER) enterprise faces a challenge in moving instructional resources and ideas from the well-populated domain of "practitioners' wisdom" into the research-tested domains of St. John and McNeal's pyramid of evidence (this volume). We suggest that the process could be accelerated by seeking out clusters of…
NASA Astrophysics Data System (ADS)
Lewis, J. C.; Cooper, S. K.; Hovan, S. A.; Leckie, R. M.; White, L. D.
2017-12-01
The U.S. is facing challenges in attracting, retaining and diversifying the workforce in the geosciences. A likely contributing factor is the homogeneity of the pool of mentors/role models available both within the workforce and in the U.S. professoriate. Another probable factor is "exposure gaps" among U.S. student populations; i.e., differing access to engaging facets of science, technology, engineering and mathematics (STEM). In response, we organized an 18-day School of Rock workshop onboard the International Ocean Discovery Program (IODP) drilling vessel JOIDES Resolution during a July 2017 transit in the western Pacific. Our objectives were diversity driven, focusing on measures to broaden participation at all levels (i.e., K-12, undergraduate and beyond) in innovative ways (e.g., from place-base curriculum to longitudinal peer mentoring through extracurricular STEM communities). To accomplish this, we designed a recruiting scheme to attract pairs of participants, specifically a teacher from a diverse community and a nearby early-career scientist with an interest in IODP science. By partnering in this way we sought to foster connections that might not naturally emerge, and therein to establish new mechanisms for increased engagement, broader recruitment, enhanced support, and improved retention of students from underrepresented communities in STEM education. We report on initial workshop outcomes that include new curriculum proposals, nascent funding proposals, and innovative connections among secondary educators and early-career scientists. Survey results of our participants gauge the expected impacts of the workshop on perceptions and on plans for future actions aimed at broadening participation.
NASA Technical Reports Server (NTRS)
Green, Robert O. (Editor)
1998-01-01
This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.
DOE R&D Accomplishments Database
Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.
2007-04-04
To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.
NASA Technical Reports Server (NTRS)
Kim, Yunjin (Editor)
1996-01-01
This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.
Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop
NASA Technical Reports Server (NTRS)
Green, Robert O. (Editor)
1996-01-01
This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.
Thinking Like a Scientist: The RITES Path for K-12 Students to Learn the Scientific Method
NASA Astrophysics Data System (ADS)
Murray, D. P.; Dooley, H., Jr.; Cardace, D.
2015-12-01
Bringing Research on Learning to the Geosciences (Manduca et al, 2002) stated that "An overaching goal for geoscience education is to help every student to 'think like a scientist'", and that continues to challenge geoscience education. The Rhode Island Technology Enhanced Science (RITES) project addresses that goal, and this presentation chronicles that successful effort. RITES strives to improve science education by providing professional development (PD) to the majority of science teachers at the 5th through 12th grade levels throughout Rhode Island. The PD is presented through ~forty 2.5 day workshops that emphasize the innovative use of technology and best teaching practices, consistent with the recommendations detailed in Manduca et al (2002). The presentation will focus on two of these workshops that provide middle and high school teachers with strategies and techniques for guiding student-run explorations of earthquakes as a result of tectonic plate movements. Teachers address these topics much as a scientist would by carrying out the following activities: 1) Identifying the relationships between faults, EQs and plate boundaries; 2) Using GPS data to quantify interseismic deformation; 3) Constructing an Earthquake machine; and 4) Scaling their observations from desktop to crustal scale, and (5) Using the results to forecast earthquakes along the SAF and to estimate the magnitude of earthquakes on ancient faults. As it is unrealistic to expect teachers to be able to incorporate all of this material into their syllabi, we have introduced the concept of Subtle Shifts (Exploratorium, 2006) as a means by which they can easily blend workshop material into their existing courses. Teacher surveys reflect a high level of satisfaction (81-100%), and pre- and post-evaluations show significant normalized gains (Hake, 1998), in about 90% of the courses. Moreover, students of RITES teachers demonstrate statistically significant gains in inquiry skills and content knowledge.
Public affairs events at Fall Meeting
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2012-02-01
AGU's Public Affairs team presented two workshop luncheons and hosted 17 oral and poster sessions at the 2011 Fall Meeting. Topics ranged from defining the importance of the geosciences, to climate change science for communities and institutions. The workshop luncheon "How to Be a Congressional Science Fellow or Mass Media Fellow" was a well-attended event with more than 115 participants. The luncheon provided the opportunity for audience members to ask fellow scientists about their experiences working either in Congress or as a reporter for a news organization. For scientists looking to expand their expertise outside the academic environment, these AGU fellowships are fantastic opportunities.
Separated isotopes: vital tools for science and medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
This report summarizes the deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE). The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An Overview with three recommendations resulting from the Workshop, prepared by the Steering Committee, is followed by Chapters 1 to 4, reports of the following four Workshop panels: (1) panel on research applications in physics, chemistry and geoscience; (2) panelmore » on commercial applications; (3) panel on biomedical research applications; (4) panel on clinical applications. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They proved of great value and are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11. Selected papers have been abstracted and indexed.« less
The ongoing educational anomaly of earth science placement
Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.
2003-01-01
The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.
The Geoscience Ambassador: Training opportunities and skill development for tomorrow's geoscientists
NASA Astrophysics Data System (ADS)
Price, Louise
2017-04-01
How can high schools geoscience teachers engage younger students who are not taught geoscience subjects at lower key stages? As passionate practitioners of learning, high school teachers are in a seemingly ideal position to inspire young learners to study and pursue a career in the field of geoscience. However, recruitment of students is often challenging if students do not have the opportunity to study the subjects first. For geoscience subjects such as geology to remain sustainable and viable at A-level, it is imperative that high schools invest time and effort in improving student awareness of subjects which students can access later in their academic career. Perhaps one of the greatest, most accessible and overlooked promotional tools for a geoscience subject are the students themselves. In 2016/2017, a new scheme at Hessle High School and Sixth Form in Yorkshire, United Kingdom, offered senior A-level geology students the opportunity to become "Geoscience Ambassadors". These students were recruited to act as champions for their geoscience subject (geology) to support with inspiring and engaging younger students who may otherwise not choose the subject. The traditional method of disseminating learning is to offer "train the trainer" sessions where training is delivered to peers for onward cascaded teaching and education. On returning from the 2016 Geosciences Information for Teachers (GIFT) workshop at EGU, training was provided to other teaching professionals on the activities and key learning points, the training was also disseminated to an enthusiastic group of A-level students to enable them to become Geoscience Ambassadors. This cascade approach moves away from the tradition of training high school staff alone on new pedagogies but additionally trains young and enthusiastic 17 year olds to work with groups of younger students in the local and regional area. Students use their newly discovered knowledge and skills to inspire younger students with their enthusiasm and passion for geology. The student ambassadors work with cohorts of junior students to share learning through projects and lessons in previous GIFT subjects including the Rosetta space mission and Mediterranean geoscience. This scheme has provided younger students with valuable knowledge and skills and an awareness of post 16 courses but also offers ambassadors the chance to practice and learn transferrable skills beneficial to their future higher-education careers. The scheme has also allowed their passion for their subject to be shared with others. All of the 2016 Geoscience Ambassadors successfully went on to apply for degrees in geology or geoscience related disciplines at university. The ambassador scheme offers an alternative approach to supporting the engagement and understanding of the geosciences. By encouraging students to become Geoscience Ambassadors, they have the opportunity to compound their knowledge of the subjects as well as inspiring junior students who previously had little awareness of geoscience.
Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions
NASA Astrophysics Data System (ADS)
Richardson, R. M.; Eyles, C.; Ormand, C. J.
2009-12-01
One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming freshmen, whether they are planning to major in geoscience or not. Some of the best practices for strategies reaching beyond the department include: 1) working with college/university academic advisors, admissions, career services, especially for undecided students; 2) working with local high schools and community colleges, especially for underrepresented students; and 3) advertising where students communicate (Facebook, Twitter, etc.). As important as recruitment strategies are, it is critical to have an assessment plan in place to measure the success of recruitment efforts. It takes effort and resources, often human capital, to recruit students. If enrollments increase, regardless of recruitment efforts, then scarce resources have been wasted. Some of the best assessment practices include: 1) surveying students, especially those who have recently declared a geoscience major; and 2) surveying students who have been recruited but who have not become majors.
1987-05-04
FTIILE COP’ AD-A196 840 EMERGING TECHNOLOGIES PROGRAM INTEGRATION REPORT VOLUME II BACKGROUND, DELPHI AND WORKSHOP DATA, APPENDICES . -- PREPARED...Security Classification) Emerging Technologies Program Integration Report Volume II: Background, Delphi and Workshop Data; Appendices (U) 12 PERSONAL...volumes of this integration report assess and synthesize information gathered through a Delphi survey, defense needs prioritization workshops, and
Building a Network of Internships for a Diverse Geoscience Community
NASA Astrophysics Data System (ADS)
Sloan, V.; Haacker-Santos, R.; Pandya, R.
2011-12-01
Individual undergraduate internship programs, however effective, are not sufficient to address the lack of diversity in the geoscience workforce. Rather than competing with each other for a small pool of students from historically under-represented groups, REU and internship programs might share recruiting efforts and application processes. For example, in 2011, the RESESS program at UNAVCO and the SOARS program at UCAR shared recruiting websites and advertising. This contributed to a substantial increase in the number of applicants to the RESESS program, the majority of which were from historically under-represented groups. RESESS and SOARS shared qualified applications with other REU/internship programs and helped several additional minority students secure summer internships. RESESS and SOARS also leveraged their geographic proximity to pool resources for community building activities, a two-day science field trip, a weekly writing workshop, and our final poster session. This provided our interns with an expanded network of peers and gave our staff opportunities to work together on planning. Recently we have reached out to include other programs and agencies in activities for our interns, such as mentoring high-school students, leading outreach to elementary school students, and exposing our interns to geoscience careers options and graduate schools. Informal feedback from students suggests that they value these interactions and appreciate learning with interns from partner programs. Through this work, we are building a network of program managers who support one another professionally and share effective strategies. We would like to expand that network, and future plans include a workshop with university partners and an expanded list of REU programs to explore further collaborations.
Geoscience and a Lunar Base: A Comprehensive Plan for Lunar Exploration
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey (Editor); Spudis, Paul D. (Editor)
1990-01-01
This document represents the proceedings of the Workshop on Geoscience from a Lunar Base. It describes a comprehensive plan for the geologic exploration of the Moon. The document begins by explaining the scientific importance of studying the Moon and outlines the many unsolved problems in lunar science. Subsequent chapters detail different, complementary approaches to geologic studies: global surveys, including orbiting spacecraft such as Lunar Observer and installation of a global geophysical network; reconnaissance sample return mission, by either automated rovers or landers, or by piloted forays; detailed field studies, which involve astronauts and teleoperated robotic field geologists. The document then develops a flexible scenario for exploration and sketches the technological developments needed to carry out the exploration scenario.
Understanding When and How Geoscientists Build Universal Skills and Competencies
NASA Astrophysics Data System (ADS)
Riggs, E. M.
2015-12-01
Geoscience educators and employers understand the pressing needs for the future workforce to be well-prepared in universal skills and competencies. At the undergraduate and graduate level today, most programs do a good job of this preparation, and employers are finding qualified applicants. However, with workforce needs in the geosciences projected to steadily outstrip supply in coming decades, and with many employers having to do substantial additional training on arrival for new hires, research informing curriculum design and skills development needs to be a priority. The projected retirement of seasoned professionals exacerbates this need and underscores the need to better understand the nature and structure of geoscience skills and competencies at the expert level. A workshop on Synthesizing Geoscience Education Research at the inaugural Earth Educator's Rendezvous began work on assembling a community-wide inventory of research progress. Groups began an assessment of our understanding of key skills in the geosciences as well as curricular approaches to maximize teaching effectiveness and recruitment and retention. It is clear that we have made basic progress on understanding spatial and temporal thinking, as well as systems thinking and geologic problem solving. However, most of this research is in early stages, limited to local populations, disciplines or contexts. Curricular innovations in the integration of quantitative, field-specific and computational techniques are also mostly local or limited in scope. Many programs also locally incorporate an explicit non-technical component, e.g. writing, business, and legal content or experience in team-based project-driven work. Despite much good practitioner wisdom, and a small but growing research base on effectiveness and best practices, we have much yet to learn about geoscience education, especially at the graduate and professional level. We remain far from a universal understanding of these skills and competencies, let alone how they should be most effectively taught to all geoscience students. We do understand universal geoscience skills and competencies better than ever before, but as a community we have a long way yet to go to construct and implement a broad strategy for meeting the geoscience workforce needs for the decades ahead.
From The Horse's Mouth: Engaging With Geoscientists On Science
NASA Astrophysics Data System (ADS)
Katzenberger, J.; Morrow, C. A.; Arnott, J. C.
2011-12-01
"From the Horse's Mouth" is a project of the Aspen Global Change Institute (AGCI) that utilizes selected short video clips of scientists presenting and discussing their research in an interdisciplinary setting at AGCI as the core of an online interactive set of learning modules in the geosciences for grades 9-12 and 1st and 2nd year undergraduate students. The video archive and associated material as is has limited utility, but here we illustrate how it can be leveraged for educational purposes by a systematic mining of the resource integrated with a variety of supplemental user experiences. The project furthers several broad goals to: (a) improve the quality of formal and informal geoscience education with an emphasis on 9-12 and early undergraduate, (b) encourage and facilitate the engagement of geoscientists to strengthen STEM education by leveraging AGCI's interdisciplinary science program for educational purposes, (c) explore science as a human endeavor by providing a unique view of how scientists communicate in a research setting, potentially stimulating students to consider traditional and non-traditional geoscience careers, (d) promote student understanding of scientific methodology and inquiry, and (e) further student appreciation of the role of science in society, particularly related to understanding Earth system science and global change. The resource material at the core of this project is a videotape record of presentation and discussion among leading scientists from 35 countries participating in interdisciplinary workshops at AGCI on a broad array of geoscience topics over a period of 22 years. The unique archive represents approximately 1200 hours of video footage obtained over the course of 43 scientific workshops and 62 hours of public talks. The full spectrum of material represents scientists active on all continents with a diverse set of backgrounds and academic expertise in both natural and social sciences. We report on the video database resource, our data acquisition protocols, conceptual design for the learning modules, excerpts from the video archive illustrating both geoscience content utilized in educational module development and examples of video clips that explore the process of science and its nature as a human endeavor. A prototype of the user interface featuring a navigational strategy, a discussion of both content and process goals represented in the pilot material and its use in both formal and informal settings are presented.
NASA Astrophysics Data System (ADS)
Fischer, E. V.; Adams, A. S.; Barnes, R.; Bloodhart, B.; Burt, M. A.; Clinton, S. M.; Godfrey, E. S.; Pollack, I. B.; Hernandez, P. R.
2017-12-01
Women are substantially underrepresented in the earth and environmental sciences, and that underrepresentation begins at the undergraduate level. In fall 2015, an interdisciplinary team including expertise in the broader geosciences as well as gender and quantitative educational psychology began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring 1st and 2nd year female undergraduate students from five universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. We have found that undergraduate women with large mentoring networks, that include faculty mentors, are more likely to identify as scientists and are more committed to pursuing the geosciences. Our presentation will provide an overview of the major components of our effective and scalable program. We will include a discussion of our first published results in the context of larger social science research on how to foster effective mentoring relationships. We will offer a list of successes and challenges, and we will provide the audience with online links to the materials needed to adopt our model (https://geosciencewomen.org/materials/).
NASA Astrophysics Data System (ADS)
Seber, D.; Baru, C.
2007-05-01
The Geosciences Network (GEON) project is a collaboration among multiple institutions to develop a cyberinfrastructure (CI) platform in support of integrative geoscience research activities. Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, resource discovery, semantic data integration, high-end computations and 4D visualization in an easy-to-use web-based environment. The cyberinfrastructure in GEON is required to support an inherently distributed system, since the scientists, who are users as well as providers of resources, are themselves distributed. International collaborations are a natural extension of GEON; the geoscience research requires strong international collaborations. The goals of the i-GEON activities are to collaborate with international partners and jointly build a cyberinfrastructure for the geosciences to enable collaborative work environments. International partners can participate in GEON efforts, establish GEON nodes at their universities, institutes, or agencies and also contribute data and tools to the network. Via jointly run cyberinfrastructure workshops, the GEON team also introduces students, scientists, and research professionals to the concepts of IT-based geoscience research and education. Currently, joint activities are underway with the Chinese Academy of Sciences in China, the GEO Grid project at AIST in Japan, and the University of Hyderabad in India (where the activity is funded by the Indo-US Science and Technology Forum). Several other potential international partnerships are under consideration. iGEON is open to all international partners who are interested in working towards the goal of data sharing, managing and integration via IT-based platforms. Information about GEON and its international activities can be found at http:www.geongrid.org/
Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop
NASA Technical Reports Server (NTRS)
Kim, Yun-Jin (Editor)
1996-01-01
The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busbey, A.B.
Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.
NASA Astrophysics Data System (ADS)
2010-04-01
The recipient of the 2010 Grote Reber Award is Dr Alan Rogers, a Research Affiliate at the Massachusetts Institute of Technology Haystack Observatory. Matt King, a Reader in Polar Geodesy in the School of Civil Engineering and Geosciences at the University of Newcastle, was awarded a Philip Leverhulme Prize in 2009.
Fourth Airborne Geoscience Workshop: Summary Minutes
NASA Technical Reports Server (NTRS)
1991-01-01
The general theme for the workshop revolved around global environmental change. Over 170 individuals participated in the presentations and ensuing discussions about the many agency activities using airborne platforms and sensors in support of the U.S. Global Change Research Program (GCRP). The U.S. GCRP was developed as a central component of the U.S. Government's approach to global change and its contribution to worldwide efforts. An all-encompassing U.S. plan was developed by the Committee on Earth and Environmental Sciences (CEES), which continues as the interagency coordinating group for the program. The U.S. GCRP was established as a Presidential initiative in the FY90 budget, making it a particularly relevant topic for the workshop. The following are presented in the appendices: (1) final agenda and list of registrants; (2) final list of poster presenters; (3) steering group luncheon participants; (4) the draft resolution; and (5) selected handouts.
NASA Astrophysics Data System (ADS)
Hastings, M. G.; Kontak, R.; Holloway, T.; Kogan, M.; Laursen, S. L.; Marin-Spiotta, E.; Steiner, A. L.; Wiedinmyer, C.
2011-12-01
The Earth Science Women's Network (ESWN) is a network of women geoscientists, many of who are in the early stages of their careers. The mission of ESWN is to promote career development, build community, provide informal mentoring and support, and facilitate professional collaborations, all towards making women successful in their scientific careers. ESWN currently connects over 1000 women across the globe, and includes graduate students, postdoctoral associates, faculty from a diversity of colleges and universities, program managers, and government, non-government and industry researchers. ESWN facilitates communication between its members via an email listserv and in-person networking events, and also provides resources to the broader community through the public Earth Science Jobs Listserv that hosts over 1800 subscribers. With funding from a NSF ADVANCE PAID grant, our primary goals include growing our membership to serve a wider section of the geosciences community, designing and administering career development workshops, promoting professional networking at major scientific conferences, and developing web resources to build connections, collaborations, and peer mentoring for and among women in the Earth Sciences. Recognizing that women in particular face a number of direct and indirect biases while navigating their careers, we aim to provide a range of opportunities for professional development that emphasize different skills at different stages of career. For example, ESWN-hosted mini-workshops at national scientific conferences have targeted skill building for early career researchers (e.g., postdocs, tenure-track faculty), with a recent focus on raising extramural research funding and best practices for publishing in the geosciences literature. More concentrated, multi-day professional development workshops are offered annually with varying themes such as Defining Your Research Identity and Building Leadership Skills for Success in Scientific Organizations. These workshops bring together a variety of women with the goals of identifying personal strengths, defining career goals, building a network of contacts, and supporting actions to achieve personal and career success. ESWN members have identified increasing their professional networks as one of the most important needs for advancing their careers. As part of ESWN, members have reported gains in a number of aspects of their personal and professional lives including: knowledge about career resources; a greater understanding of the challenges facing women in science and resources to overcome them; a sense of community and therefore less isolation; greater confidence in their own career trajectories; professional collaborations; emotional support on a variety of issues; and greater engagement and retention in scientific careers.
Hands-on earth science with students at schools for the Deaf
NASA Astrophysics Data System (ADS)
Cooke, M. L.
2011-12-01
Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a manuscript in Science Teacher on the educational benefits of the deformational sandbox. At the 2009 GSA meeting, we ran a workshop on the deformational sandbox that included teachers from hearing schools. The project also highlights the potential for a cognitive science investigation on learning of 3D geologic concepts by people who use a language with spatial grammar, such as ASL.
Communicating geological hazards: assisting geoscientists in communication skills
NASA Astrophysics Data System (ADS)
Liverman, D. G. E.
2009-04-01
Communication is important in all aspects of the geosciences but is more prominent in the area of geological hazards, as the main audience for scientific information often lacks a geoscience background; and because the implications of not communicating results effectively can be very serious. Geoscientists working in the hazards area face particular challenges in communicating the concepts of risk, probability and uncertainty. Barriers to effective communication of geoscience include the complex language used by geoscientists, restriction of dissemination of results to traditional scientific media, identification of the target audience, inability to tailor products to a variety of audiences, and lack of institutional support for communication efforts. Geoscientists who work in the area of natural hazards need training in risk communication, media relations, and communicating to non-technical audiences. Institutions need to support the efforts of geoscientists in communicating their results through providing communications training; ensuring access to communications professionals; rewarding efforts to engage the public; and devoting sufficient staff and budget to the effort of disseminating results. Geoscientists themselves have to make efforts to change attitudes towards social science, and to become involved in decision making at a community level. The International Union of Geological Sciences Commission for "Geoscience for Environmental Management" established a working group to deal with these issues. This group is holding workshops, publishing collections of papers, and is looking at other means to aid geoscientists in addressing these problems.
Teaching Environmental Geology in the 21St Century: A Workshop Report
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Wiese, K.; Castendyk, D.; McDaris, J. R.
2012-12-01
Environmental Geology encompasses a range of topics that include geohazards, natural resources, issues such as climate change, human health, and environmental policy. Instruction in Environmental Geology provides students the opportunity to address the grand challenges facing humanity regarding how to live sustainably and responsibly on Earth. Instruction in Environmental Geology ranges from dedicated introductory courses, instructional modules in upper division Earth Science "core" classes, to courses in related disciplines such as environmental science, ecology, and the social and political sciences. To explore the opportunities of teaching Environmental Geology in all these contexts, the On the Cutting Edge program convened a workshop in June 2012 to bring together instructors representing a diversity of instructional settings. The goals of the workshop were to: 1) Share innovative teaching methods, approaches, and activities for teaching Environmental Geology and share ideas on how to teach in various contexts. 2) Examine where and how environmental geology topics are taught in the geoscience curriculum from introductory courses for non-majors to "core" geoscience courses for majors. 3) Consider the ways that Environmental Geology courses and topical materials can contribute to public science literacy, particularly how to make personal and societal decisions about the range of issues facing humanity and to live responsibly and sustainably on this planet. 4) Develop a list of best practices for integrating emerging environmental issues, recent natural disasters, and issues related to natural resources into course work and identifying how scientific data and research outcomes can inform public discourse on topical issues. 5) Develop strategies to reach under-represented groups and expand the diversity of students who enroll in our courses. 6) Identify topics of high interest and need for future development as teaching modules and courses. The workshop program included keynote talks, small group discussion sessions, interactive demonstrations, and opportunities to network and develop ideas for new instructional resources. The participants also reviewed over 300 teaching activities, and contributed to additional online resources focused on Environmental Geology. Field trips demonstrated teaching activities about environmental issues in local contexts. All workshop presentations, discussion summaries, teaching activity collections and related on-line resources are available on the workshop website. Faculty are encouraged to submit additional examples of Environmental Geology instructional resources.
Making Climate Hot: Preparing Scientists and Teachers for Climate Change Communication and Education
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Wise, S. B.
2008-05-01
Anyone having anything to do with climate change science (or even geosciences) is increasingly asked to communicate about climate change with friends and family, media, the general public, and students. But, we have often not had the training to communicate with simplicity and clarity about such a complex topic. Furthermore, the need to know how to accommodate controversy, common misconceptions, and contrarian arguments complicates the task. The CIRES Education and Outreach group has developed a short professional development workshop "Making Climate Hot: How to Communicate Effectively about Climate Change". The goals of the workshop are to make scientists and educators aware of best practices in climate change communications, provide some tools for crafting messages, and allow participants to practice skills in a supportive, low-risk environment. The "Making Climate Hot" workshop has been piloted with scientists and university communicators, teachers and environmental educators and college students anxious to communicate with family and roommates. The most and least effective aspects of the workshop will be described, along with the lessons learned and next steps.
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.
2015-12-01
The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene
The Future of the Plate Boundary Observatory in the GAGE Facility and beyond 2018
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Bendick, R. O.; Foster, J. H.; Freymueller, J. T.; La Femina, P. C.; Miller, M. M.; Rowan, L.
2014-12-01
The Geodesy Advancing Geosciences and Earthscope (GAGE) Facility, which operates the Plate Boundary Observatory (PBO), builds on UNAVCO's strong record of facilitating research and education in the geosciences and geodesy-related engineering fields. Precise positions and velocities for the PBO's ~1100 continuous GPS stations and other PBO data products are used to address a wide range of scientific and technical issues across North America. A large US and international community of scientists, surveyors, and civil engineers access PBO data streams, software, and other on-line resources daily. In a global society that is increasingly technology-dependent, consistently risk-averse, and often natural resource-limited, communities require geodetic research, education, and infrastructure to make informed decisions about living on a dynamic planet. The western U.S. and Alaska, where over 95% of the PBO sensor assets are located, have recorded significant geophysical events like earthquakes, volcanic eruptions, and tsunami. UNAVCO community science provides first-order constraints on geophysical processes to support hazards mapping and zoning, and form the basis for earthquake and tsunami early warning applications currently under development. The future of PBO was discussed at a NSF-sponsored three-day workshop held in September 2014 in Breckenridge, CO. Over 40 invited participants and community members, including representatives from interested stakeholder groups, UNAVCO staff, and members of the PBO Working Group and Geodetic Infrastructure Advisory Committee participated in workshop, which included retrospective and prospective plenary presentations and breakout sessions focusing on specific scientific themes. We will present some of the findings of that workshop in order to continue a dialogue about policies and resources for long-term earth observing networks. How PBO fits into the recently released U.S. National Plan for Civil Earth Observations will also be discussed.
An Example Emphasizing Mass-Volume Relationships for Problem Solving in Soils
ERIC Educational Resources Information Center
Heitman, J. L.; Vepraskas, M. J.
2009-01-01
Mass-volume relationships are a useful tool emphasized for problem solving in many geo-science and engineering applications. These relationships also have useful applications in soil science. Developing soils students' ability to utilize mass-volume relationships through schematic diagrams of soil phases (i.e., air, water, and solid) can help to…
GOLD: Building capacity for broadening participation in the Geosciences
NASA Astrophysics Data System (ADS)
Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth
2017-04-01
The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.
NASA Astrophysics Data System (ADS)
Morris, A. R.; Charlevoix, D. J.
2016-12-01
The Geoscience Workforce Development Initiative at UNAVCO supports attracting, training, and professionally developing students, educators, and professionals in the geosciences. For the past 12 years, UNAVCO has managed the highly successful Research Experiences in Solid Earth Science for Students (RESESS) program, with the goal of increasing the diversity of students entering the geosciences. Beginning in 2015, UNAVCO added Geo-Launchpad (GLP), a summer research preparation internship for Colorado community college students to prepare them for independent research opportunities, facilitate career exploration in the geosciences, and provide community college faculty with professional development to facilitate effective mentoring of students. One core element of the Geo-Launchpad program is UNAVCO support for GLP faculty mentors. Each intern applies to the program with a faculty representative (mentor) from his or her home institution. This faculty mentor is engaged with the student throughout the summer via telephone, video chat, text message, or email. At the end of each of the past two summers, UNAVCO has hosted four GLP faculty mentors in Boulder for two days of professional development focused on intentional mentoring of students. Discussions focused on the distinction between mentoring and advising, and the array of career and professional opportunities available to students. Faculty mentors also met with the external evaluator during the mentor training and provided feedback on both their observations of their intern as well as the impact on their own professional experience. Initial outcomes include re-energizing the faculty mentors' commitment to teaching, as well as the opportunity for valuable networking activities. This presentation will focus on the ongoing efforts and outcomes of the novel faculty mentor professional development activities, and the impact these activities have on community college student engagement in the geosciences.
Quantitative Literacy: Geosciences and Beyond
NASA Astrophysics Data System (ADS)
Richardson, R. M.; McCallum, W. G.
2002-12-01
Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.
Characterizing Strong Geoscience Departments: Results of a National Survey
NASA Astrophysics Data System (ADS)
Richardson, R. M.
2005-12-01
In a follow up to a survey of geoscience departments drawn primarily from American Association of Universities (AAU) institutions, we have expanded the number and type of departments to include a much broader range of institutions and to address key issues about factors that department heads and chairs feel are indicative of strong departments. The previous survey, completed at a very high rate of return, indicated that the biggest opportunities at AAU institutions included large, community-wide initiatives, while the biggest threats included declining resources and associated issues such as faculty retention. The new survey follows on a workshop, Building Strong Geoscience Departments, held in February 2005 at which 25 participants discussed the state of geoscience departments and developed ideas for strengthening departments. The new survey addresses departmental demographics of a much broader range of departments and institutions, including two year, primarily undergraduate, and graduate degree-granting departments/institutions. In addition to perceived threats and opportunities, the survey includes aspects and characteristics of strong departments. For example, department heads and chairs respond to a variety of possible attributes of strong departments, including: 1) Defining the mission of the department in such a way that it is aligned with the institutional vision; 2) Taking a proactive stance in building modern and dynamic geoscience curricula and, as appropriate, research agendas; 3) Working effectively as a department team; 4) Acknowledging that recruitment, development, and retention of students, faculty, and staff are key elements of departmental success and working effectively in these areas; 5) Developing strong departmental leaders now and for the future; 6) Communicating success, using effective metrics, to colleagues, senior administrators, students, donors, and friends; and 7) Forging strategic partnerships within the university (e.g., with biosciences, engineering, environmental studies, or geography) and outside the university (e.g., employers or alumni).
NASA Astrophysics Data System (ADS)
Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.
2017-12-01
The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.
The "Planet Earth Week": a National Scientific Festival helping Italy Discover Geosciences.
NASA Astrophysics Data System (ADS)
Seno, S.; Coccioni, R.
2017-12-01
The "Planet Earth Week- Italy Discovering Geosciences: a More Informed Society is a More Engaged Society" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country (see map) are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Planet Earth Week is growing year after year: the 2016 edition proposed 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Valentine, D.; Richard, S. M.; Gupta, A.; Meier, O.; Peucker-Ehrenbrink, B.; Hudman, G.; Stocks, K. I.; Hsu, L.; Whitenack, T.; Grethe, J. S.; Ozyurt, I. B.
2017-12-01
EarthCube Data Discovery Hub (DDH) is an EarthCube Building Block project using technologies developed in CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) to enable geoscience users to explore a growing portfolio of EarthCube-created and other geoscience-related resources. Over 1 million metadata records are available for discovery through the project portal (cinergi.sdsc.edu). These records are retrieved from data facilities, including federal, state and academic sources, or contributed by geoscientists through workshops, surveys, or other channels. CINERGI metadata augmentation pipeline components 1) provide semantic enhancement based on a large ontology of geoscience terms, using text analytics to generate keywords with references to ontology classes, 2) add spatial extents based on place names found in the metadata record, and 3) add organization identifiers to the metadata. The records are indexed and can be searched via a web portal and standard search APIs. The added metadata content improves discoverability and interoperability of the registered resources. Specifically, the addition of ontology-anchored keywords enables faceted browsing and lets users navigate to datasets related by variables measured, equipment used, science domain, processes described, geospatial features studied, and other dataset characteristics that are generated by the pipeline. DDH also lets data curators access and edit the automatically generated metadata records using the CINERGI metadata editor, accept or reject the enhanced metadata content, and consider it in updating their metadata descriptions. We consider several complex data discovery workflows, in environmental seismology (quantifying sediment and water fluxes using seismic data), marine biology (determining available temperature, location, weather and bleaching characteristics of coral reefs related to measurements in a given coral reef survey), and river geochemistry (discovering observations relevant to geochemical measurements outside the tidal zone, given specific discharge conditions).
A Collaborative Effort to Build a Modular Course on GeoEthics
NASA Astrophysics Data System (ADS)
Cronin, V. S.; Di Capua, G.; Palinkas, C. M.; Pappas Maenz, C.; Peppoloni, S.; Ryan, A. M.
2014-12-01
The need to promote ethical practice in the geosciences has long been recognized. Governmental boards for licensing professional geoscientists commonly require participation in continuing-education courses or workshops about professional ethics as part of the license-renewal processes. Geoscience-based companies and organizations of professional geoscientists have developed ethical codes for their members or employees. Ethical problems have been reported that involve the practice of science applied to Earth studies, interpersonal relationships within geoscience departments, business practices in geoscience-based companies, field work and the destructive modification of geologic sites, public policy development or implementation related to Earth resources, extractive resource industries, development that modifies landscapes in significant ways, interactions with the press and other media professionals, and even interactions with individuals or groups that have a significantly different worldview. We are working toward the creation of a modular semester-long course in GeoEthics. The modules will be free-standing, so each could be repurposed for use in a different course; however, the GeoEthics course will provide a useful overall introduction to a variety of topics in ethics applied in the context of geoscience. Such a course might be an excellent capstone course for undergraduate geoscientists, or an introductory course for graduate students. The first module will cover basics intended to provide a common vocabulary of words, ideas and practices that will be used throughout the course. The remaining 5-6 modules will focus on aspects of geoscience in which ethical considerations play an important role. We feel that the geoscience classroom can provide a safe, controlled environment in which students can confront a representative sample of the types of ethical issues they might encounter in their professional or academic careers. Our goal is to help students develop effective strategies for working through these dilemmas. Our modules will utilize formal discussion, role-playing, debate, and reflective writing, among other techniques. We hope that this will lead students to internalize these lessons so that they lead careers in which ethical practice is an essential element.
A collaborative effort to build a modular course on Geoethics
NASA Astrophysics Data System (ADS)
Cronin, Vincent; Di Capua, Giuseppe; Palinkas, Cindy; Pappas Maenz, Catherine; Peppoloni, Silvia; Ryan, Anne-Marie
2015-04-01
The need to promote ethical practice in the geosciences has long been recognized. Governmental boards for licensing professional geoscientists commonly require participation in continuing-education courses or workshops about professional ethics as part of the license-renewal processes. Geoscience-based companies and organizations of professional geoscientists have developed ethical codes for their members or employees. Ethical problems have been reported that involve the practice of science applied to Earth studies, interpersonal relationships within geoscience departments, business practices in geoscience-based companies, field work and the destructive modification of geologic sites, public policy development or implementation related to Earth resources, extractive resource industries, development that modifies landscapes in significant ways, interactions with the press and other media professionals, and even interactions with individuals or groups that have a significantly different worldview. We are working toward the creation of a modular semester-long course in Geoethics. The modules will be free-standing, so each could be repurposed for use in a different course; however, the Geoethics course will provide an useful overall introduction to a variety of topics in ethics applied in the context of geoscience. Such a course might be an excellent capstone course for undergraduate geoscientists, or an introductory course for graduate students. The first module will cover basics intended to provide a common vocabulary of words, ideas and practices that will be used throughout the course. The remaining 5-6 modules will focus on aspects of geoscience in which ethical considerations play an important role. We feel that the geoscience classroom can provide a safe, controlled environment in which students can confront a representative sample of the types of ethical issues they might encounter in their professional or academic careers. Our goal is to help students develop effective strategies for working through these dilemmas. Our modules will utilize formal discussion, role-playing, debate, and reflective writing, among other techniques. We hope that this will lead students to internalize these lessons so that they lead careers in which ethical practice is an essential element.
Developing A Large-Scale, Collaborative, Productive Geoscience Education Network
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.
2012-12-01
Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong Geoscience Departments sought to create the same type of shared information base that was supporting individual faculty for departments. The Teach the Earth portal and its underlying web development tools were used by NSF-funded projects in education to disseminate their results. Leveraging these funded efforts, the Climate Literacy Network has expanded this geoscience education community to include individuals broadly interested in fostering climate literacy. Most recently, the InTeGrate project is implementing inter-institutional collaborative authoring, testing and evaluation of curricular materials. While these projects represent only a fraction of the activity in geoscience education, they are important drivers in the development of a large, national, coherent geoscience education network with the ability to collaborate and disseminate information effectively. Importantly, the community is open and defined by active participation. Key mechanisms for engagement have included alignment of project activities with participants needs and goals; productive face-to-face and virtual workshops, events, and series; stipends for completion of large products; and strong supporting staff to keep projects moving and assist with product production. One measure of its success is the adoption and adaptation of resources and models by emerging projects, which results in the continued growth of the network.
The Current Role of Geological Mapping in Geosciences
NASA Astrophysics Data System (ADS)
Ostaficzuk, Stanislaw R.
The book contains private views of experts from various countries on the role of geological mapping in sustainable development. New technologies and concepts are presented, which are either awaiting for recognition by Geological Surveys, or are gradually applied in some survey. The target of the book is well worded in the "Summary and recommendations" elaborated by the Ad Hoc Committee at the Advanced Research Workshop on Innovative Geological Cartography, held under NATO sponsorship in Poland in November 2003.
NASA Technical Reports Server (NTRS)
Ferber, R. (Editor); Evans, D. (Editor)
1978-01-01
The background, objectives and methodology used for the Small Power Systems Solar Electric Workshop are described, and a summary of the results and conclusions developed at the workshop regarding small solar thermal electric power systems is presented.
Sedimentary basin geochemistry and fluid/rock interactions workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and othermore » Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.« less
NASA Astrophysics Data System (ADS)
Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.
2015-12-01
The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.
Developing Strong Geoscience Programs and Departments
NASA Astrophysics Data System (ADS)
MacDonald, R.; Manduca, C. A.
2002-12-01
Strong geoscience programs are essential for preparing future geoscientists and developing a broad public understanding of our science. Faculty working as a department team can create stronger programs than individual faculty working alone. Workshops sponsored by Project Kaleidoscope (www.pkal.org) on departmental planning in the geosciences have emphasized the importance of designing programs in the context of both departmental and student goals. Well-articulated goals form a foundation for designing curriculum, courses, and other departmental activities. Course/skill matrices have emerged as particularly valuable tools for analyzing how individual courses combine in a curriculum to meet learning goals. Integrated programs where students have opportunities to learn and use skills in multiple contexts have been developed at several institutions. Departments are leveraging synergies between courses to more effectively reach departmental goals and capitalize on opportunities in the larger campus environment. A full departmental program extends beyond courses and curriculum. Studies in physics (National Task Force on Undergraduate Physics, Hilborne, 2002) indicate the importance of activities such as recruiting able students, mentoring students, providing courses appropriate for pre-service K-12 teachers, assisting with professional development for a diversity of careers, providing opportunities for undergraduates to participate in research, and making connections with the local industries and businesses that employ graduates. PKAL workshop participants have articulated a wide variety of approaches to undergraduate research opportunities within and outside of class based on their departmental goals, faculty goals, and resources. Similarly, departments have a wide variety of strategies for developing productive synergies with campus-wide programs including those emphasizing writing skills, quantitative skills, and environmental studies. Mentoring and advising activities are becoming more central to many departmental programs and can effectively draw on campus, alumni, and industry resources. Attention to the role and reputation of the department on campus is important in creating a supportive climate for departmental activities. The challenges of creating a strong program can be most effectively met using a team approach that capitalizes on the strengths of every department member.
NASA Astrophysics Data System (ADS)
Zhu, F.; Yu, H.; Rilee, M. L.; Kuo, K. S.; Yu, L.; Pan, Y.; Jiang, H.
2017-12-01
Since the establishment of data archive centers and the standardization of file formats, scientists are required to search metadata catalogs for data needed and download the data files to their local machines to carry out data analysis. This approach has facilitated data discovery and access for decades, but it inevitably leads to data transfer from data archive centers to scientists' computers through low-bandwidth Internet connections. Data transfer becomes a major performance bottleneck in such an approach. Combined with generally constrained local compute/storage resources, they limit the extent of scientists' studies and deprive them of timely outcomes. Thus, this conventional approach is not scalable with respect to both the volume and variety of geoscience data. A much more viable solution is to couple analysis and storage systems to minimize data transfer. In our study, we compare loosely coupled approaches (exemplified by Spark and Hadoop) and tightly coupled approaches (exemplified by parallel distributed database management systems, e.g., SciDB). In particular, we investigate the optimization of data placement and movement to effectively tackle the variety challenge, and boost the popularization of parallelization to address the volume challenge. Our goal is to enable high-performance interactive analysis for a good portion of geoscience data analysis exercise. We show that tightly coupled approaches can concentrate data traffic between local storage systems and compute units, and thereby optimizing bandwidth utilization to achieve a better throughput. Based on our observations, we develop a geoscience data analysis system that tightly couples analysis engines with storages, which has direct access to the detailed map of data partition locations. Through an innovation data partitioning and distribution scheme, our system has demonstrated scalable and interactive performance in real-world geoscience data analysis applications.
Research and Teaching About the Deep Earth
NASA Astrophysics Data System (ADS)
Williams, Michael L.; Mogk, David W.; McDaris, John
2010-08-01
Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.
Stevens, Peter R.; Nicholson, Thomas J.
1996-01-01
This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.
NASA Astrophysics Data System (ADS)
Putman, N.; Ellins, K.; Holt, J.; Olson, H. C.
2006-12-01
As a senior pre-service teacher at Huston-Tillotson University, a minority-serving institution in Texas, I found myself in need of a science course and reluctantly enrolled in "Special Topics in the Geosciences," a survey course taught by visiting scientists from The University of Texas at Austin's Institute for Geophysics (UTIG). I had no idea what the geosciences were about. On the first day of class we took a test and I began to feel a sense of foreboding, but after speaking with the instructors, I left filled with excitement. With my limited background in science, I knew that the class was going to be challenging and require a lot of studying. I took every opportunity offered in the class to learn more about the geosciences. If there was a field trip, I went. If there was an opportunity for me to speak to children about what I learned, I did. For example, I participated in the Explore UT open house event where, rather than being an observer as I had expected, I found myself explaining earthquake seismology to students, parents and visitors. The experience was pivotal. As I explained to a small group of 3rd graders how they could use computer applications to observe and understand seismic waves, I realized I wanted to be a science teacher and not an elementary level-teacher as I had planned. Since completing "Special Topics in the Geosciences," I've been an undergraduate research assistant at UTIG. Over the summer, I adapted approximately ten existing UTIG Earth Science learning activities into the 5-E instructional model for the fall 2006 professional development Earth Science Revolution Workshops for in- service teachers, and I developed a new lesson on tides for these workshops. I also participated in presenting both a workshop for minority-serving elementary teachers and a class for alternative certification teachers at HTU. In early September, I joined a group of scientists, engineers, and space-suited "astronauts" in the Arizona desert near Meteor Crater to "practice" for future human missions to Mars as a participant in NASA's Desert Research and Technology Studies (RATS) project. My role was to help scientists and engineers with experiments to determine the efficacy of Ground Penetrating Radar in locating buried ice (water) and other resources, such as metals, and to translate my experience into K-12 classroom activities. In the spring/summer of 2007 I expect to participate in a marine geophysical cruise offshore Panama and Costa Rica. The immersion in science, the opportunities to be part of scientific research teams, my daily interaction with scientists and graduate students, the mentoring from research scientists at UTIG, and the respect shown to me for transforming their science into interesting projects for K-12 students and teachers have been critical elements in my decision to pursue science teaching as a career.
NASA Astrophysics Data System (ADS)
Burrell, S.
2012-12-01
Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open-ended questionnaires about impact on students identify higher order thinking, critical evaluation of quantitative and qualitative information, cooperative learning, and engagement in STEM content through inquiry as core competencies of this educational method. This presentation will describe the program model and results from internal evaluation.
Mars Geoscience Climatology Orbiter (MGCO) extended study: Technical volume
NASA Technical Reports Server (NTRS)
1983-01-01
The FLTSATCOM Earth orbiting communications satellite is a prominent candidate to serve as the Mars Geoscience Climatology Orbiter (MGCO) spacecraft. Major aspects directly applicable are: (1) the incorporation of solid orbit insertion motor; (2) the ability to cruise to Mars in the spin-stabilized mode; (3) ample capability for payload mass and power; (4) attitude control tried to nadir and orbit plane coordinates; (5) exemplary Earth orbital performance record and projected lifetime; and (6) existence of an on-going procurement into the MGCO time period.
Educating the Next Generation of Geoscientists: Strategies for Formal and Informal Settings
NASA Astrophysics Data System (ADS)
Burrell, S.
2013-12-01
ENGAGE, Educating the Next Generation of Geoscientists, is an effort funded by the National Science Foundation to provide academic opportunities for members of underrepresented groups to learn geology in formal and informal settings through collaboration with other universities and science organizations. The program design tests the hypothesis that developing a culture of on-going dialogue around science issues through special guest lectures and workshops, creating opportunities for mentorship through informal lunches, incorporating experiential learning in the field into the geoscience curriculum in lower division courses, partnership-building through the provision of paid summer internships and research opportunities, enabling students to participate in professional conferences, and engaging family members in science education through family science nights and special presentations, will remove the academic, social and economic obstacles that have traditionally hindered members of underrepresented groups from participation in the geosciences and will result in an increase in geoscience literacy and enrollment. Student feedback and anecdotal evidence indicate an increased interest in geology as a course of study and increased awareness of the relevance of geology everyday life. Preliminary statistics from two years of program implementation indicate increased student comprehension of Earth science concepts and ability to use data to identify trends in the natural environment.
NASA Astrophysics Data System (ADS)
Seno, S.; Coccioni, R.
2016-12-01
The "Week of Planet Earth" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Week of Planet Earth is growing year after year: the 2016 edition proposes 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.
Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists
NASA Astrophysics Data System (ADS)
Mhopjeni, Kombada
2015-04-01
The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among early-career geoscientists in the industry and university students to geoscience activities outside the confines of academia and the industry such as networking and outreach activities. This is compounded by the Network's perceived lack of relevance and appeal among young Namibian scientists. To become more 'popular' YNN needs to solve the issue of indifference among early-career geoscientists in the industry and University students by listening to their needs and actively engaging them in the process. Good communication skills are essential and YNN has to reformulate the way it reaches out to its audiences by developing more active ways to communicate geosciences. With this in mind, YNN plans to implement best practice methods to engage more young scientists in YNN and provide support and guidance on geoscience opportunities.
Understanding the Prevalence of Geo-Like Degree Programs at Minority Serving Institutions
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Manduca, C. A.; Larsen, K.
2014-12-01
Over the decade 2002-12, the percentage of students from underrepresented minorities (URM) graduating with geoscience degrees has increased by 50%. In 2012, of the nearly 6,000 geoscience Bachelor's degrees, 8% were awarded to students from URM. But that same year across all of STEM, 18% of Bachelors went to these students, and URM made up 30% of the US population overall. Minority Serving Institutions (MSIs) play an important role in increasing the diversity of geoscience graduates where there are appropriate degree programs or pathways to programs. To better understand opportunities at these institutions, the InTeGrate project collected information on degree programs at MSIs. A summer 2013 survey of websites for three types of MSIs confirmed that, while stand-alone Geology, Geoscience, or Environmental Science departments are present, there are a larger number of degree programs that include elements of geoscience or related disciplines (geography, GIS, etc.) offered in interdisciplinary departments (e.g. Natural Sciences and Math) or cognate science departments (Physics, Engineering, etc.). Approximately one-third of Hispanic Serving Institutions and Tribal Colleges and one-fifth of Historically Black Colleges and Universities offer at least one degree that includes elements of geoscience. The most common programs were Geology and Environmental Science (94 and 88 degrees respectively), but 21 other types of program were also found. To better profile the nature of these programs, 11 interviews were conducted focusing on strategies for attracting, supporting, and preparing minority students for the workforce. In conjunction with the February 2014 Broadening Access to the Earth and Environmental Sciences workshop, an additional 6 MSI profiles were obtained as well as 22 profiles from non-MSIs. Several common strategies emerge: Proactive marketing and outreach to local high schools and two-year colleges Community building, mentoring and advising, academic support, and funding support Research experiences, internships, alumni or industry interactions, and real-world project These findings align with the literature on supporting students from underrepresented groups. The full set of profiles is available on the InTeGrate website. serc.carleton.edu/integrate/programs/diversity/
NASA Astrophysics Data System (ADS)
Urquhart, M. L.; Curry, B.; Hairston, M. R.
2009-12-01
Professional development for teachers can take a variety of forms, each with unique challenges and needs. At the University of Texas at Dallas (UTD), we have leveraged partnerships between multiple groups including the Masters of Arts in Teaching program in Science Education, the joint US Air Force/NASA CINDI mission, an ionospheric explorer built at UTD, and the UTD Regional Collaborative for Excellence in Science Teaching. Each effort models, and in the case of the later two has created, inquiry-based lessons around Earth-systems science. A space science mission, currently in low Earth orbit aboard the Air Force satellite C/NOFS, provides real world connections to classroom science, scientific data and visualizations, and funding to support delivery of professional development in short courses and workshops at teacher conferences. Workshops and short course in turn often serve to recruit teachers into our longer-term programs. Long-term professional development programs such as the Collaborative provide opportunities to test curriculum and teacher learning, an interface to high-quality sustained efforts within talented communities of teachers, and much more. From the birth of our CINDI Educational Outreach program to the Collaborative project that produced geoscience kit-based modules and associated professional development adopted throughout the state of Texas, we will share highlights of our major professional development initiatives and how our partnerships have enabled us to better serve the needs of K-12 teachers expected to deliver geoscience and space science content in their classrooms.
Twentieth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1995-01-26
PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technicalmore » sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager« less
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
2007-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on November 14-15, 2006. At this workshop NASA and our industry and university partners shared their respective seal technology developments. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing the presentations from this workshop in two volumes. Volume I will be publicly available and individual papers will be made available on-line through the web page address listed at the end of this presentation. Volume II will be restricted as Sensitive But Unclassified (SBU) under International Traffic and Arms Regulations (ITAR).
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.
2017-12-01
A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.
The International Association for Promoting Geoethics: Mission, Organization, and Activities
NASA Astrophysics Data System (ADS)
Kieffer, S. W.; Peppoloni, S.; Di Capua, G.
2017-12-01
The International Association for Promoting Geoethics (IAPG) was founded in 2012, during the 34th IGC in Brisbane (Australia), to provide a multidisciplinary platform for widening the discussion and creating awareness about principles and problems of ethics as applied to the geosciences. It is a scientific, non-governmental, non-political, non-profit, non-party institution, headquartered at the Italian Institute of Geophysics and Volcanology in Rome, Italy. IAPG focuses on behaviors and practices where human activities interact with the Earth system, and deals with the ethical, social and cultural implications of geoscience knowledge, education, research, practice and communication. Its goal is to enhance awareness of the social role and responsibility of geoscientists in conducting their activities such as geoeducation, sustainability, and risk prevention. IAPG is a legally recognized non-profit association with members in 115 countries on 5 continents, and currently has 26 national sections. As of the date of this abstract, IAPG has been involved with approximately 70 international meetings (scientific conferences, symposia, seminars, workshops, expositions, etc.). Other activities range from exchanging information with newsletters, blogs, social networks and publications; promoting the creation of working groups and encouraging the participation of geoscientists within universities and professional associations for the development of geoethics themes; and cooperating with national and international organizations whose aims are complementary, e.g., International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), Geological Society of London (GSL), Geoscience Information in Africa - Network (GIRAF), American Geophysical Union (AGU), International Association for Engineering Geology and the Environment (IAEG), International Association of Hydrogeologists (IAH), Association of Environmental & Engineering Geologists (AEG), International Geoscience Education Organization (IGEO), etc. Finally, IAPG is involved in activities to disseminate geological knowledge in society through "ad hoc" events for the general public and courses for professionals and students. More about IAPG at www.geoethics.org.
A New Approach to Teaching Petrology: Active Learning in a Studio Classroom
NASA Astrophysics Data System (ADS)
Perkins, D.
2003-12-01
During the past 15 years it has become clear that the traditional lecture and lab approach to college science teaching leaves much to be desired. The traditional approach is instructor oriented and based on passive learning. In contrast, current studies show that most students learn best when actively engaged in the learning process. Inquiry based learning and open ended projects have been shown to especially enhance learning by promoting higher order thinking. Recognizing the need for change, however, does not mean the changes are simple. The task of overhauling a course, replacing traditional approaches with more student oriented activities, requires a great deal of time and effort. It also involves much uncertainty and risk. At UND we have been experimenting with alternative pedagogies for a number of years. Change has been incremental, but this year we made wholesale changes in our petrology class. We converted it from the standard three lecture and one lab format to two 3-hour studio sessions per week. The distinction between lab and lecture is gone. In fact, there really are no lectures. The instructor talks for no more than 15 or 20 minutes at a time. Students spend most of their time doing, not listening. We emphasize collaborative active learning projects, some quite short and others lengthy and involved, and use a wide variety of activities. To assess the class, we have an outside consultant and we carry out weekly assessments to measure (1) how students are reacting to the various pedagogical approaches, and (2) how much student learning is actually occurring. This allows us to make adjustments and fine tune as necessary. We could not have made such changes a few years ago, simply because of the amount of work involved to create and test the necessary classroom materials. Today, however, there are many resources available to the reform minded teacher, and the resource base continues to grow. We borrowed heavily from other instructors at other institutions. We mined the Journal of Geoscience Education for teaching and assessment strategies. We took many ideas for projects from the recent Teaching Petrology Workshop (July 2003, one of the On the Cutting Edge: Workshops for Geoscience Faculty, supported by the NAGT, DLESE and NSF/DUE). With more workshops and meetings devoted to teaching reform, and as geoscientists further develop their scholarship of teaching and learning, reforming our classes will become easier. The result will not only be better educated students, but also a greater retention of geoscience majors.
Research Opportunities for Undergraduate Students at Storm Peak Laboratory
NASA Astrophysics Data System (ADS)
Vargas, W.; Hallar, G.
2009-12-01
GRASP (Geoscience Research at Storm Peak) is a program providing field research experiences for a diverse group of undergraduate students. GRASP is funded by the National Science Foundation. Its mission is to recruit students from underrepresented groups within the geoscience community allowing students to work and live at the Storm Peak Laboratory (SPL). Data previously collected at the facility forms the basis for continuing research projects that addresses climate change, atmospheric pollution, and cloud formation. Prior to arriving at SPL, students travel to the National Center for Atmospheric Research (NCAR) to learn about supercomputing, mathematical modeling, and scientific visualization. GRASP participants met at the campus of Howard University for a reunion workshop and presented their results in November 2008. This poster illustrates the given task and methods used to analyze an increased concentration of organic carbon detected between April 4 and 5, 2008 at SPL located at the summit of Mt. Warner in Steamboat Springs, Colorado at an elevation of 3,202 meters.
NASA Astrophysics Data System (ADS)
Jacques, Diederik
2017-04-01
As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different environmental and geo-engineering applications. SeSBench will organize new workshops to add new benchmarks in a new special issue. Steefel, C. I., et al. (2015). "Reactive transport codes for subsurface environmental simulation." Computational Geosciences 19: 445-478.
Enhancing STEM coursework at MSIs through the AMS Climate Studies Diversity Project
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Mills, E. W.; Slough, S. W.; Brey, J. A.; Geer, I. W.; Nugnes, K. A.
2017-12-01
The AMS Education Program celebrates a successful completion to its AMS Climate Studies Diversity Project. The project was funded for 6 years (2011-2017) through the National Science Foundation (NSF). It introduced and enhanced geoscience and/or sustainability-focused course components at minority-serving institutions (MSIs) across the U.S., many of which are signatories to the President's Climate Leadership Commitments, administered by Second Nature, and/or members of the Louis Stokes Alliances for Minority Participation. The Project introduced AMS Climate Studies curriculum to approximately 130 faculty representing 113 MSIs. Each year a cohort of, on average, 25 faculty attended a course implementation workshop where they were immersed in the course materials, received presentations from high-level speakers, and trained as change agents for their local institutions. This workshop was held in the Washington, DC area in collaboration with Second Nature, NOAA, NASA Goddard Space Flight Center, Howard University, and other local climate educational and research institutions. Following, faculty introduced and enhanced geoscience curricula on their local campuses with AMS Climate Studies course materials, thereby bringing change from within. Faculty were then invited to the following AMS Annual Meeting to report on their AMS Climate Studies course implementation progress, reconnect with their colleagues, and learn new science presented at the meeting. A longitudinal survey was administered to all Climate Diversity Project faculty participants who attended the course implementation workshops. The survey goals were to assess the effectiveness of the Project in helping faculty implement/enhance their institutional climate science offering, share best practices in offering AMS Climate Studies, and analyze the usefulness of course materials. Results will be presented during this presentation. The AMS Climate Studies Diversity Project builds on highly successful, NSF-supported diversity projects for the AMS Weather and Ocean Studies courses conducted from 2001-2008. As a whole, AMS Climate, Weather, and Ocean Studies courses have activated more than 400 institutional licenses from MSIs and impacted more than 25,000 students.
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Moses, M. N.
2011-12-01
Increasing students' earth science literacy, especially those at Minority Serving Institutions (MSIs), is a primary goal of the American Meteorological Society (AMS). Through the NSF-supported AMS Weather Studies and AMS Ocean Studies Diversity workshops for Historically Black College and Universities, Hispanic Serving Institutions, Tribal Colleges and Universities, Alaska Native, and Native Hawaiian Serving Institutions, AMS has brought meteorology and oceanography courses to more students. These workshops trained and mentored faculty implementing AMS Weather Studies and AMS Ocean Studies. Of the 145 institutions that have participated in the AMS Weather Studies Diversity Project, reaching over 13,000 students, it was the first meteorology course offered for more than two-thirds of the institutions. As a result of the AMS Ocean Studies Diversity Project, 75 institutions have offered the course to more than 3000 students. About 50 MSIs implemented both the Weather and Ocean courses, improving the Earth Science curriculum on their campuses. With the support of NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the newest professional development workshop, AMS Climate Studies Diversity Project will recruit MSI faculty members through the vast network of Second Nature's more than 670 signatories. These workshops will begin in early summer 2012. An innovative approach to studying climate science, AMS Climate Studies explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, faculty and students learn about basic climate modeling through the AMS Conceptual Energy Model. Following the flow of energy in a clear, simplified model from space to Earth and back sets the stage for differentiating between climate, climate variability, and climate change. The AMS Climate Studies Diversity Project will follow the successful models of the Weather and Ocean Diversity Projects. Hands on examples, computer based experiments, round table discussions, lectures, and conversations with scientists in the field and other experienced professors are all important parts of previous workshops, and will be complimented by previous participants' feedback. This presentation will also focus on insight gained from the results of a self-study of the long term, successful AMS DataStreme Project, precollege teacher professional development courses. AMS is excited for this new opportunity of reaching even more MSI faculty and students. The ultimate goal of the AMS is to have a geoscience concentration at MSIs throughout the nation and to greatly increase the number of minority students entering geoscience careers, including science teaching.
Child restraint workshop series. Volume 1
DOT National Transportation Integrated Search
1979-09-01
This final report describes the planning and implementing details of the Child Restraint Workshop series. A child restraint workshop was conducted in each of the : ten NHTSA regions. The purpose of the workshops was to improve the effectiveness of gr...
NASA Astrophysics Data System (ADS)
MacDonald, R.; Ormand, C.; Manduca, C. A.; Wright-Dunbar, R.; Allen-King, R.
2007-12-01
The professional development program,'On the Cutting Edge', offers on-line resources and annual multi-day workshops for graduate students and post-doctoral fellows interested in pursuing academic careers. Pre- workshop surveys reveal that early career faculty, post-docs, and graduate students have many questions about teaching (e.g., what are effective teaching strategies, how to design a course, how to prepare a syllabus, how to teach large courses), research (e.g., initiate and fund future research, set up and manage a lab, obtain equipment), and career management (e.g., understand tenure requirements, balance all it all). The graduate students and post-docs also have questions about jobs and the job search process. Their questions show a lack of familiarity with the nature of academic positions at different kinds of educational institutions (two-year colleges, primarily undergraduate institutions, and research universities). In particular, they are uncertain about what educational setting will best fit their values and career goals and how teaching loads and research expectations vary by institution. Common questions related to the job search process include where to find job listings (the most common question in recent years), when to start the job search process, how to stand out as an applicant, and how to prepare for interviews. Both groups have questions about how to develop new skills: how to develop, plan and prepare a new course (without it taking all of their time), how to expand beyond their PhD (or postdoc) research projects, how to develop a research plan, and where to apply for funding. These are important topics for advisors to discuss with all of their students and postdocs who are planning on careers in academia. On the Cutting Edge offers workshops and web resources to help current and future faculty navigate these critical stages of their careers. The four-day workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career has been offered since 1999 and provides sessions on teaching strategies, course design, developing a strategic plan for research, supervising student researchers, navigating departmental and institutional politics, tenure, time and task management, and much more. The workshop, Preparing for an Academic Career in the Geosciences, has been offered since 2003 and provides a panel about academic careers in different institutional settings, session on research on learning, various teaching strategies, design of effective classroom activities, moving research forward to new settings, negotiation, and presenting oneself to others. Participants in both workshops have many opportunities to talk informally with leaders and other participants. Assessment results indicate that the workshops are helpful for both current and future faculty. Participants particularly appreciate the practical ideas and the opportunity to interact with, and learn from, a diverse leadership team and other participants. Two on-line resource collections provides information in these areas useful for students, post-docs, early career faculty and advisors.
NASA Astrophysics Data System (ADS)
Gill, J. C.
2012-04-01
Geoscientists have a crucial role to play in improving disaster risk reduction and supporting communities to build resilience and reduce vulnerability. Across the world millions live in severe poverty, without access to many of the basic needs that are often taken for granted - a clean water supply, a reliable food source, safe shelter and suitable infrastructure. This lack of basic needs results in communities being particularly vulnerable to devastating natural hazards, such as floods, earthquakes, volcanic eruptions and landslides. Here we discuss two major gaps which can limit the engagement of geoscience students and recent graduates in the serious debates surrounding resilience and effective disaster risk reduction: (i) Geoscience undergraduate and postgraduate courses rarely give students the opportunity to engage with issues such as vulnerability, sustainability, knowledge exchange and cross-cultural communication. (ii) There are very few opportunities for geoscience students to gain experience in this sector through UK or overseas placements. Geology for Global Development (GfGD), established in 2011, is starting to work with UK students and recent graduates to fill these gaps. GfGD aims to inspire and engage young geoscientists, supporting them to apply their interdisciplinary knowledge and skills to generate solutions and resources which support NGOs, empower communities and help build resilience to natural hazards. This is being and will be done through: (i) active university groups hosting seminars and discussion groups; (ii) blog articles; (iii) opportunities to contribute to technical papers; (iv) workshops and conferences; and (v) UK and overseas placements. GfGD seeks to play a key role in the training and development of geoscience graduates with the necessary 'soft-skills' and opportunities to make an important contribution to improving disaster risk reduction, fighting poverty and improving people's lives.
NASA Astrophysics Data System (ADS)
Mead, J.; Wright, G. B.
2013-12-01
The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.
NASA Astrophysics Data System (ADS)
Vlahovic, G.; Malhotra, R.; Renslow, M.; Albert, B.; Harris, J.
2007-12-01
Two ongoing initiatives funded by the NSF-GEO and NSF-HRD directorates are being used to enhance the geospatial program at the North Carolina Central University (NCCU) to make it a leader, regionally and nationally, in geoscience education. As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU has established a Geospatial Research, Innovative Teaching, and Service (GRITS) Center and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer "Provisional" GIS certification to students graduating with Geography degrees. This presentation will focus on the role that ongoing geospatial initiatives are playing in attracting students to this program, increasing opportunities for academic and industry internships and employment in the field after graduation, and increasing awareness of the NCCU geosciences program among GIS professionals in North Carolina. Some of the program highlights include "Provisional" ASPRS certification recently awarded to three NCCU graduate students - the first three students in the nation to complete the provisional certification process. This summer GRITS Center faculty conducted two GIS workshops for academic users and three more are planned in the near future for North Carolina GIS professionals. In addition, a record number of students were awarded paid internship positions with government agencies, non profit organizations and the industry. This past summer our students worked at NOAA, NC Conservation Fund, UNC Population Center, and Triangle Aerial Surveys. NCCUs high minority enrollment (at the present above 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and a possible role model for other HBCUs.
NASA Astrophysics Data System (ADS)
Sloan, V.; Haacker, R.
2016-12-01
Students, graduate students, and postdocs facing the job market cite a lack of familiarity with non-academic careers in the geosciences, uncertainty about the skills needed, and fear of the future. We work with these groups in several education programs at the National Center for Atmospheric Research (NCAR), and have interviewed and polled them about these issues. Surveys of and focus groups with alumni from two of these programs, an undergraduate career development program and a postdoctoral study program, provided insight into their employment and the skills that they see as valuable in their careers. Using this data, we redesigned the one-week undergraduate program, called the NCAR Undergraduate Leadership Workshop, with the goals of: (1) exposing students to the diversity of careers in the geosciences; (2) providing students with practice developing their non-technical skills, and; (3) creating content about careers in the atmospheric sciences for sharing with other students in the community. Students self-organized into consulting groups and had to propose and design their projects. During the course of the week, students interacted with approximately twenty professionals from fields in or related to the geosciences through lectures, lunch conversations, and student-led interviews. The professionals were asked to described their own work and the meanders of their career paths, to illustrate the range of professions in our field. The teams then developed creative materials intended for sharing these profiles, such as websites, powerpoint presentations and videos, and presented them formally at the week's end. In this presentation, we will share about this case study, the survey results on competencies valued in today's STEM workforce, and techniques for giving students practice developing those skills.
Geotechnical support and topical studies for nuclear waste geologic repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technicalmore » and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''« less
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Morris, A. R.
2015-12-01
Engaging lower-division undergraduates in research experiences is a key but challenging aspect of guiding talented students into the geoscience research pipeline. UNAVCO conducted a summer internship program to prepare first and second year college students for participation in authentic, scientific research. Many students in their first two years of academic studies do not have the science content knowledge or sufficient math skills to conduct independent research. Students from groups historically underrepresented in the geosciences may face additional challenges in that they often have a less robust support structure to help them navigate the university environment and may be less aware of professional opportunities in the geosciences.UNAVCO, manager of NSF's geodetic facility, hosted four students during summer 2015 internship experience aimed to help them develop skills that will prepare them for research internships and skills that will help them advance professionally. Students spent eight weeks working with UNAVCO technical staff learning how to use equipment, prepare instrumentation for field campaigns, among other technical skills. Interns also participated in a suite of professional development activities including communications workshops, skills seminars, career circles, geology-focused field trips, and informal interactions with research interns and graduate student interns at UNAVCO. This presentation will outline the successes and challenges of engaging students early in their academic careers and outline the unique role such experiences can have in students' academic careers.
NASA Technical Reports Server (NTRS)
Ong, Cindy; Mueller, Andreas; Thome, Kurtis; Pierce, Leland E.; Malthus, Timothy
2016-01-01
Calibration is the process of quantitatively defining a system's responses to known, controlled signal inputs, and validation is the process of assessing, by independent means, the quality of the data products derived from those system outputs [1]. Similar to other Earth observation (EO) sensors, the calibration and validation of spaceborne imaging spectroscopy sensors is a fundamental underpinning activity. Calibration and validation determine the quality and integrity of the data provided by spaceborne imaging spectroscopy sensors and have enormous downstream impacts on the accuracy and reliability of products generated from these sensors. At least five imaging spectroscopy satellites are planned to be launched within the next five years, with the two most advanced scheduled to be launched in the next two years [2]. The launch of these sensors requires the establishment of suitable, standardized, and harmonized calibration and validation strategies to ensure that high-quality data are acquired and comparable between these sensor systems. Such activities are extremely important for the community of imaging spectroscopy users. Recognizing the need to focus on this underpinning topic, the Geoscience Spaceborne Imaging Spectroscopy (previously, the International Spaceborne Imaging Spectroscopy) Technical Committee launched a calibration and validation initiative at the 2013 International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia, and a post-conference activity of a vicarious calibration field trip at Lake Lefroy in Western Australia.
Broadening Participation in Geosciences with Academic Year and Summer Research Experiences
NASA Astrophysics Data System (ADS)
Austin, S. A.; Howard, A.; Johnson, L. P.; Gutierrez, R.; Chow, Y.
2013-12-01
Medgar Evers College, City University of New York, has initiated a multi-tiered strategy aimed at increasing the number of under-represented minority and female students pursuing careers in the Geosciences, especially Earth and Atmospheric Sciences and related areas. The strategy incorporates research on the persistence of minority and female under-represented students in STEM disciplines. The initiatives include NASA and NSF-funded team-based undergraduate research activities during the summer and academic year as well as academic support (clustering, PTLT workshops for gatekeeper courses), curriculum integration modules, and independent study/special topics courses. In addition, high school students are integrated into summer research activities working with undergraduate and graduate students as well as faculty and other scientist mentors. An important initial component was the building of an infrastructure to support remote sensing, supported by NASA. A range of academic year and summer research experiences are provided to capture student interest in the geosciences. NYC-based research activities include urban impacts of global climate change, the urban heat island, ocean turbulence and general circulation models, and space weather: magnetic rope structure, solar flares and CMEs. Field-based investigations include atmospheric observations using BalloonSat sounding vehicles, observations of tropospheric ozone using ozonesondes, and investigations of the ionosphere using a CubeSat. This presentation provides a description of the programs, student impact, challenges and observations.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC.
Presented is the statistical appendix to the Department of Labor's survey of sheltered workshop programs for handicapped persons. Included are 198 tables on such aspects as regional distribution of sheltered workshops and clients, client capacity of workshops, clients not accepted for workshop services, capital investment in plant and equipment,…
On-line Resources for Teaching Sustainability
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; Larsen, K.; Buhr, S. M.; Kirk, K. B.; Ledley, T. S.; Manduca, C. A.; Mogk, D. W.; Savina, M. E.; Tewksbury, B. J.
2012-12-01
Sustainability encompasses broad interdisciplinary topics such as climate change, agricultural food production, and water resource use that include both scientific and societal components. Today's students will need to learn how to address complex, interdisciplinary, sustainability-related challenges throughout their lives. To support faculty in teaching complex concepts in sustainability to undergraduates, the Science Education Resource Center (SERC) now provides integrated access to all resources on teaching sustainability developed by projects hosted on SERC websites. Drawing extensively from collections developed by On the Cutting Edge: Professional Development for Geoscience Faculty, InTeGrate: Interdisciplinary Teaching of Geoscience for a Sustainable Future, the Climate Literacy and Energy Awareness Network (CLEAN), as well as more than 10 smaller projects, these resources include browsable access to (1) over 120 course descriptions submitted by faculty that provide information about course goals, assessments, and syllabi used in teaching courses with a sustainability focus, (2) over 160 faculty-submitted descriptions of activities that can be used to incorporate and address sustainability concepts, and (3) more than 90 interdisciplinary essays that highlight how faculty incorporate sustainability concepts into their teaching. The Sustainability Portal additionally includes several collections of lessons focused on a central theme, such as carbon footprint exercises and materials for teaching about energy that incorporate quantitative skills. The Sustainability Portal provides access to information about incorporating sustainability issues into geoscience courses and examples of how these concepts can be taught for topics such as geology and human health, public policy and Earth science, complex systems, urban students and urban environments, energy, and climate change. A rich collection of innovative pedagogical approaches conducive to teaching about sustainability are presented in the portal, including service learning, campus-based learning, experience-based environmental projects, and teaching with an Earth systems approach. Faculty can find more information about how to get involved with sustainability projects through webinars, workshops, web page authoring, and other professional development opportunities via links to projects such as On the Cutting Edge, CLEAN, and InTeGrate. The Sustainability Portal also provides access to materials generated from previous workshops, featuring interdisciplinary visions for teaching sustainability to undergraduate students. The SERC portal for Teaching Sustainability can be found at the URL below.
ERIC Educational Resources Information Center
Matthews, Walter R.; And Others
Four volumes present materials and a training workshop on proposal writing. The materials aim to give people the skills and resources with which to translate their ideas into fully developed grant proposals for projects related to educational equity for women. However, the information is applicable to most other funding procedures. The first…
Proceedings of the Space Shuttle Sortie Workshop. Volume 1: Policy and system characteristics
NASA Technical Reports Server (NTRS)
1972-01-01
The workshop held to definitize the utilization of the space shuttle is reported, and the objectives of the workshop are listed. The policy papers are presented along with concepts of the space shuttle program, and the sortie workshop.
Child restraint workshop series. Volume 2, Ongoing and planned programs
DOT National Transportation Integrated Search
1979-09-01
This final report describes the planning and implementing details of the Child Restraint Workshop series. A child restraint workshop was conducted in each of the : ten NHTSA regions. The purpose of the workshops was to improve the effectiveness of gr...
Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.
2014-01-01
Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.
NASA Technical Reports Server (NTRS)
Jester, Peggy L.; Lee, Jeffrey; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
This document addresses the software requirements of the Geoscience Laser Altimeter System (GLAS) Standard Data Software (SDS) supporting the GLAS instrument on the EOS ICESat Spacecraft. This Software Requirements Document represents the initial collection of the technical engineering information for the GLAS SDS. This information is detailed within the second of four main volumes of the Standard documentation, the Product Specification volume. This document is a "roll-out" from the governing volume outline containing the Concept and Requirements sections.
Applications of Tethers in Space: Workshop Proceedings, Volume 1
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
The complete documentation of the workshop including all addresses, panel reports, charts, and summaries are presented. This volume presents all the reports on the fundamentals of applications of tethers in space. These applications include electrodynamic interactions, transportation, gravity utilization, constellations, technology and test, and science applications.
Experiences gained by establishing the IAMG Student Chapter Freiberg
NASA Astrophysics Data System (ADS)
Ernst, Sebastian M.; Liesenberg, Veraldo; Shahzad, Faisal
2013-04-01
The International Association for Mathematical Geosciences (IAMG) Student Chapter Freiberg was founded in 2007 at the Technische Universität Bergakademie Freiberg (TUBAF) in Germany by national and international graduate and undergraduate students of various geoscientific as well as natural science disciplines. The major aim of the IAMG is to promote international cooperation in the application and use of Mathematics in Geosciences research and technology. The IAMG encourages all types of students and young scientists to found and maintain student chapters, which can even receive limited financial support by the IAMG. Following this encouragement, generations of students at TUBAF have build up and established a prosperous range of activities. These might be an example and an invitation for other young scientists and institutions worldwide to run similar activities. We, some of the current and former students behind the student chapter, have organised talks, membership drives, student seminars, guest lectures, several short courses and even international workshops. Some notable short courses were held by invited IAMG distinguished lecturers. The topics included "Statistical analysis in the Earth Sciences using R - a language and environment for statistical computing and graphics", "Geomathematical Natural Resource Modeling" and "Introduction to Geostatistics for Environmental Applications and Natural Resources Evaluation: Basic Concepts and Examples". Furthermore, we conducted short courses by ourselves. Here, the topics included basic introductions into MATLAB, object oriented programming concepts for geoscientists using MATLAB and an introduction to the Keyhole Markup Language (KML). Most of those short courses lasted several days and provided an excellent and unprecedented teaching experience for us. We were given credit by attending students for filling gaps in our university's curriculum by providing in-depth and hands-on tutorials on topics, which were merely mentioned in regular lectures. To date, the major highlights of our activity are two international workshops: MatGeoS 2008 & 2009. During our second workshop, over thirty scientists representing government agencies, academia and non-profit research organizations worldwide participated. A number of interdisciplinary topics were intensively discussed. After the workshop, the decision was made to create a book based on the presented scientific work, which should be edited by the us, the students of the student chapter. Eventually, we called for papers, organized a full-scale peer-review and edited the book. It is scheduled to be published in the first quarter of 2013 and is entitled "Mathematical Geosciences: Theory, Methods and Applications". The whole organizing process proved to be another excellent lesson to us, as it interfered with our overwhelming studying and research activities. It was necessary to learn how to organize and handle the mandatory communication and editing, while pursuing our regular duties. We consider the activities of the IAMG Student Chapter Freiberg as an example of what a group of enthusiastic and dedicated young professionals can achieve. Therefore, we encourage every similar group of students or "scientists in training" to just try to do something beyond the requirements and learn, while doing it. We proved that this is possible.
NASA Astrophysics Data System (ADS)
Oliver, Howard
The aim of the NATO Science Committee's Global Transport Mechanisms in the Geosciences program is to stimulate and facilitate international collaboration among scientists of the member countries in the study of selected global transport mechanisms. The program organizers intend to sponsor advanced research workshops, advanced study institutes, conferences, collaborative research, research study, and lecture visits. NATO grants are available, but they are intended to cover only part of the expenses involved in the international aspects of the sponsored activities. Citizens or permanent residents of one of the member countries of NATO who possess qualifications appropriate to the proposed activity are eligible to apply.
Supporting Faculty Learning About Teaching: The On the Cutting Edge Website
NASA Astrophysics Data System (ADS)
Fox, S.; Iverson, E. A.; Manduca, C. A.; Kirk, K. B.; McDaris, J. R.; Ormand, C. J.; Bruckner, M. Z.
2011-12-01
The On the Cutting Edge website captures information about teaching geoscience from workshop participants and leaders. Designed to both support workshop participants in making use of ideas developed at the workshop and to allow a broader audience to access these ideas, the site includes more than 4900 pages of content in 39 topical collections with more than 1400 community-contributed teaching activities. The site is well used: in 2010, 850,000 visitors made more than one million visits to the site viewing more than 2.1 million pages. To obtain a more detailed understanding of site use within our target population, we interviewed a sample of 30 geoscience faculty. Five primary uses were described repeatedly and in depth: finding ideas for teaching, understanding what colleagues are doing in specific teaching situations, learning about methods, tools, or topic in education or geoscience, finding visualizations, and networking or career planning. Interviewees could describe particular instances where they made use of teaching materials and could cite reasons why they believed this improved student learning. To understand how these uses are manifest in the weblogs, a sample of 73 sessions that lasted at least 10 minutes, and viewed 10 or more pages were selected from March 2009 logs. Sessions were selected to sample heavy use of one or more topical collections, and to sample the diversity of log characteristics. The sessions were described qualitatively and the resulting descriptions categorized. Four recognizable use patterns emerged: activity browsing in some cases combined with study of a pedagogic method, browsing visualizations and associated topical content, digging deep within a particular topical collection, and cross-site browsing. These patterns seem consistent with the uses reported in the interviews. An analysis of characteristics of all sessions in 2008 viewing 10 or more pages indicate that the major uses described in the interview study by 30 faculty are in fact widespread among the 16,000 users seeing 10 or more pages. The most widespread identifiable use is finding teaching activities or finding out what colleagues are doing in a particular teaching situation (20-40% of use). Roughly 30% of use appears to be related to seeking visualizations for class. Another 20% of use includes learning about pedagogic methods, though that may not be the users' intention when they enter the site. As in the interview study, use associated with finding career information is significant though less common (10% of use). The relative distribution of page views across modules is well aligned with the reported uses, and offers further confirmation that these uses are widely represented in the deep sessions.
NASA Astrophysics Data System (ADS)
Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.
2009-05-01
CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern British Columbia geological highway map was published in 2008. In the works are a geological map for southern British Columbia and three community and regional geoscience guides. 5) What on Earth (www.whatonearth.org), a biannual national newsletter established at the University of Waterloo in 1987, provides a range of Earth science information for teachers in Canada and elsewhere. It was originally published as a colourful printed newsletter, which in recent years was also available online; new issues will be available only online. 6) Friends of Canadian Geoheritage is a new national program currently being piloted in the Ottawa-Gatineau area, where it is working with municipal and other government agencies, schools, universities, and community groups to help preserve, protect and promote Canada's rich geoheritage. A new Geo-Park, a book on building materials in Ottawa, a Geoheritage day, field trips and public talks are just some of the initiatives underway.
Environmental Design Research. Volume Two: Symposia and Workshops. Community Development Series.
ERIC Educational Resources Information Center
Preiser, Wolfgang F. E., Ed.
The contents of this volume represent the invited contributions to the conference and are categorized according to special (invited) addresses, symposia, and workshops. Special addresses were conceptualized to view environmental design research in a holistic way, incorporating changing societal and political conditions. Lynton K. Caldwell spoke on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen A. Holditch; Emrys Jones
In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as buildingmore » and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.« less
Association for Women Geoscientists: enhancing gender diversity in the geosciences.
NASA Astrophysics Data System (ADS)
Holmes, M.; O'Connell, S.; Foos, A.
2001-12-01
The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986 and 1996, women comprised 18 to 22 percent of doctoral candidates. AWG recently obtained funding from the National Science Foundation to address the under-representation of women in academia. The objectives of the project are to determine the current status of women in academia, identify barriers to women's progress in the field, and recommend strategies to overcome these barriers.
AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume III, Workshop Handbook.
ERIC Educational Resources Information Center
American Inst. of Aeronautics and Astronautics, New York, NY.
In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…
NASA Technical Reports Server (NTRS)
Guyenne, T. D. (Editor); Hunt, James J. (Editor)
1984-01-01
Synthetic aperature radar; systems components; data collection; data evaluation; optical sensor data; air pollution; water pollution; land and sea observation; active sensors (ir and w); and ers-1 are discussed.
Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor)
2007-01-01
This volume contains materials presented at the Minnowbrook I-1993 Workshop on End-Stage Boundary Layer Transition, held at the Syracuse University Minnowbrook Conference Center, New York, from August 15 to 18, 1993. This volume was previously published as a Syracuse University report edited by John E. LaGraff. The workshop organizers were John E. LaGraff (Syracuse University), Terry V. Jones (Oxford University), and J. Paul Gostelow (University of Technology, Sydney). The workshop focused on physical understanding of the late stages of transition from laminar to turbulent flows, with the specific goal of contributing to improving engineering design of turbomachinery and wing airfoils. The workshop participants included academic researchers from the United States and abroad, and representatives from the gas-turbine industry and U.S. government laboratories. To improve interaction and discussions among the participants, no formal papers were required. The physical mechanisms discussed were related to natural and bypass transition, wake-induced transition, effects of freestream turbulence, turbulent spots, hairpin vortices, nonlinear instabilities and breakdown, instability wave interactions, intermittency, turbulence, numerical simulation and modeling of transition, heat transfer in boundary-layer transition, transition in separated flows, laminarization, transition in turbomachinery compressors and turbines, hypersonic boundary-layer transition, and other related topics. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The workshop summary and the plenary discussion transcript clearly outline future research needs.
1999 NASA Seal/secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 28-29, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-leamed" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.). The 1999 NASA Seal/Secondary Air System Workshop was divided into four areas; (i) overviews of the government-sponsored gas turbine programs (NASA Ultra Efficient Engine Technology program and DOE Advanced Turbine System program) and the general aviation program (GAP) with emphasis on program goals and seal needs; (ii) turbine engine seal issues from the perspective of an airline customer (i.e., United Airlines), (iii) sealing concepts, methods and results including experimental facilities and numerical predictions; and (iv) reviews of seal requirements for next generation aerospace vehicles (Trailblazer, Bantam and X-38).
NASA Astrophysics Data System (ADS)
Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.
2004-12-01
Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in geoscience courses simply because none is offered at their college or university. Often college-level introductory courses are a student's first exposure to the geosciences. To help alleviate this problem of access, the American Meteorological Society (AMS) has developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course has been licensed by over 230 colleges and universities nationwide, among them 72 minority-serving institutions which have joined via the AMS Online Weather Studies Geosciences Diversity Program since 2002. This program designed to reach institutions serving large numbers of minority students has been made possible through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time - a highly motivational learning experience. The AMS Education Program designed and services this course and makes it available to colleges and universities as a user-friendly turnkey package with electronic and printed components. The AMS Geosciences Diversity Program, in cooperation with the National Weather Service (NWS), facilitates institutional participation in Online Weather Studies. Prior to an instructor's initial offering of the course, he or she is invited to attend a one-week course implementation workshop at the NWS Training Center at Kansas City, MO. Participants are encouraged to share best practices ideas in science content and teaching strategies related to their offering of Online Weather Studies. Through the course homepage, students are provided with information on further studies in the atmospheric sciences, opportunities for internships and summer research, and career counseling. Meteorologists-in-Charge at NWS Weather Forecast Offices across the nation have interacted with minority-serving institutions to encourage adoption of the AMS weather course. Also, participating faculty members are invited to the Educational Symposium of the AMS Annual Meeting where they will attend a special Diversity Session and are encouraged to present posters.
Safety of Highway-Railroad Grade Crossings : Research Needs Workshop. Volume 2. Appendices.
DOT National Transportation Integrated Search
1996-01-01
The John A. Volpe National Transportation Systems Center hosted and conducted the Highway-Railroad Grade Crossing Safety Research Needs Workshop on April 10 - 13, 1995. Seventy-five delegates participated in the workshop and identified ninety-two (92...
National Laboratories and Universities: Building New Ways to Work Together--Report of a Workshop
ERIC Educational Resources Information Center
National Academies Press, 2005
2005-01-01
This volume is a report of a workshop held in 2003 to address best practices and remaining challenges with respect to national laboratory-university collaborations. The following are appended: (1) Committee Member Biographies; (2) Workshop Agenda; (3) Workshop Participants; (4) Glossary of Acronyms; and (5) Major Benefits and Challenges. [This…
Drunk Driving. Surgeon General's Workshop. Proceedings (Washington, D.C., December 14-16, 1988).
ERIC Educational Resources Information Center
Janus Associates.
This volume presents solutions, recommendations, and strategies in eleven interrelated areas considered at the Surgeon General's Workshop on Drunk Driving held in Washington, D.C. in December of 1988. Lists of the members of the Workshop Planning Committee and members of the federal advisory group on follow-up activities for the workshop are…
NASA Technical Reports Server (NTRS)
1999-01-01
This volume contains abstracts that have been accepted for presentation at the Workshop on New Views of the Moon II: Understanding the Moon Through the Integration of Diverse Datasets, September 22-24, 1999, in Flagstaff, Arizona. The workshop conveners are Lisa Gaddis (U.S. Geological Survey, Flagstaff and Charles K. Shearer (University of New Mexico). Color versions of some of the images contained in this volume are available on the meeting Web site (http://cass.jsc.nasa.gov/meetings/moon99/pdf/program.pdf).
NASA Astrophysics Data System (ADS)
Ortiz, J. D.; Munro-Stasiuk, M. J.; Hart, B. I.; Mokaren, D. M.; Arnold, B.; Chermansky, J. V.; Vlack, Y. A.
2006-12-01
State and national educational standards stress the need to incorporate inquiry-based approaches into the K- 12 science curriculum. However, many teachers either lack training in these pedagogical techniques or science content mastery. Both of these are needed to confidently approach science teaching in the less structured framework associated with a real world exploration of the natural environment. To overcome these barriers to implementation, we have developed an intensive, field-based professional development workshop which explores the connections between the bedrock geology, glacial geomorphology, ecology, and geography of the Lake Erie Islands and the shore of its western basin. This workshop is part of a series of three workshops that form the professional development activities of our NSF funded Graduate Teaching Fellows in K-12 Education (GK-12) project, the Northeast Ohio Geoscience Education Outreach (NEOGEO) Program which seeks to improve the quality of Earth Science education at the middle and high school levels in Northeast Ohio. During the workshop students explored the ecology and geomorphology of a series of coastal wetlands, collecting instrumental data and field observations to evaluate water quality and the forces that created these surface features. Exceptional exposure of glacial scours and striations at Kelleys Island and along the Marblehead Peninsula allowed the participants to reconstruct evolving ice flow paths to see how recent geological history shaped the landscape. Finally, stratigraphic observations in a local quarry enabled the students to understand why the observed glacial features varied as a function of bedrock type. Response to the workshop was overwhelming positive with participants commenting positively on quality and quantity of the material presented and the manner in which inquiry based teaching was modeled. End of term projects which included the conceptualization of a teaching plan to incorporate the approaches learned during the workshop demonstrated effective transference of the knowledge. NEOGEO graduate fellows are available during the academic year to help the workshop participants implement their teaching plans.
Readings in Intercultural Communication: Volume I. The Intercultural Communication Workshop.
ERIC Educational Resources Information Center
Hoopes, David S., Ed.
This book is a volume of readings on the theory and practice of the intercultural communication workshop (ICW). The ICW is defined as a short-term program (two and a half days) enabling people from different cultural backgrounds to explore together the nature of culture and communication. It was developed to improve communication among foreign and…
The U.S.-India Relationship: Cross-Sector Collaboration to Promote Sustainable Development
2014-09-01
Development—Rationale for the Workshop and Overview of the Volume .....1 Michael J. Fratantuono PART I: WORKSHOP PAPERS AND DISCUSSANTS’ COMMENTS...time the leading expert at the SSI in the area of South Asia, who indicated his willingness to write a paper , to participate in the workshop, and...take to record the workshop proceedings effectively. Mr. Ryan Burke, Web De- velopment Specialist, helped us set up the workshop website that we
NASA Astrophysics Data System (ADS)
Herbstrith, K. G.
2016-12-01
Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org
Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.
2009-12-01
Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.
Ocean FEST (Families Exploring Science Together)
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wiener, C. S.
2009-12-01
Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In addition, we are currently conducting a series of pilot events at the middle school level at underserved schools at neighbor islands, funded through the Hawaii Innovation Initiative (Act 111). Themes addressed include community outreach, capacity building, teacher preparation, and use of technology.
Generic and scientific constraints involving geoethics and geoeducation in planetary geosciences
NASA Astrophysics Data System (ADS)
Martínez-Frías, Jesús
2013-04-01
Geoscience education is a key factor in the academic, scientific and professional progress of any modern society. Geoethics is an interdisciplinary field, which involves Earth and Planetary Sciences as well as applied ethics, regarding the study of the abiotic world. These coss-cutting interactions linking scientific, societal and cultural aspects, consider our planet, in its modern approach, as a system and as a model. This new perspective is extremely important in the context of geoducation in planetary geosciences. In addition, Earth, our home planet, is the only planet in our solar system known to harbor life. This also makes it crucial to develop any scientific strategy and methodological technique (e.g. Raman spectroscopy) of searching for extraterrestrial life. In this context, it has been recently proposed [1-3] that the incorporation of the geoethical and geodiversity issues in planetary geology and astrobiology studies would enrich their methodological and conceptual character (mainly but not only in relation to planetary protection). Modern geoscience education must take into account that, in order to understand the origin and evolution of our planet, we need to be aware that the Earth is open to space, and that the study of meteorites, asteroids, the Moon and Mars is also essential for this purpose (Earth analogs are also unique sites to define planetary guidelines). Generic and scientific constraints involving geoethics and geoeducation should be incorporated into the teaching of all fundamental knowledge and skills for students and teachers. References: [1] Martinez-Frias, J. et al. (2009) 9th European Workshop on Astrobiology, EANA 09, 12-14 October 2009, Brussels, Belgiam. [2] Martinez-Frias, J., et al. (2010) 38th COSPAR Scientific Assembly. Protecting the Lunar and Martian Environments for Scientific Research, Bremen, Germany, 18-25 July. [3] Walsh et al. (2012) 43rd Lunar and Planetary Science Conference, 1910.pdf
Workshop on Children and Domestic Abuse.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Board on Children, Youth, and Families.
This workshop coordinates with the publication of a volume of "The Future of Children." The goal of the workshop is to bring together researchers, policymakers, health providers, and law enforcement to review available research literature on children and domestic violence. Topics that were addressed include prevalence and effect of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of themore » Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.« less
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures are reported. This volume deals mainly with control theory and methodologies as they apply to space stations and large antennas. Integration and dynamics and control experimental findings are reported. Among the areas of control theory discussed were feedback, optimization, and parameter identification.
NASA Astrophysics Data System (ADS)
Tayurskii, Dmitrii; Abe, Sumiyoshi; Alexandre Wang, Q.
2012-11-01
The 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS2012) was held between 25-30 August at Kazan (Volga Region) Federal University, Kazan, Russian Federation. This workshop was jointly organized by Kazan Federal University and Institut Supérieur des Matériaux et Mécaniques Avancées (ISMANS), France. The series of SPMCS workshops was created in 2008 with the aim to be an interdisciplinary incubator for the worldwide exchange of innovative ideas and information about the latest results. The first workshop was held at ISMANS, Le Mans (France) in 2008, and the third at Huazhong Normal University, Wuhan (China) in 2010. At SPMCS2012, we wished to bring together a broad community of researchers from the different branches of the rapidly developing complexity science to discuss the fundamental theoretical challenges (geometry/topology, number theory, statistical physics, dynamical systems, etc) as well as experimental and applied aspects of many practical problems (condensed matter, disordered systems, financial markets, chemistry, biology, geoscience, etc). The program of SPMCS2012 was prepared based on three categories: (i) physical and mathematical studies (quantum mechanics, generalized nonequilibrium thermodynamics, nonlinear dynamics, condensed matter physics, nanoscience); (ii) natural complex systems (physical, geophysical, chemical and biological); (iii) social, economical, political agent systems and man-made complex systems. The conference attracted 64 participants from 10 countries. There were 10 invited lectures, 12 invited talks and 28 regular oral talks in the morning and afternoon sessions. The book of Abstracts is available from the conference website (http://www.ksu.ru/conf/spmcs2012/?id=3). A round table was also held, the topic of which was 'Recent and Anticipated Future Progress in Science of Complexity', discussing a variety of questions and opinions important for the understanding of the concept of complexity itself, the behaviours of complex systems as well as for the finding of new theoretical methods. The papers submitted to this volume were carefully reviewed by referees. We are very grateful to the referees for their very efficient and thoughtful actions. A few submitted papers were unfortunately not included based on the referee reports. As a result, 34 papers are included here. We are very grateful to the members of the international advisory committee for their recommendations of speakers for SPMCS2012. We also appreciate the behind-the-scenes work of the members of the local organizing committee in preparing the conference site, web page, mail correspondence, arrangements for excursions and accommodation, handling the financial support for participants, and so on. Finally, we acknowledge the support from Kazan Federal University. Sumiyoshi Abe Alain Le Méhauté Dmitrii Tayurskii
ERIC Educational Resources Information Center
American Inst. of Aeronautics and Astronautics, New York, NY.
In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and received job counseling and placement services from volunteer groups working to match skills and jobs. To evaluate the…
1997 Spacecraft Contamination and Coatings Workshop
NASA Technical Reports Server (NTRS)
Chen, Philip T. (Compiler); Benner, Steve M. (Compiler)
1997-01-01
This volume contains the presentation charts of talks given at the "1997 Spacecraft Contamination and Coatings Workshop," held July 9-10, 1997, in Annapolis, Maryland. The workshop was attended by representatives from NASA, Jet Propulsion Laboratory, Department of Defense, industry, and universities concerned with the the spacecraft contamination engineering and thermal control coatings. The workshop provided a forum for exchanging new developments in spacecraft contamination and coatings.
High-Speed Research: Sonic Boom, volume 2
NASA Technical Reports Server (NTRS)
Darden, Christine M. (Compiler)
1992-01-01
A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.
DOT National Transportation Integrated Search
2010-01-01
On July 14-16, 2009 the Volpe Center hosted the United States Department of Transportation (US DOT) Federal Railroad Administrations (FRA) Third Research Needs Workshop on Highway-Rail Grade Crossing Safety and Trespass Prevention (workshop). The ...
Spacecraft Habitable Volume: Results of an Interdisciplinary Workshop
NASA Technical Reports Server (NTRS)
Fitts, David J.; Connolly, Janis; Howard, Robert
2011-01-01
NASA's Human Exploration Framework Team posed the question: "Is 80 cubic meters per person of habitable volume acceptable for a proposed Deep Space Habitat?" The goal of the workshop was to address the "net habitable volume" necessary for long-duration human spaceflight missions and identify design and psychological issues and mitigations. The objectives were: (1) Identify psychological factors -- i.e., "stressors" -- that impact volume and layout specifications for long duration missions (2) Identify mitigation strategies for stressors, especially those that can be written as volume design specifications (3) Identify a forward research roadmap -- i.e., what future work is needed to define and validate objective design metrics? (4) Provide advisories on the human factors consequences of poor net habitable volume allocation and layout design.
NASA Astrophysics Data System (ADS)
Al-Ismaily, Said; Al-Maktoumi, Ali; Kacimov, Anvar
2015-04-01
Undergraduates, majoring in soil sciences (SS), have a broad holistic role because SS integrates several intertwined geo-environmental/ecological and socio-economical aspects. Consequently, students have to learn how the information, advice, practices and expertise, pertinent to food security, water shortage, hydropedology, among others amalgamate through SS . Hence, university SS-programs should incorporate public outreach activities. We present experience at Sultan Qaboos University (SQU) in Oman on how to develop an effective public outreach program that can be implemented by undergraduate students. Our strategy has three components : (i) offering a course Soil and Water Tour (SWAE 4110) of hydropedology nature that integrates field, laboratory-work, and presentation-extension activities; the course is research-oriented and designed to provide opportunities for students to practice their metacognitive abilities and critical thinking; the course is offered by the Department of Soils, Water & Agricultural Engineering (SWAE), (ii) Training and involving the undergraduates in planning and conducting enjoyable, interactive, and effective workshops for school pupils; a training workshop on "Soils" was conducted for pupils (a total 300 participants, grades 7-9) and teachers aiming to unveil the secrets and the role of soil in ecosystems; workshop was organized by the SWAE Students Society (iii) Guiding the undergraduates on the best practice for raising funds for their outreach activities (e.g. the undergraduates secured funds for the workshop on "Soils", which was sponsored by Muscat Municipality, a governmental agency, and several private companies such as HMR Consultants, Metal Engineering L.L.C and Bauer Nimr LLC); SS students were mentored in submission of research proposals to the national research agency (e.g. FURAP program of The Research Council, TRC, WWW.trc.gov.om). The three components were evaluated quantitatively and qualitatively using fixed-response and open-ended questions, interviews, and course evaluation. The analyzed results indicate that the outreach strategies are effective. For component (i) and based on students evaluation for SWAE 4110 collected in 2009-2013 (2 semesters/year) the course had an average rating of 3.6/4.0 while the College average for all sections (about 150/semester) during the same period was 3.3. The majority of the SS-students expressed their appreciation of the type of communication skills and team-work ethics gained, increased confidence, and enjoyment. For component (ii), school pupils feedback (based on 33 questionnaires) showed that more than 90% "agreed" or "strongly agreed" that they have learned new information/secrets about soils and the topics of the workshop enhanced their knowledge and ability to think critically about the role of soils in life. Undersecretary who participated in the Workshop, addressed the Vice Chancellor of SQU seeking the university assistance in adopting the materials of the workshop into school curriculum and encouraging a continuous pedagogical interactive experiments at school scale. For component (iii), a FURAP proposal on urban soils, submitted by students (classmates in SWAE 4110), was ranked N3 among 15 proposals submitted by SQU. The proposal was funded by TRC and received a National Award. Although this paper is oriented towards soil issues, the components, ideas and methodology of our public outreach endeavour can be modified to suit other topics in geosciences. Key words: Public outreach strategies; School pupils; Undergraduates in geosciences; Soil education.
Factors Impacting Habitable Volume Requirements: Results from the 2011 Habitable Volume Workshop
NASA Technical Reports Server (NTRS)
Simon, M.; Whitmire, A.; Otto, C.; Neubek, D. (Editor)
2011-01-01
This report documents the results of the Habitable Volume Workshop held April 18-21, 2011 in Houston, TX at the Center for Advanced Space Studies-Universities Space Research Association. The workshop was convened by NASA to examine the factors that feed into understanding minimum habitable volume requirements for long duration space missions. While there have been confinement studies and analogs that have provided the basis for the guidance found in current habitability standards, determining the adequacy of the volume for future long duration exploration missions is a more complicated endeavor. It was determined that an improved understanding of the relationship between behavioral and psychosocial stressors, available habitable and net habitable volume, and interior layouts was needed to judge the adequacy of long duration habitat designs. The workshop brought together a multi-disciplinary group of experts from the medical and behavioral sciences, spaceflight, human habitability disciplines and design professionals. These subject matter experts identified the most salient design-related stressors anticipated for a long duration exploration mission. The selected stressors were based on scientific evidence, as well as personal experiences from spaceflight and analogs. They were organized into eight major categories: allocation of space; workspace; general and individual control of environment; sensory deprivation; social monotony; crew composition; physical and medical issues; and contingency readiness. Mitigation strategies for the identified stressors and their subsequent impact to habitat design were identified. Recommendations for future research to address the stressors and mitigating design impacts are presented.
Increasing Participation in the Earth Sciences A 35 year Journey
NASA Astrophysics Data System (ADS)
Blueford, J. R.
2006-12-01
In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.
ERIC Educational Resources Information Center
Enwonwu, Cyril O., Ed.
Participants in this workshop were scientists from various disciplines, including public health, oncology, nutrition, epidemiology, biochemistry, immunology, pharmacology, pediatrics, geriatric medicine, and the behavioral sciences. The workshop featured deliberations by medical experts on the dimensions and demographics of hunger in America. The…
Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery. (Conference Abstracts)
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor); Ashpis, David E. (Editor); Oldfield, Martin L. G. (Editor); Gostelow, J. Paul (Editor)
2006-01-01
This volume contains materials presented at the Minnowbrook V 2006 Workshop on Unsteady Flows in Turbomachinery, held at the Syracuse University Minnowbrook Conference Center, New York, on August 20-23, 2006. The workshop organizers were John E. LaGraff (Syracuse University), Martin L.G. Oldfield (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of four earlier workshops: Minnowbrook I (1993), Minnowbrook II (1997), Minnowbrook III (2000), and Minnowbrook IV (2003). The workshop was focused on physical understanding of unsteady flows in turbomachinery, with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the United States and abroad and representatives from the gas-turbine industry and U.S. Government laboratories. The physical mechanisms discussed were related to unsteady wakes, active flow control, turbulence, bypass and natural transition, separation bubbles and turbulent spots, modeling of turbulence and transition, heat transfer and cooling, surface roughness, unsteady CFD, and DNS. The workshop summary and the plenary discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of unsteady flows in turbomachines. This volume contains abstracts and copies of select viewgraphs organized according to the workshop sessions. Full-color viewgraphs and animations are included in the CD-ROM version only (Doc.ID 20070024781).
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor); Ashpis, David E. (Editor)
2002-01-01
This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.
Climate Discovery Online Courses for Educators from NCAR
NASA Astrophysics Data System (ADS)
Henderson, S.; Ward, D. L.; Meymaris, K. K.; Johnson, R. M.; Gardiner, L.; Russell, R.
2008-12-01
The National Center for Atmospheric Research (NCAR) has responded to the pressing need for professional development in climate and global change sciences by creating the Climate Discovery online course series. This series was designed with the secondary geoscience educator in mind. The online courses are based on current and credible climate change science. Interactive learning techniques are built into the online course designs with assignments that encourage active participation. A key element of the online courses is the creation of a virtual community of geoscience educators who exchange ideas related to classroom implementation, student assessment, and lessons plans. Geoscience educators from around the country have participated in the online courses. The ongoing interest from geoscience educators strongly suggests that the NCAR Climate Discovery online courses are a timely and needed professional development opportunity. The intent of NCAR Climate Discovery is to positively impact teachers' professional development scientifically authentic information, (2) experiencing guided practice in conducting activities and using ancillary resources in workshop venues, (3) gaining access to standards-aligned lesson plans, kits that promote hands-on learning, and scientific content that are easily implemented in their classrooms, and (4) becoming a part of a community of educators with whom they may continue to discuss the challenges of pedagogy and content comprehension in teaching climate change in the Earth system context. Three courses make up the Climate Discovery series: Introduction to Climate Change; Earth System Science - A Climate Change Perspective; and Understanding Climate Change Today. Each course, instructed by science education specialists, combines geoscience content, information about current climate research, hands-on activities, and group discussion. The online courses use the web-based Moodle courseware system (open- source software similar to Blackboard and webCT), utilizing its features to promote dialogue as well as provide rich online content and media. A key element of the online courses is the development and support of an online learning community, an essential component in successful online courses. Interactive learning techniques are built into the course designs with assignments that encourage active participation. Educators (both formal and informal) use the courses as a venue to exchange ideas and teaching resources. A unique feature of the courses is the emphasis on hands-on activities, a hallmark of our professional development efforts. This presentation will focus on the lessons learned in the development of the three online courses and our successful recruitment and retention efforts.
AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume 1, Final Report.
ERIC Educational Resources Information Center
American Inst. of Aeronautics and Astronautics, New York, NY.
In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…
DOE Office of Scientific and Technical Information (OSTI.GOV)
KHARZEEV,D.
1999-04-20
The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.
NASA Astrophysics Data System (ADS)
La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.
2017-12-01
High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our introductory Physical Geology course for majors in Geoscience and Engineering. The lab explores formation of a turbidite sequence, and the transition to a shallower marine environment using the tools described above and data from SfM and 360° photos. We are evaluating the effectiveness of both iVR field trips on student learning.
Making the Case for GeoSTEM Education
NASA Astrophysics Data System (ADS)
Moore, John
2014-05-01
As the national Science-Technology-Engineering-Mathematics (STEM) education policy makers in the United States work through reports, findings, forums, workshops, etc., there emerges an opportunity to present the strong case of why and how the role of the Geosciences community can and should be at the forefront of these discussions. Currently existing within the Geosciences scientific and educational community are policies, frameworks, guidance, innovative technology, and unique interdisciplinary Earth System data sets that will establish a pathway to the role of the Geosciences in the classroom, in the 21st Century workforce, and in society. The question may be raised, "Why GeoSTEM?" But the real question should be … "Why not?" Over the past several years the Geosciences have dominated the news cycle in the United States. As we face future natural and human generated hazards and disasters such as the Gulf Oil Spill, not to mention issues confronting society such as Climate Change, Sustainability and Energy, the Geosciences have a critical role in the public awareness, safety, and national security of our nation. In the past year we have experienced volcanic eruptions, earth¬quakes, tsunamis, hurricanes, tornadoes, wildfires, severe drought and flooding, outbreaks of severe weather. Planet Earth will be monitored, observed, and studied as an Earth System, in real or near real time. Policy-makers, decision-makers, scientists, teachers, students, and citizens will not only participate in the process, but come to use such information and data routinely in their daily lives. 3-D data visualizations, virtual field trips, and interactive imagery from space all will contribute to the doing of real science in real time. Policy-Makers have linked Science, Technology, Engineering, and Mathematics (STEM) Education to United States' future economy and national security. The GeoSTEM community can deliver added value through leveraging current and future Geoscience-related resources that monitor our planet and protect the life and property of our citizens. The integration of a Geoscience and Remote Sensing Laboratory into an existing Earth Science program or a new Earth Systems Science course allows students to acquire the necessary rigorous laboratory skills as required by colleges or universities, while developing and becoming proficient in technological skills using industry standard analysis tools. With the accessibility of real-time or near real time data, students in a GeoSTEM driven course can engage in inquiry-based laboratory experiences focusing on real life applications, both local and global. Developing pathways between geoscientists, researchers, teachers, and students, will create an exchange of information, data, observations, and measurements that will lead to authentic science investigations through the monitoring of weather, water quality, sea surface temperature, coral reefs, marine wildlife, earthquakes, tsunamis, wildfires, air quality, land cover, and much more. Satellite, remote sensing, and geospatial technologies can introduce students and society to data that can inform policy makers and society both now and in the future.
The 33rd IGC, Oslo, Norway 2008; Geoscience World Congress 2008
NASA Astrophysics Data System (ADS)
Solheim, A.; Bjoerlykke, A.
2007-12-01
The International Geological Congress (IGC) has been arranged every four years since 1878. During the previous Congress in Florence, Italy, 2004, the Nordic countries were awarded the organisation of the 33rd IGC, which will be held in Oslo, Norway, August 6-14, 2008. We expect between 6000 and 9000 participants to the Congress, which also includes workshops, short-courses, and business meetings, as well as more than 50 pre -and post Congress excursions. The Congress is organised under the umbrella of IUGS and the patronage of UNESCO. The Congress will run with 40 parallel sessions and cover the whole width of the geosciences. About 500 symposia will run in 40 parallel sessions. There will be a major poster session, as well as a large exhibition (Geoexpo 2008), in which industry and other organisations will be able to exhibit their products and services. A number of international affiliations have announced their interest in organising annual business meetings during the Congress. In addition, a number of workshops and short-courses will be arranged. More than 50 excursions are planned for the two weeks before the Congress and one week after. These run in all the Nordic Countries, as well as in NW Russia, Ukraine, Greenland, Svalbard, and the Faeroes Islands. These excursions will give the participants a first-hand insight into Nordic Geosciences, as well as the Nordic natural and cultural heritage. Two major international events are important for the Congress. The "International Polar Year" (IPY) and the United Nations' "International Year of Planet Earth" (IYPE) are both running in the period 2007-2009. The Congress focuses on many of the main themes of IYPE, with major emphasis on "Geoscience and Society". Seven major themes will be treated in full-day plenary sessions of lectures given by invited lecturers. These plenary sessions will have a scientific part in the morning, a key-note lecture at lunch-time, and a societal part in the afternoon, followed by a plenary debate. The themes comprise Biodiversity and the geo-environment; Climate change, past, present, future; Geohazards and human behaviour; Water, human health, and the environment; Mineral resources in a fast growing global economy; The energy race - what will be the future energy mix?; Earth and beyond - synergies between Earth and planetary sciences. Nordic ministers are invited to participate in panel debates and press conferences related to these "Themes of the day". In relation to the IPY, the Arctic will receive particular attention, which is important since the effects of climate change is seen first and expected to be largest in these regions. With its focus on climate issues, the Congress will contribute with state-of-the-art science and thereby to the general debate on these issues. Information on all aspects of the programme iscontinuously updated on the Congress website: www.33igc.org.
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.
ERIC Educational Resources Information Center
Albrechtsen, Hanne, Ed.; Mai, Jens-Erik, Ed.
This volume is a compilation of the papers presented at the 10th ASIS (American Society for Information Science) workshop on classification research. Major themes include the social and cultural informatics of classification and coding systems, subject access and indexing theory, genre analysis and the agency of documents in the ordering of…
US Army Research Office research in progress, July 1, 1991--June 30, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less
NASA Technical Reports Server (NTRS)
1976-01-01
Proceedings of a workshop conducted to identify and debate issues and impacts related to future transporation alternatives are presented. Results of the technology assessment of intercity transportation are reviewed.
NASA's Role in Aeronautics: A Workshop. Volume VII - Background Papers.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.
Sixteen background papers presented to a plenary session at a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics are presented. The central task of the workshop was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's…
Space physics strategy: Implementation study. Volume 2: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.
Workshop on the Suborbital Science Sounding Rocket Program, Volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.
Innovations in making EarthScope science and data accessible (Invited)
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.
2013-12-01
EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for majors-level structural geology or geophysics courses that is now published on SERC and UNAVCO websites. Simpler exercises using PBO data have been beta-tested for introductory courses as well. Now UNAVCO has received NSF-funding to develop four more modules (two each for introductory and majors-level) that will feature PBO and other geodetic data. The goal is for these four to serve as the foundation for an ultimate collection of >10 modules.
ERIC Educational Resources Information Center
Mitre Corp., McLean, VA.
Accounts of the workshops conducted during the morning of the second day of the symposium are contained in this volume. These focus on the economics and financing of cable television (CATV), public ownership of cable, community and local programing, and minority participation in CATV. Visual presentations dealing, respectively, with research…
NASA Astrophysics Data System (ADS)
Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.
2002-12-01
Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in an introductory geoscience course simply because none is offered at their college or university. Often introductory or survey courses are a student's first exposure to the geosciences. To help alleviate this problem, the American Meteorological Society (AMS) through its Education Program developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course will be offered at 130 colleges and universities nationwide, including 30 minority-serving institutions, 20 of which have joined the AMS Online Weather Studies Diversity Program during 2002. The AMS encourages course adoption by more institutions serving large numbers of minority students through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time-a highly motivational learning experience. The AMS Education Program designed and services this course and makes it available to colleges and universities as a user-friendly turnkey package with electronic and printed components. The AMS Diversity Program, in cooperation with the National Weather Service (NWS) facilitates institutional participation in Online Weather Studies. Prior to an instructor's initial offering of the course, he or she is invited to attend a one-week course implementation workshop at the NWS Training Center at Kansas City, MO. Participants then join an interactive network to share best practices ideas in science content and teaching strategies related to their offering of Online Weather Studies. They participate in a mentoring program that networks students with professional meteorologists and provides opportunities for internships, summer research, and career counseling. Meteorologists-in-Charge at NWS Weather Forecast Offices across the nation have volunteered their time to help make these opportunities possible. Also, participants are invited to attend the Educational Symposium of the AMS Annual Meeting where they will attend a special Diversity Session and are encouraged to present a paper or poster.
Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.
Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
NASA Astrophysics Data System (ADS)
Semken, S. C.; Godsey, H. S.; Tsosie, W. B., Jr.
2017-12-01
Place-based, culturally-integrated approaches to teaching geoscience and environmental science are aligned with traditional indigenous education, and illustrate the premise that leveraging the cultural capital of Native Americans and other underrepresented groups renders more inclusive and relevant teaching. Situating learning within local landscapes, environments, and communities; and meaningfully connecting mainstream science with Native science and knowledge of place enables students to construct new knowledge that is scaffolded by their own worldview and experiences, and helps lessen any sense of discontinuity that may arise from apparently disparate interpretations of Earth processes. We drew on this philosophy in implementing a multi-year program of summer professional-development workshops for K-12 teachers in the Colorado Plateau and Intermountain regions, many of whom work in schools that serve majority Native American student populations. Through collaboration of geoscientists, Diné (Navajo) cultural experts, and master teachers, we developed and implemented inquiry-rich field excursions in which learning about Earth-system features and processes on the Plateau utilized factual and conceptual knowledge from mainstream geoscience and Diné geoscience (tsé na'alkaah) alike, as well as on other forms of local place knowledge such as Diné toponymy and history. Participants used concepts such as the dynamic interactions of Earth (Nahasdzaan) and Sky (Yádilhil) systems and the natural order (nitsahakees, nahat'a, iina, siihasin) to interpret natural landscape features (e.g., desert landforms, Plateau stratigraphy, Laramide structures) as well as anthropogenic impacts (e.g., uranium extraction and its environmental and health effects) in the field. We will share specific examples of place-based, culturally integrated curriculum and assessment from this program.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Kopplin, M. R.; Yule, S.
2009-12-01
The GLOBE (Global learning and Observations to Benefit the Environment) program is among the most successful long-term citizen scientist programs engaging K-12 students, in-service and pre-service teachers, as well as community members in different areas of geoscience investigations: atmosphere/weather, land cover biology, soils, hydrology, and vegetation phenology. What sustains this multi-nation project is the interest and collaboration among scientists, educators, students and the GLOBE Partnerships that are mostly self-supporting and function in the United States and in a hundred other countries. The GLOBE Program Office in the United States continues to offer, an overall coordinating and leadership function, a website, an infrastructure, management and support for web data entry and access, as well as visualizations, and a much used help desk. In Alaska, GLOBE research and activities are maintained through professional development workshops for educators, continued year-long support for teachers and their students (classroom visits, email, mail and newsletters) including program assessments, funded through federal grants to the University of Alaska Fairbanks. The current earth system science Seasons and Biomes project uses GLOBE protocols as well as newly developed ones to fit the needs of the locale, such as ice freeze-up and break-up seasonality protocols for rivers and lakes in tundra, taiga and other northern biomes, and mosquito phenology protocols for tropical and sub-tropical moist broadleaf forests and other biomes in Asia and Africa, invasive plant species for Africa, and modified plant phenology protocols for temperate deciduous forests in Australia. Students contribute data and use archived data as needed when they conduct geoscience research individually, in small groups or as a class and/or collaboratively with others in schools in other parts of the country and the world.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
General Public Space Travel and Tourism. Volume 2; Workshop Proceedings
NASA Technical Reports Server (NTRS)
ONeil, D. (Compiler); Mankins, J. (Editor); Bekey, I. (Editor); Rogers, T. (Editor); Stallmer, E. (Editor); Piland, W. (Editor)
1999-01-01
The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.
Proceedings of the Workshop on Microtechnologies and Applications to Space Systems
NASA Technical Reports Server (NTRS)
Wilson, B. A. (Editor)
1993-01-01
This volume serves as the Proceedings of this workshop. It contains the manuscripts provided by plenary and parallel session presenters, and summary reports generated from this material and from information presented during the panel discussions. Where manuscripts were not provided, extended abstracts, if available, have been included. The order of the papers follows the original workshop agenda.
Workshop on Hemispheres Apart: The Origin and Modification of the Martian Crustal Dichotomy
NASA Technical Reports Server (NTRS)
2004-01-01
This volume contains abstracts that have been accepted for presentation at the Workshop on Hemispheres Apart: The Origin and Modification of the Martian Crustal Dichotomy, September 30-October 1, 2004, Houston, Texas.
Workshop on Thermal Emission Spectroscopy and Analysis of Dust, Disk, and Regoliths
NASA Technical Reports Server (NTRS)
Sprague, Ann L. (Editor); Lynch, David K. (Editor); Sitko, Michael (Editor)
1999-01-01
This volume contains abstracts that have been accepted for presentation at the workshop on Thermal Emission Spectroscopy and analysis of Dust, Disks and Regoliths, held April 28-30, 1999, in Houston Texas.
Cybernetics and Workshop Design.
ERIC Educational Resources Information Center
Eckstein, Daniel G.
1979-01-01
Cybernetic sessions allow for the investigation of several variables concurrently, resulting in a large volume of input compacted into a concise time frame. Three session questions are reproduced to illustrate the variety of ideas generated relative to workshop design. (Author)
Space Transportation Materials and Structures Technology Workshop. Volume 2; Proceedings
NASA Technical Reports Server (NTRS)
Cazier, Frank W., Jr. (Compiler); Gardner, James E. (Compiler)
1993-01-01
The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems.
A Win-Win-Win Proposition -- Academia and Industry Working Together for Students
NASA Astrophysics Data System (ADS)
Cogswell, J.
2011-12-01
Both Academia and Industry have a vested interest in building a pipeline of students who are attracted to geoscience as a discipline; who invest in a solid academic geoscience foundation and who move on to fulfilling professional careers. Global society needs geoscientists to find the energy that drives our economic well-being, responsibly and safely; and to solve today's complex environmental concerns. The US Oil and Gas Industry directly employed around 17,300 geologists in 2008(1). As with the rest of the geoscience community, our industry is dealing with a bi-modal age distribution in our workforce, with many eligible to retire in the next five years. Academia and Industry have an urgent, collective, challenge to attract the best and brightest students to study geoscience and to bring promising graduates onboard and up to speed as quickly as possible ExxonMobil accomplishes this rapid acclimation to our industry by focusing on high quality on-boarding, mentoring, and training, as well as diversity in early career assignments. We have implemented a one week on-boarding workshop for our new hires that provides them with comprehensive industry as well as Corporate cultural and infrastructure information. We ensure that our new hires have dedicated mentors who are passionate about petroleum geology, passionate about the petroleum business, and passionate about teaching the next generation of "oil finders." Our new hires attend several "flagship" schools in their first 5 years, which are designed to provide the technical expertise needed in today's petroleum business. Finally, our global operations allow us to provide a rich diversity of early assignments, which enables our early career geoscientists to develop an appreciation of the breadth of our business. There is no sub-discipline of geoscience that is more or less successful transitioning into our business from Academia. The key, which we rely on Academia to provide, is a strong grounding in the fundamentals of geoscience, to include having applied real problem solving via a robust field camp experience. In addition, we look for the maturity and ability to conduct independent research, to integrate broad suites of data, and to work as a team. We look for the ability to communicate results. We do not look for a focus on petroleum. We have many decades of experience in how to best develop that particular discipline quickly, to meet current and future business conditions. There are recurring themes that facilitate successful transition from Academia to a practicing industry geoscientist. These themes include giving students a good grounding in STEM, not just geology; one-on-one mentoring; sharing our passion for the science by sharing our research; and sharing the entire breadth of career opportunities. Similar best practices have been identified to encourage under-represented minority students and women to study STEM. Perhaps this is a suite of habits we should be practicing more broadly. This suite of habits takes extra time, extra effort, and extra money. But if geoscience mentors in Academia, Industry, and professional societies work together, we will be able to create a win for Academia, a win for Industry, and a win for students. (1) Gonzales and Keane, 2011, "Status of the Geoscience Workforce -- 2011," AGI, p. 123.
G.I.F.K. project: Geosciences Information For Kids
NASA Astrophysics Data System (ADS)
Merlini, Anna Elisabetta; Grieco, Giovanni; Evardi, Mara; Oneta, Cristina; Invernizzi, Nicoletta; Aiello, Caterina
2016-04-01
Our GIFK program was born after the GIFT experience in 2015 when "The Geco" association attended the workshop focused on mineral resources topics. With an extremely clear vision of the fragility of our planet in relation to our "exploiting" society, we felt the need to find a new way to expose young generations to geoscience topics. With this awareness, a new scientific path for young students, named GIFK -Geosciences Information for Kids- has been created. Thanks to this program, young generations of students are involved in geoscience topics in order to bring up a more eco-aware generation in the future. Particularly, in Italy, we do need new didactic tools to bring kids into science. As part of the classic science program, often teachers do not have time to discuss about the current facts related to our planet and often students do not receive any type of "contact" with the daily scientific events from the school. This program is aimed to introduce small kids, from kindergarten to primary school, to Earth related issues. The key for the educational success is to give children the possibility to get involved in recent scientific information and to plunge into science topics. The connection with up to date scientific research or even just scientific news allows us to use media as a reinforcing tool, and provides a strong link to everyday life. In particular, the first project developed within the GIFK program deals with the amazing recent Sentinel missions performed by ESA (European Space Agency), related to the observation of the Earth from space. The main aim of this project is to discuss about environmental and exploitation problems that the Earth is facing, using satellite images in order to observe direct changes to the Earth surface overtime. Pupils are led to notice and understand how close the relation between daily life and planet Earth is and how important our behavior is even in small acts. Observing the Earth from space and in the Solar System context will give the students the awareness of how the life-balance of our planet is in serious danger now.
2003-11-01
standardizing within subject. So these initial data , at least, support the conceptualization of expertise being associated with decreased variance...correlated .96, and the cadet scores computed using those two standards correlated 1.00. Similar results were found by analyzing the data for the...Intelligence Workshop Volume 2, Part 2: Related Constructs 6 Justification of Aggressive Behavior With this cognitive mindset, prosocial individuals
Monuments and Memorials: Geoscience and the Historic Record
NASA Astrophysics Data System (ADS)
Williams, E.; Smith, B. L.
2009-05-01
Many communities have a cemetery, war memorial, public sculpture or old historic buildings that are an important part of the historic record of that community. Such monuments celebrate achievements, commemorate people who died serving their country, or a prominent former member of the local community. Monuments and memorials can trace the histiry of settlement within a community. After a number of years researching cemeteries and memorials, primarily in western Canada my research partner, a historian, and I, a geoscience educator,have documented many monuments and memorials that are succumbing to basic weathering processes. Original design choices can be dictated by cost, material availability, access to transportation and emotions. Climate, type of material, construction methods, technology used and long-term maintenance can all have significant impacts on the sustainability of that material record. Over the last five years we have given many lectures and workshops on the nature of cemeteries to family historians, historical societies and classroom educators. These workshops and lectures focus on developing a better ommunity understanding of the fragility of the record. Field trips by students of all ages can contextualize both geology and history. Seeing local monumanets can facilitate the development of a sense of time and place as well as an appreciation of the environmental impacts and the longevity of the record. For the earth science student documentation of the installation enable comparisons of weathering rates of different materials, the effects of local climate or impacts of pollution. Being able to go to a local memorial or cemetery to compare diffrent structures brings a powerful local context to the learning. However we both have concerns that modern techniques that enable the creation of more elaborate memorials are actually setting the stage for more rapid deterioration. I will illustrate a cross section of our reseacrh and the impact it has had on awareness in our local community.
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
NASA Technical Reports Server (NTRS)
LaGraff John E. (Editor); Ashpis, David E. (Editor)
1998-01-01
The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.
Basic Energy Sciences FY 2011 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2012 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2014 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Geology Is. Preliminary Edition. Volumes I and II, Including Activity Sheets.
ERIC Educational Resources Information Center
O'Fallon Township High School District #203, IL.
Presented in this document is a full-year, two-semester course in geology for high school students. Composed of 5 units and 20 chapters, the course emphasizes the practical aspects of geology with special attention to the relationship between geoscience processes and the environment and to the application of scientific and technical expertise to…
ERIC Educational Resources Information Center
Hole, F. Marvin
This report contains a twenty-one page narrative of a project which provided inservice education to health occupations teachers in Central Pennsylvania through four summer workshops as well as the workshop materials. The narrative describes the workshops, which focused on dental assisting activities for health assistant teachers, improvement of…
First Annual High-Speed Research Workshop, part 2
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
This workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The workshop was organized into 13 sessions. This volume is part 2 of 4 and covers 4 of the 13 sessions: (1) source noise; (2) sonic boom (aerodynamic performance); (3) propulsion systems studies; and (4) emission reduction.
Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W. (Editor); Papike, James J. (Editor)
1996-01-01
This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas.
ECOTOXICOLOGY AND RISK ASSESSMENT FOR WETLANDS
This volume represents the proceedings of a workshop held from 30 July-3 August 1995 at Fairmont Hot Springs, Montana. The workshop was designed to meet the scientific and regulatory need for current information describing ecotoxicology and risk assessment for wetlands. Professio...
MSFC Skylab Orbital Workshop, volume 5
NASA Technical Reports Server (NTRS)
1974-01-01
The various programs involved in the development of the Skylab Orbital Workshop are discussed. The subjects considered include the following: (1) reliability program, (2) system safety program, (3) testing program, (4) engineering program management, (5) mission operations support, and (6) aerospace applications.
Integrated Design for Geoscience Education with Upward Bound Students
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.
2009-05-01
Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of the workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 2 consists of the technology discipline sections for the Data Management System and the Environmental Control and Life Support Systems. For each technology discipline, there is a Level 3 subsystem description, along with the invited papers.
Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
2003 highway-rail grade crossing safety research needs workshop. Volume 2 : appendices
DOT National Transportation Integrated Search
2009-01-01
The purposes of the workshop were to provide up-to-date information and research reports from selected organizations, analyze a number of safety research topics by a selected group of delegates from all areas of technology and government organization...
ERIC Educational Resources Information Center
Klugman, Edgar, Ed.
In 1992, the U.S.-Israel Binational Science Foundation (BSF), in conjunction with Wheelock College (Boston), sponsored its second workshop on children's play, entitled "Play and Cognitive Ability: The Cultural Context." This volume reflects the presentations and discussions held at the workshop, offering perspectives on children's play…
From Planet Earth to Society: a new dynamics in Portugal about Geosciences Education and Outreach
NASA Astrophysics Data System (ADS)
Silva, Elizabeth; Abreu Sá, Artur; José Roxo, Maria
2013-04-01
Since the United Nations General Assembly declared the year 2008 as the International Year of Planet Earth (IYPE), during the triennium 2007-2009, under the motto Earth Sciences for Society, many impacts and changes were generated among the Portuguese society. Today is possible to say that those were due to the work of the Portuguese National Committee for the IYPE. After 2009, the Portuguese National Commission for UNESCO created the Portuguese National Committee for the International Programme of Geosciences (IGCP) with the main goal to continue the work done during the IYPE. Among those activities, a Workshop entitled "InFormation in Context" was organized by the UNESCO NatCom - Portugal, in collaboration with the IGCP National Committee and the National Public Television (RTP). This activity was created to reach specially journalists, aiming to give them more information in context, related to Earth matters, mainly related to natural hazards and Climate Change. It is essential that society knows its degree of vulnerability to the occurrence of extreme natural phenomena, which are the basis of natural catastrophes, with serious social and economic consequences. Thus, it is crucial the development of a culture of prevention and precaution, which hinges on a correct information, based in scientific knowledge on causes and consequences of extreme natural phenomena. At the same time, it is necessary the implementation of mitigation and adaptation measures, based on the analysis and cartography of risks, and in an effective monitoring process. During these workshops particular emphasis was given to the need to inform and educate the society in general, and students in particular, to the reality of living in a dynamic planet. Particular importance was given to natural hazards, such as those resulting from earthquakes landslides, floods, droughts, heat and cold waves and storms, which are those with the greatest potential danger in Portugal. An informed society is a society which, based on its intrinsic resilience, can live and deal with the inherent risk of occurring natural disasters. Because education about our dynamic planet is a key process to contribute for the awareness of our society, the Portuguese National Committee for IGCP is developing a new Educational Program, to be implemented nationwide in the 2013/14 scholar year, named "GEA - Mother Earth". This will allow the publishing of an Annual Report with the main results obtained with the work carried out by teachers and students. Simultaneously, the narrow cooperation with the Portuguese National Forum of Geoparks allows the National Committee for IGCP to develop other strategies and initiatives about education and outreach in Geosciences. In this sense, the colloquium "Geoparks: a reality of sustainable development" carried out within the framework of the Portuguese Geoparks Exhibition, that was held during an entire week, in the Portuguese Parliament, was a great step forward in order to raise the importance of these issues for decision makers. This new reality shows that a new socio-political reality about the importance of the Geosciences and the role of Geoscientists is now in progress in Portugal.
NASA Astrophysics Data System (ADS)
Batchelor, R.; Haacker-Santos, R.; Pandya, R. E.
2012-12-01
To help young scientists succeed in our field we should not only model scientific methods and inquiry, but also train them in the art of scientific writing - after all, poorly written proposals, reports or journal articles can be a show stopper for any researcher. Research internships are an effective place to provide such training, because they offer a unique opportunity to integrate writing with the process of conducting original research. This presentation will describe how scientific communication is integrated into the SOARS program. Significant Opportunities in Atmospheric Research and Science (SOARS) is an undergraduate-to graduate bridge program that broadens participation in the geosciences. SOARS aims to foster the next generation of leaders in the atmospheric and related sciences by helping students develop investigative expertise complemented by leadership and communication skills. Each summer, interns (called protégés) attend a weekly seminar designed to help them learn scientific writing and communication skills. The workshop is organized around the sections of a scientific paper. Workshop topics include reading and citing scientific literature, writing an introduction, preparing a compelling abstract, discussing results, designing effective figures, and writing illuminating conclusions. In addition, protégés develop the skills required to communicate their research to both scientists and non-scientists through the use of posters, presentations and informal 'elevator' speeches. Writing and communication mentors guide protégés in applying the ideas from the workshop to the protégés' required summer scientific paper, poster and presentation, while a strong peer-review component of the program gives the protégés a taste of analyzing, critiquing and collaborating within a scientific forum. This presentation will provide practical tips and lessons learned from over ten years of scientific communications workshops within the SOARS program, including workshop structure, curriculum development, textbooks, reading materials and online resources, peer review and specialty seminars.
Exploring Student-to-Workforce Transitions with the National Geoscience Exit Survey
NASA Astrophysics Data System (ADS)
Gonzales, L. M.; Keane, C. M.; Houlton, H. R.
2011-12-01
In 2011, the American Geological Institute (AGI) launched the first pilot of a National Geoscience Exit Survey in collaboration with 32 geoscience university departments. The survey collects data about demographics, high school and community college coursework, university degrees, financial aid, field and research experiences, internships, and when and why the student chose to pursue a geosciences degree. Additionally, the survey collects information about students' future academic and career plans, and gives participants the option to take part in a longitudinal survey to track long-term career trajectories of geosciences graduates. The survey also provides geoscience departments with the ability to add customized questions to collect data about important departmental-level topics. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year. We use the results of the National Geoscience Exit Survey to examine student preparation and transition into geosciences and non-geoscience careers. Preliminary results from the pilot survey indicated future academic and career trajectories for geoscience Bachelor's degree recipients included graduate school (53%) and pursuit of a geoscience career (45%), with some undergraduates keeping their options open for either trajectory. Twelve percent of Bachelor's degree recipients already accepted job offers with geoscience employers. For geoscience Master's degree recipients, 17% planned to continue in graduate school, 35% were seeking a geoscience job, and 42% had already accepted job offers with geoscience employers. Furthermore, the majority of those geoscience graduates who already accepted geoscience job offers had also interned previously with the employer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
Point Focusing Thermal and Electric Applications Project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Landis, K. E. (Editor)
1979-01-01
Background and objectives used for the Workshop for Potential Military and Civil Users for Small Solar Thermal Electric Power Technologies are discussed. A summary of the results and conclusions developed at the workshop regarding small solar thermal electric power technologies is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsipher, A.
This Proceedings volume includes papers prepared for an international workshop on lease abandonment and offshore platform disposal. The workshop was held April 15, 16, and 17, 1996, in New Orleans, Louisiana. Included in the volume are several plenary speeches and issue papers. prepared by six working groups, who discussed: Abandoning Wells; Abandoning Pipelines; Removing Facilities; Site Clearance; Habitat Management, Maintenance, and Planning; and Regulation and Policy. Also included are an introduction, an afterword (reprinted with the permission of its author, John Lohrenz), and, as Appendix C, the complete report of the National Research Council Marine Boards An Assessment of Techniquesmore » for Removing Fixed Offshore Structures, around which much of the discussion at the workshop was organized. Short biographies of many speakers, organizers, and chairpersons are included as Appendix A. Appendix B is a list of conference participants. Selected papers have been processes separately for inclusion in the Energy Science and Technology database.« less
High-Speed Research: Sonic Boom, Volume 1
NASA Technical Reports Server (NTRS)
Edwards, Thomas A. (Editor)
1994-01-01
The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.
1987-02-01
Vehicle Second 1. Proc. IEEE , Workshop on Motion: Representation and Quarterly Report ," Martin Marietta , Denver, Colorado Analysis, Kiwah Island Resort...Grenmbani Mitch Nathan, John D. Bradstreet; Martin Marietta Denver Aerospace ............ 127 "Vision and Navigation for the Carnegie Mellon Navlab...pp. 409-414. To support both reasoning and feature extraction at real time speeds, we require specialized hardware. The [4] Martin Marietta Denver
Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.
1992-01-01
The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.
ERIC Educational Resources Information Center
Enwonwu, Cyril O., Ed.
During this 3-day workshop with 138 registered participants, invited medical experts deliberated extensively on the physiological regulation of blood pressure, the unique biological characteristics and dietary patterns of Blacks and other minorities, the prevalence of hypertension in U.S. Blacks and Native Americans, the roles of specific macro-…
ERIC Educational Resources Information Center
Carter, G. C., Ed.
This document is a special National Bureau of Standards publication on a Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics. The purposes of the Workshop were: (1) to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics and semiconductors; (2) to determine the…
DOT/FAA Human Factors Workshop on AVIATION. Transcript. Volume I.
1980-11-01
workshop and then will be published in their entirety. F S’ I-N-D-E-X AGENDA PAGE OPENING REMARKS James P . Andersen, Workshop Moderator Director of Air...and Marine Systems Transportation Systems Center Dr. James Costantino, Director Transportation Systems Center Langhorne Bond, Administrator Federal...conference, and it’s now my pleasure to introduce to you the Administrator of the Federal Aviation Administration, Langhorne Bond. MR. BOND: Thank you
NASA Astrophysics Data System (ADS)
McNeal, K.; Clary, R. M.; Sherman-Morris, K.; Kirkland, B.; Gillham, D.; Moe-Hoffman, A.
2009-12-01
The Department of Geosciences at Mississippi State University offers both a MS in Geosciences and a PhD in Earth and Atmospheric Sciences, with the possibility of a concentration in geoscience education. The department offers broad research opportunities in the geoscience sub-disciplines of Geology, Meteorology, GIS, and Geography. Geoscience education research is one of the research themes emphasized in the department and focuses on geoscience learning in traditional, online, field-based, and informal educational environments. Approximately 20% of the faculty are actively conducting research in geoscience education and incorporate both qualitative and quantitative research approaches in areas including: the investigation of effective teaching strategies, the implementation and evaluation of geoscience teacher professional development programs and diversity enhancement programs, the study of the history and philosophy of science in geoscience teaching, the exploration of student cognition and understanding of complex and dynamic earth systems, and the investigation of using visualizations to enhance learning in the geosciences. The inception and continued support of an active geoscience education research program is derived from a variety of factors including: (1) the development of the on-line Teachers in Geosciences (TIG) Masters Degree Program which is the primary teaching appointment for the majority of the faculty conducting geoscience education research, (2) the securing of federal funds to support geoscience education research, (3) the publication of high-quality peer-reviewed research papers in both geoscience education and traditional research domains, (4) the active contribution of the geoscience education faculty in their traditional research domains, (5) a faculty that greatly values teaching and recognizes the research area of geoscience education as a sub-domain of the broader geoscience disciplines, (6) the involvement of university faculty, outside of these primary faculty leaders, in geoscience education research-related projects where the expertise the geoscience education faculty offers is a catalyst for collaboration, (7) departmental support including research space, teaching loads, and start-up funds that are in-line with the remainder of the department faculty. Results of the program have included securing funding from multiple agencies (e.g., NSF, NASA, DOE, MDE, NOAA, ARC), providing support to and involving graduate and undergraduate students in both geoscience education and traditional research projects, disseminating project results in peer-reviewed journals, technical reports, and international/national conferences, and developing courses for the concentration in geoscience education.
PREFACE: Soil Change Matters 2014
NASA Astrophysics Data System (ADS)
2015-07-01
The opinions expressed and arguments employed in this publication are the sole responsibility of the authors and do not necessarily reflect those of the OECD or of the governments of its Member countries. The Workshop was sponsored by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems, whose financial support made it possible for eight of the invited speakers to participate in the Workshop. We would like to thank the Organising Committee, the Scientific Committee and the financial support from the conference sponsors and funding from the Government of Victoria that allowed the success of the Soil Change Matters Workshop. Organising Committee (Department of Economic Development, Jobs, Transport and Resources unless otherwise noted): • Richard MacEwan (Convenor) • Jennifer Alexander • Helaina Black (James Hutton Institute, UK) • Doug Crawford • Phil Dyson (North Central CMA) • Jane Fisher • Gemma Heemskerk • Jonathan Hopley • Pauline Mele • Rebecca Mitchell • David Rees • Dugal Wallace • Dale Webster Scientific Committee (Department of Economic Development, Jobs, Transport and Resources unless otherwise noted): • Mr Richard MacEwan • Dr Dominique Arrouays (National Institute of Agronomic Research, France) • Helaina Black (James Hutton Institute, UK) • Mr Doug Crawford • Dr Ben Marchant (Geoscience, UK) • Dr Pauline Mele • Dr Budiman Minasny (University of Sydney, NSW) • Professor Dan Richter (Duke University, USA) • Mr Nathan Robinson Thanks are given to the authors and to the anonymous referees for the papers included here.
Basic Science for a Secure Energy Future
NASA Astrophysics Data System (ADS)
Horton, Linda
2010-03-01
Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.
High-Speed Research: Sonic Boom, volume 1
NASA Technical Reports Server (NTRS)
Darden, Christine M. (Compiler)
1992-01-01
A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
DOT National Transportation Integrated Search
2010-01-01
On July 14-16, 2009 the John A. Volpe National Transportation Center hosted the United States Department of Transportation (USDOT) Federal Railroad Administration's (FRA) Third Research Needs Workshop on Highway-Rail Grade Crossing Safety and Trespas...
Rick Bonney; David N. Pashley; Robert J. Cooper; Larry Niles
2000-01-01
This volume represents a compilation of papers presented at the 3rd International Partners in Flight Workshop held October 1-5, 1995, at the Grand Hotel in Cape May, NJ. The title of the workshop was "Partners in Flight Conservation Plan: Building Consensus for Action." Manuscripts have been available on-line at the Cornell Laboratory of Ornithology web site...
Defining the Geoscience Community through a Quantitative Perspective
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.
2015-12-01
The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.
Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.
2013-12-01
The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6 - 12 student and teacher participants and undergraduates. (This program is supported by NSF OEDG grant #1108281.)
NASA Technical Reports Server (NTRS)
1985-01-01
An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.
CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts
Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.
2011-01-01
A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.
NASA Astrophysics Data System (ADS)
Ruddell, B. L.; Merwade, V.
2010-12-01
Hydrology and geoscience education at the undergraduate and graduate levels may benefit greatly from a structured approach to pedagogy that utilizes modeling, authentic data, and simulation exercises to engage students in practice-like activities. Extensive evidence in the educational literature suggests that students retain more of their instruction, and attain higher levels of mastery over content, when interactive and practice-like activities are used to contextualize traditional lecture-based and theory-based instruction. However, it is also important that these activities carefully link the use of data and modeling to abstract theory, to promote transfer of knowledge to other contexts. While this type of data-based activity has been practiced in the hydrology classroom for decades, the hydrology community still lacks a set of standards and a mechanism for community-based development, publication, and review of this type of curriculum material. A community-based initiative is underway to develop a set curriculum materials to teach hydrology in the engineering and geoscience university classroom using outcomes-based, pedagogically rigorous modules that use authentic data and modeling experiences to complement traditional lecture-based instruction. A preliminary design for a community cyberinfrastructure for shared module development and publication, and for module topics and outcomes and ametadata and module interoperability standards, will be presented, along with the results of a series of community surveys and workshops informing this design.
Global Geoscience Initiatives From Windows to the Universe
NASA Astrophysics Data System (ADS)
Russell, R. M.; Johnson, R.; Gardiner, L.; Lagrave, M.; Genyuk, J.; Bergman, J.; Foster, S. Q.
2006-12-01
The Windows to the Universe (www.windows.ucar.edu) Earth and space science educational program and web site has an extensive international presence. The web site reaches a vast user audience, having served more than 124 million page views across approximately 14 million user sessions in the past year. About 44% of these user sessions originated from domains outside of the United States. The site, which contains roughly 7,000 pages originally offered in English, is being translated into Spanish. This effort, begun in 2003, is now approximately 80% complete. Availability in a second major language has dramatically increased use of the site both in the U.S.A. and abroad; about 29% (4.1 million) of the annual user sessions visit Spanish-language portions of the site. In September 2005 we began distributing a monthly electronic newsletter for teachers that highlights features on the web site as well as other geoscience programs and events of relevance to educators. We currently have more than 4,400 subscribers, 33.6% of whom are outside of the United States. We are actively seeking news and information about other programs of relevance to this audience to distribute via our newsletter. We have also begun to solicit information (tips, anecdotes, lesson plans, etc.) from geoscience teachers around the world to share via this newsletter. Finally, Windows to the Universe participated in the Education and Outreach efforts of the MILAGRO scientific field campaign in Mexico in March of 2006. MILAGRO was a collaborative, multi-agency, international campaign to conduct a coordinated study of the extent and effects of pollutants emitted by a "mega-city" (in this case Mexico City) in order to understand the impacts of vast urban environments on global climate modeling. We enlisted several scientists involved with MILAGRO to write "Postcards from the Field" about their ongoing research during the project; these electronic "postcards" were distributed, in English and Spanish, via the Windows to the Universe web site. Serendipitously, while training scientists in the field in Veracruz, Mexico, to develop these electronic "postcards", we had the opportunity to conduct a teacher training workshop for 60 teachers from the Veracruz area. Several of these teachers will be attending a bilingual (English and Spanish) professional development workshop, along with teachers from Colorado, that we are conducting in Boulder, Colorado, this fall. In this session we will describe our approaches to international Education and Outreach efforts. We will describe techniques that we think work well, challenges to successful multi-cultural education efforts, and pitfalls that we've learned to avoid or to work around. We will also describe opportunities for other programs to take advantage of our large, global audience and to participate in our international outreach efforts, primarily via announcements in our electronic newsletter.
Integrating Native knowledge and community perspectives in geoscience research and education
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Stephens, S.; Schneider, W.
2010-12-01
Multiple perspectives are being incorporated in geoscience research and education exemplified by ongoing projects at the University of Alaska Fairbanks. This presentation will highlight two such projects. In the Seasons and Biomes project, that monitors seasons through global learning communities, in an effort to increase K-12 student understanding of Earth as a system and the environmental changes occurring in their local environment, students are accessing different knowledge systems in their studies. During professional development workshops for K-12 teachers, Alaska Native elders and community experts have been invited to be part of the scientist-educator team to help teachers engage their students in geoscience studies. Teachers learn and practice scientific measurement protocols in investigations such as atmosphere/weather, phenology and hydrology, learn about increasing their observation skills and systems thinking and how to engage and guide their students in environmental investigations. Native elders have been involved in classroom projects to help students understand what changes have occurred and currently occurring in their villages. They have also been involved in projects where small groups of students have conducted investigations under their guidance and the teachers’/scientists’ guidance. A student group from Shageluk, Alaska, successfully completed their study on effects of environmental changes and fire, and was invited and funded along with their Native mentor, to present their findings at an international student conference. In the Stakeholders and Climate Change project, fieldwork, meetings and numerous interviews have been conducted with Tanana, Ft. Yukon, and Chalkyitsik elders and middle-aged travelers and subsistence users. These video-taped interviews have been transcribed, digitized and processed into a draft Alaska Stakeholders and Climate Change/Project Jukebox website using Drupal CMA to create and maintain dynamic content and XSLT to create synchronized transcription. Interviews also have been analyzed and sorted according to 6 emerging themes: weather, rivers and lakes, fire, permafrost, plants and animals, and seasonality. Additionally, an interview “sampler” has been produced in DVD format for sharing with communities. This past February, we conducted a Stakeholders and Climate Change Workshop that melded local and indigenous observations and scientific research. Residents of Fort Yukon, Chalkyitsik and Tanana, Alaska and IARC and other UAF scientists met for two days to discuss changes in weather, climate, seasonality and the effects on landscape, subsistence resources and activities. Participating scientists were stimulated by the questions and observations of local residents and are interested in how their knowledge and future investigations might align more directly with local concerns. Local residents were appreciative of attention to their climate change concerns and are particularly interested in how their observations link to scientific explanations and to climate change forecasts for their specific location and getting climate change information out to communities and schools.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
2002-04-01
Strategic Leadership 650 Wright Avenue Carlisle, PA 170l3-5049 OFFICIAL BUSINESS DEPARTMENT OF STATE STRATEGIC PLANNING WORKSHOP II U.S. ARMY WAR COLLEGE CSL 4 ...April 2002 Issues Paper 01-02 Department of State Strategic Planning Workshop II By Colonel Jeffrey C. Reynolds A State Department request, made...at the senior level, asked the Army Chief of Staff if the Army could help State improve its capacity to undertake strategic planning. In April
Interactive planning workshop. Volume 2. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
The Division of Fossil Fuel Utilization has sponsored a series of interactive planning workshops designed to involve private citizens and representatives in industry, the academic community, public interest groups, and state and local governments in the division's planning process. The findings of the Mt. Hood Interactive Planning Workshop are presented in this summary. This conclave was held at Timberline Lodge on October 15-17, 1978, and was hosted by the Mt. Hood Community College of Gresham, Oregon. Participants examined the division's program goals, planning process, and project appraisal methodology.
NASA Technical Reports Server (NTRS)
1974-01-01
The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.
Educational Methods for Deaf-Blind and Severely Handicapped Students, Volume I.
ERIC Educational Resources Information Center
Peak, Orel; And Others
The 17 papers were originally presented at a 1977 series of workshops for personnel serving the deaf-blind and severely handicapped and are organized into the following workshop topics: programing and program development, the senses, cognition, communication, and behavior managment. The papers have the following titles and authors: "Education for…
DOT National Transportation Integrated Search
1999-01-01
The World Bank in partnership with United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) sponsored the Regional Technical Workshop on Transport and Transit Facilitation under the Initiative. Participants included public and p...
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.
This research summary presents discussions from two regional workshops held in Indonesia and Pakistan in 1989 and 1991, respectively. The focus of the workshops was to formulate prototype instructional materials of population education core messages for primary education, literacy and continuing education programs in the Asia Pacific Programme of…
DOT National Transportation Integrated Search
1980-03-01
This report presents the findings of a workshop on the chemical analysis of human body fluids for drugs of interest in highway safety. A cross-disciplinary panel of experts reviewed the list of drugs of interest developed in a previous workshop and d...
Workshop on Europa's Icy Shell: Past, Present, and Future
NASA Technical Reports Server (NTRS)
2004-01-01
This volume contains abstracts that have been accepted for presentation at the workshop on Europa's Icy Shell: Past, Present, and Future, February 6-8,2004, Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.
NASA Technical Reports Server (NTRS)
1988-01-01
The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.
Mars 2005 Sample Return Workshop
NASA Technical Reports Server (NTRS)
Gulick, V. C. (Editor)
1997-01-01
Convened at the request of Dr. Jurgen Rahe of the NASA Office of Space Science, the purpose of this workshop was to reexamine the science issues that will determine how an optimum sample return mission would be carried out in 2005 given the new context that has emerged for Mars exploration since the last such workshop was held (in 1987). The results and summary of discussion that took place at the meeting are contained in this volume. The community was invited to participate in the preparation of the final written report by browsing through the agenda and reading the text and viewgraphs provided by workshop participants and submitting comments for that section.
Technology for Space Station Evolution. Executive summary and overview
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the technology discipline presentations. The Executive Summary and Overview contains an executive summary for the workshop, the technology discipline summary packages, and the keynote address. The executive summary provides a synopsis of the events and results of the workshop and the technology discipline summary packages.
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Bohls-Graham, E.; Riggs, E. M.; Serpa, L. F.; Jacobs, B. E.; Martinez, A. O.; Fox, S.; Kent, M.; Stocks, E.; Pennington, D. D.
2014-12-01
The NSF-sponsored DIG Texas Instructional Blueprint project supports the development of online instructional blueprints for a yearlong high school-level Earth science course. Each blueprint stitches together three-week units that contain curated educational resources aligned with the Texas state standards for Earth and Space Science and the Earth Science Literacy Principles. Units focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of geoscientists, pedagogy specialists, and practicing science teachers chose unit themes and resources for twenty-two units during three workshops. In summer 2014 three Education Interns (Earth science teachers) spent six weeks refining the content of the units and aligning them with the Next Generation Science Standards. They also assembled units into example blueprints. The cross-disciplinary collaboration among blueprint team members allowed them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members and Education Interns learned where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool developed by the Science Education Resource Center (SERC). SERC is the repository for the DIG Texas blueprint web pages. Work is underway to develop automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing units from other blueprints, or creating new units and blueprints. These innovations will enhance the use of the units by secondary Earth science educators beyond Texas. This presentation provides an overview of the project, shows examples of blueprints and units, reports on the preliminary results of classroom implementation by Earth science teachers, and considers challenges encountered in developing and testing the blueprints. The project is a collaboration between The University of Texas at Austin, The University of Texas at El Paso, and Texas A&M University, all of which participate in the DIG Texas alliance. Website:serc.carleton.edu/dig_blueprints/index.html
EarthCubed: Community Convergence and Communication
NASA Astrophysics Data System (ADS)
Ryan, J. C.; Black, R.; Davis, R.; Dick, C.; Lee, T.; Allison, M. L.
2015-12-01
What drives engagement across a diverse community with the common goal of creating a robust cyberinfrastructure for the geosciences? Which applications, social media venues and outreach mechanisms solicit the most valuable feedback? Of the dizzying toolkit available for community-building, which tools should receive time, attention and dedication? Finally, how does it all relate to better geoscience research? Research projects in the geosciences are rapidly becoming more interdisciplinary, requiring use of broader data-sets and a multitude of data-types in an effort to explain questions important to both the scientific community and the general public. Effective use of the data and tools available requires excellent community communication and engagement across disciplines, as well as a manner to easily obtain and access those data and tools. For over two years, the EarthCube project has sought to create the most active and engaged community possible, bringing together experts from all across the NSF GEO directorate and its many-faceted disciplines. Initial efforts focused on collecting insight and opinions at in-person "end-user workshops," and informal organization of interest groups and teams. Today, efforts feature an organizational structure with dedicated internal communication and outreach groups. The EarthCube Office has been largely responsible for coordination of these groups and the social media and Internet presence of the project to date, through the creation and curation of the EarthCube.org website, social media channels, live-streaming of meetings, and newsletters. Measures of the effectiveness of these efforts will be presented, to serve as potential reference and guidance for other projects seeking to grow their own communities. In addition, we will discuss how the Office's role in outreach and engagement has changed over the past year with the creation of the Engagement and Liaison Teams, and what it signifies for the Office's role in EarthCube's future.
Reducing data friction through site-based data curation
NASA Astrophysics Data System (ADS)
Thomer, A.; Palmer, C. L.
2017-12-01
Much of geoscience research takes place at "scientifically significant sites": localities which have attracted a critical mass of scientific interest, and thereby merit protection by government bodies, as well as the preservation of specimen and data collections and the development of site-specific permitting requirements for access to the site and its associated collections. However, many data standards and knowledge organization schemas do not adequately describe key characteristics of the sites, despite their centrality to research projects. Through work conducted as part of the IMLS-funded Site-Based Data Curation (SBDC) project, we developed a Minimum Information Framework (MIF) for site-based science, in which "information about a site's structure" is considered a core class of information. Here we present our empirically-derived information framework, as well as the methods used to create it. We believe these approaches will lead to the development of more effective data repositories and tools, and thereby will reduce "data friction" in interdisciplinary, yet site-based, geoscience workflows. The Minimum Information Framework for Site-based Research was developed through work at two scientifically significant sites: the hot springs at Yellowstone National Park, which are key to geobiology research; and the La Brea Tar Pits, an important paleontology locality in Southern California. We employed diverse methods of participatory engagement, in which key stakeholders at our sites (e.g. curators, collections managers, researchers, permit officers) were consulted through workshops, focus groups, interviews, action research methods, and collaborative information modeling and systems analysis. These participatory approaches were highly effective in fostering on-going partnership among a diverse team of domain scientists, information scientists, and software developers. The MIF developed in this work may be viewed as a "proto-standard" that can inform future repository development and data standards. Further, the approaches used to develop the MIF represent an important step toward systematic methods of developing geoscience data standards. Finally, we argue that organizing data around aspects of a site makes data collections more accessible to a range of scientific communities.
NASA Astrophysics Data System (ADS)
Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.
2007-12-01
The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO (http://www.geomapapp.org/). Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.
Entering a New ERA: Education Resources and AGU
NASA Astrophysics Data System (ADS)
Karsten, J. L.; Johnson, R. M.
2001-12-01
Professional societies play a unique role in the on-going battle to improve public education in the Earth and space sciences. With guidance from its Committee on Education and Human Resources (CEHR), AGU has traditionally sponsored strong programs that provide mechanisms for linking its research membership with the formal/informal science education communities. Among the most successful of these are tutorials for K-12 teachers taught by AGU members during national meetings (e.g., GIFT - Geophysical Information For Teachers) and internships that allow teachers to experience geophysical science research first-hand (e.g., STaRS - Science Teacher and Research Scientist). AGU also co-sponsors major symposia to discuss and develop strategies for Earth science education reform (e.g., the NSF-sponsored Shaping the Future workshop) and provides an annual forum for the Heads and Chairs of undergraduate geoscience departments to discuss common problems and share solutions. In the fall of 2001, AGU expects to unveil a major new education and outreach website that will provide enhanced opportunities for communicating to students, teachers and the public about AGU members' research and new directions in geophysical science education. The most important contribution that AGU makes, however, is to validate and prominently endorse the education and outreach efforts of its members, both by sponsoring well-attended, education-related special sessions at AGU national meetings and by annually honoring individuals or groups with the Excellence in Geoscience Education award. Recent staff changes at AGU headquarters have brought new opportunities to expand upon these successful existing programs and move in other directions that capitalize on the strengths of the organization. Among new initiatives being considered are programs that partner education efforts with those being developed as part of several large research programs, curriculum modules that will promote teaching earth sciences-related materials within core physics, chemistry, and math curricula, and more sophisticated informal science education programs. Efforts to better coordinate AGU's education programs with those being developed by other professional geoscience organizations are also underway.
Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.
2013-12-01
As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs of researchers and organizations representing both established and emerging CI users; and (g) make best use of NSF's current investment in the geoscience CI. The presentation will focus on the challenges and methodology of EarthCube CI design, in particular on supporting social engagement and interaction between geoscientists and computer scientists as a core function of EarthCube architecture. This capability must include mechanisms to not only locate and integrate available geoscience resources, but also engage individuals and projects, research products and publications, and enable efficient communication across many EarthCube stakeholders leading to long-term institutional alignment and trusted collaborations.
NASA Astrophysics Data System (ADS)
Dalbotten, D. M.; Berthelote, A. R.
2014-12-01
The Geoscience Alliance is a national alliance of individuals committed to broadening participation of Native Americans in the geosciences. Native Americans in this case include American Indians, Alaska Natives and people of Native Hawai'ian ancestry. Although they make up a large percentage of the resource managers in the country, they are underrepresented in degrees in the geosciences. The Geoscience Alliance (GA) members are faculty and staff from tribal colleges, universities, and research centers; native elders and community members; industry, agency, and corporate representatives; students (K12, undergraduate, and graduate); formal and informal educators; and other interested individuals. The goals of the Geoscience Alliance are to 1) create new collaborations in support of geoscience education for Native American students, 2) establish a new research agenda aimed at closing gaps in our knowledge on barriers and best practices related to Native American participation in the geosciences, 3) increase participation by Native Americans in setting the national research agenda on issues in the geosciences, and particularly those that impact Native lands, 4) provide a forum to communicate educational opportunities for Native American students in the geosciences, and 5) to understand and respect indigenous traditional knowledge. In this presentation, we look at the disparity between numbers of Native Americans involved in careers related to the geosciences and those who are receiving bachelors or graduate degrees in the geosciences. We address barriers towards degree completion in the geosciences, and look at innovative programs that are addressing those barriers.
Energy and the environment - Application of geosciences to decision-making
Carter, Lorna M.H.
1995-01-01
This volume contains 67 extended abstracts that summarize some of the oral and poster presentations of the tenth annual V. E. McKelvey forum on mineral and energy resources, held in Washington, D.C., Feb. 13-17, 1995. The focus is on our energy resources and the environment, new research techniques, and cooperative efforts between the USGS and industry, State and Federal agencies, universities, and other countries.
NASA Lunar Dust Filtration and Separations Workshop Report
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Stocker, Dennis P.
2009-01-01
NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.
NASA Astrophysics Data System (ADS)
Sheik, C.; Giovannelli, D.; Cox, A. D.; Hummer, D. R.; Pratt, K.; Thomas, D.; Viveiros, M. F.
2016-12-01
Has a reviewer ever asked you, "Why didn't you measure x, y, and z for this manuscript"? After venting your frustration to anyone who'll listen, you start to think maybe they're right and the study would benefit from a few extra measurements. Modern science demands multidisciplinary projects, data integration, and a holistic understanding of complex biogeochemical systems. With this in mind, we integrating field sampling into an early career scientist workshop. We asked, "Can we assemble early career scientists from disparate geoscience fields and effectively characterize carbon reservoirs and fluxes at a geologically active site?" Here, we present the results of an integrated, multidisciplinary, and co-located sampling effort carried out during the Second Deep Carbon Observatory Early Career Science Workshop 2015 in the Azores, Portugal. At the fumarole site, sediments lithology indicate a recent lacustrine deposition. All sediments show a degree of hydrothermal alteration, especially with depth. Carbonates were observed throughout the site as well as sulfur minerals jarosite and alunite. Temperatures of ejected waters quickly cooled from near boiling, to ambient 30 oC within an 35 m flow channel. Sediment surface gases (H2S, CO2 and CH4) were highly elevated at the site indicating a strong degassing influence. Analysis of noble gas isotopes unequivocally confirm the existence of mantle-derived fluids in the fumarole gases. Waters and sediments taken from mid-point within the channel were elevated in concentrations of all elements measured, especially elemental sulfur and copper. The organic matter content of sediments was typically low in the channel. Microbial analyses also show a strong temperature-dependent relationship, with Archaea dominating at higher temperatures and Bacteria at lower temperatures. Evidence of sulfur utilizing archaea were present in both ribosomal and metagenome libraries. Together, our interdisciplinary approach demonstrates, unsurprisingly, that collesing a diverse group of geoscientists to characterize a natural system is highly advantageous and productive. However, this approach also highlights the ever present problem of how to fund such highly interdisciplinary, field oriented, research.
Proceedings of the Workshop on Space Telerobotics, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1987-01-01
These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture.
Development of a geoscience education book with schoolchildren from low STEM engagement areas
NASA Astrophysics Data System (ADS)
Boyd, Alex; McAuliffe, Fergus
2017-04-01
Crucial career-related concepts and attitudes are first formed in childhood though different phases: Fantasy (age 4-10 years), Interest (age (age 11-12 years) and Capacity (age 13-14 years). Parents are major influencers in high school subject choice and ultimately career choice. Despite bring aware of the importance of STEM, 68% of Irish parents feel uninformed with regards to advising on career choices for their children. In response to this, the Science Apprentice is a series of children's books, showcasing the importance of STEM in today's society. Developed by University College Dublin, and circulated with an Irish national newspaper, this series was directed at children in elementary school (7-12 year olds) and was written to inform the first conceptions of STEM career pathways through dynamic visuals, intriguing stories and creative expressions of knowledge that relates to STEM literacy. Furthermore, the Science Apprentice series was created to offer parents a level of confidence and understanding in STEM and STEM career opportunities. Despite outreach efforts by many geoscience academics and institutions, applied geoscience remains somewhat invisible in society, with most members of the public lacking any firm familiarity with the bedrock on which they live or the resources that it holds. Here we present an overview of the Science Apprentice book series, with particular emphasis on the Energy and Resources book edition. This edition was developed in conjunction with geoscientists from the Irish Centre for Research in Applied Geoscience (iCRAG), and covered a wide range of applied geoscience topics, such as renewable and non-renewable energy sources, raw materials, engineering and the career paths of young researchers working in the geosciences. A key target audience for this book was families in low STEM engagement areas and low internet broadband connectivity areas. In this presentation we will outline how the book was developed by working with schools from low STEM engagement and rural areas, and how the primary audience of the book (7-12 year olds) was directly involved in the content development, character design and "try at home" activities that feature in the book. This was done in two steps: first through a series of workshops led by elementary STEM teaching researchers and trainers, and facilitated by science communicators; and second through a field trip to a local mine where a tour and community debate by the schoolchildren on windfarm development took place. In total, 75,000 books were circulated with the national newspaper, which saw a 6% increase in circulation at the distribution point of sale due to the books. We will also present the evaluation findings, which included focus groups with parents, in-depth interviews with teachers, and national surveys with adults. For example, 93% of parents felt that the Science Apprentice books made their children more interested in science than they were before. The presence of Irish research examples was found to shift the assumption that major scientific discoveries only take place abroad. In this presentation we will also share some critical reflections on the successes and challenges of the programme.
Geosciences Information for Teachers (GIFT) in Catalonia
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard
2010-05-01
CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and produced by a team of researchers of the Marine Geosciences Research Group of the University of Barcelona, high school teachers, and professionals of multimedia communication. Key aspects of the documentaries are: - Easy language and international accessibility (Catalan, Spanish and English language); - Addressing of hot topics and highly debated issues in geosciences; - Use of the proximity of researchers to the citizens (the story is told with the help of real scientists accessible by the citizen); - Use of video footage recorded by scientists specifically trained to do so during their field work; - Avoidance of catastrophism and excessive dramatization of scientific problems; - Use of slow times and emphasis on the aspects of contemplation, beauty, and astonishment in the daily work of geoscientists. MARENOSTRUM TERRANOSTRA production to date: Ice: The historian of the Earth. 2008. DVD PAL, colour, 27 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English. 20 thousand years. The history of the last big natural climate change of the earth. 2009. DVD PAL, colour, 25 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English. Hidden Corals. 2010 (release date May 2010). DVD PAL, colour, 30 min. Directed by D. Porbellini (Cultormedia). Catalan, Castellan, English.
The ICESat/GLAS Instrument Operations Report. Volume 4
NASA Technical Reports Server (NTRS)
Jester, Peggy L.
2012-01-01
The Geoscience Laser Altimeter System (GLAS) was the primary instrument aboard the first ICESat spacecraft. ICESat's primary objectives are to determine the mass balance of the polar ice sheets and their contributions to global sea level change, and to obtain essential data for prediction of future changes in ice volume and sea-level. ICESat launched successfully from Vandenberg Air Force Base on January 12, 2003 23:45 UT. The ICESat science mission began in February 2003 and ended on October 11, 2009. De-orbit of the spacecraft occurred on August 30, 2010. This document focusses on the GLAS instrument operations during the ICESat mission. This document will not discuss science results.
NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.
The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…
Proceedings of the 2nd workshop on lyme disease in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apperson, C.S.; Levine, J.F.; Snoddy, E.L.
1993-12-31
This volume provides author prepared abstracts of oral presentation at the Second Workshop on Lyme Disease in the Southeast head in Raleigh, North Carolina September 7-9, 1993. The 33 presentations covered various aspects of the epidemic including geographical distribution of various species of ticks, transmission risks, Lyme Disease epidemiology, and taxonomic aspects.
NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.
The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…
NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.
The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.
These lesson plans are the result of two regional workshops sponsored by UNESCO in Indonesia in 1989 and Pakistan in 1991. The workshops focused on the need to introduce population education core messages in the Asia-Pacific Programme of Education for All (APPEAL). These prototypes of exemplar instructional materials for primary education,…
Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters
NASA Technical Reports Server (NTRS)
2005-01-01
This volume contains abstracts that have been accepted for presentation at the Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters, July 11-14,2005, Laurel, Maryland. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.
Impact Cratering: Bridging the Gap Between Modeling and Observations
NASA Technical Reports Server (NTRS)
2003-01-01
This volume contains abstracts that have been accepted for presentation at the workshop on Impact Cratering: Bridging the Gap Between Modeling and Observations, February 7-9, 2003, in Houston, Texas. Logistics, onsite administration, and publications for this workshop were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.
NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1980-01-01
This presentation provides an overview of the NASA Rotorcraft Program as an introduction to the technical sessions of the Advanced Rotorcraft Technology Workshop. It deals with the basis for NASA's increasing emphasis on rotorcraft technology, NASA's research capabilities, recent program planning efforts, highlights of its 10-year plan and future directions and opportunities.
UNESCO’s New Earth Science Education Initiative for Africa
NASA Astrophysics Data System (ADS)
Missotten, R.; Gaines, S. M.; de Mulder, E. F.
2009-12-01
The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.
A Faculty Workshop Model to Integrate Climate Change across the Curriculum
NASA Astrophysics Data System (ADS)
Teranes, J. L.
2017-12-01
Much of the growing scientific certainty of human impacts on the climate system, and the implications of these impacts on current and future generations, have been discovered and documented in research labs in colleges and universities across the country. Often these institutions also take decisive action towards combatting climate change, by making significant reductions in greenhouse emissions and pledging to greater future reductions. Yet, there are still far too many students that graduate from these campuses without an adequate understanding of how climate change will impact them within their lifetimes and without adequate workforce preparation to implement solutions. It may be that where college and universities still have the largest influence on climate change adaption and mitigation is in the way that we educate students. Here I present a curriculum workshop model at UC San Diego that leverages faculty expertise to infuse climate change education across disciplines to enhance UC San Diego students' climate literacy, particularly for those students whose major focus is not in the geosciences. In this model, twenty faculty from a breadth of disciplines, including social sciences, humanities, arts, education, and natural sciences participated in workshops and developed curricula to infuse aspects of climate change into their existing undergraduate courses. We particularly encouraged development of climate change modules in courses in the humanities, social sciences and arts that are best positioned to address the important human and social dimensions of climate change. In this way, climate change content becomes embedded in current course offerings, including non-science courses, to increase climate literacy among a greater number and a broader cross-section of students.
Proceedings of the International Magnetic Pulse Compression Workshop. Volume 2: Technical summary
NASA Astrophysics Data System (ADS)
Kirbie, H. C.; Newton, M. A.; Siemens, P. D.
1991-04-01
A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high average power handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.
Pioneer Venus 12.5 km Anomaly Workshop Report, volume 1
NASA Technical Reports Server (NTRS)
Seiff, A.; Sromovsky, L.; Borucki, W.; Craig, R.; Juergens, D.; Young, R. E.; Ragent, B.
1995-01-01
A workshop was convened at Ames Research Center on September 28 and 29, 1993, to address the unexplained electrical anomalies experienced in December 1978 by the four Pioneer Venus probes below a Venus altitude of 12.5 km. These anomalies caused the loss of valuable data in the deep atmosphere, and, if their cause were to remain unexplained, could reoccur on future Venus missions. The workshop participants reviewed the evidence and studied all identified mechanisms that could consistently account for all observed anomalies. Both hardware problems and atmospheric interactions were considered. Based on a workshop recommendation, subsequent testing identified the cause as being an insulation failure of the external harness. All anomalous events are now explained.
DC Rocks! Using Place-Based Learning to Introduce Washington DC's K-12 Students to the Geosciences
NASA Astrophysics Data System (ADS)
Mayberry, G. C.; Mattietti, G. K.
2017-12-01
The Washington DC area has interesting geology and a multitude of agencies that deal with the geosciences, yet K-12 public school students in DC, most of whom are minorities, have limited exposure to the geosciences. Geoscience agencies in the DC area have a unique opportunity to address this by introducing the geosciences to local students who otherwise may not have such an opportunity, by highlighting the geology in the students' "backyard," and by leveraging partnerships among DC-based geoscience-related agencies. The USGS and George Mason University are developing a project called DC Rocks, which will give DC's students an exciting introduction into the world of geoscience with place-based learning opportunities that will make geoscience relevant to their lives and their futures. Both the need in DC and the potential for lasting impact are great; the geosciences have the lowest racial diversity of all the science, technology, engineering, and math (STEM) fields, 89% of students in DC public schools are minorities, and there is no dedicated geoscience curriculum in DC. DC Rocks aims to give these students early exposure to the earth sciences, and encourage them to consider careers in the profession. DC Rocks will work with partner agencies to apply several methods that are recommended by researchers to increase the participation of minority students in the geosciences, including providing profoundly positive experiences that spark interest in the geosciences (Levine et al., 2007); increasing students' sense of belonging in the geosciences (Huntoon, et al, 2016); and place-based teaching practices that emphasize the study of local sites (Semken, 2005), such as DC's Rock Creek Park. DC Rocks will apply these methods by coordinating local geoscientists and resources to provide real-world examples of the geosciences' impact on students' lives. Through the DC Rocks website, educators will be able to request geoscience-related resources such as class presentations by local scientists and curricula, and students will be able to access information about geoscience-related opportunities in DC such as field trips. DC Rocks has the potential to encourage minority students to consider higher education in the geosciences by exposing them to the field early on and ultimately these students may pursue geoscience careers.
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Butler, R. F.; Hunter, N.; Lillie, R. J.; Magura, B.; Groom, R.; Johnson, J. A.; Coe, M.
2016-12-01
Increasing society's ability to mitigate risks is one of the major goals of geohazard research. Therefore part of tsunami science research must be finding effective ways to communicate scientific findings to the public to be used in community preparedness plans. The "Cascadia EarthScope Earthquake and Tsunami Education Program" (CEETEP; ceetep.oregonstate.edu) has worked to bridge the gap between scientific researchers and the public by providing professional development workshops for educators from coastal communities in Oregon, Washington, and northern California. CEETEP translates cutting edge EarthScope and other geoscience research into educational resources appropriate for K-12 teachers, park and museum interpreters, and emergency management outreach educators and their learners. Local educators have the potential to reach a wide segment of coastal residents. The tsunami generated by the next Great Cascadia Subduction Zone earthquake will arrive only 10-30 minutes after shaking, making mitigation and community-wide education an imperative. An essential component of CEETEP is collaboration with experts in science, pedagogy, and emergency preparedness. CEETEP provided two 4-day workshops and a follow-up Share-a-thon each year for three years (2013-2015). 151 educators participated in the program. Results from CEETEP are very encouraging. Participant content knowledge improved from 49% to 82% over the course of the workshop. Similarly, confidence in teaching about workshop topics increased from an average of 3.0 to 5.3 on a 6-point scale. Participant optimism about the efficacy and tractability of community-level planning also increased from 6.1 to 7.8 on a 9-point scale. Nearly 90% of participants continued to be active with the program through their March Share-a-thon and presented on a wide range of activities that they and their learners undertook related to earthquake and tsunami science and preparedness. Participants were also quite favorable about the innovative design of combining formal and informal educators into a single workshop. On a 6-point scale, they rated this professional exchange 5.5 for effectiveness. In all, the format and accomplishments of CEETEP can serve as a model for tsunami researchers interested in collaborating on outreach efforts.
Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.; Houlton, H. R.
2014-12-01
The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.
Geoscience on television: a review of science communication literature in the context of geosciences
NASA Astrophysics Data System (ADS)
Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.
2016-06-01
Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.
1999 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.R.; Fillo, J.A.; Twining, B.G.
1975-08-01
The first volume of these Proceedings is devoted to summarizing the results of the activities of the five technical area Study Groups. These Study Groups played a major role in the Workshop since it was their mission to identify key research and development requirements in their technical areas, etimate the prospects for success of research and development projects directed toward fulfilling these requirements, and determine appropriate time scales for the initiation and completion of these efforts. The determination of which new scientific and technological knowledge, data, and techniques will be required to achieve the Division of Magnetic Fusion Energy programmore » goals, and the construction of an evaluated compilation of research and development needs along with suggestions for levels of effort needed to achieve these goals were among the objectives of the Study Groups. The Conclusions and Recommendations of the Study Groups are summaries of the individual Study Group's findings prepared by the chairmen and co-chairmen/secretaries. These findings were presented to all the Workshop participants in a plenary session, and the discussion and comments on the findings are included in this volume.« less
NASA Astrophysics Data System (ADS)
Garcia, S. J.; Houser, C.
2013-12-01
Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.
ERIC Educational Resources Information Center
Guerrero, Frank; Abbott, Lori
This second volume of a four-volume evaluation of the 1988-89 New York City School Community Education Program (also known as the Umbrella Program) comprises reports evaluating nine innovative elementary school projects on social, ethnical, and environmental studies, four of which included staff development workshops. Evaluation sources included…
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
Teaching about the Earth Online: Faculty-Sourced Guidance from InTeGrate
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Bralower, T. J.; Anbar, A. D.; Leinbach, A.
2017-12-01
Teaching online is growing in acceptance within the higher education community and its accessibility creates an opportunity to reach students from diverse backgrounds with geoscience content. There is a need to develop best practices for teaching about Earth online as new technologies, pedagogical approaches, and teaching materials that incorporate societal issues and data emerge. In response to this need, the InTeGrate: Teaching about Earth for a Sustainable Future project convened a workshop of interdisciplinary faculty who teach about the Earth online, in a variety of contexts, to develop consensus best-practices, collect online resources, and develop teaching materials to share with the rest of the community. Workshop participants generated five broad categories of guidance for faculty teaching online: develop communication and a sense of community among class participants, stimulate student engagement, develop activity frameworks that scale with class size, include information literacy in the curriculum explicitly, and employ effective management and assessment techniques. Many of the best practices highlighted by the group are not unique to teaching online, but teaching online rather than face-to-face affects how they are or can be implemented. The suite of webpages developed from this work showcase specific strategies in each area, underpinned by examples drawn from the experiences of the participants. This resource can provide a wealth of advice for faculty seeking help for teaching online. Faculty can also provide feedback on the strategies and add their own experiences to the collection. Participants also worked together in teams to develop new or revise existing teaching resources to make available via the InTeGrate website. In addition, they shared insights about online resources they use in their teaching and class management and developed plans for an online repository for next-generation, interactive educational materials and tools for creating them. All of the best practices guidance, teaching materials, and online resources from the workshop can be found via the InTeGrate website - http://serc.carleton.edu/integrate/workshops/online_learning/index.html.
ERIC Educational Resources Information Center
Houser, Chris; Garcia, Sonia; Torres, Janet
2015-01-01
Summer research experiences are an increasingly popular means of increasing awareness of, and developing interest in, the geosciences and other science, technology, engineering, and math programs. We describe and report the preliminary results of a 1-wk Geosciences Exploration Summer Program in the College of Geosciences at Texas A&M…
OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTION, TEXAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott W. Tinker; Beverly Blakeney DeJarnett
2006-04-14
The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the US, and even the world. As reported in the 2004-2005 technical progress report to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently now houses over 600,000 boxes of rock material, and has space to hold approximately 300,000 more boxes. Use of the facility has remained strong during this fourth year of operation; the number of patrons averaged nearly 150 per month from June 1, to 2005 May 31, 2006. This usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. These numbers are in addition to the numerous daily requests from patrons desiring to have rock material shipped offsite to their own offices. The BEG/HRC secured several substantial donations of rock materials and cash totaling approximatelymore » $2.2 million during the 2005-2006 operating period. All of these funds went directly into an endowment that will, when complete, endow the HRC in perpetuity. Specific details regarding the funds in the endowment are addressed in a table later in this report. Outreach during 2005 and 2006 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year include securing donations of rock material and cash to approach full funding of the HRC endowment. Thanks to donations totaling $2.2 million from Shea Homes (heritage Unocal rock material), Chevron and others this operating year, the HRC endowment now totals $8,015,621. A major project underway for the HRC in FY2007 is improvement of the existing online core/log database into a Geoinformatics-compatible, GIS-driven online system. Usage of the HRC has gone up every year and is now very respectable. This year we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library. Our original business model targeted $10 million in endowment; after several years of operation we realize we require an $11 million endowment. We are ''on plan'' and need only $$3 million to fully fund the endowment. To meet these goals in the 2006-2007 operating year will require DOE support for the fifth and final year. DOE support will allow for {approx}$$600k in endowment growth and save using the fund for operation; lack of support will result in a net negative spread of up to $1 million, and set the plan way back. We recognize that DOE budgets for oil and gas research, against best efforts, have been cut substantially this year. Any support available for HRC operation, during continuing resolution or otherwise, would have a very positive impact on this critical final year of the original business plan.« less
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
One of the main products of the Regional Workshop for the Development of Packages of Adequate Learning Requirements in Population is this prototype package of curriculum materials in population education. The workshop notes that one of the shortcomings of country programs in population education is that the content integrated in school subjects is…
ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Environmental Education Project.
A 1977 inservice teacher training workshop in implementing energy education in Florida high schools is described. Designed for secondary teachers of science, social studies, vocational education, environmental studies, and home economics, the two-week workshop provided specific content instruction and teaching methods related to energy and energy…
K-12 Resources on the Internet PLUS: Instructor's Supplement. 2nd Edition.
ERIC Educational Resources Information Center
Junion-Metz, Gail
This volume is a supplement to "K-12 Resources on the Internet: An Instructional Guide" and is intended for teaching trainers that prepare Internet workshops in schools and libraries. It includes the following materials: guidelines on how to use this supplement together with the Instructional Guide in preparing a workshop; tips on how to use the…
NASA Technical Reports Server (NTRS)
1974-01-01
The technical aspects of the Skylab-Orbital Workshop are discussed. Original concepts, goals, design philosophy, hardware, and testing are reported. The final flight configuration, overall test program, and mission performance are analyzed. The systems which are examined are: (1) the structural system, (2) the meteoroid shield systems, and (3) the environmental/thermal control subsystem.
ERIC Educational Resources Information Center
TAFE National Centre for Research and Development, Payneham (Australia).
The conference recorded in this document covered a wide variety of themes and consisted of keynote addresses, research presentations, and workshops. The following workshop presentations are included: "Vocational Education in a Developing Country" (Theron); "From the Technical to the Critical: A New Agenda for Vocational Education…
Taxonomy of economic seaweeds with reference to some pacific species. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, I.A.
1995-11-16
The series of workshops of which this one was part rests on the conviction that progress in seaweed aquaculture and marine natural products chemistry will advance appreciably once the taxonomy of commercially interesting species is better understood. California Sea Grant funded the first of these bienniel workshops more than a decade ago--in 1984, at the University of Guam.
ERIC Educational Resources Information Center
Bleimschein, Sue, Ed.
Sixteen papers from a workshop on computer applications sponsored by the University of Cape Town (South Africa) School of Librarianship are presented in this volume: (1) "Introduction to the Use of Information Technology" (Sue Bleimschein); (2) "Searching Remote Databases" (Steve Rossouw); (3) "SABINET [South African Bibliographic and Information…
ERIC Educational Resources Information Center
Literacy & Numeracy Exchange, 1992
1992-01-01
This third of three volumes of the 1992 Australian Council for Adult Literacy (ACAL) Conference Papers is a special edition of "Literacy and Numeracy Exchange." It includes nine papers from workshops with a more local New South Wales focus. "Literacy, Language, and Numeracy in the Workplace in the Context of Industry…
NASA Astrophysics Data System (ADS)
Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.
2011-12-01
Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.
Thirteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.
1988-01-21
PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico andmore » The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook« less
Geoscience on television: a review of science communication literature in the context of geosciences
NASA Astrophysics Data System (ADS)
Hut, Rolf; Land-Zandstra, Anne; Smeets, Ionica; Stoof, Cathelijne
2016-04-01
Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society. This work is currently under review for publication in Hydrology and Earth System Sciences (HESS)
NASA Astrophysics Data System (ADS)
Houlton, H.; Keane, C.
2012-04-01
The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.
Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility
NASA Astrophysics Data System (ADS)
Morris, A. R.; Charlevoix, D. J.; Miller, M.
2013-12-01
Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader workforce development efforts.
NASA Astrophysics Data System (ADS)
Atchison, C.; Libarkin, J. C.
2014-12-01
Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.
Software Writing Skills for Your Research - Lessons Learned from Workshops in the Geosciences
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin
2016-04-01
Findings presented in scientific papers are based on data and software. Once in a while they come along with data - but not commonly with software. However, the software used to gain findings plays a crucial role in the scientific work. Nevertheless, software is rarely seen publishable. Thus researchers may not reproduce the findings without the software which is in conflict with the principle of reproducibility in sciences. For both, the writing of publishable software and the reproducibility issue, the quality of software is of utmost importance. For many programming scientists the treatment of source code, e.g. with code design, version control, documentation, and testing is associated with additional work that is not covered in the primary research task. This includes the adoption of processes following the software development life cycle. However, the adoption of software engineering rules and best practices has to be recognized and accepted as part of the scientific performance. Most scientists have little incentive to improve code and do not publish code because software engineering habits are rarely practised by researchers or students. Software engineering skills are not passed on to followers as for paper writing skill. Thus it is often felt that the software or code produced is not publishable. The quality of software and its source code has a decisive influence on the quality of research results obtained and their traceability. So establishing best practices from software engineering to serve scientific needs is crucial for the success of scientific software. Even though scientists use existing software and code, i.e., from open source software repositories, only few contribute their code back into the repositories. So writing and opening code for Open Science means that subsequent users are able to run the code, e.g. by the provision of sufficient documentation, sample data sets, tests and comments which in turn can be proven by adequate and qualified reviews. This assumes that scientist learn to write and release code and software as they learn to write and publish papers. Having this in mind, software could be valued and assessed as a contribution to science. But this requires the relevant skills that can be passed to colleagues and followers. Therefore, the GFZ German Research Centre for Geosciences performed three workshops in 2015 to address the passing of software writing skills to young scientists, the next generation of researchers in the Earth, planetary and space sciences. Experiences in running these workshops and the lessons learned will be summarized in this presentation. The workshops have received support and funding by Software Carpentry, a volunteer organization whose goal is to make scientists more productive, and their work more reliable, by teaching them basic computing skills, and by FOSTER (Facilitate Open Science Training for European Research), a two-year, EU-Funded (FP7) project, whose goal to produce a European-wide training programme that will help to incorporate Open Access approaches into existing research methodologies and to integrate Open Science principles and practice in the current research workflow by targeting the young researchers and other stakeholders.
Improving undergraduate STEM education: The efficacy of discipline-based professional development.
Manduca, Cathryn A; Iverson, Ellen R; Luxenberg, Michael; Macdonald, R Heather; McConnell, David A; Mogk, David W; Tewksbury, Barbara J
2017-02-01
We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes.
Improving undergraduate STEM education: The efficacy of discipline-based professional development
Manduca, Cathryn A.; Iverson, Ellen R.; Luxenberg, Michael; Macdonald, R. Heather; McConnell, David A.; Mogk, David W.; Tewksbury, Barbara J.
2017-01-01
We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes. PMID:28246629
Engaging the Geodetic and Geoscience Communities in EarthScope Education and Outreach
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.
2013-12-01
UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).
Making geoscience education accessible for students who are blind and visually impaired
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.
2011-12-01
UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).
Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1
NASA Technical Reports Server (NTRS)
Cutts, James (Editor); Ng, Edward (Editor)
1991-01-01
The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.
NASA Technical Reports Server (NTRS)
Prather, Michael J. (Editor); Remsburg, Ellis E. (Editor)
1993-01-01
This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.
Proceedings of a workshop on Lighting Requirements in Microgravity: Rodents and Nonhuman Primates
NASA Technical Reports Server (NTRS)
Holley, Daniel C. (Editor); Winget, Charles M. (Editor); Leon, Henry A. (Editor)
1988-01-01
A workshop, sponsored by Ames Research Center, was held at San Jose State University, San Jose, California, July 16-17, 1987, to discuss and correlate observations and theories relating to lighting requirements in animal habitats for rodents and nonhuman primates in microgravity (near space). This volume represents the results of the workshop. It contains a summary of the conclusions reached and recommendations for lighting animal housing modules used in microgravity related projects. The recommendations cover various aspects of habitat lighting including engineering standards for intensity, spectral properties, and light cycle controls.
MSFC Skylab Orbital Workshop, volume 3. [design and development of waste disposal system
NASA Technical Reports Server (NTRS)
1974-01-01
The waste management system for the Skylab Orbital Workshop is discussed. The general requirements of the system are presented. Illustrations of the components of the system are provided. Data concerning maximum expected performance capabilities are developed. The results of performance tests on the system components are reported. Emphasis is placed on the human factors engineering aspects of the system.
NASA Technical Reports Server (NTRS)
Black, D. C. (Editor); Brunk, W. E. (Editor)
1980-01-01
The feasibility and limitations of ground-based techniques for detecting other planetary systems are discussed as well as the level of accuracy at which these limitations would occur and the extent to which they can be overcome by new technology and instrumenation. Workshop conclusions and recommendations are summarized and a proposed high priority program is considered.
Kirby, Stephen H.; Wang, Kelin; Dunlop, Susan
2002-01-01
The following report is the principal product of an international workshop titled “Intraslab Earthquakes in the Cascadia Subduction System: Science and Hazards” and was sponsored by the U.S. Geological Survey, the Geological Survey of Canada and the University of Victoria. This meeting was held at the University of Victoria’s Dunsmuir Lodge, Vancouver Island, British Columbia, Canada on September 18–21, 2000 and brought 46 participants from the U.S., Canada, Latin America and Japan. This gathering was organized to bring together active research investigators in the science of subduction and intraslab earthquake hazards. Special emphasis was given to “warm-slab” subduction systems, i.e., those systems involving young oceanic lithosphere subducting at moderate to slow rates, such as the Cascadia system in the U.S. and Canada, and the Nankai system in Japan. All the speakers and poster presenters provided abstracts of their presentations that were a made available in an abstract volume at the workshop. Most of the authors subsequently provided full articles or extended abstracts for this volume on the topics that they discussed at the workshop. Where updated versions were not provided, the original workshop abstracts have been included. By organizing this workshop and assembling this volume, our aim is to provide a global perspective on the science of warm-slab subduction, to thereby advance our understanding of internal slab processes and to use this understanding to improve appraisals of the hazards associated with large intraslab earthquakes in the Cascadia system. These events have been the most frequent and damaging earthquakes in western Washington State over the last century. As if to underscore this fact, just six months after this workshop was held, the magnitude 6.8 Nisqually earthquake occurred on February 28th, 2001 at a depth of about 55 km in the Juan de Fuca slab beneath the southern Puget Sound region of western Washington. The Governor’s Office of the State of Washington estimated damage at more than US$2 billion, making it among the costliest earthquakes in U.S. history.
Recruiting Fresh Faces: Engaging the Next Generation of Geoscientists
NASA Astrophysics Data System (ADS)
Martinez, C. M.; Keane, C. M.; Gonzales, L. M.
2008-12-01
Approximately 385,000 college students take an introductory geoscience course each year in the United States, according to a study by the American Geological Institute (AGI). This represents only 2.3 percent of the total enrolled higher education population in the US. Though geoscience departments frequently report that introductory geoscience courses are a major source for recruiting new majors, the large numbers of students enrolled in introductory geoscience courses result in only approximately 2,300 new geoscience majors each year, or 0.1 percent of the total college population. According to the College Board, more than 19,000 SAT test-takers in 2007 indicated an interest in pursuing a major in Physical Science, Interdisciplinary Science or Engineering. Forty-nine percent of SAT-takers have had an earth or space science course during high school. There is large pool of college-bound students may be interested in the geosciences, but are unaware of the educational and career opportunities available to them. In an effort to increase the flow of top talent into the geosciences, the American Geological Institute (AGI) launched an ambitious student engagement initiative as part of its Geoscience Workforce Program. This initiative will assist geoscience departments in engaging and recruiting new majors from introductory geoscience courses and will help students connect with the professional community. The academic geoscience community makes up less than 17 percent of the entire geoscience workforce, and many students may not be aware of careers available in other industries and sectors. AGI will make updated careers resources, including diverse employment opportunities, salary potential, and quality of life information, freely available to geoscience instructors for use in their introductory courses. Beginning in Fall 2008, AGI will distribute a New Majors Kit to students in selected geoscience departments. These kits will include tools to help students in their careers, such as access to the Online Glossary of Geology, and will also allow students to join several professional geoscience societies free of charge so that they are included in our global community from the beginning of their academic careers. AGI is creating a global network for geoscience students using social networking and video-sharing websites. Student engagement materials will also address parents' concerns, since they have considerable influence in students' decisions. According to a study by the National Research Center for College and University Admissions, 70 percent of high school juniors say their parents influence their college choices. The AGI Student Engagement Initiative is designed to compliment the recruiting efforts of individual geoscience departments and to assist them in attracting the next generation of geoscientists to our community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, Patricia A.
2010-02-08
A workshop entitled, “Methods of Investigating Microbial-Mineral Interactions,” was held at the Clay Minerals Society meeting at the Pacific Northwest National Laboratory in Richland, WA on June 19, 2004. The workshop was organized by Patricia A. Maurice (University of Notre Dame) and Lesley A. Warren (McMaster University, CA). Speakers included: Dr. P. Bennett, Dr. J. Fredrickson (PNNL), Dr. S. Lower (Ohio State University), Dr. P. Maurice, Dr. S. Myneni (Princeton University), Dr. E. Shock (Arizona State), Dr. M. Tien (Penn State), Dr. L. Warren, and Dr. J. Zachara (PNNL). There were approximately 75 attendees at the workshop, including more thanmore » 20 students. A workshop volume was published by the Clay Minerals Society [Methods for Study of Microbe-Mineral Interactions (2006), CMS Workshop Lectures, vol 14(Patricia A. Maurice and Leslie A. Warren, eds.) ISBN 978-1-881208-15-0, 166 pp.]« less
The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1996-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.
A Foundational Approach to Designing Geoscience Ontologies
NASA Astrophysics Data System (ADS)
Brodaric, B.
2009-05-01
E-science systems are increasingly deploying ontologies to aid online geoscience research. Geoscience ontologies are typically constructed independently by isolated individuals or groups who tend to follow few design principles. This limits the usability of the ontologies due to conceptualizations that are vague, conflicting, or narrow. Advances in foundational ontologies and formal engineering approaches offer promising solutions, but these advanced techniques have had limited application in the geosciences. This paper develops a design approach for geoscience ontologies by extending aspects of the DOLCE foundational ontology and the OntoClean method. Geoscience examples will be presented to demonstrate the feasibility of the approach.
Highlighting Successful Strategies for Engaging Minority Students in the Geosciences
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.
2017-12-01
Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.
Geoscience is Important? Show Me Why
NASA Astrophysics Data System (ADS)
Boland, M. A.
2017-12-01
"The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all these documents, information products, and events is that geoscience is important, but they frame that message differently to appeal to the direct interests of different audiences.
Meeting Report: Long Term Monitoring of Global Vegetation using Moderate Resolution Satellites
NASA Technical Reports Server (NTRS)
Morisette, Jeffrey; Heinsch, Fath Ann; Running, Steven W.
2006-01-01
The international community has long recognized the need to coordinate observations of Earth from space. In 1984, this situation provided the impetus for creating the Committee on Earth Observation Satellites (CEOS), an international coordinating mechanism charged with coordinating international civil spaceborne missions designed to observe and study planet Earth. Within CEOS, its Working Group on Calibration and Validation (WGCV) is tasked with coordinating satellite-based global observations of vegetation. Currently, several international organizations are focusing on the requirements for Earth observation from space to address key science questions and societal benefits related to our terrestrial environment. The Global Vegetation Workshop, sponsored by the WGCV and held in Missoula, Montana, 7-10 August, 2006, was organized to establish a framework to understand the inter-relationships among multiple, global vegetation products and identify opportunities for: 1) Increasing knowledge through combined products, 2) Realizing efficiency by avoiding redundancy, and 3) Developing near- and long-term plans to avoid gaps in our understanding of critical global vegetation information. The Global Vegetation Workshop brought together 135 researchers from 25 states and 14 countries to advance these themes and formulate recommendations for CEOS members and the Global Earth Observation System of Systems (GEOSS). The eighteen oral presentations and most of the 74 posters presented at the meeting can be downloaded from the meeting website (www.ntsg.umt.edu/VEGMTG/). Meeting attendees were given a copy of the July 2006 IEEE Transactions on Geoscience and Remote Sensing Special Issue on Global Land Product Validation, coordinated by the CEOS Working Group on Calibration and Validation (WGCV). This issue contains 29 articles focusing on validation products from several of the sensors discussed during the workshop.
Ka`Imi`Ike: Explorations in the Geosciences from an Indigenous Perspective
NASA Astrophysics Data System (ADS)
Gibson, B. A.; Puniwai, N.; Sing, D.; Ziegler-Chong, S.
2006-12-01
The Ka `Imi `Ike Program is a recent initiative at the University of Hawai`i whose mission is to recruit and retain Native Hawaiian and Pacific Islanders (NHPI) to disciplines within the geosciences. The Program seeks to create pathways for NHPI students interested in geoscience disciplines through various venues and activities, including linking science with culture and community through a summer boarding experience for incoming freshman or sophomore University of Hawaii students. The 3-week institute, Explorations in Geosciences, was offered for the first time in Summer 2006. The 10 college students who participated were introduced to mentor geoscientists to learn more about the different disciplines and the pathways the scientists took in their careers. Hands-on activities trained students in current technology (such as GPS) and exposed them to how the technology was used in different research applications. A key and crucial component of the Explorations in Geosciences summer program was that "local" or Native Hawaiian role models were selected as the geoscience mentors whenever possible and mostly local and regional examples of geoscience phenomena were used. Moreover, the "science" learned throughout the summer program was linked to local Traditional Environmental Knowledge (TEK) by a Native Hawaiian kumu (teacher). The merging of "western" science with traditional knowledge reinforced geoscience concepts, and afforded the students an opportunity to better understand how a career in the geosciences could be beneficial to them and their community. At the end of the summer institute, the students had to give a final presentation of what geoscience concepts and careers they thought were most interesting to them, and how the program impacted their view of the geosciences. They also had to keep a daily journal which outlined their thoughts about the topics presented each day of the summer institute. Preliminary assessment reveals that several of the students came away from the summer program with a better understanding of the geosciences and are now considering a possible career in a geoscience discipline. The students also indicated that the linking of traditional knowledge with "western" science strengthened their perception of how the geosciences are a part of their cultural understanding of the environmental.
A State Studies Approach to Teaching People About Their Environment.
ERIC Educational Resources Information Center
Bennett, Dean
1984-01-01
Highlights a workshop utilizing a four-volume sourcebook for K-12 science teachers and naturalists. The volumes contain 38 units focusing on land, water, atmosphere and weather, plants, animals, energy, natural ecosystems, urban areas, unusual and rare features, and problems and issues. A sample interdisciplinary activity on bullfrog development…
Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 1
NASA Technical Reports Server (NTRS)
Hackett, Michael (Compiler)
1994-01-01
Proceedings from symposia of the Technology 2003 Conference and Exposition, December 7-9, 1993, Anaheim, CA, was discussed. Volume 1 features the Plenary Session and the Plenary Workshop, plus papers presented in Advanced Manufacturing, Biotechnology/Medical Technology, Environmental Technology, Materials Science, and Power and Energy.
NASA Report to Education, Volume 9
NASA Technical Reports Server (NTRS)
1991-01-01
This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.
ERIC Educational Resources Information Center
JOHNSON, DAVID B.; AND OTHERS
ABOUT 100 REPRESENTATIVES OF INTERESTED AGENCIES, INSTITUTIONS, AND PROFESSIONS MET IN A WORKSHOP WITH U.S. DEPARTMENT OF LABOR AND U.S. ATOMIC ENERGY COMMISSION OFFICIALS TO DISCUSS A STUDY WHOSE PURPOSE WAS TO IDENTIFY WAYS IN WHICH THE FEDERAL GOVERNMENT MIGHT INDUCE OR ENCOURAGE THE STATES TO UNDERTAKE CHANGES IN THEIR WORKMEN'S COMPENSATION…
Workshop on Early Mars: How Warm and How Wet?, part 1
NASA Technical Reports Server (NTRS)
Squyres, S. (Editor); Kasting, J. (Editor)
1993-01-01
This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Near-Earth Asteroid Sample Return Workshop
NASA Technical Reports Server (NTRS)
2000-01-01
This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.
Thermosphere Dynamics Workshop, volume 2
NASA Technical Reports Server (NTRS)
Mayr, H. G. (Editor); Miller, N. J. (Editor)
1986-01-01
Atmospheric observations reported on include recent measurements of thermospherical composition, gas temperatures, auroral emissions, ion-neutral collisional coupling, electric fields, and plasma convection. Theoretical studies reported on include model calculations of thermospherical general circulation, thermospheric tides, thermospheric tidal coupling to the lower atmosphere, interactions between thermospheic chemistry and dynamics and thermosphere-ionosphere coupling processes. The abstracts provide details given in each talk but the figures represent the fundamental information exchanged within the workshop
PREFACE: International Workshop on Multi-Rate Processes and Hysteresis
NASA Astrophysics Data System (ADS)
Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2008-07-01
We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, and is available online at http://www.ins.ucc.ie/roh2002.htm. See further information at http://www.ins.ucc.ie/roh2002.htm Among the aims of these workshops were to bring together leading experts in singular perturbations and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 70 scientists (including more than 10 students), actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze those phenomena that occur in many industrial, physical and economic systems. The countries represented at the Workshop included Czech Republic, England, France, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, Scotland, South Africa, Switzerland and USA. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Workshop has been sponsored by Science Foundation Ireland (SFI), KE Consulting group, Drexel University, Philadelphia, USA, University College Cork (UCC), Boole Centre for Research in Informatics, UCC, Cork, School of Mathematical Sciences, UCC, Cork, Irish Mathematical Society, Tyndall National Institute, Cork, University of Limerick, Cork Institute of Technology, and Heineken. The supportive affiliation of the European Geophysics Society, International Association of Hydrological Sciences, and Laboratoire Poncelet is gratefully acknowledged. The Editors and the Organizers of the Workshop wish to place on record their sincere gratitude to Mr Andrew Zhezherun and Mr Alexander Pimenov of University College Cork for both the assistance which he provided to all the presenters at the Workshop, and for the careful formatting of all the manuscripts prior to their being forwarded to the Publisher. More information about the Workshop can be found at http://euclid.ucc.ie/murphys2006.htm Michael P Mortell, Robert E O'Malley Jr, Alexei Pokrovskii, Dmitrii Rachinskii and Vladimir Sobolev Editors
1991-03-21
Drive, Suite 1212 California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive...Box 1620 La Jolla, CA 92038-1620 2 Prof. William Menke Prof. Charles G. Sammis Lamont-Doherty Geological Observatory Center for Earth Sciences of...Cruz, CA 95064 3 Prof. Terry C. Wallace Department of Geosciences Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The New Zealand Geothermal Workshop took place on 29th-31st October 1979 at the University of Auckland. Over 100 participants were present (a list is included in this volume) with 6 overseas visitors, bring the number of countries represented (including the Institute's Fellows) to 14. Forty papers were presented over the three days of the meeting, together with 23 poster papers presented by the students of the Institute. This second Proceedings volume has been prepared as a supplement to the volume of conference papers distributed at the meeting, and was produced subsequent to the Workshop. The fist section of this volumemore » includes additional papers presented at the meeting but not then available in printed form. The second part is a summary of the year's activities of the Geothermal Institute also presented in part at the meeting. These activities included some significant research contributions and original field investigations. Each fellow at the Institute was required as part of the course, to conduct an investigation and prepare a report which was presented at the Geothermal Workshop in a poster session. Abstracts of these project reports are included in this volume and five of the projects are reproduced in greater detail. Also included are outlines of the two original class projects conducted by the students and staff of the Institute, one a pre-feasibility study of the Ngawha Geothermal Field and the other an investigation of the Miranda Springs system. Finally, the lecture curriculum of the year's diploma course is presented in outline, together with the final examination papers. The two volumes of this document therefore include, as much as is possible within the restricted space, an overview of the Geothermal Institute's contribution to the development of geothermal energy together with a technical tribute to the many people involved in this very successful first year.« less
Evaluating open-source cloud computing solutions for geosciences
NASA Astrophysics Data System (ADS)
Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong
2013-09-01
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
NASA Astrophysics Data System (ADS)
Daniels, M. D.; Graves, S. J.; Kerkez, B.; Chandrasekar, V.; Vernon, F.; Martin, C. L.; Maskey, M.; Keiser, K.; Dye, M. J.
2015-12-01
The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) project was funded under the National Science Foundation's EarthCube initiative. CHORDS addresses the ever-increasing importance of real-time scientific data in the geosciences, particularly in mission critical scenarios, where informed decisions must be made rapidly. Access to constant streams of real-time data also allow many new transient phenomena in space-time to be observed, however, much of these streaming data are either completely inaccessible or only available to proprietary in-house tools or displays. Small research teams do not have the resources to develop tools for the broad dissemination of their unique real-time data and require an easy to use, scalable, cloud-based solution to facilitate this access. CHORDS will make these diverse streams of real-time data available to the broader geosciences community. This talk will highlight a recently developed CHORDS portal tools and processing systems which address some of the gaps in handling real-time data, particularly in the provisioning of data from the "long-tail" scientific community through a simple interface that is deployed in the cloud, is scalable and is able to be customized by research teams. A running portal, with operational data feeds from across the nation, will be presented. The processing within the CHORDS system will expose these real-time streams via standard services from the Open Geospatial Consortium (OGC) in a way that is simple and transparent to the data provider, while maximizing the usage of these investments. The ingestion of high velocity, high volume and diverse data has allowed the project to explore a NoSQL database implementation. Broad use of the CHORDS framework by geoscientists will help to facilitate adaptive experimentation, model assimilation and real-time hypothesis testing.
Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2
NASA Technical Reports Server (NTRS)
Wilson, Barbara A. (Editor)
1991-01-01
In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
First Annual High-Speed Research Workshop, part 1
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Workshop on Parent-Body and Nebular Modification of Chondritic Materials
NASA Technical Reports Server (NTRS)
Krot, A. N. (Editor); Zolensky, M. E. (Editor); Scott, E. R. D. (Editor)
1997-01-01
The purpose of the workshop was to advance our understanding of solar nebula and asteroidal processes from studies of modification features in chondrites and interplanetary dust particles. As reflected in the program contained in this volume, the workshop included five regular sessions, a summary session, and a poster session. Twenty-three posters and 42 invited and contributed talks were presented. Part 1 of this report contains the abstracts of these presentations. The focus of the workshop included: (1) mineralogical, petrologic, chemical, and isotopic observations of the alteration mineralogy in interplanetary dust particles, ordinary and carbonaceous chondrites, and their components (Ca-Al-rich inclusions, chondrules, and matrix) to constrain the conditions and place of alteration; (2) sources of water in chondrites; (3) the relationship between aqueous alteration and thermal metamorphism; (4) short-lived radionuclides, AI-26, Mn-53, and I-129, as isotopic constraints on timing of alteration; (5) experimental and theoretical modeling of alteration reactions; and (6) the oxidation state of the solar nebula. There were approximately 140 participants at the workshop, probably due in part to the timeliness of the workshop goals and the workshop location. In the end few new agreements were achieved between warring factions, but new research efforts were forged and areas of fruitful future exploration were highlighted. Judged by these results, the workshop was successful.
ERIC Educational Resources Information Center
Blake, Reginald A.; Liou-Mark, Janet; Chukuigwe, Chinedu
2013-01-01
Geoscience research is a fundamental portal through which geoscience knowledge may be acquired and disseminated. A viable model to introduce, stimulate, and prolong geoscience education has been designed and implemented at the New York City College of Technology through a National Science Foundation (NSF) Research Experiences for Undergraduates…
Teachers' Geoscience Career Knowledge and Implications for Enhancing Diversity in the Geosciences
ERIC Educational Resources Information Center
Sherman-Morris, Kathleen; Brown, Michael E.; Dyer, Jamie L.; McNeal, Karen S.; Rodgers, John C., III
2013-01-01
This study examines discrepancies between geoscience career knowledge and biology career knowledge among Mississippi science teachers. Principals and in-service teachers were also surveyed about their perception of geoscience careers and majors. Scores were higher for knowledge of what biologists do (at work) than about what geoscientists do.…
NASA Astrophysics Data System (ADS)
Houser, C.; Nunez, J.; Miller, K. C.
2016-12-01
Department and college operating budgets are increasingly tide to enrollment and student credit hour production, which requires geoscience programs to develop strategic recruitment programs to ensure long-term stability, but also to increase institutional support. There is evidence that proactive high school recruitment programs are successful in engaging students in the geosciences, particularly those that involve the parents, but these programs typically have relatively low-yields and are relatively expensive. This means that increased enrollment of undergraduates in geosciences programs and participation by under-represented groups depends on innovative and effective recruitment and retention practices. The College of Geosciences at Texas A&M University has recently developed a Pathways to the Geosciences program that facilitates the transfer of students from 2-year institutions by providing direction to students interested in the geosciences from one of our partner institutions: Blinn College, Lee College, Houston Community College, San Jacinto College and Lone Star College. Each of the partner institutions offer disciplinary majors related to the geosciences, providing a gateway for students to discover and consider the geosciences starting in their freshman year. The guided pathways provide much needed direction without restricting options and allow students to see connections between courses and their career goals. In its first year, the Pathways to the Geosciences program has resulted in a significant increase in transfer applications and admissions from the partner institutions by 74% and 107% respectively. The program has been successful because we have been proactive in helping students at the partner institutions find the information they need to effectively transfer to a 4-year program. The increase in applications is evidence that students from our partner institutions are being intentional in following a pathway to a major in the College of Geosciences.
High Demand, Core Geosciences, and Meeting the Challenges through Online Approaches
NASA Astrophysics Data System (ADS)
Keane, Christopher; Leahy, P. Patrick; Houlton, Heather; Wilson, Carolyn
2014-05-01
As the geosciences has evolved over the last several decades, so too has undergraduate geoscience education, both from a standpoint of curriculum and educational experience. In the United States, we have been experiencing very strong growth in enrollments in geoscience, as well as employment demand for the last 7 years. That growth has been largely fueled by all aspects of the energy boom in the US, both from the energy production side and the environmental management side. Interestingly the portfolio of experiences and knowledge required are strongly congruent as evidenced from results of the American Geosciences Institute's National Geoscience Exit Survey. Likewise, the demand for new geoscientists in the US is outstripping even the nearly unprecedented growth in enrollments and degrees, which is calling into question the geosciences' inability to effectively reach into the largest growing segments of the U.S. College population - underrepresented minorities. We will also examine the results of the AGI Survey on Geoscience Online Learning and examine how the results of that survey are rectified with Peter Smith's "Middle Third" theory on "wasted talent" because of spatial, economic, and social dislocation. In particular, the geosciences are late to the online learning game in the United States and most faculty engaged in such activities are "lone wolves" in their department operating with little knowledge of the support structures that exist in such development. Yet the most cited barriers for faculty not engaging actively in online learning is the assertion that laboratory and field experiences will be lost and thus fight engaging in this medium. However, the survey shows that faculty are discovering novel approaches to address these issues, many of which have great application to enabling geoscience programs in the United States to meet the expanding demand for geoscience degrees.
NASA Astrophysics Data System (ADS)
Jones, B.; Patino, L. C.
2016-12-01
Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as ensure that they have the necessary skills and competencies to succeed as next generation professionals in a variety of employment sectors.
Satellite Services Workshop, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.
Developing Short-Term Indicators of Recruitment and Retention in the Geosciences
NASA Astrophysics Data System (ADS)
Fuhrman, M.; Gonzalez, R.; Levine, R.
2004-12-01
The NSF Opportunities for Enhancing Diversity in the Geosciences (OEDG) program awards grants to projects that are intended to increase participation in geoscience careers by members of groups that have been traditionally underrepresented in the geosciences. OEDG grantee projects use a variety of strategies intended to influence the attitudes, beliefs, and behaviors of underrepresented students at levels from K-12 to graduate school. The ultimate criterion for assessing the success of a project is the number of underrepresented minority students who become geoscientists (and who would not have otherwise become geoscientists). For most projects this criterion can only be observed in the distant future. In order to develop shorter-term indicators of program success, researchers at AIR developed a conceptual framework based on a review of the literature and discussion with geoscientists. This model allowed us to identify an extensive, but not fully comprehensive, set of indicators. There are undoubtedly other potential indicators of recruitment and retention in the geosciences. The research literature reviewed was a general literature, dealing with science, technology, engineering, and/or mathematics (STEM) college major or career choice by individuals who are underrepresented group members, so the model is based on indicators of retention in a general STEM career path rather than a specific geoscience path. Nonetheless, it is our belief that retention in STEM is critical for retention in geoscience. In the past year, AIR staff have conducted a critical incident study to further refine this model. This study focused on factors unique to the geosciences. The goal was to learn about behaviors that encouraged or discouraged someone from becoming a geoscientist, where individual behaviors are termed as "incidents." The preliminary data, the impact of this pilot study on the model, and the revised model will be presented. Some examples of behaviors our study found that seem to affect an individual's decision on becoming a geoscientist include: parental support, exposure to geoscience classes, experience in the outdoors, experiencing extraordinary geosciences events, taking introductory geosciences course, accessibility of geoscience faculty, and participation in informal interactions and social activities in a geoscience department.
Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs
NASA Astrophysics Data System (ADS)
Schmidt, Richard William
The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and attitudes of the two student research groups that could be contributing to the developing geoscience workforce crisis. However, the study also validated the notion that, in spite of significant blocking forces arrayed in front of them, advanced geoscience programs can be successful and offer viable curricula that serve to increase students' interest and opinions towards the field. By not only recognizing the existence of the geoscience workforce gap but also understanding its root causes, the role of advanced high school geoscience education emerges as an integral part of a solution to the problem.
Sargos, P; Charleux, T; Haas, R L; Michot, A; Llacer, C; Moureau-Zabotto, L; Vogin, G; Le Péchoux, C; Verry, C; Ducassou, A; Delannes, M; Mervoyer, A; Wiazzane, N; Thariat, J; Sunyach, M P; Benchalal, M; Laredo, J D; Kind, M; Gillon, P; Kantor, G
2018-04-01
The purpose of this study was to evaluate, during a national workshop, the inter-observer variability in target volume delineation for primary extremity soft tissue sarcoma radiation therapy. Six expert sarcoma radiation oncologists (members of French Sarcoma Group) received two extremity soft tissue sarcoma radiation therapy cases 1: one preoperative and one postoperative. They were distributed with instructions for contouring gross tumour volume or reconstructed gross tumour volume, clinical target volume and to propose a planning target volume. The preoperative radiation therapy case was a patient with a grade 1 extraskeletal myxoid chondrosarcoma of the thigh. The postoperative case was a patient with a grade 3 pleomorphic undifferentiated sarcoma of the thigh. Contour agreement analysis was performed using kappa statistics. For the preoperative case, contouring agreement regarding GTV, gross tumour volume GTV, clinical target volume and planning target volume were substantial (kappa between 0.68 and 0.77). In the postoperative case, the agreement was only fair for reconstructed gross tumour volume (kappa: 0.38) but moderate for clinical target volume and planning target volume (kappa: 0.42). During the workshop discussion, consensus was reached on most of the contour divergences especially clinical target volume longitudinal extension. The determination of a limited cutaneous cover was also discussed. Accurate delineation of target volume appears to be a crucial element to ensure multicenter clinical trial quality assessment, reproducibility and homogeneity in delivering RT. radiation therapy RT. Quality assessment process should be proposed in this setting. We have shown in our study that preoperative radiation therapy of extremity soft tissue sarcoma has less inter-observer contouring variability. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Family Finance Education; An Interdisciplinary Approach. Volume II.
ERIC Educational Resources Information Center
Gibbs, Mary S., Ed.; And Others, Eds.
Volume II of a two-part series related to family finance education provides materials for study and discussion in the 1968 workshop. In Part I, members of the advisory council present their viewpoints concerning an interdisciplinary approach to education in family finance. Part II presents basic and current information related to principal areas…
International VLBI Service for Geodesy and Astrometry: General Meeting Proceedings
NASA Technical Reports Server (NTRS)
Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)
2002-01-01
This volume contains the proceedings of the second General Meeting of the International VLBI Service for Geodesy and Astrometry (IVS), held in Tsukuba, Japan, February 4-7, 2002. The contents of this volume also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/gm2002. The key-note of the second GM was prospectives for the future, in keeping with the re-organization of the IAG around the motivation of geodesy as 'an old science with a dynamic future' and noting that providing reference frames for Earth system science that are consistent over decades on the highest accuracy level will provide a challenging role for IVS. The goal of the meeting was to provide an interesting and informative program for a wide cross section of IVS members, including station operators, program managers, and analysts. This volume contains 72 papers and five abstracts of papers presented at the GM. The volume also includes reports about three splinter meetings held in conjunction with the GM: a mini-TOW (Technical Operations Workshop), the third IVS Analysis Workshop and a meeting of the analysis working group on geophysical modeling.
Achievements and Challenges in the Science of Space Weather
NASA Astrophysics Data System (ADS)
Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf
2017-11-01
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-18
This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.
Naval Postgraduate School Research. Volume 8, Number 3, October 1998
1998-10-01
the Bangor Submarine Base: “Understanding Racism ” and “Under- standing Sexism .” These two-day workshops are part of a four workshop series on Managing...organization theory and complex- ity theory and shaping them into design guidelines for mapping command and control processes to the needs of specific missions...Intranet- based decision support for the ACE. The methodol- ogy combines systems development life cycle (SDLC) practices, command and control theory , an
M&S Journal. Volume 7, Issue 1, Spring 2012
2012-06-01
Simulation Interoperability Workshops ( SIWs ) and the annual Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), as well as...other venues. For example, a full-day workshop on the initial progress of the effort was conducted at the 2010 Spring SIW [2] to get feedback from the...the 2011 Fall SIW . 6. IMPROVING THE USE OF GATEWAYS AND BRIDGES FOR LVC SIMULATIONS The LVCAR Final Report [1] presented a vision for achieving
ERIC Educational Resources Information Center
Shipley, Thomas F.; Tikoff, Basil
2017-01-01
This manuscript addresses the potential role of geoscience education research in understanding geoscience expert practice. We note the similarity between the perception-action framework of Ulric Neisser (Neisser, 1976) and the observation-prediction framework used by geoscience practitioners. The consilience between these two approaches is that…
ERIC Educational Resources Information Center
Blake, Reginald A.; Liou-Mark, Janet; Blackburn, Noel; Chan, Christopher; Yuen-Lau, Laura
2015-01-01
To engender and raise awareness to the geosciences, a geoscience research project and a corresponding geoscience internship program were designed around plume dispersion dynamics within and above the New York City subway system. Federal, regional, and local agencies partnered with undergraduate students from minority-serving institutions to…
Proceedings of a Workshop on the Applications of Tethers in Space, Volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
Project overview; tether deployment; satellite system description; tether fundamentals; science applications; electrodynamic interactions; transportation; artificial gravity; and constellations; were described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.
Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growingmore » at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera« less
Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)
1992-01-01
The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.
Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaryan, M; Pal, Bilas
This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of pi -K interactions. The precise data on pi K interaction will have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant tomore » the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.« less
2001 NASA Seal/secondary Air System Workshop, Volume 1. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2002-01-01
The 2001 NASA Seal/Secondary Air System Workshop covered the following topics: (i) overview of NASA's Vision for 21st Century Aircraft; (ii) overview of NASA-sponsored Ultra-Efficient Engine Technology (UEET); (iii) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (iv) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. The NASA UEET program goals include an 8-to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
Due Diligence for Students - Geoscience Skills and Demographic Data for Career Planning
NASA Astrophysics Data System (ADS)
Keane, C. M.
2001-05-01
A major focus of the American Geological Institute's Human Resources program has been providing demographic and employment data so that students and mentors can better understand the dynamics of a career in the geosciences. AGI has a long history of collecting these data for the geoscience community, including 46 years of geoscience enrollments, periodic comprehensive surveys of employment in the discipline, and working closely with other organizations that collect these data. AGI has launched a new suite of surveys to examine the skills desired by employers and the skills provided through a geoscience education. Historical demographic and enrollment data allow a number of the major trends to be examined. These trends include the dominance of industry as employer in the geosciences and how the cyclicity of geoscience employment has become more complex with the development of the environmental sector over the last 30 years. Additionally, demographics are changing rapidly, with a geoscience workforce that is changing rapidly in age, gender, and background. The discipline may also be facing a change in the nature of geoscience employment, with chronic shortages of skilled geoscientists, but will job opportunities actually increase. This may not be as paradoxical as it appears. The geoindustries are attempting to adjust their strategies to dampen business cycles, which then may lead to more stable employment levels for geoscientists, but they are also broadening their vision of who can become competent geoscientists.
Inquiring with Geoscience Datasets: Instruction and Assessment
NASA Astrophysics Data System (ADS)
Zalles, D.; Quellmalz, E.; Gobert, J.
2005-12-01
This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Carbotte, S. M.; Ferrini, V.; Hsu, L.; Arko, R. A.; Walker, J. D.; O'hara, S. H.
2012-12-01
Substantial volumes of data in the Earth Sciences are collected in small- to medium-size projects by individual investigators or small research teams, known as the 'Long Tail' of science. Traditionally, these data have largely stayed 'in the dark', i.e. they have not been properly archived, and have therefore been inaccessible and underutilized. The primary reason has been the lack of appropriate infrastructure, from adequate repositories to resources and support for investigators to properly manage their data, to community standards and best practices. Lack of credit for data management and for the data themselves has contributed to the reluctance of investigators to share their data. IEDA (Integrated Earth Data Applications), a NSF-funded data facility for solid earth geoscience data, has developed a comprehensive suite of data services that are designed to address the concerns and needs of investigators. IEDA's data publication service registers datasets with DOI and ensures their proper citation and attribution. IEDA is working with publishers on advanced linkages between datasets in the IEDA repository and scientific online articles to facilitate access to the data, enhance their visibility, and augment their use and citation. IEDA's investigator support ranges from individual support for data management to tools, tutorials, and virtual or face-to-face workshops that guide and assist investigators with data management planning, data submission, and data documentation. A critical aspect of IEDA's concept has been the disciplinary expertise within the team and its strong liaison with the science community, as well as a community-based governance. These have been fundamental to gain the trust and support of the community that have lead to significantly improved data preservation and access in the communities served by IEDA.
Geocognition Research: An International Discipline (Invited)
NASA Astrophysics Data System (ADS)
Libarkin, J.
2009-12-01
Geocognition and geoscience education research have experienced a dramatic increase in research productivity and graduate student training in the past decade. At this writing, over twelve U.S. graduate programs dedicated to geocognition and geoscience education research exist within geoscience departments, with numerous other programs housed within education. International research programs are experiencing similar increases in these research domains. This insurgence of graduate training opportunities is due in large part to several factors, including: An increased awareness of the importance of Earth Systems Science to public understanding of science, particularly in light of global concern about climate change; new funding opportunities for science education, cognitive science, and geoscience education research; and, engagement of a significant part of the geosciences and education communities in writing new standards for Earth Systems literacy. Existing research programs blend geoscience content knowledge with research expertise in education, cognitive science, psychology, sociology and related disciplines. Research projects reflect the diversity of interests in geoscience teaching and learning, from investigations of pedagogical impact and professional development to studies of fundamental geocognitive processes.
NASA Astrophysics Data System (ADS)
Johnson, A.
2010-12-01
Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.
River Bookends: Headwaters, Delta and the Volumes of Stories in Between
NASA Astrophysics Data System (ADS)
Waller, J. L.; Brey, J. A.
2016-12-01
As professors of art and earth science, we were often pleased when our students found that integrating lessons of geoscience with art rewarded them in impactful and memorable ways. Inspired by student success and our very real concern for natural and human caused threats to treasured cities and areas on the globe, we produced "Layers: Places in Peril", a gallery exhibition of paintings and scientific explanation essays. We found the combination of art and earth science was a powerful tool that touched and informed a wide and diverse population beyond classrooms. Acutely aware that current crises facing Earth are not limited to gigantic forces, we then produced "small problems, BIG TROUBLE" that addressed how seemingly small problems lead to far-reaching threats. Our conversation expanded to include twenty other scientists from geoscience, biology, physics and chemistry whose science-based essays paired with Waller's paintings. In our newest presentation in production, River Bookends: Headwaters, Delta and the Volumes of Stories in Between, we address art and geo-cultural connections associated with World rivers. Our exploration is focused on rivers as markers of time, culture and identity, yet, the importance of stressing the geoscience in this exhibition is large, indeed. An understanding of geomorphology and river ecology and of the historical changes, both natural and human-engineered which may dramatically give rise to, enrich, distress, or ultimately destroy human settlements and culture, are essential to our intended emphases in the show. In this session, we will describe these exhibitions, show images of the work and discuss some of the gallery activities that resulted from the shows, which included a discussion panel of social science and humanities faculty focused on the exhibition topics. We will describe how local high school art and science students answered our invitation to create a parallel exhibition of our show premise, concurrently exhibited in an adjoining space. We will also show and discuss ways that "River Bookends" is more broadly increasing the collaborations and channels of communication in order to describe our planet and its challenges in ways simultaneously somber and redemptive.
NASA Astrophysics Data System (ADS)
Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.
2007-12-01
The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of scientists and science educators supplemented and further developed a well known and tested 15-year-old curriculum (Great Explorations in Math and Science, 1990) with recent data and analysis focusing on key concepts of climate change. The updated curriculum was structured using two driving questions: - How do we know the earth has experienced climate change in the past, including the ice ages and the age of the dinosaurs? - How do we know that humans have an impact on climate? Science educators and scientists also worked together to create templates that prompted the 11th and 12th grade students to first reflect on their understandings of climate change and then on how they would teach their younger peers. As students work with experiments, data sets, and news-media articles, they are also prompted to reflect on discrepancies between primary science sources and secondary media sources (Drake and Nelson, 2005). An evaluation team observed the summer workshops, administered surveys, reviewed the adapted curriculum, and participated in planning sessions. The evaluators are in the process of analyzing these multiple indicators to examine the extent to which the program aligns with its stated goals. The initial formative evaluation findings suggest that students were active participants in the workshop and that they enjoyed their experience. Areas of year-two development include improved communication and collaboration between university and secondary school units.
Operation of a Public Geologic Core and Sample Repository in Houstion, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Tinker; Beverly DeJarnett
2007-07-31
The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the U. S., and even the world. As reported in the FY05 and FY06 technical progress reports to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently now houses over 725,000 boxes of rock material (as of January 2008), and has space to hold approximately 300,000 more boxes. Use of the facility has remained strong; the number of patrons averaged over 100 per month from June 1, 2006 to October 2007, and 90,000 boxes of core were donated to, and received by, the HRC during this time. Usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. These numbers are in addition to the numerous daily requests from patrons desiring to have rock material shipped offsite to their own offices. The BEG/HRC secured several substantial donations of rock materials and cash totaling approximatelymore » $2.2 million during the 2005-2006 operating period. All of these funds went directly into an endowment that UT is building in order to operate the HRC primarily off a portion of the interest generated by the fund. Specific details regarding the funds in the endowment are addressed in a table later in this report. Outreach during 2005 and 2006 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year involve securing a major donation of rock material and cash in order to approach full funding of the HRC endowment. Thanks to donations totaling $2.2 million from Shea Homes (heritage Unocal rock material),Chevron and others this operating year, the HRC endowment now totals $8,015,621. A major project underway for the HRC in FY2007 is improvement of the existing online core/log database into a geoinformatics-compatible, GIS-driven online system. Usage of the HRC has gone up every year and is now very respectable. This year we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library. Our original business model targeted $10 million in endowment; after several years of operation we realize we require an $11 million endowment. We are 'on plan' and need only $$3 million to fully fund the endowment. To meet these goals in the 2007 operating year will require DOE support for the fifth and final year. DOW support will allow for {approx}$$600K in endowment growth and save using the fund for operation; lack of support will result in a net negative spread of up to $1 million, and set the plan way back. We recognize that DOE budgets for oil and gas research, against best efforts, have been cut substantially this year. Any support available for HRC operation, during continuing resolution or otherwise, would have a very positive impact on this critical final year of the original business plan.« less
NASA Astrophysics Data System (ADS)
Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.
2016-12-01
There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience education. Where appropriate, the resources on the ERN are tagged to components of the NGSS making this a one-stop portal for geoscience education materials. Providers of non-commercial geoscience education resources, especially those that align with the NGSS, can contact AGI so that their materials can be added to Earth Science Week and the ERN.
Abstracts for the International Workshop on Meteorite Impact on the Early Earth
NASA Technical Reports Server (NTRS)
1990-01-01
This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.
Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Part 1
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W. (Editor); Papike, J. J. (Editor)
1996-01-01
This volume contains papers that have been accepted for presentation at the Workshop. Topics considered include: On the sample return from Vesta by low-thrust spacecraft; Astronomical evidence linking Vesta to the HED meteorites; Geologic mapping of Vesta with the Hubble Space Telescope; A space mission to Vesta; Asteroid spectroscopy; The thermal history of asteroid 4 Vesta, based on radionuclide and collision heating; Mineralogical records of early planetary processes on Vesta.
Papers Presented to the Workshop on the Evolution of the Martian Atmosphere
NASA Technical Reports Server (NTRS)
1992-01-01
This volume contains papers that have been accepted for the Workshop on the Evolution of the Martian Atmosphere. The abstracts presented in the paper cover such topics as: modeling of the mars atmosphere from early development to present including specific conditions affecting development; studies of various atmospheric gases such as O2, SO2, CO2, NH3, and nitrogen; meteorite impacts and their effects on the atmosphere; and water inventories and cycles.
1971-10-01
training dogs." V-5 Specialty Vorkshop Schedule for MEHODS AND MEDIA Location nd Capacity: Studio 3, Nelson Civilian Consultant: Dr Leslie J. Briggs...vary different combinations of environmental variables. Slide 5 (System Aspects) System Aspects Now that we have made the decision to use simulation...reactions to the general environmental stimuli, the duration of the interaction between man and enviromnent, the degree of contact provided by the
Alabi, Okunola Adenrele; Omosebi, Omotoyosi; Chizea, Ifychukwwu
2015-07-01
Contamination of soil and water bodies with spent engine oil and petroleum products is a serious ecological problem, primarily in the automobile workshops and garages. This has potential short and chronic adverse health risks. Information is currently scarce on the potential mutagenicity and genotoxicity of such wastes. In this study, the potential mutagenic and genotoxic effects of simulated leachate from automobile workshop soil in Sagamu, Ogun state, Nigeria, were investigated. The assays utilized were bone marrow micronucleus (MN) and chromosome aberration (CA), sperm morphology and sperm count in mice. The physicochemical analysis of the leachate was also carried out. Experiments were carried out at concentrations of 1, 5, 10, 25, 50, 75 and 100% (volume per volume; leachate:distilled water) of the leachate sample. MN analysis showed a concentration-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. In the CA test, there was concentration-dependent significant reduction in mitotic index and induction of different types of CAs. Assessment of sperm shape showed a significant increase in sperm abnormalities with significant decrease in mean sperm count in treated groups. Heavy metals analyzed in the tested sample are believed to contribute significantly to the observed genetic damage. This indicates that automobile workshop soil-simulated leachate contains potential genotoxic agents and constitutes a genetic risk in exposed human population. © The Author(s) 2013.
Proceedings of the Third Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, Craig R. (Compiler)
1989-01-01
This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.
Workshop on Advanced Technologies for Planetary Instruments, part 1
NASA Technical Reports Server (NTRS)
Appleby, John F. (Editor)
1993-01-01
This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.
A Trainer's Guide to the Creative Curriculum for Preschool, Volume 1: Getting Started.
ERIC Educational Resources Information Center
Jones, Candy; Dodge, Diane Trister
The Creative Curriculum for Preschool is a comprehensive resource for establishing and sustaining a quality preschool program. The first of two volumes of trainer's guides to The Creative Curriculum for Preschool, this book offers detailed workshops and handouts on the foundation of the curriculum, four of the five components of the curriculum…
Emphasis. Volume 3, Number 3, Spring 1980 through Volume 5, Number 2, Winter 1982 (Seven Issues).
ERIC Educational Resources Information Center
Assael, Daniel, Ed.; And Others
1982-01-01
Seven issues of the newsletter/journal from the Technical Assistance Development System (TADS) address a vareity of topics related to special education for young handicapped children. Among articles included are a description of a rural workshop sponsored by an affiliate of the Handicapped Children's Early Education Program (HCEEP), electronics…
Academic provenance: Investigation of pathways that lead students into the geosciences
NASA Astrophysics Data System (ADS)
Houlton, Heather R.
Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical incidents) or to alter behavior as to change or make an initial decision (behavior altering critical incidents). Comparing and contrasting populations' distinct pathways resulted in valuable discussion for recruitment and retention initiatives for the geoscience.
NASA Astrophysics Data System (ADS)
Ryan, J. G.
2014-12-01
The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student participation in instrument-based data collection and interpretation. It is thus possible to model for students nearly the entire scientific process in introductory geoscience courses, allowing them to experience the excitement of "doing" science and thereby enticing more of them into the field.
CINERGI: Community Inventory of EarthCube Resources for Geoscience Interoperability
NASA Astrophysics Data System (ADS)
Zaslavsky, Ilya; Bermudez, Luis; Grethe, Jeffrey; Gupta, Amarnath; Hsu, Leslie; Lehnert, Kerstin; Malik, Tanu; Richard, Stephen; Valentine, David; Whitenack, Thomas
2014-05-01
Organizing geoscience data resources to support cross-disciplinary data discovery, interpretation, analysis and integration is challenging because of different information models, semantic frameworks, metadata profiles, catalogs, and services used in different geoscience domains, not to mention different research paradigms and methodologies. The central goal of CINERGI, a new project supported by the US National Science Foundation through its EarthCube Building Blocks program, is to create a methodology and assemble a large inventory of high-quality information resources capable of supporting data discovery needs of researchers in a wide range of geoscience domains. The key characteristics of the inventory are: 1) collaboration with and integration of metadata resources from a number of large data facilities; 2) reliance on international metadata and catalog service standards; 3) assessment of resource "interoperability-readiness"; 4) ability to cross-link and navigate data resources, projects, models, researcher directories, publications, usage information, etc.; 5) efficient inclusion of "long-tail" data, which are not appearing in existing domain repositories; 6) data registration at feature level where appropriate, in addition to common dataset-level registration, and 7) integration with parallel EarthCube efforts, in particular focused on EarthCube governance, information brokering, service-oriented architecture design and management of semantic information. We discuss challenges associated with accomplishing CINERGI goals, including defining the inventory scope; managing different granularity levels of resource registration; interaction with search systems of domain repositories; explicating domain semantics; metadata brokering, harvesting and pruning; managing provenance of the harvested metadata; and cross-linking resources based on the linked open data (LOD) approaches. At the higher level of the inventory, we register domain-wide resources such as domain catalogs, vocabularies, information models, data service specifications, identifier systems, and assess their conformance with international standards (such as those adopted by ISO and OGC, and used by INSPIRE) or de facto community standards using, in part, automatic validation techniques. The main level in CINERGI leverages a metadata aggregation platform (currently Geoportal Server) to organize harvested resources from multiple collections and contributed by community members during EarthCube end-user domain workshops or suggested online. The latter mechanism uses the SciCrunch toolkit originally developed within the Neuroscience Information Framework (NIF) project and now being extended to other communities. The inventory is designed to support requests such as "Find resources with theme X in geographic area S", "Find datasets with subject Y using query concept expansion", "Find geographic regions having data of type Z", "Find datasets that contain property P". With the added LOD support, additional types of requests, such as "Find example implementations of specification X", "Find researchers who have worked in Domain X, dataset Y, location L", "Find resources annotated by person X", will be supported. Project's website (http://workspace.earthcube.org/cinergi) provides access to the initial resource inventory, a gallery of EarthCube researchers, collections of geoscience models, metadata entry forms, and other software modules and inventories being integrated into the CINERGI system. Support from the US National Science Foundation under award NSF ICER-1343816 is gratefully acknowledged.
Proceedings of a Workshop on Applications of Tethers in Space, Volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
The panel conclusions for each of the following panels (science applications; electrodynamic interactions; transportation applications; artificial gravity; constellations; and technology and test) are given.
Workshop on Evolution of Martian Volatiles. Part 1
NASA Technical Reports Server (NTRS)
Jakosky, B. (Editor); Treiman, A. (Editor)
1996-01-01
This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.
PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, D.; Grosse Perdekamp, M.
2001-01-02
The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talksmore » and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.« less
NASA Astrophysics Data System (ADS)
Guidry, M.; Eschenberg, A.; McCoy, F. W.; McManus, M. A.; Lee, K.; DeLay, J. K.; Taylor, S. V.; Dire, J.; Krupp, D.
2017-12-01
In the Fall of 2015, the two four year (4YC) institutions within the University of Hawaii (UH) system offering baccalaureate degrees in geosciences enrolled only six Native Hawaiian (NH) students out of a total of 194 students in geoscience degree programs. This percentage (3%) of NH students enrolled in geosciences is far lower than the percentage of NH students enrolled at any single institution in the UH system, which ranges from 14 to 42%. At the same time, only six (3%) of the 194 students enrolled in geoscience baccalaureate programs were transfer students from the UH community colleges. Of these six transfer students, three were NH. This reflects the need for increased transfer of NH in the geosciences from two year (2YC) to 4YC. In the Fall of 2015, UH Manoa's (UHM) School of Ocean and Earth Science and Technology (SOEST) accounted for only 0.14% of transfer students from UH community colleges. This compares to 5% in the UHM School of Engineering and 27% in the UHM College of Arts and Sciences. As part of the first year of a multi-institutional five-year NSF TCUP-PAGE (Tribal Colleges and Universities Program - PArtnerships for Geoscience Education) award, we review our first steps and strategies for building a successful and sustainable geoscience transfer pathway for Native Hawaiian and community college students into the three undergraduate geoscience programs (Atmospheric Sciences, Environmental Sciences, and Geology & Geophysics) within SOEST.
IEEE/NASA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation
NASA Technical Reports Server (NTRS)
Margaria, Tiziana (Editor); Steffen, Bernhard (Editor); Hichey, Michael G.
2005-01-01
This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation, with a special track on the theme of Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23-24 September 2005 at the Loyola College Graduate Center, Columbia, MD, USA. The idea behind the Workshop arose from the experience and feedback of ISoLA 2004, the 1st International Symposium on Leveraging Applications of Formal Methods held in Paphos (Cyprus) last October-November. ISoLA 2004 served the need of providing a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verification, certification, construction, test, and maintenance of systems from the point of view of their different application domains.
1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
International CJMT-1 Workshop on Asteroidal Science
NASA Astrophysics Data System (ADS)
Ip, Wing-Huen
2014-03-01
An international workshop on asteroidal science was held between October 16 and 17, 2012, at the Macau University of Science and Technology gathering together experts on asteroidal study in China, Japan, Macao and Taiwan. For this reason, we have called it CJMT-1 Workshop. Though small in sizes, the asteroids orbiting mainly between the orbit of Mars and of Jupiter have important influence on the evolution of the planetary bodies. Topics ranging from killer asteroids to space resources are frequently mentioned in news reports with prominence similar to the search for water on Mars. This also means that the study of asteroids is very useful in exciting the imagination and interest in science of the general public. Several Asian countries have therefore developed long-term programs integrating ground-based observations and space exploration with Japan being the most advanced and ambitious as demonstrated by the very successful Hayabusa mission to asteroid 25143 Itokawa. In this volume we will find descriptions of the mission planning of Hayabusa II to the C-type near-Earth asteroid, 1999 JU3. Not to be outdone, China's Chang-E 2 spacecraft was re-routed to a flyby encounter with asteroid 4179 Toutatis in December 2012. It is planned that in the next CJMT workshop, we will have the opportunity to learn more about the in-depth data analysis of the Toutatis observations and the progress reports on the Hayabusa II mission which launch date is set to be July 2014. Last but not least, the presentations on the ground-based facilities as described in this volume will pave the way for coordinated observations of asteroidal families and Trojan asteroids - across Asia from Taiwan to Uzbekistan. Such international projects will serve as an important symbol of good will and peaceful cooperation among the key members of this group. Finally, I want to thank the Space Science Institute, Macao University of Science and Technology, for generous support, and its staff members, especially, Eason Gu and Tom Lin, for their kind assistance in the organization of the workshop and the editing of the Proceedings volume.
NASA Astrophysics Data System (ADS)
Imber, Jonathan; Taylor, Michelle; Callaghan, Mark; Castiello, Gabriella; Cooper, George; Foulger, Gillian; Gregory, Emma; Herron, Louise; Hoult, Jill; Lo, Marissa; Love, Tara; Macpherson, Colin; Oakes, Janice; Phethean, Jordan; Riches, Amy
2017-04-01
The Department of Earth Sciences, Durham University, has a balanced gender profile at undergraduate, postgraduate and postdoctoral levels (38%, 42% and 45% females, respectively), but one of the lowest percentages, relative to the natural applicant pool, of female academic staff amongst UK geoscience departments. There are currently 9% female academic staff at Durham, compared with a median value (in November 2015) of 20% for all Russell Group geoscience departments in the UK. Despite the fact that the female staff group is relatively senior, the Department's current academic management is essentially entirely male. The Department has an informal working culture, in which academics operate an "open door" policy, and staff and students are on first name terms. This culture, open plan office space, and our fieldwork programme, allow staff and students to socialise. A positive outcome of this culture is that > 95% of final year undergraduate students deemed the staff approachable (National Student Survey 2016). Nevertheless, a survey of staff and research student attitudes revealed significant differences in the way males and females perceive our working environment. Females are less likely than males to agree with the statements that "the Department considers inappropriate language to be unacceptable" and "inappropriate images are not considered acceptable in the Department". That anyone could find "inappropriate" language and images "acceptable" is a measure of the challenge faced by the Department. Males disagree more strongly than females that they "have felt uncomfortable because of [their] gender". The Department is proactively working to improve equality and diversity. It held a series of focus group meetings, divided according to gender and job role, to understand the differences in male and female responses. Female respondents identified examples of inappropriate language (e.g. sexual stereotyping) that were directed at female, but not male, colleagues. Males recognised the unacceptability of inappropriate language, but were unsure how it is defined. These differences have serious implications for professional relationships in our department, in which males occupy all positions of managerial authority and most academic positions. Such asymmetric relationships make it difficult for students and junior staff to challenge inappropriate behaviour. The Department will hold a workshop for all staff, and student representatives, facilitated by the University's Centre for Academic, Researcher & Organisational Development, on "Professionalism and Respecting Diversity in Earth Sciences". The objectives are to: 1) define the boundaries between informality and inappropriate behaviour in office, laboratory and fieldwork environments; 2) encourage all colleagues to reflect on their own behaviours; and 3) develop a culture to empower individuals to intervene where inappropriate behaviour occurs. Outcomes of the workshop will be discussed in this presentation. Our immediate aim is to encourage positive change whilst preserving the best aspects of our open door culture. Longer term, we hope that by fostering a positive working environment, we will encourage outstanding female academics to work at Durham. The Department's objective is to achieve the average gender balance of the Russell Group geoscience departments over a period of 10 years.
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.
GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain
NASA Astrophysics Data System (ADS)
Huang, Lan; Du, Youfu; Chen, Gongyang
2015-03-01
Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.
Amira: Multi-Dimensional Scientific Visualization for the GeoSciences in the 21st Century
NASA Astrophysics Data System (ADS)
Bartsch, H.; Erlebacher, G.
2003-12-01
amira (www.amiravis.com) is a general purpose framework for 3D scientific visualization that meets the needs of the non-programmer, the script writer, and the advanced programmer alike. Provided modules may be visually assembled in an interactive manner to create complex visual displays. These modules and their associated user interfaces are controlled either through a mouse, or via an interactive scripting mechanism based on Tcl. We provide interactive demonstrations of the various features of Amira and explain how these may be used to enhance the comprehension of datasets in use in the Earth Sciences community. Its features will be illustrated on scalar and vector fields on grid types ranging from Cartesian to fully unstructured. Specialized extension modules developed by some of our collaborators will be illustrated [1]. These include a module to automatically choose values for salient isosurface identification and extraction, and color maps suitable for volume rendering. During the session, we will present several demonstrations of remote networking, processing of very large spatio-temporal datasets, and various other projects that are underway. In particular, we will demonstrate WEB-IS, a java-applet interface to Amira that allows script editing via the web, and selected data analysis [2]. [1] G. Erlebacher, D. A. Yuen, F. Dubuffet, "Case Study: Visualization and Analysis of High Rayleigh Number -- 3D Convection in the Earth's Mantle", Proceedings of Visualization 2002, pp. 529--532. [2] Y. Wang, G. Erlebacher, Z. A. Garbow, D. A. Yuen, "Web-Based Service of a Visualization Package 'amira' for the Geosciences", Visual Geosciences, 2003.
Unidata: Community, Science, and Technology; in that order.
NASA Astrophysics Data System (ADS)
Young, J. W.; Ramamurthy, M. K.; Davis, E.
2015-12-01
Unidata's mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation. The Unidata community has grown from around 250 individual participants in the early years to tens of thousands of users in over 150 countries. Today, Unidata's products and services are used on every continent and by every sector of the geoscience enterprise: universities, government agencies, private sector, and other non-governmental organizations. Certain traits and ethos are shared by and common to most successful organizations. They include a healthy organizational culture grounded by some core values and guiding principles. In that environment, there is an implicit awareness of the connection between mission of an organization, its values, and its day-to-day activities, and behaviours of a passionate staff. Distinguishing characteristics include: vigorous engagement of the community served by those organizations backed by strong and active governance, unwavering commitment to seek input and feedback from users, and trust of those users, earned over many years through consistent, dependable, and high-quality service. Meanwhile, changing data volumes and standards, new computing power, and expanding scientific questions sound continue to shape the geoscience community. These issues were the drivers for founding Unidata, a cornerstone data facility, in 1984. Advances in geoscience occur at the junction of community, science, and technology and this submission will feature lessons from Unidata's thirty year history operating at this nexus. Specifically, this presentation will feature guiding principles for the program, governance mechanisms, and approaches for balancing science and technology in a community-driven program.
Digital mapping techniques '00, workshop proceedings - May 17-20, 2000, Lexington, Kentucky
Soller, David R.
2000-01-01
Introduction: The Digital Mapping Techniques '00 (DMT'00) workshop was attended by 99 technical experts from 42 agencies, universities, and private companies, including representatives from 28 state geological surveys (see Appendix A). This workshop was similar in nature to the first three meetings, held in June, 1997, in Lawrence, Kansas (Soller, 1997), in May, 1998, in Champaign, Illinois (Soller, 1998a), and in May, 1999, in Madison, Wisconsin (Soller, 1999). This year's meeting was hosted by the Kentucky Geological Survey, from May 17 to 20, 2000, on the University of Kentucky campus in Lexington. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. When, based on discussions at the workshop, an attendee adopts or modifies a newly learned technique, the workshop clearly has met that objective. Evidence of learning and cooperation among participating agencies continued to be a highlight of the DMT workshops (see example in Soller, 1998b, and various papers in this volume). The meeting's general goal was to help move the state geological surveys and the USGS toward development of more cost-effective, flexible, and useful systems for digital mapping and geographic information systems (GIS) analysis. Through oral and poster presentations and special discussion sessions, emphasis was given to: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) continued development of the National Geologic Map Database; 3) progress toward building a standard geologic map data model; 4) field data-collection systems; and 5) map citation and authorship guidelines. Four representatives of the GIS hardware and software vendor community were invited to participate. The four annual DMT workshops were coordinated by the AASG/USGS Data Capture Working Group, which was formed in August, 1996, to support the Association of American State Geologists and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ncgmp.usgs.gov/ngmdbproject/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed to help the Database, and the State and Federal geological surveys, provide more high-quality digital maps to the public.
The Andean Geotrail (2): An educational project
NASA Astrophysics Data System (ADS)
Galland, O.; Sassier, C.; Vial, M.; Thiberge, P.
2009-12-01
The role of Geosciences in our society is of primary importance. Its implications for humanity relate to major challenges such as climate change, managing energy resources, natural hazard mitigation, and water scarcity. Despite these issues being familiar to specialists, this is in general not the case for the public. In a world, where the impact of human activity is beginning to be seen on the environment, knowledge of the Earth and its history is paramount to make informed decisions that will influence our future. The necessity to educate the global population and raise awareness of Geosciences has led UNESCO to designate 2009 the International Year of the Planet Earth. In the framework of the UNESCO International Year of Planet Earth, we performed an educational project in collaboration with primary, secondary and high schools in France and Norway. Geosciences are not usually studied in schools, but this project allowed more than 600 pupils (from 17 schools) aged 8 to 18 years old to share the geological discoveries of our popular science adventure The Andean Geotrail (see Sassier et al., this session). The main educational goal was to promote Geosciences by illustrating in the field what geology is. Our natural laboratory was the spectacular Andean Cordillera. The secondary goal was to promote careers in geology and highlight their variety by allowing the pupils to meet geologists through portraits of geologists. The teachers of the partner schools used our project as a dynamic complement to their theoretical lessons. To set up this partnership, we obtained the support of the pedagogic supervisors of the French Ministry of National Education. The pedagogical project consisted of three steps: (1) Before the expedition (Oct.-Nov. 2008), we visited the pupils of each partner school to present the project, establish personal contact and engage the pupils in our adventure. (2) During The Andean Geotrail itself (Nov. 2008-Aug. 2009), we continuously documented our visits to spectacular geological localities on our website and blog using essays, articles and photographs (http://georouteandine.blogspot.com). In total, over 9 months, we published 74 blogs, 31 geology articles and 9 portraits of geologists. We targeted our work to complement the national pedagogical programs of the secondary and high schools. During the entire Geotrail, students interacted with us on a weekly basis, via our website and blog, asking specific questions about our recent articles. (3) Following the Geotrail (Sept. to Nov. 2009), we will return to the partner schools to evaluate the pedagogical impact of the educational project on the interest of the students in Earth Sciences. This step is an on-going work. The Andean Geotrail is scheduled to appear at the French Science Festival (Nov. 2009, France), during which we will present a popular science exhibition and public workshop.
Sandia National Laboratories: Exceptional Service in the National Interest
Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density
Summaries of physical research in the geosciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-10-01
The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less
1987-02-25
Modellierung von Kanten bei unregel. Navigation within a building, to be published in IEEE mifliger Rasterung in Bildverarbeitun uand Muster...converted them into equivalent machine cycles in Table 3-1. We took into account of 100 nanosecond 0 - 0, machine cycle time of the MPP. In MPP, NON- VON ...We show the result for the conjugate gradient method in of NON- VON . We assumed that the instructions which carry Table 4-4. The computation of four
1987-02-01
landmark set, and for computing a plan as an ordered list of of recursively executable sub-goals. The key to the search is to use the landmark database...Directed Object Extraction Using a Combined Region and Line Repretrentation, /Voc. of the Workshop on Computer Vision: Representation and Con... computational capability as well, such as the floating point calculations as required in this application . One such PE design which made effort to meet these
1984-06-01
exist for the same item, as opposed to separate budget and fund codes for separate but related items. Multiple pro- cedures and fund codes can oe used...funds. If some funds are marked for multiple years and others must be obligated or outlaid witnin one year, contracting for PDSS tasks must be partitioned...Experience: PDSS requires both varied experience factors in multiple dis- ciplines and the sustaining of a critical mass of experience factors and
NASA Astrophysics Data System (ADS)
Keane, C. M.; Gonzales, L. M.
2010-12-01
The International Union of Geological Sciences, with endorsement by UNESCO, has established a taskforce on global geosciences workforce and has tasked the American Geological Institute to take a lead. Springing from a session on global geosciences at the IGC33 in Oslo, Norway, the taskforce is to address three issues on a global scale: define the geosciences, determine the producers and consumers of geoscientists, and frame the understandings to propose pathways towards improved global capacity building in the geosciences. With the combination of rapid retirements in the developed world, and rapid economic expansion and impact of resource and hazard issues in the developing world, the next 25 years will be a dynamic time for the geosciences. However, to date there has been little more than a cursory sense of who and what the geosciences are globally and whether we will be able to address the varied needs and issues in the developed and the developing worlds. Based on prior IUGS estimates, about 50% of all working geoscientists reside in the Unites States, and the US was also producing about 50% of all new geosciences graduate degrees globally. Work from the first year of the taskforce has elucidated the immense complexity of the issue of defining the geosciences, as it bring is enormous cultural and political frameworks, but also shed light on the status of the geosciences in each country. Likewise, this leads to issues of who is actually producing and consuming geoscience talent, and whether countries are meeting domestic demand, and if not, is external talent available to import. Many US-based assumptions about the role of various countries in the geosciences’ global community of people, namely China and India, appear to have been misplaced. In addition, the migration of geoscientists between countries raised enormous questions about what is nationality and if there is an ideal ‘global geoscientist.’ But more than anything, the taskforce is revealing clear global trends in geosciences education, both at the pre-college and university level and frame the state of health of geosciences education in the United States in a totally new light. But indicators are present that the developing world will likely overtake the developed world in the near future in the production of geoscientists, but a key question is will that fundamentally change the nature of the science given the social, cultural, and educational frameworks that the next global generation brings with them.
Navigating the boundary of science for decision making at the state and local level
NASA Astrophysics Data System (ADS)
Gonzales, L. M.; Wood, C.; Boland, M. A.; Rose, C. A.
2015-12-01
Scientific information should play a vital role in many decision making processes, yet issues incorporating geoscience information often arise due to inherent differences between how scientists and decision makers operate. Decision makers and scientists have different priorities, produce work at different rates, and often lack an understanding of each others' institutional constraints. Boundary organizations, entities that facilitate collaboration and information flow across traditional boundaries such as that between scientists and decision makers, are in a unique position to improve the dialogue between disparate groups. The American Geosciences Institute (AGI), a nonprofit federation of 50 geoscience societies and organizations, is linking the geoscience and decision-making communities through its Critical Issues Program. AGI's Critical Issues program has first-hand experience in improving the transfer of information across the science-decision making boundary, particularly in areas pertaining to water resources and hazards. This presentation will focus on how, by collaborating with organizations representing the decision making and geoscience communities to inform our program development, we have created our three main content types - website, webinar series, and research database - to better meet the needs of the decision-making process. The program presents existing geoscience information in a way that makes the interconnected nature of geoscience topics more easily understood, encourages discussion between the scientific and decision-making communities, and has established a trusted source of impartial geoscience information. These efforts have focused on state and local decision makers—groups that increasingly influence climate and risk-related decisions, yet often lack the resources to access and understand geoscience information.
The pre-college teaching of geosciences in the USA
NASA Astrophysics Data System (ADS)
Stewart, R.
2003-04-01
Most students in the USA learn about the earth in elementary and middle school, with most of the learning in middle schools (students who are 12 to 15 years old). A few students study geosciences in high school (ages 15 to 19). In some states, for example Texas, the high-school courses are being de-emphasized, and very few students take geoscience courses after they are 15 years old. As a result, most high-school graduates know little about such important issues as global warming, air pollution, or water quality. In the USA, the geoscience curriculum is guided by national and state standards for teaching mathematics and science. But the guidance is weak. Curricula are determined essentially by local school boards and teachers with some overview by state governments. For example, the State of Texas requires all students to pass standardized examinations in science at grades 5,10, and 11. The tests are based on the Texas Essential Knowledge and Skills, the state's version of the national standards. The teaching of the geosciences, especially oceanography, is hindered by the weak guidance provided by the national standards. Because of the lack of strong guidance, textbooks include far too much material with very weak ties between the geosciences. As a result, students learn many disconnected facts, not earth system science. Improvements in the teaching of the geosciences requires a clear statement of the important in the geosciences. Why must they be taught? What must be taught? What are the major themes of geoscience research? What is important for all to know?
2005-09-20
Flame volume, and flame length during the HiTAC condition were further studied numerically and systematically. A simple HiTAC flame volume can be...oxygen concentration (stoichiometric ratio) is included, was derived to describe the local influence of buoyancy force along the chemical flame length . It...and low oxygen concentration oxidizer condition. Furthermore, the maximum entrainments along the flame length are estimated. 6. NO emission formed by
ERIC Educational Resources Information Center
Ball, Samuel; And Others
An evaluation of the first year of "The Electric Company" is provided. Volume 1 is comprised of the following chapters: I. Introduction; II. Preparing for the Evaluation (Research Design and Sampling Procedures; Field Operations; The Treatment--the in-school viewing treatment, the at-home viewing treatment, and the content of The…
An Evaluation of Project Learning Tree in British Columbia. Appendices.
ERIC Educational Resources Information Center
Conry, Robert F.; And Others
The volume contains seven appendices (A-G) which accompany the first volume. Appendix A provides a list of project personnel and of teachers who participated in the unit development workshop. Appendix B, composed of six sections, includes the unit lesson plans and teachers' guides used in the field study for grades 3, 5, and 7. The grade materials…
Low-Cost Educational Materials: How to Make, How to Use, How to Adapt. Inventory. Volume II.
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Asian Centre for Educational Innovation for Development.
This volume presents instructions for 52 low-cost and indigenous teaching materials and devices developed during a second series of national workshops held in Bangladesh, Indonesia, the Republic of Korea, Papua New Guinea, Sri Lanka, Thailand, and the Socialist Republic of Viet Nam during 1979/1980, and also during the second Sub-Regional Workshop…
The Best and the Brightest in Geosciences: Broadening Representation in the Field
NASA Astrophysics Data System (ADS)
Myles, L.
2017-12-01
Geoscience research in government agencies and universities across the US is anchored by data collection from field and lab experiments. In these settings, the composition and the culture of the environment can be less welcoming for individuals from groups that are traditionally underrepresented in the geosciences. Ongoing efforts to address diversity and inclusion in the field and lab include top-down approaches that provide support and training for established geoscience leaders and bottom-up approaches that offer research internships and fellowships for students. To achieve success, effective strategies for broadening representation in the field must be developed and shared across the geosciences community to advance scientific innovation and create opportunities for success.
Ethnic differences in geoscience attitudes of college students
NASA Astrophysics Data System (ADS)
Whitney, David J.; Behl, Richard J.; Ambos, Elizabeth L.; Francis, R. Daniel; Holk, Gregory; Larson, Daniel O.; Lee, Christopher T.; Rodrique, Christine M.; Wechsler, Suzanne P.
While a gender balance remains elusive in the geosciences [de Wet et al., 2002], the underrepresentation of ethnic minorities in these fields is at least as great a concern.A number of cultural and social factors have been proposed to explain the poor ethnic minority representation in the geosciences, including limited exposure to nature, deficient academic preparation, inadequate financial resources to pursue higher education, ignorance of career opportunities in the geosciences, insufficient family support, and misconceptions of the field.
Lessons Learned for Recruiting and Retaining Native Hawaiians in the Geosciences
NASA Astrophysics Data System (ADS)
Gibson, B. A.; Brock, L.; Levine, R.; Spencer, L.; Wai, B.; Puniwai, N.
2008-12-01
Many Native Hawaiian and Pacific Island (NHPI) college students are unaware of the majors or career possibilities within geoscience disciplines. This notably can be seen by the low number of NHPI students who graduate with a bachelor's degree in an ocean or Earth science-related field within the University of Hawaii (UH) System. To help address this disparity, the Ka'Imi'Ike Program, which is funded through the Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program at NSF, was started at the University of Hawaii at Manoa to attract and support NHPI students in the geosciences. A key component of the program is the recruiting of NHPI students to disciplines in the geosciences through linking geoscience concepts with their culture and community. This includes a 3-week Explorations in the Geosciences summer institute that introduces incoming freshmen and current UH sophomores to the earth, weather, and ocean sciences via hands-on field and lab experiences. Ka'Imi'Ike also provides limited support for current geoscience majors through scholarships and internship opportunities. Results from student journals and pre- and post- questionnaires given to students during the summer institute have shown the program to be successful in increasing student interest and knowledge of the geoscience disciplines. Demonstrating the links between scientific thought and NHPI culture has been crucial to peaking the students' interest in the geosciences. The results also show that there is a need to include more specifics related to local career options, especially information that can be shared with the students' family and community as our data show that parents play a formidable role in the career path a student chooses. Moreover, in order to provide a more contiguous pipeline of support for NHPI students, Ka'Imi'Ike is beginning to network its students from the summer institute to other programs, such as the C-MORE Scholars Program, which offer undergraduate research experiences in the ocean and earth sciences. Though the Ka'Imi'Ike Program has been quite successful in facilitating NHPI participation in undergraduate research projects, the program is continually evolving by seeking and developing cutting edge approaches to strengthen its recruitment of NHPI into geoscience majors and careers.
Geoscience as an Agent for Change in Higher Education
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Orr, C. H.; Kastens, K.
2016-12-01
As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major, 2) making higher education more equitable by reducing gaps in participation and achievement in STEM; and 3) using liberal education to prepare students to deal with the complexity, diversity and change that characterize our time.
Portrayal of the Geosciences in the New York Times
NASA Astrophysics Data System (ADS)
Wysession, M. E.; Lindstrom, A.
2017-12-01
An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For example, between 2012-2015, the number of articles dealing with energy resources remained roughly constant (22% to 26%), but the number of climate change-related articles grew significantly, going from 6% of all geoscience articles to 27%.
NASA Astrophysics Data System (ADS)
Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.
2009-12-01
According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school administrators and teachers, faculty, and family. It is expected that this experience will generate enthusiasm for learning before entering high school and might lead some of these underrepresented students to pursue their education at UM-D, and possibly for a career in geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tortorelli, J.P.
A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medicalmore » uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.« less
Second International Workshop on Harmonic Oscillators
NASA Technical Reports Server (NTRS)
Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)
1995-01-01
The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.