Sample records for geospatial analysis tools

  1. Results of an Experimental Exploration of Advanced Automated Geospatial Tools: Agility in Complex Planning

    DTIC Science & Technology

    2009-06-01

    AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet

  2. GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2016-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.

  3. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  4. Situational Awareness Geospatial Application (iSAGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sher, Benjamin

    Situational Awareness Geospatial Application (iSAGA) is a geospatial situational awareness software tool that uses an algorithm to extract location data from nearly any internet-based, or custom data source and display it geospatially; allows user-friendly conduct of spatial analysis using custom-developed tools; searches complex Geographic Information System (GIS) databases and accesses high resolution imagery. iSAGA has application at the federal, state and local levels of emergency response, consequence management, law enforcement, emergency operations and other decision makers as a tool to provide complete, visual, situational awareness using data feeds and tools selected by the individual agency or organization. Feeds may bemore » layered and custom tools developed to uniquely suit each subscribing agency or organization. iSAGA may similarly be applied to international agencies and organizations.« less

  5. Temporal geospatial analysis of secondary school students’ examination performance

    NASA Astrophysics Data System (ADS)

    Nik Abd Kadir, ND; Adnan, NA

    2016-06-01

    Malaysia's Ministry of Education has improved the organization of the data to have the geographical information system (GIS) school database. However, no further analysis is done using geospatial analysis tool. Mapping has emerged as a communication tool and becomes effective way to publish the digital and statistical data such as school performance results. The objective of this study is to analyse secondary school student performance of science and mathematics scores of the Sijil Pelajaran Malaysia Examination result in the year 2010 to 2014 for the Kelantan's state schools with the aid of GIS software and geospatial analysis. The school performance according to school grade point average (GPA) from Grade A to Grade G were interpolated and mapped and query analysis using geospatial tools able to be done. This study will be beneficial to the education sector to analyse student performance not only in Kelantan but to the whole Malaysia and this will be a good method to publish in map towards better planning and decision making to prepare young Malaysians for the challenges of education system and performance.

  6. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  7. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  8. Geospatial Service Platform for Education and Research

    NASA Astrophysics Data System (ADS)

    Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.

    2014-04-01

    We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.

  9. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYRDOLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly

    developed by the USDA Agricultural Research Service, the U.S. Environmental Protection

    Agency, the University of Arizona, and the University of Wyoming to automate the

    parame...

  10. From Analysis to Impact: Challenges and Outcomes from Google's Cloud-based Platforms for Analyzing and Leveraging Petapixels of Geospatial Data

    NASA Astrophysics Data System (ADS)

    Thau, D.

    2017-12-01

    For the past seven years, Google has made petabytes of Earth observation data, and the tools to analyze it, freely available to researchers around the world via cloud computing. These data and tools were initially available via Google Earth Engine and are increasingly available on the Google Cloud Platform. We have introduced a number of APIs for both the analysis and presentation of geospatial data that have been successfully used to create impactful datasets and web applications, including studies of global surface water availability, global tree cover change, and crop yield estimation. Each of these projects used the cloud to analyze thousands to millions of Landsat scenes. The APIs support a range of publishing options, from outputting imagery and data for inclusion in papers, to providing tools for full scale web applications that provide analysis tools of their own. Over the course of developing these tools, we have learned a number of lessons about how to build a publicly available cloud platform for geospatial analysis, and about how the characteristics of an API can affect the kinds of impacts a platform can enable. This study will present an overview of how Google Earth Engine works and how Google's geospatial capabilities are extending to Google Cloud Platform. We will provide a number of case studies describing how these platforms, and the data they host, have been leveraged to build impactful decision support tools used by governments, researchers, and other institutions, and we will describe how the available APIs have shaped (or constrained) those tools. [Image Credit: Tyler A. Erickson

  11. Using Geospatial Analysis to Align Little Free Library Locations with Community Literacy Needs

    ERIC Educational Resources Information Center

    Rebori, Marlene K.; Burge, Peter

    2017-01-01

    We used geospatial analysis tools to develop community maps depicting fourth-grade reading proficiency test scores and locations of facilities offering public access to reading materials (i.e., public libraries, elementary schools, and Little Free Libraries). The maps visually highlighted areas with struggling readers and areas without adequate…

  12. Data and Tools | NREL

    Science.gov Websites

    Data and Tools Data and Tools NREL develops data sets, maps, models, and tools for the analysis of , models, and tools in the alphabetical listing. Popular Resources PVWatts Calculator Geospatial Data

  13. The Geoinformatica free and open source software stack

    NASA Astrophysics Data System (ADS)

    Jolma, A.

    2012-04-01

    The Geoinformatica free and open source software (FOSS) stack is based mainly on three established FOSS components, namely GDAL, GTK+, and Perl. GDAL provides access to a very large selection of geospatial data formats and data sources, a generic geospatial data model, and a large collection of geospatial analytical and processing functionality. GTK+ and the Cairo graphics library provide generic graphics and graphical user interface capabilities. Perl is a programming language, for which there is a very large set of FOSS modules for a wide range of purposes and which can be used as an integrative tool for building applications. In the Geoinformatica stack, data storages such as FOSS RDBMS PostgreSQL with its geospatial extension PostGIS can be used below the three above mentioned components. The top layer of Geoinformatica consists of a C library and several Perl modules. The C library comprises a general purpose raster algebra library, hydrological terrain analysis functions, and visualization code. The Perl modules define a generic visualized geospatial data layer and subclasses for raster and vector data and graphs. The hydrological terrain functions are already rather old and they suffer for example from the requirement of in-memory rasters. Newer research conducted using the platform include basic geospatial simulation modeling, visualization of ecological data, linking with a Bayesian network engine for spatial risk assessment in coastal areas, and developing standards-based distributed water resources information systems in Internet. The Geoinformatica stack constitutes a platform for geospatial research, which is targeted towards custom analytical tools, prototyping and linking with external libraries. Writing custom analytical tools is supported by the Perl language and the large collection of tools that are available especially in GDAL and Perl modules. Prototyping is supported by the GTK+ library, the GUI tools, and the support for object-oriented programming in Perl. New feature types, geospatial layer classes, and tools as extensions with specific features can be defined, used, and studied. Linking with external libraries is possible using the Perl foreign function interface tools or with generic tools such as Swig. We are interested in implementing and testing linking Geoinformatica with existing or new more specific hydrological FOSS.

  14. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  15. Geospatial Data Science Research | Geospatial Data Science | NREL

    Science.gov Websites

    , maps, and tools that determine which energy technologies are viable solutions across the globe ) to manipulate, manage, and analyze multidisciplinary geographic and energy data. The GIS includes of applications and visualizations. Analysis Renewable Energy Technical Potential Renewable Energy

  16. Geospatial Technologies and Higher Education in Argentina

    ERIC Educational Resources Information Center

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of…

  17. Data Visualization and Geospatial Tools | Geospatial Data Science | NREL

    Science.gov Websites

    renewable resources are available in a specific areas. General Analysis Renewable Energy Atlas View the geographic distribution of wind, solar, geothermal, hydropower, and biomass resources in the United States . Solar and Wind Energy Resource Assessment (SWERA) Model Access international renewable energy resource

  18. Towards the Geospatial Web: Media Platforms for Managing Geotagged Knowledge Repositories

    NASA Astrophysics Data System (ADS)

    Scharl, Arno

    International media have recognized the visual appeal of geo-browsers such as NASA World Wind and Google Earth, for example, when Web and television coverage on Hurricane Katrina used interactive geospatial projections to illustrate its path and the scale of destruction in August 2005. Yet these early applications only hint at the true potential of geospatial technology to build and maintain virtual communities and to revolutionize the production, distribution and consumption of media products. This chapter investigates this potential by reviewing the literature and discussing the integration of geospatial and semantic reference systems, with an emphasis on extracting geospatial context from unstructured text. A content analysis of news coverage based on a suite of text mining tools (webLyzard) sheds light on the popularity and adoption of geospatial platforms.

  19. Distributed Research Center for Analysis of Regional Climatic Changes and Their Impacts on Environment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.

    2016-12-01

    Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.

  20. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  1. Understanding needs and barriers to using geospatial tools for public health policymaking in China.

    PubMed

    Kim, Dohyeong; Zhang, Yingyuan; Lee, Chang Kil

    2018-05-07

    Despite growing popularity of using geographical information systems and geospatial tools in public health fields, these tools are only rarely implemented in health policy management in China. This study examines the barriers that could prevent policy-makers from applying such tools to actual managerial processes related to public health problems that could be assisted by such approaches, e.g. evidence-based policy-making. A questionnaire-based survey of 127 health-related experts and other stakeholders in China revealed that there is a consensus on the needs and demands for the use of geospatial tools, which shows that there is a more unified opinion on the matter than so far reported. Respondents pointed to lack of communication and collaboration among stakeholders as the most significant barrier to the implementation of geospatial tools. Comparison of survey results to those emanating from a similar study in Bangladesh revealed different priorities concerning the use of geospatial tools between the two countries. In addition, the follow-up in-depth interviews highlighted the political culture specific to China as a critical barrier to adopting new tools in policy development. Other barriers included concerns over the limited awareness of the availability of advanced geospatial tools. Taken together, these findings can facilitate a better understanding among policy-makers and practitioners of the challenges and opportunities for widespread adoption and implementation of a geospatial approach to public health policy-making in China.

  2. Thinking Critically in Space: Toward a Mixed-Methods Geospatial Approach to Education Policy Analysis

    ERIC Educational Resources Information Center

    Yoon, Ee-Seul; Lubienski, Christopher

    2018-01-01

    This paper suggests that synergies can be produced by using geospatial analyses as a bridge between traditional qualitative-quantitative distinctions in education research. While mapping tools have been effective for informing education policy studies, especially in terms of educational access and choice, they have also been underutilized and…

  3. The Sky's the Limit: Integrating Geospatial Tools with Pre-College Youth Education

    ERIC Educational Resources Information Center

    McGee, John; Kirwan, Jeff

    2010-01-01

    Geospatial tools, which include global positioning systems (GPS), geographic information systems (GIS), and remote sensing, are increasingly driving a variety of applications. Local governments and private industry are embracing these tools, and the public is beginning to demand geospatial services. The U.S. Department of Labor (DOL) reported that…

  4. Supporting Timely Humanitarian Assistance/Disaster Relief (HA/DR) Decisions Through Geospatial Intelligence (GEOINT) and Geographical Information Systems (GIS) Tools

    DTIC Science & Technology

    2014-05-22

    attempted to respond to the advances in technology and the growing power of geographical information system (GIS) tools. However, the doctrine...Geospatial intelligence (GEOINT), Geographical information systems (GIS) tools, Humanitarian Assistance/Disaster Relief (HA/DR), 2010 Haiti Earthquake...Humanitarian Assistance/Disaster Relief (HA/DR) Decisions Through Geospatial Intelligence (GEOINT) and Geographical Information Systems (GIS) Tools

  5. Identification of the condition of crops based on geospatial data embedded in graph databases

    NASA Astrophysics Data System (ADS)

    Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.

    2017-07-01

    The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.

  6. Improving the Accessibility and Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tisdale, Matthew; Tisdale, Brian

    2015-01-01

    Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.

  7. Geospatial Data Science Modeling | Geospatial Data Science | NREL

    Science.gov Websites

    Geospatial Data Science Modeling Geospatial Data Science Modeling NREL uses geospatial data science modeling to develop innovative models and tools for energy professionals, project developers, and consumers . Photo of researchers inspecting maps on a large display. Geospatial modeling at NREL often produces the

  8. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabian, Frank V

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previouslymore » used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated infrastructure. The digital globes also provide highly accurate terrain mapping for better geospatial context and allow detailed 3-D perspectives of all sites or areas of interest. 3-D modeling software (i.e., Google's SketchUp6 newly available in 2007) when used in conjunction with these digital globes can significantly enhance individual building characterization and visualization (including interiors), allowing for better assessments including walk-arounds or fly-arounds and perhaps better decision making on multiple levels (e.g., the best placement for International Atomic Energy Agency (IAEA) video monitoring cameras).« less

  9. The Adversarial Route Analysis Tool: A Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casson, William H. Jr.

    2012-08-02

    The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.

  10. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    USGS Publications Warehouse

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  11. An Environmental Decision Support System for Spatial Assessment and Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates environmental assessment tools for effective problem-solving. The software integrates modules for GIS, visualization, geospatial analysis, statistical analysis, human health and ecolog...

  12. Geospatial methods and data analysis for assessing distribution of grazing livestock

    USDA-ARS?s Scientific Manuscript database

    Free-ranging livestock research must begin with a well conceived problem statement and employ appropriate data acquisition tools and analytical techniques to accomplish the research objective. These requirements are especially critical in addressing animal distribution. Tools and statistics used t...

  13. Teaching Tectonics to Undergraduates with Web GIS

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  14. The Geospatial Web and Local Geographical Education

    ERIC Educational Resources Information Center

    Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.

    2010-01-01

    Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…

  15. GEOSPATIAL QA

    EPA Science Inventory

    Geospatial Science is increasingly becoming an important tool in making Agency decisions. Quality Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...

  16. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  17. Geospatial Analysis | Energy Analysis | NREL

    Science.gov Websites

    products and tools. Image of a triangle divided into sections called Market, Economic, Technical, and Featured Study U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis summarizes the achievable energy generation, or technical potential, of specific renewable energy technologies given system

  18. ADDING GLOBAL SOILS DATA TO THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL (AGWA)

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Tool (AGWA) is a GIS-based hydrologic modeling tool that is available as an extension for ArcView 3.x from the USDA-ARS Southwest Watershed Research Center (www.tucson.ars.ag.gov/agwa). AGWA is designed to facilitate the assessment of...

  19. GEOSPATIAL QUALITY COUNCIL

    EPA Science Inventory

    Geospatial Science is increasingly becoming an important tool in making Agency decisions. QualIty Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...

  20. AUTOMATED GEOSPATICAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOICAL MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execut...

  1. An exploration of counterfeit medicine surveillance strategies guided by geospatial analysis: lessons learned from counterfeit Avastin detection in the US drug supply chain.

    PubMed

    Cuomo, Raphael E; Mackey, Tim K

    2014-12-02

    To explore healthcare policy and system improvements that would more proactively respond to future penetration of counterfeit cancer medications in the USA drug supply chain using geospatial analysis. A statistical and geospatial analysis of areas that received notices from the Food and Drug Administration (FDA) about the possibility of counterfeit Avastin penetrating the US drug supply chain. Data from FDA warning notices were compared to data from 44 demographic variables available from the US Census Bureau via correlation, means testing and geospatial visualisation. Results were interpreted in light of existing literature in order to recommend improvements to surveillance of counterfeit medicines. This study analysed 791 distinct healthcare provider addresses that received FDA warning notices across 30,431 zip codes in the USA. Statistical outputs were Pearson's correlation coefficients and t values. Geospatial outputs were cartographic visualisations. These data were used to generate the overarching study outcome, which was a recommendation for a strategy for drug safety surveillance congruent with existing literature on counterfeit medication. Zip codes with greater numbers of individuals age 65+ and greater numbers of ethnic white individuals were most correlated with receipt of a counterfeit Avastin notice. Geospatial visualisations designed in conjunction with statistical analysis of demographic variables appeared more capable of suggesting areas and populations that may be at risk for undetected counterfeit Avastin penetration. This study suggests that dual incorporation of statistical and geospatial analysis in surveillance of counterfeit medicine may be helpful in guiding efforts to prevent, detect and visualise counterfeit medicines penetrations in the US drug supply chain and other settings. Importantly, the information generated by these analyses could be utilised to identify at-risk populations associated with demographic characteristics. Stakeholders should explore these results as another tool to improve on counterfeit medicine surveillance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Geospatial Data Science Data and Tools | Geospatial Data Science | NREL

    Science.gov Websites

    help sizing a residential photovoltaic system? Want to know what renewable energy resources are science tools help users apply NREL's geographic information system expertise to their own projects. Need

  3. Automated Geospatial Watershed Assessment Tool (AGWA): Applications for Fire Management and Assessment.

    EPA Science Inventory

    New tools and functionality have been incorporated into the Automated Geospatial Watershed Assessment Tool (AGWA) to assess the impacts of wildland fire on runoff and erosion. AGWA (see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface joi...

  4. Your Personal Analysis Toolkit - An Open Source Solution

    NASA Astrophysics Data System (ADS)

    Mitchell, T.

    2009-12-01

    Open source software is commonly known for its web browsers, word processors and programming languages. However, there is a vast array of open source software focused on geographic information management and geospatial application building in general. As geo-professionals, having easy access to tools for our jobs is crucial. Open source software provides the opportunity to add a tool to your tool belt and carry it with you for your entire career - with no license fees, a supportive community and the opportunity to test, adopt and upgrade at your own pace. OSGeo is a US registered non-profit representing more than a dozen mature geospatial data management applications and programming resources. Tools cover areas such as desktop GIS, web-based mapping frameworks, metadata cataloging, spatial database analysis, image processing and more. Learn about some of these tools as they apply to AGU members, as well as how you can join OSGeo and its members in getting the job done with powerful open source tools. If you haven't heard of OSSIM, MapServer, OpenLayers, PostGIS, GRASS GIS or the many other projects under our umbrella - then you need to hear this talk. Invest in yourself - use open source!

  5. Assessing Embedded Geospatial Student Learning Outcomes

    ERIC Educational Resources Information Center

    Carr, John David

    2012-01-01

    Geospatial tools and technologies have become core competencies for natural resource professionals due to the monitoring, modeling, and mapping capabilities they provide. To prepare students with needed background, geospatial instructional activities were integrated across Forest Management; Natural Resources; Fisheries, Wildlife, &…

  6. Improved satellite and geospatial tools for pipeline operator decision support systems.

    DOT National Transportation Integrated Search

    2017-01-06

    Under Cooperative Agreement No. OASRTRS-14-H-CAL, California Polytechnic State University San Luis Obispo (Cal Poly), partnered with C-CORE, MDA, PRCI, and Electricore to design and develop improved satellite and geospatial tools for pipeline operato...

  7. Automated Geospatial Watershed Assessment (AGWA) 3.0 Software Tool

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool has been developed under an interagency research agreement between the U.S. Environmental Protection Agency, Office of Research and Development, and the U.S. Department of Agriculture, Agricultural Research Service. AGWA i...

  8. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    NASA Astrophysics Data System (ADS)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used to create customized curriculum integrating geospatial science and technology into geoscience programs.

  9. Geospatial tools for data-sharing : case studies of select transportation agencies

    DOT National Transportation Integrated Search

    2014-09-01

    This report provides case studies from 23 State Departments of Transportation (DOTs) and others that are developing, using, and maintaining a variety of geospatial applications and tools to support GDC goals. The report also summarizes the state of t...

  10. Automated Geospatial Watershed Assessment Tool (AGWA): Applications for Assessing the Impact of Urban Growth and the use of Low Impact Development Practices.

    EPA Science Inventory

    New tools and functionality have been incorporated into the Automated Geospatial Watershed Assessment Tool (AGWA) to assess the impact of urban growth and evaluate the effects of low impact development (LID) practices. AGWA (see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov...

  11. AGWA: The Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  12. Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  13. Data for Renewable Energy Planning, Policy, and Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L

    Reliable, robust, and validated data are critical for informed planning, policy development, and investment in the clean energy sector. The Renewable Energy (RE) Explorer was developed to support data-driven renewable energy analysis that can inform key renewable energy decisions globally. This document presents the types of geospatial and other data at the core of renewable energy analysis and decision making. Individual data sets used to inform decisions vary in relation to spatial and temporal resolution, quality, and overall usefulness. From Data to Decisions, a complementary geospatial data and analysis decision guide, provides an in-depth view of these and other considerationsmore » to enable data-driven planning, policymaking, and investment. Data support a wide variety of renewable energy analyses and decisions, including technical and economic potential assessment, renewable energy zone analysis, grid integration, risk and resiliency identification, electrification, and distributed solar photovoltaic potential. This fact sheet provides information on the types of data that are important for renewable energy decision making using the RE Data Explorer or similar types of geospatial analysis tools.« less

  14. Automated Geospatial Watershed Assessment Tool (AGWA)

    USDA-ARS?s Scientific Manuscript database

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University ...

  15. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED TOOL FOR WATERSHED ASSESSMENT AND PLANNING

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  16. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA Science Inventory

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  17. Multimedia Exploratory Data Analysis for Geospatial Data Mining: The Case for Augmented Seriation.

    ERIC Educational Resources Information Center

    Gluck, Myke

    2001-01-01

    Reviews the role of exploratory data analysis (EDA) for spatial data mining and presents a case study addressing environmental risk assessments in New York State to illustrate the feasibility and usability of augmenting seriation for spatial data analysis. Describes augmentation with multimedia tools to understand relationships among spatial,…

  18. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    NASA Astrophysics Data System (ADS)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and Automated Rotational Center Hurricane Eye Retrieval (ARCHER) tools. In this presentation, we will compare the enabling technologies we tested and discuss which ones we selected for integration into the TCIS' data analysis tool architecture. We will also show how these techniques have been automated to provide access to NRT data through our analysis tools.

  19. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    NASA Astrophysics Data System (ADS)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  20. Transforming the History Curriculum with Geospatial Tools

    ERIC Educational Resources Information Center

    Hammond, Thomas

    2014-01-01

    Martorella's "sleeping giant" is awakening via geospatial tools. As this technology is adopted, it will transform the history curriculum in three ways: deepening curricular content, making conceptual frameworks more prominent, and increasing connections to local history. These changes may not be profound and they may not be sudden,…

  1. Strategizing Teacher Professional Development for Classroom Uses of Geospatial Data and Tools

    ERIC Educational Resources Information Center

    Zalles, Daniel R.; Manitakos, James

    2016-01-01

    Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), a 4.5-year National Science Foundation funded project, explored the strategies that stimulate teacher commitment to the project's driving innovation: having students use geospatial information technology (GIT) to learn about weather, climate,…

  2. Fostering 21st Century Learning with Geospatial Technologies

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2011-01-01

    Global positioning systems (GPS) receivers and other geospatial tools can help teachers create engaging, hands-on activities in all content areas. This article provides a rationale for using geospatial technologies in the middle grades and describes classroom-tested activities in English language arts, science, mathematics, and social studies.…

  3. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  4. Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Nigro, Joseph; Gary, Mark; Maidment, David; Hooper, Richard

    2011-01-01

    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical point

  5. School Mapping and Geospatial Analysis of the Schools in Jasra Development Block of India

    NASA Astrophysics Data System (ADS)

    Agrawal, S.; Gupta, R. D.

    2016-06-01

    GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE) and Sarv Sikha Abhiyaan (SSA) programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.

  6. EnviroAtlas: A New Geospatial Tool to Foster Ecosystem Services Science and Resource Management

    EPA Science Inventory

    In this article we present EnviroAtlas, a web-based, open access tool that seeks to meet a range of needs by bringing together environmental, economic and demographic data in an ecosystem services framework. Within EnviroAtlas, there are three primary types of geospatial data: r...

  7. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGICAL MODELING TOOL FOR WATERSHED MANAGEMENT AND LANDSCAPE ASSESSMENT

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (http://www.epa.gov/nerlesd1/land-sci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, and the University ...

  8. The National 3-D Geospatial Information Web-Based Service of Korea

    NASA Astrophysics Data System (ADS)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of spatial information industry of Korea is expected in the near future.

  9. Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A Report on the Development and Extension of the George Mason University Geocrowdsourcing Testbed

    DTIC Science & Technology

    2014-09-01

    Approved for public release; distribution is unlimited. Prepared for Geospatial Research Laboratory U.S. Army Engineer Research and Development...Center U.S. Army Corps of Engineers Under Data Level Enterprise Tools Monitored by Geospatial Research Laboratory 7701 Telegraph Road...Engineer Research and Development Center (ERDC) ERDC Geospatial Research Laboratory 7701 Telegraph Road 11. SPONSOR/MONITOR’S REPORT Alexandria, VA 22135

  10. The EnviroAtlas: Connecting ecosystems, people, and well-being

    EPA Science Inventory

    The EnviroAtlas is a web-based application containing a collection of geospatial data, analysis tools, and interpretive information focused on ecosystem goods and services. Ecosystem goods and services are essentially defined as the benefits that humans receive from nature and en...

  11. MapFactory - Towards a mapping design pattern for big geospatial data

    NASA Astrophysics Data System (ADS)

    Rautenbach, Victoria; Coetzee, Serena

    2018-05-01

    With big geospatial data emerging, cartographers and geographic information scientists have to find new ways of dealing with the volume, variety, velocity, and veracity (4Vs) of the data. This requires the development of tools that allow processing, filtering, analysing, and visualising of big data through multidisciplinary collaboration. In this paper, we present the MapFactory design pattern that will be used for the creation of different maps according to the (input) design specification for big geospatial data. The design specification is based on elements from ISO19115-1:2014 Geographic information - Metadata - Part 1: Fundamentals that would guide the design and development of the map or set of maps to be produced. The results of the exploratory research suggest that the MapFactory design pattern will help with software reuse and communication. The MapFactory design pattern will aid software developers to build the tools that are required to automate map making with big geospatial data. The resulting maps would assist cartographers and others to make sense of big geospatial data.

  12. RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L

    The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.

  13. Renewable Energy Data Explorer User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Grue, Nicholas W; Tran, July

    This publication provides a user guide for the Renewable Energy Data Explorer and technical potential tool within the Explorer. The Renewable Energy Data Explorer is a dynamic, web-based geospatial analysis tool that facilitates renewable energy decision-making, investment, and deployment. It brings together renewable energy resource data and other modeled or measured geographic information system (GIS) layers, including land use, weather, environmental, population density, administrative, and grid data.

  14. Geospatial Information System Capability Maturity Models

    DOT National Transportation Integrated Search

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  15. Metadata Wizard: an easy-to-use tool for creating FGDC-CSDGM metadata for geospatial datasets in ESRI ArcGIS Desktop

    USGS Publications Warehouse

    Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.

    2014-01-01

    Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/www.sciencebase.gov/metadatawizard).

  16. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  17. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States. (UNH)

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  18. Web-Based Geospatial Tools to Address Hazard Mitigation, Natural Resource Management, and Other Societal Issues

    USGS Publications Warehouse

    Hearn,, Paul P.

    2009-01-01

    Federal, State, and local government agencies in the United States face a broad range of issues on a daily basis. Among these are natural hazard mitigation, homeland security, emergency response, economic and community development, water supply, and health and safety services. The U.S. Geological Survey (USGS) helps decision makers address these issues by providing natural hazard assessments, information on energy, mineral, water and biological resources, maps, and other geospatial information. Increasingly, decision makers at all levels are challenged not by the lack of information, but by the absence of effective tools to synthesize the large volume of data available, and to utilize the data to frame policy options in a straightforward and understandable manner. While geographic information system (GIS) technology has been widely applied to this end, systems with the necessary analytical power have been usable only by trained operators. The USGS is addressing the need for more accessible, manageable data tools by developing a suite of Web-based geospatial applications that will incorporate USGS and cooperating partner data into the decision making process for a variety of critical issues. Examples of Web-based geospatial tools being used to address societal issues follow.

  19. Conference on Geospatial Approaches to Cancer Control and Population Sciences

    Cancer.gov

    The purpose of this conference is to bring together a community of researchers across the cancer control continuum using geospatial tools, models and approaches to address cancer prevention and control.

  20. Geospatial Information is the Cornerstone of Effective Hazards Response

    USGS Publications Warehouse

    Newell, Mark

    2008-01-01

    Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT is a standing team that is available during all hazard events and is on high alert during the hurricane season from June through November each year. To track all of the requirements and data acquisitions processed through the team, the GIRT will use the new Emergency Request Track (ER Track) tool. Currently, the ER Track is only available to USGS personnel.

  1. Planetary-Scale Geospatial Data Analysis Techniques in Google's Earth Engine Platform (Invited)

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2013-12-01

    Geoscientists have more and more access to new tools for large-scale computing. With any tool, some tasks are easy and other tasks hard. It is natural to look to new computing platforms to increase the scale and efficiency of existing techniques, but there is a more exiting opportunity to discover and develop a new vocabulary of fundamental analysis idioms that are made easy and effective by these new tools. Google's Earth Engine platform is a cloud computing environment for earth data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog includes a nearly complete archive of scenes from Landsat 4, 5, 7, and 8 that have been processed by the USGS, as well as a wide variety of other remotely-sensed and ancillary data products. Earth Engine supports a just-in-time computation model that enables real-time preview during algorithm development and debugging as well as during experimental data analysis and open-ended data exploration. Data processing operations are performed in parallel across many computers in Google's datacenters. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, resampling, and associating image metadata with pixel data. Early applications of Earth Engine have included the development of Google's global cloud-free fifteen-meter base map and global multi-decadal time-lapse animations, as well as numerous large and small experimental analyses by scientists from a range of academic, government, and non-governmental institutions, working in a wide variety of application areas including forestry, agriculture, urban mapping, and species habitat modeling. Patterns in the successes and failures of these early efforts have begun to emerge, sketching the outlines of a new set of simple and effective approaches to geospatial data analysis.

  2. Multi-focused geospatial analysis using probes.

    PubMed

    Butkiewicz, Thomas; Dou, Wenwen; Wartell, Zachary; Ribarsky, William; Chang, Remco

    2008-01-01

    Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within individual probe interfaces, which depict the local data in user-defined regions-of-interest. Our probe concept can be incorporated into a variety of geospatial visualizations to empower users with the ability to observe, coordinate, and compare data across multiple local regions. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. We illustrate the effectiveness of our technique over traditional interfaces by incorporating it within three existing geospatial visualization systems: an agent-based social simulation, a census data exploration tool, and an 3D GIS environment for analyzing urban change over time. In each case, the probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users.

  3. GIS and paleoanthropology: incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution.

    PubMed

    Anemone, R L; Conroy, G C; Emerson, C W

    2011-01-01

    The incorporation of research tools and analytical approaches from the geospatial sciences is a welcome trend for the study of primate and human evolution. The use of remote sensing (RS) imagery and geographic information systems (GIS) allows vertebrate paleontologists, paleoanthropologists, and functional morphologists to study fossil localities, landscapes, and individual specimens in new and innovative ways that recognize and analyze the spatial nature of much paleoanthropological data. Whether one is interested in locating and mapping fossiliferous rock units in the field, creating a searchable and georeferenced database to catalog fossil localities and specimens, or studying the functional morphology of fossil teeth, bones, or artifacts, the new geospatial sciences provide an essential element in modern paleoanthropological inquiry. In this article we review recent successful applications of RS and GIS within paleoanthropology and related fields and argue for the importance of these methods for the study of human evolution in the twenty first century. We argue that the time has come for inclusion of geospatial specialists in all interdisciplinary field research in paleoanthropology, and suggest some promising areas of development and application of the methods of geospatial science to the science of human evolution. Copyright © 2011 Wiley Periodicals, Inc.

  4. Automated Geospatial Watershed Assessment

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a Geographic Information Systems (GIS) interface jointly developed by the U.S. Environmental Protection Agency, the U.S. Department of Agriculture (USDA) Agricultural Research Service, and the University of Arizona to a...

  5. A Land-Use-Planning Simulation Using Google Earth

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Cirucci, Lori

    2009-01-01

    Google Earth (GE) is proving to be a valuable tool in the science classroom for understanding the environment and making responsible environmental decisions (Bodzin 2008). GE provides learners with a dynamic mapping experience using a simple interface with a limited range of functions. This interface makes geospatial analysis accessible and…

  6. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool.

    PubMed

    Bachman, Steven; Moat, Justin; Hill, Andrew W; de Torre, Javier; Scott, Ben

    2011-01-01

    GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned.

  7. Building asynchronous geospatial processing workflows with web services

    NASA Astrophysics Data System (ADS)

    Zhao, Peisheng; Di, Liping; Yu, Genong

    2012-02-01

    Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.

  8. Open-source web-enabled data management, analyses, and visualization of very large data in geosciences using Jupyter, Apache Spark, and community tools

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.

    2017-12-01

    Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook (https://github.com/OpenGeoscience/geonotebook) is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS (https://github.com/OpenGeoscience/geojs) to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva ((https://github.com/kitware/minerva) is a geospatial application that is built on top of open-source web-based data management system Girder (https://github.com/girder/girder) which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https://github.com/OpenDataAnalytics/gaia). In this presentation, we will discuss core features of each of these tools and will present lessons learned on handling large data in the context of data management, analyses and visualization.

  9. Regulating outdoor advertisement boards; employing spatial decision support system to control urban visual pollution

    NASA Astrophysics Data System (ADS)

    Wakil, K.; Hussnain, MQ; Tahir, A.; Naeem, M. A.

    2016-06-01

    Unmanaged placement, size, location, structure and contents of outdoor advertisement boards have resulted in severe urban visual pollution and deterioration of the socio-physical living environment in urban centres of Pakistan. As per the regulatory instruments, the approval decision for a new advertisement installation is supposed to be based on the locational density of existing boards and their proximity or remoteness to certain land- uses. In cities, where regulatory tools for the control of advertisement boards exist, responsible authorities are handicapped in effective implementation due to the absence of geospatial analysis capacity. This study presents the development of a spatial decision support system (SDSS) for regularization of advertisement boards in terms of their location and placement. The knowledge module of the proposed SDSS is based on provisions and restrictions prescribed in regulatory documents. While the user interface allows visualization and scenario evaluation to understand if the new board will affect existing linear density on a particular road and if it violates any buffer restrictions around a particular land use. Technically the structure of the proposed SDSS is a web-based solution which includes open geospatial tools such as OpenGeo Suite, GeoExt, PostgreSQL, and PHP. It uses three key data sets including road network, locations of existing billboards and building parcels with land use information to perform the analysis. Locational suitability has been calculated using pairwise comparison through analytical hierarchy process (AHP) and weighted linear combination (WLC). Our results indicate that open geospatial tools can be helpful in developing an SDSS which can assist solving space related iterative decision challenges on outdoor advertisements. Employing such a system will result in effective implementation of regulations resulting in visual harmony and aesthetic improvement in urban communities.

  10. Geospatial Data Science Analysis | Geospatial Data Science | NREL

    Science.gov Websites

    different levels of technology maturity. Photo of a man taking field measurements. Geospatial analysis energy for different technologies across the nation? Featured Analysis Products Renewable Energy

  11. Publications - DDS 9 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Surveys Digital Data Series 9, http://doi.org/10.14509/shoreline. http://doi.org/10.14509/29504 positions in the Alaska shoreline change tool, 11 p. Digital Geospatial Data Digital Geospatial Data Emmonak

  12. Mapping a Difference: The Power of Geospatial Visualization

    NASA Astrophysics Data System (ADS)

    Kolvoord, B.

    2015-12-01

    Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.

  13. Distributed geospatial model sharing based on open interoperability standards

    USGS Publications Warehouse

    Feng, Min; Liu, Shuguang; Euliss, Ned H.; Fang, Yin

    2009-01-01

    Numerous geospatial computational models have been developed based on sound principles and published in journals or presented in conferences. However modelers have made few advances in the development of computable modules that facilitate sharing during model development or utilization. Constraints hampering development of model sharing technology includes limitations on computing, storage, and connectivity; traditional stand-alone and closed network systems cannot fully support sharing and integrating geospatial models. To address this need, we have identified methods for sharing geospatial computational models using Service Oriented Architecture (SOA) techniques and open geospatial standards. The service-oriented model sharing service is accessible using any tools or systems compliant with open geospatial standards, making it possible to utilize vast scientific resources available from around the world to solve highly sophisticated application problems. The methods also allow model services to be empowered by diverse computational devices and technologies, such as portable devices and GRID computing infrastructures. Based on the generic and abstract operations and data structures required for Web Processing Service (WPS) standards, we developed an interactive interface for model sharing to help reduce interoperability problems for model use. Geospatial computational models are shared on model services, where the computational processes provided by models can be accessed through tools and systems compliant with WPS. We developed a platform to help modelers publish individual models in a simplified and efficient way. Finally, we illustrate our technique using wetland hydrological models we developed for the prairie pothole region of North America.

  14. Nick Grue | NREL

    Science.gov Websites

    geospatial data analysis using parallel processing High performance computing Renewable resource technical potential and supply curve analysis Spatial database utilization Rapid analysis of large geospatial datasets energy and geospatial analysis products Research Interests Rapid, web-based renewable resource analysis

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Ranjit; Wu, Grace

    The MapRE (Multi-criteria Analysis for Planning Renewable Energy) GIS (Geographic Information Systems) Tools are a set of ArcGIS tools to a) conduct site suitability analysis for wind and solar resources using inclusion and exclusion criteria, and create resource maps, b) create project opportunity areas and compute various attributes such as cost, distances to existing and planned infrastructure. and environmental impact factors; and c) calculate and update various attributes for already processed renewable energy zones. In addition, MapRE data sets are geospatial data of renewable energy project opportunity areas and zones with pre-calculated attributes for several countries. These tools and datamore » are available at mapre.lbl.gov.« less

  16. Geospatial Technology Strategic Plan 1997-2000

    USGS Publications Warehouse

    D'Erchia, Frank; D'Erchia, Terry D.; Getter, James; McNiff, Marcia; Root, Ralph; Stitt, Susan; White, Barbara

    1997-01-01

    Executive Summary -- Geospatial technology applications have been identified in many U.S. Geological Survey Biological Resources Division (BRD) proposals for grants awarded through internal and partnership programs. Because geospatial data and tools have become more sophisticated, accessible, and easy to use, BRD scientists frequently are using these tools and capabilities to enhance a broad spectrum of research activities. Bruce Babbitt, Secretary of the Interior, has acknowledged--and lauded--the important role of geospatial technology in natural resources management. In his keynote address to more than 5,500 people representing 87 countries at the Environmental Systems Research Institute Annual Conference (May 21, 1996), Secretary Babbitt stated, '. . .GIS [geographic information systems], if properly used, can provide a lot more than sets of data. Used effectively, it can help stakeholders to bring consensus out of conflict. And it can, by providing information, empower the participants to find new solutions to their problems.' This Geospatial Technology Strategic Plan addresses the use and application of geographic information systems, remote sensing, satellite positioning systems, image processing, and telemetry; describes methods of meeting national plans relating to geospatial data development, management, and serving; and provides guidance for sharing expertise and information. Goals are identified along with guidelines that focus on data sharing, training, and technology transfer. To measure success, critical performance indicators are included. The ability of the BRD to use and apply geospatial technology across all disciplines will greatly depend upon its success in transferring the technology to field biologists and researchers. The Geospatial Technology Strategic Planning Development Team coordinated and produced this document in the spirit of this premise. Individual Center and Program managers have the responsibility to implement the Strategic Plan by working within the policy and guidelines stated herein.

  17. GeoNotebook: Browser based Interactive analysis and visualization workflow for very large climate and geospatial datasets

    NASA Astrophysics Data System (ADS)

    Ozturk, D.; Chaudhary, A.; Votava, P.; Kotfila, C.

    2016-12-01

    Jointly developed by Kitware and NASA Ames, GeoNotebook is an open source tool designed to give the maximum amount of flexibility to analysts, while dramatically simplifying the process of exploring geospatially indexed datasets. Packages like Fiona (backed by GDAL), Shapely, Descartes, Geopandas, and PySAL provide a stack of technologies for reading, transforming, and analyzing geospatial data. Combined with the Jupyter notebook and libraries like matplotlib/Basemap it is possible to generate detailed geospatial visualizations. Unfortunately, visualizations generated is either static or does not perform well for very large datasets. Also, this setup requires a great deal of boilerplate code to create and maintain. Other extensions exist to remedy these problems, but they provide a separate map for each input cell and do not support map interactions that feed back into the python environment. To support interactive data exploration and visualization on large datasets we have developed an extension to the Jupyter notebook that provides a single dynamic map that can be managed from the Python environment, and that can communicate back with a server which can perform operations like data subsetting on a cloud-based cluster.

  18. Installation Mapping Enables Many Missions: The Benefits of and Barriers to Sharing Geospatial Data Assets

    DTIC Science & Technology

    2007-01-01

    software applications and rely on the installations to supply them with the basic I&E geospatial data - sets for those applications. Such...spatial data in geospatially based tools to help track military supplies and materials all over the world. For instance, SDDCTEA developed IRRIS, a...regional offices or individual installations to supply the data and perform QA/QC in the process. The IVT program office worked with the installations and

  19. Automated Geospatial Watershed Assessment (AGWA) Documentation Version 2.0

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Http://www.epa.gov/nerlesd1/landsci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, University of Arizon...

  20. Increasing the availability and usability of terrestrial ecology data through geospatial Web services and visualization tools (Invited)

    NASA Astrophysics Data System (ADS)

    Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Wei, Y.

    2010-12-01

    Terrestrial ecology data sets are produced from diverse data sources such as model output, field data collection, laboratory analysis and remote sensing observation. These data sets can be created, distributed, and consumed in diverse ways as well. However, this diversity can hinder the usability of the data, and limit data users’ abilities to validate and reuse data for science and application purposes. Geospatial web services, such as those described in this paper, are an important means of reducing this burden. Terrestrial ecology researchers generally create the data sets in diverse file formats, with file and data structures tailored to the specific needs of their project, possibly as tabular data, geospatial images, or documentation in a report. Data centers may reformat the data to an archive-stable format and distribute the data sets through one or more protocols, such as FTP, email, and WWW. Because of the diverse data preparation, delivery, and usage patterns, users have to invest time and resources to bring the data into the format and structure most useful for their analysis. This time-consuming data preparation process shifts valuable resources from data analysis to data assembly. To address these issues, the ORNL DAAC, a NASA-sponsored terrestrial ecology data center, has utilized geospatial Web service technology, such as Open Geospatial Consortium (OGC) Web Map Service (WMS) and OGC Web Coverage Service (WCS) standards, to increase the usability and availability of terrestrial ecology data sets. Data sets are standardized into non-proprietary file formats and distributed through OGC Web Service standards. OGC Web services allow the ORNL DAAC to store data sets in a single format and distribute them in multiple ways and formats. Registering the OGC Web services through search catalogues and other spatial data tools allows for publicizing the data sets and makes them more available across the Internet. The ORNL DAAC has also created a Web-based graphical user interface called Spatial Data Access Tool (SDAT) that utilizes OGC Web services standards and allows data distribution and consumption for users not familiar with OGC standards. SDAT also allows for users to visualize the data set prior to download. Google Earth visualizations of the data set are also provided through SDAT. The use of OGC Web service standards at the ORNL DAAC has enabled an increase in data consumption. In one case, a data set had ~10 fold increase in download through OGC Web service in comparison to the conventional FTP and WWW method of access. The increase in download suggests that users are not only finding the data sets they need but also able to consume them readily in the format they need.

  1. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.

  2. Interactive Visualization and Analysis of Geospatial Data Sets - TrikeND-iGlobe

    NASA Astrophysics Data System (ADS)

    Rosebrock, Uwe; Hogan, Patrick; Chandola, Varun

    2013-04-01

    The visualization of scientific datasets is becoming an ever-increasing challenge as advances in computing technologies have enabled scientists to build high resolution climate models that have produced petabytes of climate data. To interrogate and analyze these large datasets in real-time is a task that pushes the boundaries of computing hardware and software. But integration of climate datasets with geospatial data requires considerable amount of effort and close familiarity of various data formats and projection systems, which has prevented widespread utilization outside of climate community. TrikeND-iGlobe is a sophisticated software tool that bridges this gap, allows easy integration of climate datasets with geospatial datasets and provides sophisticated visualization and analysis capabilities. The objective for TrikeND-iGlobe is the continued building of an open source 4D virtual globe application using NASA World Wind technology that integrates analysis of climate model outputs with remote sensing observations as well as demographic and environmental data sets. This will facilitate a better understanding of global and regional phenomenon, and the impact analysis of climate extreme events. The critical aim is real-time interactive interrogation. At the data centric level the primary aim is to enable the user to interact with the data in real-time for the purpose of analysis - locally or remotely. TrikeND-iGlobe provides the basis for the incorporation of modular tools that provide extended interactions with the data, including sub-setting, aggregation, re-shaping, time series analysis methods and animation to produce publication-quality imagery. TrikeND-iGlobe may be run locally or can be accessed via a web interface supported by high-performance visualization compute nodes placed close to the data. It supports visualizing heterogeneous data formats: traditional geospatial datasets along with scientific data sets with geographic coordinates (NetCDF, HDF, etc.). It also supports multiple data access mechanisms, including HTTP, FTP, WMS, WCS, and Thredds Data Server (for NetCDF data and for scientific data, TrikeND-iGlobe supports various visualization capabilities, including animations, vector field visualization, etc. TrikeND-iGlobe is a collaborative open-source project, contributors include NASA (ARC-PX), ORNL (Oakridge National Laboratories), Unidata, Kansas University, CSIRO CMAR Australia and Geoscience Australia.

  3. Public health, GIS, and the internet.

    PubMed

    Croner, Charles M

    2003-01-01

    Internet access and use of georeferenced public health information for GIS application will be an important and exciting development for the nation's Department of Health and Human Services and other health agencies in this new millennium. Technological progress toward public health geospatial data integration, analysis, and visualization of space-time events using the Web portends eventual robust use of GIS by public health and other sectors of the economy. Increasing Web resources from distributed spatial data portals and global geospatial libraries, and a growing suite of Web integration tools, will provide new opportunities to advance disease surveillance, control, and prevention, and insure public access and community empowerment in public health decision making. Emerging supercomputing, data mining, compression, and transmission technologies will play increasingly critical roles in national emergency, catastrophic planning and response, and risk management. Web-enabled public health GIS will be guided by Federal Geographic Data Committee spatial metadata, OpenGIS Web interoperability, and GML/XML geospatial Web content standards. Public health will become a responsive and integral part of the National Spatial Data Infrastructure.

  4. The geospatial modeling interface (GMI) framework for deploying and assessing environmental models

    USDA-ARS?s Scientific Manuscript database

    Geographical information systems (GIS) software packages have been used for close to three decades as analytical tools in environmental management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of ful...

  5. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    NASA Astrophysics Data System (ADS)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources at one place. The study indicates that internet GIS, developed using advanced technologies, provides valuable education potential to users in hydrology and irrigation engineering and suggests that such a system can support advanced hydrological data access and analysis tools to improve utility of data in operations. Keywords: Hydrological Information System, NebHydro, Water Management, data sharing, data visualization, ArcGIS server.

  6. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  7. Broad-Scale Assessment of Fuel Treatment Opportunities

    Treesearch

    Patrick D. Miles; Kenneth E. Skog; Wayne D. Shepperd; Elizabeth D. Reinhardt; Roger D. Fight

    2006-01-01

    The Forest Inventory and Analysis (FIA) program has produced estimates of the extent and composition of the Nation?s forests for several decades. FIA data have been used with a flexible silvicultural thinning option, a fire hazard model for preharvest and postharvest fire hazard assessment, a harvest economics model, and geospatial data to produce a Web-based tool to...

  8. Advancing effects analysis for integrated, large-scale wildfire risk assessment

    Treesearch

    Matthew P. Thompson; David E. Calkin; Julie W. Gilbertson-Day; Alan A. Ager

    2011-01-01

    In this article, we describe the design and development of a quantitative, geospatial risk assessment tool intended to facilitate monitoring trends in wildfire risk over time and to provide information useful in prioritizing fuels treatments and mitigation measures. The research effort is designed to develop, from a strategic view, a first approximation of how both...

  9. A robust and flexible Geospatial Modeling Interface (GMI) for deploying and evaluating natural resource models

    USDA-ARS?s Scientific Manuscript database

    Geographical information systems (GIS) software packages have been used for nearly three decades as analytical tools in natural resource management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of fu...

  10. The Urban Tree Project

    ERIC Educational Resources Information Center

    Barnett, Michael; Houle, Meredith; Hufnagel, Elizabeth; Pancic, Alexander; Lehman, Mike; Hoffman, Emily

    2010-01-01

    Geospatial technologies have emerged over the last 15 years as one of the key tools used by environmental scientists (NRC 2006). In fact, educators have recognized that coupling geospatial technologies with environmental science topics and scientific data sets opens the door to local and regional scientific investigations (McInerney 2006). In this…

  11. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING WITH THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    It is currently possible to measure landscape change over large areas and determine trends in environmental condition using advanced space-based technologies accompanied by geospatial analyses of the remotely sensed data. There are numerous earth-observing satellite platforms fo...

  12. Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data

    PubMed Central

    2011-01-01

    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper. PMID:21410968

  13. Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data.

    PubMed

    Kamel Boulos, Maged N; Viangteeravat, Teeradache; Anyanwu, Matthew N; Ra Nagisetty, Venkateswara; Kuscu, Emin

    2011-03-16

    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper.

  14. Making geospatial data in ASF archive readily accessible

    NASA Astrophysics Data System (ADS)

    Gens, R.; Hogenson, K.; Wolf, V. G.; Drew, L.; Stern, T.; Stoner, M.; Shapran, M.

    2015-12-01

    The way geospatial data is searched, managed, processed and used has changed significantly in recent years. A data archive such as the one at the Alaska Satellite Facility (ASF), one of NASA's twelve interlinked Distributed Active Archive Centers (DAACs), used to be searched solely via user interfaces that were specifically developed for its particular archive and data sets. ASF then moved to using an application programming interface (API) that defined a set of routines, protocols, and tools for distributing the geospatial information stored in the database in real time. This provided a more flexible access to the geospatial data. Yet, it was up to user to develop the tools to get a more tailored access to the data they needed. We present two new approaches for serving data to users. In response to the recent Nepal earthquake we developed a data feed for distributing ESA's Sentinel data. Users can subscribe to the data feed and are provided with the relevant metadata the moment a new data set is available for download. The second approach was an Open Geospatial Consortium (OGC) web feature service (WFS). The WFS hosts the metadata along with a direct link from which the data can be downloaded. It uses the open-source GeoServer software (Youngblood and Iacovella, 2013) and provides an interface to include the geospatial information in the archive directly into the user's geographic information system (GIS) as an additional data layer. Both services are run on top of a geospatial PostGIS database, an open-source geographic extension for the PostgreSQL object-relational database (Marquez, 2015). Marquez, A., 2015. PostGIS essentials. Packt Publishing, 198 p. Youngblood, B. and Iacovella, S., 2013. GeoServer Beginner's Guide, Packt Publishing, 350 p.

  15. Erosion Risks in Selected Watersheds for the 2005 School Fire Located Near Pomeroy, Washington on Predominately Ash-Cap Soils

    Treesearch

    William Elliot; Ina Sue Miller; Brandon Glaza

    2007-01-01

    A limited erosion potential analysis was carried out on the 50,000 acre School Fire. Three WEPP interfaces were used for the analysis, a GIS wizard, an online interface and a windows interface. Ten watersheds within the fire area were modeled with the GeoWEPP tool (a geo-spatial interface for WEPP, Water Erosion Predication Project). The watersheds covered 18,823 acres...

  16. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Chester W.; Alexander, Clark R.; Bush, David M.

    2012-04-01

    The AMBUR (Analyzing Moving Boundaries Using R) package for the R software environment provides a collection of functions for assisting with analyzing and visualizing historical shoreline change. The package allows import and export of geospatial data in ESRI shapefile format, which is compatible with most commercial and open-source GIS software. The "baseline and transect" method is the primary technique used to quantify distances and rates of shoreline movement, and to detect classification changes across time. Along with the traditional "perpendicular" transect method, two new transect methods, "near" and "filtered," assist with quantifying changes along curved shorelines that are problematic for perpendicular transect methods. Output from the analyses includes data tables, graphics, and geospatial data, which are useful in rapidly assessing trends and potential errors in the dataset. A forecasting function also allows the user to estimate the future location of the shoreline and store the results in a shapefile. Other utilities and tools provided in the package assist with preparing and manipulating geospatial data, error checking, and generating supporting graphics and shapefiles. The package can be customized to perform additional statistical, graphical, and geospatial functions, and, it is capable of analyzing the movement of any boundary (e.g., shorelines, glacier terminus, fire edge, and marine and terrestrial ecozones).

  17. Real-Time Geospatial Data Viewer (RETIGO): Web-Based Tool for Researchers and Citizen Scientists to Explore their Air Measurements

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data re...

  18. Integrating Geospatial Technologies into Existing Teacher Education Coursework: Theoretical and Practical Notes from the Field

    ERIC Educational Resources Information Center

    Kerr, Stacey

    2016-01-01

    Although instruction related to learning management systems and other educational applications in teacher education programs has increased, the potential of geospatial technologies has yet to be widely explored and considered in the teacher education literature, despite its ability to function as an engaging pedagogical tool with teacher…

  19. Diy Geospatial Web Service Chains: Geochaining Make it Easy

    NASA Astrophysics Data System (ADS)

    Wu, H.; You, L.; Gui, Z.

    2011-08-01

    It is a great challenge for beginners to create, deploy and utilize a Geospatial Web Service Chain (GWSC). People in Computer Science are usually not familiar with geospatial domain knowledge. Geospatial practitioners may lack the knowledge about web services and service chains. The end users may lack both. However, integrated visual editing interfaces, validation tools, and oneclick deployment wizards may help to lower the learning curve and improve modelling skills so beginners will have a better experience. GeoChaining is a GWSC modelling tool designed and developed based on these ideas. GeoChaining integrates visual editing, validation, deployment, execution etc. into a unified platform. By employing a Virtual Globe, users can intuitively visualize raw data and results produced by GeoChaining. All of these features allow users to easily start using GWSC, regardless of their professional background and computer skills. Further, GeoChaining supports GWSC model reuse, meaning that an entire GWSC model created or even a specific part can be directly reused in a new model. This greatly improves the efficiency of creating a new GWSC, and also contributes to the sharing and interoperability of GWSC.

  20. Geospatial and Temporal Analysis of Thyroid Cancer Incidence in a Rural Population

    PubMed Central

    Hanley, John P.; Jackson, Erin; Morrissey, Leslie A.; Rizzo, Donna M.; Sprague, Brian L.; Sarkar, Indra Neil

    2015-01-01

    Background: The increasing incidence of thyroid cancer has resulted in the rate tripling over the past 30 years. Reasons for this increase have not been established. Geostatistics and geographic information system (GIS) tools have emerged as powerful geospatial technologies to identify disease clusters, map patterns and trends, and assess the impact of ecological and socioeconomic factors (SES) on the spatial distribution of diseases. In this study, these tools were used to analyze thyroid cancer incidence in a rural population. Methods: Thyroid cancer incidence and socio-demographic factors in Vermont (VT), United States, between 1994 and 2007 were analyzed by logistic regression and geospatial and temporal analyses. Results: The thyroid cancer age-adjusted incidence in Vermont (8.0 per 100,000) was comparable to the national level (8.4 per 100,000), as were the ratio of the incidence of females to males (3.1:1) and the mortality rate (0.5 per 100,000). However, the estimated annual percentage change was higher (8.3 VT; 5.7 U.S.). Incidence among females peaked at 30–59 years of age, reflecting a significant rise from 1994 to 2007, while incidence trends for males did not vary significantly by age. For both females and males, the distribution of tumors by size did not vary over time; ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm represented 38%, 22%, and 40%, respectively. In females, papillary thyroid cancer (PTC) accounted for 89% of cases, follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males PTC accounted for 77% of cases, FTC 15%, MTC 1%, and ATC 3%. Geospatial analysis revealed locations and spatial patterns that, when combined with multivariate incidence analyses, indicated that factors other than increased surveillance and access to healthcare (physician density or insurance) contributed to the increased thyroid cancer incidence. Nine thyroid cancer incidence hot spots, areas with very high normalized incidence, were identified based on zip code data. Those locations did not correlate with urban areas or healthcare centers. Conclusions: These data provide evidence of increased thyroid cancer incidence in a rural population likely due to environmental drivers and SES. Geospatial modeling can provide an important framework for evaluation of additional associative risk factors. PMID:25936441

  1. Planetary Cartography - Activities and Current Challenges

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  2. Free and Open Source Software for Geospatial in the field of planetary science

    NASA Astrophysics Data System (ADS)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and solutions to possible detriments coming from the effort required by using, supporting and contributing.

  3. Exploring Methodologies and Indicators for Cross-disciplinary Applications

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Pearlman, J.

    2015-12-01

    Assessing the impact and benefit of geospatial information is a multidisciplinary task that involves the social, economic and environmental knowledge to formulate indicators and methods. There are use cases that couple the social sciences including economics, psychology, sociology that incorporate geospatial information. Benefit - cost analysis is an empirical approach that uses money as an indicator for decision making. It is a traditional base for a use case and has been applied to geospatial information and other areas. A new use case that applies indicators is Meta Regression analysis, which is used to evaluate transfers of socioeconomic benefits from different geographic regions into a unifying statistical approach. In this technique, qualitative and quantitative variables are indicators, which provide a weighted average of value for the nonmarket good or resource over a large region. The expected willingness to pay for the nonmarket good can be applied to a specific region. A third use case is the application of Decision Support Systems and Tools that have been used for forecasting agricultural prices and analysis of hazard policies. However, new methods for integrating these disciplines into use cases, an avenue to instruct the development of operational applications of geospatial information, are needed. Experience in one case may not be broadly transferable to other uses and applications if multiple disciplines are involved. To move forward, more use cases are needed and, especially, applications in the private sector. Applications are being examined across a multidisciplinary community for good examples that would be instructive in meeting the challenge. This presentation will look at the results of an investigation into directions in the broader applications of use cases to teach the methodologies and use of indicators that have applications across fields of interest.

  4. A tool for exploring space-time patterns: an animation user research.

    PubMed

    Ogao, Patrick J

    2006-08-29

    Ever since Dr. John Snow (1813-1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping--all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and providing explanations about observed geospatial phenomena. Also, exploring geospatial data structures using animation is best achieved using provocative interactive tools such as was seen with the inference-based animation. The visual methods employed using the three types of animation are all related and together these patterns confirm the exploratory cognitive structure and processes for visualization tools. The generic types of animation as defined in this paper play a crucial role in facilitating the visualization of geospatial data. These animations can be created and their contents defined based on the user's presentational and exploratory needs. For highly explorative tasks, maintaining a link between the data sets and the animation is crucial to enabling a rich and effective knowledge discovery environment.

  5. A tool for exploring space-time patterns : an animation user research

    PubMed Central

    Ogao, Patrick J

    2006-01-01

    Background Ever since Dr. John Snow (1813–1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping – all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. Results Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and providing explanations about observed geospatial phenomena. Also, exploring geospatial data structures using animation is best achieved using provocative interactive tools such as was seen with the inference-based animation. The visual methods employed using the three types of animation are all related and together these patterns confirm the exploratory cognitive structure and processes for visualization tools. Conclusion The generic types of animation as defined in this paper play a crucial role in facilitating the visualization of geospatial data. These animations can be created and their contents defined based on the user's presentational and exploratory needs. For highly explorative tasks, maintaining a link between the data sets and the animation is crucial to enabling a rich and effective knowledge discovery environment. PMID:16938138

  6. EnviroAtlas: Providing Nationwide Geospatial Ecosystem Goods and Services Indicators and Indices to Inform Decision-Making, Research, and Education

    EPA Science Inventory

    EnviroAtlas is a multi-organization effort led by the US Environmental Protection Agency to develop, host and display a large suite of nation-wide geospatial indicators and indices of ecosystem services. This open access tool allows users to view, analyze, and download a wealth o...

  7. Geospatial economics of the woody biomass supply in Kansas -- A case study

    Treesearch

    Olga Khaliukova; Darci Paull; Sarah L. Lewis-Gonzales; Nicolas Andre; Larry E. Biles; Timothy M. Young; James H. Perdue

    2017-01-01

    This research assessed the geospatial supply of cellulosic feedstocks for potential mill sites in Kansas (KS), with procurement zones extending to Arkansas (AR), Iowa(IA), Missouri(MO), Oklahoma (OK), and Nebraska (NE). A web-based modeling system, the Kansas Biomass Supply Assessment Tool, was developed to identify least-cost sourcing areas for logging residues and...

  8. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  9. Tribal-Focused Environmental Risk and Sustainability Tool (Tribal-FERST) Fact Sheet

    EPA Pesticide Factsheets

    The Tribal-Focused Environmental Risk and Sustainability Tool (Tribal- FERST) is a web-based geospatial decision support tool that will provide tribes with easy access to the best available human health and ecological science.

  10. Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR) : An Open-source Tool to Compute Climate Statistic GIS Layers from Argonne Climate Modeling Results

    DTIC Science & Technology

    2017-08-01

    This large repository of climate model results for North America (Wang and Kotamarthi 2013, 2014, 2015) is stored in Network Common Data Form (NetCDF...Network Common Data Form (NetCDF). UCAR/Unidata Program Center, Boulder, CO. Available at: http://www.unidata.ucar.edu/software/netcdf. Accessed on 6/20...emissions diverge from each other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the estimated emissions for each of

  11. lawn: An R client for the Turf JavaScript Library for Geospatial Analysis

    EPA Science Inventory

    lawn is an R package to provide access to the geospatial analysis capabilities in the Turf javascript library. Turf expects data in GeoJSON format. Given that many datasets are now available natively in GeoJSON providing an easier method for conducting geospatial analyses on thes...

  12. The Diverse Data, User Driven Services and the Power of Giovanni at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung

    2017-01-01

    This presentation provides an overview of remote sensing and model data at GES (Goddard Earth Sciences) DISC (Data and Information Services Center); Overview of data services at GES DISC (Registration with NASA data system; Searching and downloading data); Giovanni (Geospatial Interactive Online VisualizationANd aNalysis Infrastructure): online data exploration tool; and NASA Earth Data and Information System.

  13. Delivery of Forecasted Atmospheric Ozone and Dust for the New Mexico Environmental Public Health Tracking System - An Open Source Geospatial Solution

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Sanchez-Silva, R.; Cavner, J. A.

    2010-12-01

    New Mexico's Environmental Public Health Tracking System (EPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. As a public health decision-support system, EPHTS systems include: state-of-the-art statistical analysis tools; geospatial visualization tools; data discovery, extraction, and delivery tools; and environmental/public health linkage information. As part of its mandate, EPHTS issues public health advisories and forecasts of environmental conditions that have consequences for human health. Through a NASA-funded partnership between the University of New Mexico and the University of Arizona, NASA Earth Science results are fused into two existing models (the Dust Regional Atmospheric Model (DREAM) and the Community Multiscale Air Quality (CMAQ) model) in order to improve forecasts of atmospheric dust, ozone, and aerosols. The results and products derived from the outputs of these models are made available to an Open Source mapping component of the New Mexico EPHTS. In particular, these products are integrated into a Django content management system using GeoDjango, GeoAlchemy, and other OGC-compliant geospatial libraries written in the Python and C++ programming languages. Capabilities of the resultant mapping system include indicator-based thematic mapping, data delivery, and analytical capabilities. DREAM and CMAQ outputs can be inspected, via REST calls, through temporal and spatial subsetting of the atmospheric concentration data across analytical units employed by the public health community. This paper describes details of the architecture and integration of NASA Earth Science into the EPHTS decision-support system.

  14. GPU based framework for geospatial analyses

    NASA Astrophysics Data System (ADS)

    Cosmin Sandric, Ionut; Ionita, Cristian; Dardala, Marian; Furtuna, Titus

    2017-04-01

    Parallel processing on multiple CPU cores is already used at large scale in geocomputing, but parallel processing on graphics cards is just at the beginning. Being able to use an simple laptop with a dedicated graphics card for advanced and very fast geocomputation is an advantage that each scientist wants to have. The necessity to have high speed computation in geosciences has increased in the last 10 years, mostly due to the increase in the available datasets. These datasets are becoming more and more detailed and hence they require more space to store and more time to process. Distributed computation on multicore CPU's and GPU's plays an important role by processing one by one small parts from these big datasets. These way of computations allows to speed up the process, because instead of using just one process for each dataset, the user can use all the cores from a CPU or up to hundreds of cores from GPU The framework provide to the end user a standalone tools for morphometry analyses at multiscale level. An important part of the framework is dedicated to uncertainty propagation in geospatial analyses. The uncertainty may come from the data collection or may be induced by the model or may have an infinite sources. These uncertainties plays important roles when a spatial delineation of the phenomena is modelled. Uncertainty propagation is implemented inside the GPU framework using Monte Carlo simulations. The GPU framework with the standalone tools proved to be a reliable tool for modelling complex natural phenomena The framework is based on NVidia Cuda technology and is written in C++ programming language. The code source will be available on github at https://github.com/sandricionut/GeoRsGPU Acknowledgement: GPU framework for geospatial analysis, Young Researchers Grant (ICUB-University of Bucharest) 2016, director Ionut Sandric

  15. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  16. Ready or Not? Assessing Change Readiness for Implementation of the Geospatial Technology Competency Model[c

    ERIC Educational Resources Information Center

    Annulis, Heather M.; Gaudet, Cyndi H.

    2007-01-01

    A shortage of a qualified and skilled workforce exists to meet the demands of the geospatial industry (NASA, 2002). Solving today's workforce issues requires new and innovative methods and techniques for this high growth, high technology industry. One tool to support workforce development is a competency model which can be used to build a…

  17. Incorporating Historic Facility Geospatial Data and Federal Preservation Requirements into SDSFIE/FMSFIE

    DTIC Science & Technology

    2006-11-01

    29 3.2.4 National Register Information System Model ............................................................... 30 3.3 Summary of...are later based on that information . Despite their general level of power and resolution, Federal data management and accounting tools have not yet...have begun tracking their historic building and structure inven- tories using geographic information systems (GISs). A geospatial-referenced data

  18. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    NASA Astrophysics Data System (ADS)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  19. GeoProMT: A Collaborative Platform Supporting Natural Hazards Project Management From Assessment to Resilience

    NASA Astrophysics Data System (ADS)

    Renschler, C.; Sheridan, M. F.; Patra, A. K.

    2008-05-01

    The impact and consequences of extreme geophysical events (hurricanes, floods, wildfires, volcanic flows, mudflows, etc.) on properties and processes should be continuously assessed by a well-coordinated interdisciplinary research and outreach approach addressing risk assessment and resilience. Communication between various involved disciplines and stakeholders is the key to a successful implementation of an integrated risk management plan. These issues become apparent at the level of decision support tools for extreme events/disaster management in natural and managed environments. The Geospatial Project Management Tool (GeoProMT) is a collaborative platform for research and training to document and communicate the fundamental steps in transforming information for extreme events at various scales for analysis and management. GeoProMT is an internet-based interface for the management of shared geo-spatial and multi-temporal information such as measurements, remotely sensed images, and other GIS data. This tool enhances collaborative research activities and the ability to assimilate data from diverse sources by integrating information management. This facilitates a better understanding of natural processes and enhances the integrated assessment of resilience against both the slow and fast onset of hazard risks. Fundamental to understanding and communicating complex natural processes are: (a) representation of spatiotemporal variability, extremes, and uncertainty of environmental properties and processes in the digital domain, (b) transformation of their spatiotemporal representation across scales (e.g. interpolation, aggregation, disaggregation.) during data processing and modeling in the digital domain, and designing and developing tools for (c) geo-spatial data management, and (d) geo-spatial process modeling and effective implementation, and (e) supporting decision- and policy-making in natural resources and hazard management at various spatial and temporal scales of interest. GeoProMT is useful for researchers, practitioners, and decision-makers, because it provides an integrated environmental system assessment and data management approach that considers the spatial and temporal scales and variability in natural processes. Particularly in the occurrence or onset of extreme events it can utilize the latest data sources that are available at variable scales, combine them with existing information, and update assessment products such as risk and vulnerability assessment maps. Because integrated geo-spatial assessment requires careful consideration of all the steps in utilizing data, modeling and decision-making formats, each step in the sequence must be assessed in terms of how information is being scaled. At the process scale various geophysical models (e.g. TITAN, LAHARZ, or many other examples) are appropriate for incorporation in the tool. Some examples that illustrate our approach include: 1) coastal parishes impacted by Hurricane Rita (Southwestern Louisiana), 2) a watershed affected by extreme rainfall induced debris-flows (Madison County, Virginia; Panabaj, Guatemala; Casita, Nicaragua), and 3) the potential for pyroclastic flows to threaten a city (Tungurahua, Ecuador). This research was supported by the National Science Foundation.

  20. Geospatial Tools for Prevention of Urban Floods Case Study: River of EL Maleh (city of Mohammedia - Morocco)

    NASA Astrophysics Data System (ADS)

    Chaabane, M. S.; Abouali, N.; Boumeaza, T.; Zahouily, M.

    2017-11-01

    Today, the prevention and the risk management occupy an important part of public policy activities and are considered as major components in the process of sustainable development of territories. Due to the expansion of IT processes, in particular the geomatics sciences, decision-makers are increasingly requesting for digital tools before, during and after the risks of natural disasters. Both, the geographic information system (GIS) and the remote sensing are considered as geospatial and fundamental tools which help to understand the evolution of risks, to analyze their temporality and to make the right decisions. The historic events (on 1996, 2002 and 2010) which struck the city of Mohammedia and having caused the consequent damage to vital infrastructure and private property, require a thorough and rational analyze to benefit from it and well manage the floods phenomena. This article present i) the contribution of the geospatial tools for the floods simulation of Oued of el Maleh city at various return periods. These tools allow the demarcation of flood-risk areas and so to make floods simulations in several scenarios (decadal flood, 20-year flood, 50-year flood, 100-year flood, 500-year flood & also millennial flood) and besides (ii) present a synthesis map combining the territorial stakes superposed on the flood scenarios at different periods of return.

  1. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga Watershed, Cauvery River, Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Arulbalaji, P.; Gurugnanam, B.

    2017-11-01

    A morphometric analysis of Sarabanga watershed in Salem district has been chosen for the present study. Geospatial tools, such as remote sensing and GIS, are utilized for the extraction of river basin and its drainage networks. The Shuttle Radar Topographic Mission (SRTM-30 m resolution) data have been used for morphometric analysis and evaluating various morphometric parameters. The morphometric parameters of Sarabanga watershed have been analyzed and evaluated by pioneer methods, such as Horton and Strahler. The dendritic type of drainage pattern is draining the Sarabanga watershed, which indicates that lithology and gentle slope category is controlling the study area. The Sarabanga watershed is covered an area of 1208 km2. The slope of the watershed is various from 10 to 40% and which is controlled by lithology of the watershed. The bifurcation ratio ranges from 3 to 4.66 indicating the influence of geological structure and suffered more structural disturbances. The form factor indicates elongated shape of the study area. The total stream length and area of watershed indicate that mean annual rainfall runoff is relatively moderate. The basin relief expressed that watershed has relatively high denudation rates. The drainage density of the watershed is low indicating that infiltration is more dominant. The ruggedness number shows the peak discharges that are likely to be relatively higher. The present study is very useful to plan the watershed management.

  2. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  3. Distribution of sea anemones (Cnidaria, Actiniaria) in Korea analyzed by environmental clustering

    USGS Publications Warehouse

    Cha, H.-R.; Buddemeier, R.W.; Fautin, D.G.; Sandhei, P.

    2004-01-01

    Using environmental data and the geospatial clustering tools LOICZView and DISCO, we empirically tested the postulated existence and boundaries of four biogeographic regions in the southern part of the Korean peninsula. Environmental variables used included wind speed, sea surface temperature (SST), salinity, tidal amplitude, and the chlorophyll spectral signal. Our analysis confirmed the existence of four biogeographic regions, but the details of the borders between them differ from those previously postulated. Specimen-level distribution records of intertidal sea anemones were mapped; their distribution relative to the environmental data supported the importance of the environmental parameters we selected in defining suitable habitats. From the geographic coincidence between anemone distribution and the clusters based on environmental variables, we infer that geospatial clustering has the power to delimit ranges for marine organisms within relatively small geographical areas.

  4. Geospatial Data Sciences | Energy Analysis | NREL

    Science.gov Websites

    , demographics, and the earth's physical geography to provide the foundation for energy analysis and decision -making. Photo of two people discussing a map. Geospatial Analysis Our geographic information system

  5. Finding geospatial pattern of unstructured data by clustering routes

    NASA Astrophysics Data System (ADS)

    Boustani, M.; Mattmann, C. A.; Ramirez, P.; Burke, W.

    2016-12-01

    Today the majority of data generated has a geospatial context to it. Either in attribute form as a latitude or longitude, or name of location or cross referenceable using other means such as an external gazetteer or location service. Our research is interested in exploiting geospatial location and context in unstructured data such as that found on the web in HTML pages, images, videos, documents, and other areas, and in structured information repositories found on intranets, in scientific environments, and otherwise. We are working together on the DARPA MEMEX project to exploit open source software tools such as the Lucene Geo Gazetteer, Apache Tika, Apache Lucene, and Apache OpenNLP, to automatically extract, and make meaning out of geospatial information. In particular, we are interested in unstructured descriptors e.g., a phone number, or a named entity, and the ability to automatically learn geospatial paths related to these descriptors. For example, a particular phone number may represent an entity that travels on a monthly basis, according to easily identifiable and somes more difficult to track patterns. We will present a set of automatic techniques to extract descriptors, and then to geospatially infer their paths across unstructured data.

  6. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    NASA Technical Reports Server (NTRS)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  7. Geospatial distribution modeling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gidey, Amanuel

    2018-06-01

    Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.

  8. The Whole World In Your Hands: Using an Interactive Virtual Reality Sandbox for Geospatial Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clucas, T.; Wirth, G. S.; Broderson, D.

    2014-12-01

    Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.

  9. Geoscience data visualization and analysis using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.

  10. AGWA: The Automated Geospatial Watershed Assessment Tool to Inform Rangeland Management

    EPA Science Inventory

    Do you want a relatively easy to use tool to assess rangeland soil and water conservation practices on rangeland erosion that is specifically designed to use ecological information? New Decision Support Tools (DSTs) that are easy-to-use, incorporate ecological concepts and rangel...

  11. Geospatial characteristics of Florida's coastal and offshore environments: Administrative and political boundaries and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics Geopdf of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, military areas, marine protected areas, cultural resources, locations of submerged cables, and shipping routes. The map should be useful to coastal resource managers and others interested in the administrative and political boundaries of Florida's coastal and offshore region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will find that they have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers.

  12. Enabling Web-Based GIS Tools for Internet and Mobile Devices To Improve and Expand NASA Data Accessibility and Analysis Functionality for the Renewable Energy and Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Ross, A.; Stackhouse, P. W.; Tisdale, B.; Tisdale, M.; Chandler, W.; Hoell, J. M., Jr.; Kusterer, J.

    2014-12-01

    The NASA Langley Research Center Science Directorate and Atmospheric Science Data Center have initiated a pilot program to utilize Geographic Information System (GIS) tools that enable, generate and store climatological averages using spatial queries and calculations in a spatial database resulting in greater accessibility of data for government agencies, industry and private sector individuals. The major objectives of this effort include the 1) Processing and reformulation of current data to be consistent with ESRI and openGIS tools, 2) Develop functions to improve capability and analysis that produce "on-the-fly" data products, extending these past the single location to regional and global scales. 3) Update the current web sites to enable both web-based and mobile application displays for optimization on mobile platforms, 4) Interact with user communities in government and industry to test formats and usage of optimization, and 5) develop a series of metrics that allow for monitoring of progressive performance. Significant project results will include the the development of Open Geospatial Consortium (OGC) compliant web services (WMS, WCS, WFS, WPS) that serve renewable energy and agricultural application products to users using GIS software and tools. Each data product and OGC service will be registered within ECHO, the Common Metadata Repository, the Geospatial Platform, and Data.gov to ensure the data are easily discoverable and provide data users with enhanced access to SSE data, parameters, services, and applications. This effort supports cross agency, cross organization, and interoperability of SSE data products and services by collaborating with DOI, NRCan, NREL, NCAR, and HOMER for requirements vetting and test bed users before making available to the wider public.

  13. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    NASA Astrophysics Data System (ADS)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from various runs of geoKepler workflows. The communication between iPython and Kepler workflow executions is established through an iPython magic function for Kepler that we have implemented. In summary, geoKepler is an ecosystem that makes geospatial processing and analysis of any kind programmable, reusable, scalable and sharable.

  14. Big Data Geo-Analytical Tool Development for Spatial Analysis Uncertainty Visualization and Quantification Needs

    NASA Astrophysics Data System (ADS)

    Rose, K.; Bauer, J. R.; Baker, D. V.

    2015-12-01

    As big data computing capabilities are increasingly paired with spatial analytical tools and approaches, there is a need to ensure uncertainty associated with the datasets used in these analyses is adequately incorporated and portrayed in results. Often the products of spatial analyses, big data and otherwise, are developed using discontinuous, sparse, and often point-driven data to represent continuous phenomena. Results from these analyses are generally presented without clear explanations of the uncertainty associated with the interpolated values. The Variable Grid Method (VGM) offers users with a flexible approach designed for application to a variety of analyses where users there is a need to study, evaluate, and analyze spatial trends and patterns while maintaining connection to and communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analysis through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom 'Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations. The presentation includes examples of the approach being applied to a range of subsurface, geospatial studies (e.g. induced seismicity risk).

  15. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Peng; Gong, Jianya; Di, Liping

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less

  16. Visualizing Earth and Planetary Remote Sensing Data Using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Carter, S.; Anwar, S.; Noss, D.

    2014-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. JMARS fuses data from different instruments in a geographical context. One core strength of JMARS is that it provides access to geospatially registered data via a consistent interface. Such data include global images (graphical and numeric), local mosaics, individual instrument images, spectra, and vector-oriented data. By hosting these products, users are able to avoid searching for, downloading, decoding, and projecting data on their own using a disparate set of tools and procedures. The JMARS team processes, indexes, and reorganizes data to make it quickly and easily accessible in a consistent manner. JMARS leverages many open-source technologies and tools to accomplish these data preparation steps. In addition to visualizing multiple datasets in context with one another, JMARS allows a user to find data products from differing missions that intersect the same geographical location, time range, or observational parameters. Any number of georegistered datasets can then be viewed or analyzed simultaneously with one another. A user can easily create a mosaic of graphic data, plot numeric data, or project any arbitrary scene over surface topography. All of these visualization options can be exported for use in presentations, publications, or for further analysis in other tools.

  17. Best Practices for Preparing Interoperable Geospatial Data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T. W.

    2010-12-01

    Geospatial data is critically important for a wide scope of research and applications: carbon cycle and ecosystem, climate change, land use and urban planning, environmental protecting, etc. Geospatial data is created by different organizations using different methods, from remote sensing observations, field surveys, model simulations, etc., and stored in various formats. So geospatial data is diverse and heterogeneous, which brings a huge barrier for the sharing and using of geospatial data, especially when targeting a broad user community. Many efforts have been taken to address different aspects of using geospatial data by improving its interoperability. For example, the specification for Open Geospatial Consortium (OGC) catalog services defines a standard way for geospatial information discovery; OGC Web Coverage Services (WCS) and OPeNDAP define interoperable protocols for geospatial data access, respectively. But the reality is that only having the standard mechanisms for data discovery and access is not enough. The geospatial data content itself has to be organized in standard, easily understandable, and readily usable formats. The Oak Ridge National Lab Distributed Archived Data Center (ORNL DAAC) archives data and information relevant to biogeochemical dynamics, ecological data, and environmental processes. The Modeling and Synthesis Thematic Data Center (MAST-DC) prepares and distributes both input data and output data of carbon cycle models and provides data support for synthesis and terrestrial model inter-comparison in multi-scales. Both of these NASA-funded data centers compile and distribute a large amount of diverse geospatial data and have broad user communities, including GIS users, Earth science researchers, and ecosystem modeling teams. The ORNL DAAC and MAST-DC address this geospatial data interoperability issue by standardizing the data content and feeding them into a well-designed Spatial Data Infrastructure (SDI) which provides interoperable mechanisms to advertise, visualize, and distribute the standardized geospatial data. In this presentation, we summarize the experiences learned and the best practices for geospatial data standardization. The presentation will describe how diverse and historical data archived in the ORNL DAAC were converted into standard and non-proprietary formats; what tools were used to make the conversion; how the spatial and temporal information are properly captured in a consistent manor; how to name a data file or a variable to make it both human-friendly and semantically interoperable; how NetCDF file format and CF convention can promote the data usage in ecosystem modeling user community; how those standardized geospatial data can be fed into OGC Web Services to support on-demand data visualization and access; and how the metadata should be collected and organized so that they can be discovered through standard catalog services.

  18. Open Access to Multi-Domain Collaborative Analysis of Geospatial Data Through the Internet

    NASA Astrophysics Data System (ADS)

    Turner, A.

    2009-12-01

    The internet has provided us with a high bandwidth, low latency, globally connected network in which to rapidly share realtime data from sensors, reports, and imagery. In addition, the availability of this data is even easier to obtain, consume and analyze. Another aspect of the internet has been the increased approachability of complex systems through lightweight interfaces - with additional complex services able to provide more advanced connections into data services. These analyses and discussions have primarily been siloed within single domains, or kept out of the reach of amateur scientists and interested citizens. However, through more open access to analytical tools and data, experts can collaborate with citizens to gather information, provide interfaces for experimenting and querying results, and help make improved insights and feedback for further investigation. For example, farmers in Uganda are able to use their mobile phones to query, analyze, and be alerted to banana crop disease based on agriculture and climatological data. In the U.S., local groups use online social media sharing sites to gather data on storm-water runoff and stream siltation in order to alert wardens and environmental agencies. This talk will present various web-based geospatial visualization and analysis techniques and tools such as Google Earth and GeoCommons that have emerged that provide for a collaboration between experts of various domains as well as between experts, government, and citizen scientists. Through increased communication and the sharing of data and tools, it is possible to gain broad insight and development of joint, working solutions to a variety of difficult scientific and policy related questions.

  19. Evaluating hydrological response to forecasted land-use change—scenario testing with the automated geospatial watershed assessment (AGWA) tool

    USGS Publications Warehouse

    Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.

    2009-01-01

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.

  20. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  1. GIS Story Maps : A Tool to Empower and Engage Stakeholders in Planning Sustainable Places

    DOT National Transportation Integrated Search

    2016-10-01

    Public engagement continues to be transformed by the explosion of new digital technologies/tools, software platforms, social media networks, mobile devices, and mobile apps. Recent changes in geospatial technology offer new opportunities for use in p...

  2. Towards a framework for geospatial tangible user interfaces in collaborative urban planning

    NASA Astrophysics Data System (ADS)

    Maquil, Valérie; Leopold, Ulrich; De Sousa, Luís Moreira; Schwartz, Lou; Tobias, Eric

    2018-04-01

    The increasing complexity of urban planning projects today requires new approaches to better integrate stakeholders with different professional backgrounds throughout a city. Traditional tools used in urban planning are designed for experts and offer little opportunity for participation and collaborative design. This paper introduces the concept of geospatial tangible user interfaces (GTUI) and reports on the design and implementation as well as the usability of such a GTUI to support stakeholder participation in collaborative urban planning. The proposed system uses physical objects to interact with large digital maps and geospatial data projected onto a tabletop. It is implemented using a PostGIS database, a web map server providing OGC web services, the computer vision framework reacTIVision, a Java-based TUIO client, and GeoTools. We describe how a GTUI has be instantiated and evaluated within the scope of two case studies related to real world collaborative urban planning scenarios. Our results confirm the feasibility of our proposed GTUI solutions to (a) instantiate different urban planning scenarios, (b) support collaboration, and (c) ensure an acceptable usability.

  3. Improving data discoverability, accessibility, and interoperability with the Esri ArcGIS Platform at the NASA Atmospheric Science Data Center (ASDC).

    NASA Astrophysics Data System (ADS)

    Tisdale, M.

    2017-12-01

    NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying user requirements from government, private, public and academic communities. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), and OGC Web Coverage Services (WCS) while leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams at ASDC are utilizing these services through the development of applications using the Web AppBuilder for ArcGIS and the ArcGIS API for Javascript. These services provide greater exposure of ASDC data holdings to the GIS community and allow for broader sharing and distribution to various end users. These capabilities provide interactive visualization tools and improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry. The presentation will cover how the ASDC is developing geospatial web services and applications to improve data discoverability, accessibility, and interoperability.

  4. Towards a framework for geospatial tangible user interfaces in collaborative urban planning

    NASA Astrophysics Data System (ADS)

    Maquil, Valérie; Leopold, Ulrich; De Sousa, Luís Moreira; Schwartz, Lou; Tobias, Eric

    2018-03-01

    The increasing complexity of urban planning projects today requires new approaches to better integrate stakeholders with different professional backgrounds throughout a city. Traditional tools used in urban planning are designed for experts and offer little opportunity for participation and collaborative design. This paper introduces the concept of geospatial tangible user interfaces (GTUI) and reports on the design and implementation as well as the usability of such a GTUI to support stakeholder participation in collaborative urban planning. The proposed system uses physical objects to interact with large digital maps and geospatial data projected onto a tabletop. It is implemented using a PostGIS database, a web map server providing OGC web services, the computer vision framework reacTIVision, a Java-based TUIO client, and GeoTools. We describe how a GTUI has be instantiated and evaluated within the scope of two case studies related to real world collaborative urban planning scenarios. Our results confirm the feasibility of our proposed GTUI solutions to (a) instantiate different urban planning scenarios, (b) support collaboration, and (c) ensure an acceptable usability.

  5. Famine Early Warning Systems Network (FEWS NET) Contributions to Strengthening Resilience and Sustainability for the East African Community

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Galu, G.; Funk, C. C.; Verdin, J. P.; Rowland, J.

    2014-12-01

    The Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) is a multi-organizational project aimed at mainstreaming climate-resilient development planning and program implementation into the East African Community (EAC). The Famine Early Warning Systems Network (FEWS NET) has partnered with the PREPARED project to address three key development challenges for the EAC; 1) increasing resiliency to climate change, 2) managing trans-boundary freshwater biodiversity and conservation and 3) improving access to drinking water supply and sanitation services. USGS FEWS NET has been instrumental in the development of gridded climate data sets that are the fundamental building blocks for climate change adaptation studies in the region. Tools such as the Geospatial Climate Tool (GeoCLIM) have been developed to interpolate time-series grids of precipitation and temperature values from station observations and associated satellite imagery, elevation data, and other spatially continuous fields. The GeoCLIM tool also allows the identification of anomalies and assessments of both their frequency of occurrence and directional trends. A major effort has been put forth to build the capacities of local and regional institutions to use GeoCLIM to integrate their station data (which is not typically available to the public) into improved national and regional gridded climate data sets. In addition to the improvements and capacity building activities related to geospatial analysis tools, FEWS NET will assist in two other areas; 1) downscaling of climate change scenarios and 2) vulnerability impact assessments. FEWS NET will provide expertise in statistical downscaling of Global Climate Model output fields and work with regional institutions to assess results of other downscaling methods. Completion of a vulnerability impact assessment (VIA) involves the examination of sectoral consequences in identified climate "hot spots". FEWS NET will lead the VIA for the agriculture and food security sector, but will also provide key geospatial layers needed by multiple sectors in the areas of exposure, sensitivity, and adaptive capacity. Project implementation will strengthen regional coordination in policy-making, planning, and response to climate change issues.

  6. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  7. Dylan Hettinger | NREL

    Science.gov Websites

    Hettinger Photo of Dylan Hettinger Dylan Hettinger Geospatial Data Scientist Dylan.Hettinger @nrel.gov | 303-275-3750 Dylan Hettinger is a member of the Geospatial Data Science team within the Systems Modeling & Geospatial Data Science Group in the Strategic Energy Analysis Center. Areas of Expertise

  8. Online Resources to Support Professional Development for Managing and Preserving Geospatial Data

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Improved capabilities of information and communication technologies (ICT) enable the development of new systems and applications for collecting, managing, disseminating, and using scientific data. New knowledge, skills, and techniques are also being developed to leverage these new ICT capabilities and improve scientific data management practices throughout the entire data lifecycle. In light of these developments and in response to increasing recognition of the wider value of scientific data for society, government agencies are requiring plans for the management, stewardship, and public dissemination of data and research products that are created by government-funded studies. Recognizing that data management and dissemination have not been part of traditional science education programs, new educational programs and learning resources are being developed to prepare new and practicing scientists, data scientists, data managers, and other data professionals with skills in data science and data management. Professional development and training programs also are being developed to address the need for scientists and professionals to improve their expertise in using the tools and techniques for managing and preserving scientific data. The Geospatial Data Preservation Resource Center offers an online catalog of various open access publications, open source tools, and freely available information for the management and stewardship of geospatial data and related resources, such as maps, GIS, and remote sensing data. Containing over 500 resources that can be found by type, topic, or search query, the geopreservation.org website enables discovery of various types of resources to improve capabilities for managing and preserving geospatial data. Applications and software tools can be found for use online or for download. Online journal articles, presentations, reports, blogs, and forums are also available through the website. Available education and training materials include tutorials, primers, guides, and online learning modules. The site enables users to find and access standards, real-world examples, and websites of other resources about geospatial data management. Quick links to lists of resources are available for data managers, system developers, and researchers. New resources are featured regularly to highlight current developments in practice and research. A user-centered approach was taken to design and develop the site iteratively, based on a survey of the expectations and needs of community members who have an interest in the management and preservation of geospatial data. Formative and summative evaluation activities have informed design, content, and feature enhancements to enable users to use the website efficiently and effectively. Continuing management and evaluation of the website keeps the content and the infrastructure current with evolving research, practices, and technology. The design, development, evaluation, and use of the website are described along with selected resources and activities that support education and professional development for the management, preservation, and stewardship of geospatial data.

  9. Integrated Sustainable Planning for Industrial Region Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek

    2012-07-01

    The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.

  10. FY 2018 Grant Announcement: FY2018 Support for Geospatial Analysis Support

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency’s (EPA) Chesapeake Bay Program Office (CBPO) is announcing a Request for Proposals (RFP) for applicants to provide the Chesapeake Bay Program (CBP) partners with a proposal for providing geospatial analysis support

  11. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.

  12. ClimatePipes: User-Friendly Data Access, Manipulation, Analysis & Visualization of Community Climate Models

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.

    2013-12-01

    The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www.vistrails.org) workflow engine in the backend.

  13. Ecosystem Services Provided by Agricultural Land as Modeled by Broad Scale Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Kokkinidis, Ioannis

    Agricultural ecosystems provide multiple services including food and fiber provision, nutrient cycling, soil retention and water regulation. Objectives of the study were to identify and quantify a selection of ecosystem services provided by agricultural land, using existing geospatial tools and preferably free and open source data, such as the Virginia Land Use Evaluation System (VALUES), the North Carolina Realistic Yield Expectations (RYE) database, and the land cover datasets NLCD and CDL. Furthermore I sought to model tradeoffs between provisioning and other services. First I assessed the accuracy of agricultural land in NLCD and CDL over a four county area in eastern Virginia using cadastral parcels. I uncovered issues concerning the definition of agricultural land. The area and location of agriculture saw little change in the 19 years studied. Furthermore all datasets have significant errors of omission (11.3 to 95.1%) and commission (0 to 71.3%). Location of agriculture was used with spatial crop yield databases I created and combined with models I adapted to calculate baseline values for plant biomass, nutrient composition and requirements, land suitability for and potential production of biofuels and the economic impact of agriculture for the four counties. The study area was then broadened to cover 97 counties in eastern Virginia and North Carolina, investigating the potential for increased regional grain production through intensification and extensification of agriculture. Predicted yield from geospatial crop models was compared with produced yield from the NASS Survey of Agriculture. Area of most crops in CDL was similar to that in the Survey of Agriculture, but a yield gap is present for most years, partially due to weather, thus indicating potential for yield increase through intensification. Using simple criteria I quantified the potential to extend agriculture in high yield land in other uses and modeled the changes in erosion and runoff should conversion take place. While the quantity of wheat produced though extensification is equal to 4.2 times 2012 production, conversion will lead to large increases in runoff (4.1 to 39.4%) and erosion (6 times). This study advances the state of geospatial tools for quantification of ecosystem services.

  14. SWOT analysis on National Common Geospatial Information Service Platform of China

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  15. Leveraging freely available remote sensing and ancillary datasets for semi-automated identification of potential wetland areas using a Geographic Information System (GIS).

    DOT National Transportation Integrated Search

    2016-06-01

    The purpose of this study was to develop a wetland identification tool that makes use of freely available geospatial : datasets to identify potential wetland locations at a spatial scale relevant for transportation corridor assessments. The tool was ...

  16. Leveraging Google Geo Tools for Interactive STEM Education: Insights from the GEODE Project

    NASA Astrophysics Data System (ADS)

    Dordevic, M.; Whitmeyer, S. J.; De Paor, D. G.; Karabinos, P.; Burgin, S.; Coba, F.; Bentley, C.; St John, K. K.

    2016-12-01

    Web-based imagery and geospatial tools have transformed our ability to immerse students in global virtual environments. Google's suite of geospatial tools, such as Google Earth (± Engine), Google Maps, and Street View, allow developers and instructors to create interactive and immersive environments, where students can investigate and resolve common misconceptions in STEM concepts and natural processes. The GEODE (.net) project is developing digital resources to enhance STEM education. These include virtual field experiences (VFEs), such as an interactive visualization of the breakup of the Pangaea supercontinent, a "Grand Tour of the Terrestrial Planets," and GigaPan-based VFEs of sites like the Canadian Rockies. Web-based challenges, such as EarthQuiz (.net) and the "Fold Analysis Challenge," incorporate scaffolded investigations of geoscience concepts. EarthQuiz features web-hosted imagery, such as Street View, Photo Spheres, GigaPans, and Satellite View, as the basis for guided inquiry. In the Fold Analysis Challenge, upper-level undergraduates use Google Earth to evaluate a doubly-plunging fold at Sheep Mountain, WY. GEODE.net also features: "Reasons for the Seasons"—a Google Earth-based visualization that addresses misconceptions that abound amongst students, teachers, and the public, many of whom believe that seasonality is caused by large variations in Earth's distance from the Sun; "Plate Euler Pole Finder," which helps students understand rotational motion of tectonic plates on the globe; and "Exploring Marine Sediments Using Google Earth," an exercise that uses empirical data to explore the surficial distribution of marine sediments in the modern ocean. The GEODE research team includes the authors and: Heather Almquist, Cinzia Cervato, Gene Cooper, Helen Crompton, Terry Pavlis, Jen Piatek, Bill Richards, Jeff Ryan, Ron Schott, Barb Tewksbury, and their students and collaborating colleagues. We are supported by NSF DUE 1323419 and a Google Geo Curriculum Award.

  17. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    NASA Astrophysics Data System (ADS)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  18. Implementing a Web-Based Decision Support System to Spatially and Statistically Analyze Ecological Conditions of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; Mueller, C.; Brooks, A. N.; Kislik, E. A.; Baney, O. N.; Ramirez, C.; Schmidt, C.; Torres-Perez, J. L.

    2014-12-01

    The Sierra Nevada is experiencing changes in hydrologic regimes, such as decreases in snowmelt and peak runoff, which affect forest health and the availability of water resources. Currently, the USDA Forest Service Region 5 is undergoing Forest Plan revisions to include climate change impacts into mitigation and adaptation strategies. However, there are few processes in place to conduct quantitative assessments of forest conditions in relation to mountain hydrology, while easily and effectively delivering that information to forest managers. To assist the USDA Forest Service, this study is the final phase of a three-term project to create a Decision Support System (DSS) to allow ease of access to historical and forecasted hydrologic, climatic, and terrestrial conditions for the entire Sierra Nevada. This data is featured within three components of the DSS: the Mapping Viewer, Statistical Analysis Portal, and Geospatial Data Gateway. Utilizing ArcGIS Online, the Sierra DSS Mapping Viewer enables users to visually analyze and locate areas of interest. Once the areas of interest are targeted, the Statistical Analysis Portal provides subbasin level statistics for each variable over time by utilizing a recently developed web-based data analysis and visualization tool called Plotly. This tool allows users to generate graphs and conduct statistical analyses for the Sierra Nevada without the need to download the dataset of interest. For more comprehensive analysis, users are also able to download datasets via the Geospatial Data Gateway. The third phase of this project focused on Python-based data processing, the adaptation of the multiple capabilities of ArcGIS Online and Plotly, and the integration of the three Sierra DSS components within a website designed specifically for the USDA Forest Service.

  19. A Platform for Scalable Satellite and Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.

    2017-12-01

    At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.

  20. A survey of tools and resources for the next generation analyst

    NASA Astrophysics Data System (ADS)

    Hall, David L.; Graham, Jake; Catherman, Emily

    2015-05-01

    We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.

  1. Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  2. a Framework for AN Open Source Geospatial Certification Model

    NASA Astrophysics Data System (ADS)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105 respondents worldwide. 15 interviews (face-to-face or by telephone) with experts in different countries provided additional insights into Open Source usage and certification. The findings led to the development of a certification framework of three main categories with in total eleven sub-categories, i.e., "Certified Open Source Geospatial Data Associate / Professional", "Certified Open Source Geospatial Analyst Remote Sensing & GIS", "Certified Open Source Geospatial Cartographer", "Certified Open Source Geospatial Expert", "Certified Open Source Geospatial Associate Developer / Professional Developer", "Certified Open Source Geospatial Architect". Each certification is described by pre-conditions, scope and objectives, course content, recommended software packages, target group, expected benefits, and the methods of examination. Examinations can be flanked by proofs of professional career paths and achievements which need a peer qualification evaluation. After a couple of years a recertification is required. The concept seeks the accreditation by the OSGeo Foundation (and other bodies) and international support by a group of geospatial scientific institutions to achieve wide and international acceptance for this Open Source geospatial certification model. A business case for Open Source certification and a corresponding SWOT model is examined to support the goals of the Geo-For-All initiative of the ICA-OSGeo pact.

  3. Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea.

    PubMed

    Depellegrin, Daniel; Menegon, Stefano; Farella, Giulio; Ghezzo, Michol; Gissi, Elena; Sarretta, Alessandro; Venier, Chiara; Barbanti, Andrea

    2017-12-31

    This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning. Copyright © 2017. Published by Elsevier B.V.

  4. Construction of a Distributed-network Digital Watershed Management System with B/S Techniques

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Liu, Y. M.; Fang, J.

    2017-07-01

    Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years

  5. New implementation of OGC Web Processing Service in Python programming language. PyWPS-4 and issues we are facing with processing of large raster data using OGC WPS

    NASA Astrophysics Data System (ADS)

    Čepický, Jáchym; Moreira de Sousa, Luís

    2016-06-01

    The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS can be delivered across a network or they can be available at a server. PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years, the PyWPS development team has written a new version (called PyWPS-4) completely from scratch. The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted within the PyWPS implementation.

  6. A cross-sectional ecological analysis of international and sub-national health inequalities in commercial geospatial resource availability.

    PubMed

    Dotse-Gborgbortsi, Winfred; Wardrop, Nicola; Adewole, Ademola; Thomas, Mair L H; Wright, Jim

    2018-05-23

    Commercial geospatial data resources are frequently used to understand healthcare utilisation. Although there is widespread evidence of a digital divide for other digital resources and infra-structure, it is unclear how commercial geospatial data resources are distributed relative to health need. To examine the distribution of commercial geospatial data resources relative to health needs, we assembled coverage and quality metrics for commercial geocoding, neighbourhood characterisation, and travel time calculation resources for 183 countries. We developed a country-level, composite index of commercial geospatial data quality/availability and examined its distribution relative to age-standardised all-cause and cause specific (for three main causes of death) mortality using two inequality metrics, the slope index of inequality and relative concentration index. In two sub-national case studies, we also examined geocoding success rates versus area deprivation by district in Eastern Region, Ghana and Lagos State, Nigeria. Internationally, commercial geospatial data resources were inversely related to all-cause mortality. This relationship was more pronounced when examining mortality due to communicable diseases. Commercial geospatial data resources for calculating patient travel times were more equitably distributed relative to health need than resources for characterising neighbourhoods or geocoding patient addresses. Countries such as South Africa have comparatively high commercial geospatial data availability despite high mortality, whilst countries such as South Korea have comparatively low data availability and low mortality. Sub-nationally, evidence was mixed as to whether geocoding success was lowest in more deprived districts. To our knowledge, this is the first global analysis of commercial geospatial data resources in relation to health outcomes. In countries such as South Africa where there is high mortality but also comparatively rich commercial geospatial data, these data resources are a potential resource for examining healthcare utilisation that requires further evaluation. In countries such as Sierra Leone where there is high mortality but minimal commercial geospatial data, alternative approaches such as open data use are needed in quantifying patient travel times, geocoding patient addresses, and characterising patients' neighbourhoods.

  7. About Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions.

  8. Browsing and Visualization of Linked Environmental Data

    NASA Astrophysics Data System (ADS)

    Nikolaou, Charalampos; Kyzirakos, Kostis; Bereta, Konstantina; Dogani, Kallirroi; Koubarakis, Manolis

    2014-05-01

    Linked environmental data has started to appear on the Web as environmental researchers make use of technologies such as ontologies, RDF, and SPARQL. Many of these datasets have an important geospatial and temporal dimension. The same is true also for the Web of data that is being rapidly populated not only with geospatial information, but also with temporal information. As the real-world entities represented in linked geospatial datasets evolve over time, the datasets themselves get updated and both the spatial and the temporal dimension of data become significant for users. For example, in the Earth Observation and Environment domains, data is constantly produced by satellite sensors and is associated with metadata containing, among others, temporal attributes, such as the time that an image was acquired. In addition, the acquisitions are considered to be valid for specific periods of time, for example until they get updated by new acquisitions. Satellite acquisitions might be utilized in applications such as the CORINE Land Cover programme operated by the European Environment Agency that makes available as a cartographic product the land cover of European areas. Periodically CORINE publishes the changes in the land cover of these areas in the form of changesets. Tools for exploiting the abundance of geospatial information have also started to emerge. However, these tools are designed for browsing a single data source, while in addition they cannot represent the temporal dimension. This is for two reasons: a) the lack of an implementation of a data model and a query language with temporal features covering the various semantics associated with the representation of time (e.g., valid and user-defined), and b) the lack of a standard temporal extension of RDF that would allow practitioners to utilize when publishing RDF data. Recently, we presented the temporal features of the data model stRDF, the query language stSPARQL, and their implementation in the geospatial RDF store Strabon (http://www.strabon.di.uoa.gr/) which, apart from querying geospatial information, can also be used to query both the valid time of a triple and user-defined time. With the aim of filling the aforementioned gaps and going beyond data exploration to map creation and sharing, we have designed and developed SexTant (http://sextant.di.uoa.gr/). SexTant can be used to produce thematic maps by layering spatiotemporal information which exists in a number of data sources ranging from standard SPARQL endpoints, to SPARQL endpoints following the standard GeoSPARQL defined by the Open Geospatial Consortium (OGC) for the modelling and querying of geospatial information, and other well-adopted geospatial file formats, such as KML and GeoJSON. In this work, we pick some real use cases from the environment domain to showcase the usefulness of SexTant to the environmental studies of a domain expert by presenting its browsing and visualization capabilities using a number of environmental datasets that we have published as linked data and also other geospatial data sources publicly available on the Web, such as KML files.

  9. Evaluation of High Resolution Imagery and Elevation Data

    DTIC Science & Technology

    2009-06-01

    the value of cutting-edge geospatial tools while keeping the data constant, the present experiment evaluated the effect of higher resolution imagery...and elevation data while keeping the tools constant. The high resolution data under evaluation was generated from TEC’s Buckeye system, an...results. As researchers and developers provide increasingly advanced tools to process data more quickly and accurately, it is necessary to assess each

  10. RacerGISOnline: Enhancing Learning in Marketing Classes with Web-Based Business GIS

    ERIC Educational Resources Information Center

    Miller, Fred L.; Mangold, W. Glynn; Roach, Joy; Brockway, Gary; Johnston, Timothy; Linnhoff, Stefan; McNeely, Sam; Smith, Kathy; Holmes, Terence

    2014-01-01

    Geographic Information Systems (GIS) offer geospatial analytical tools with great potential for applications in marketing decision making. However, for various reasons, the rate of adoption of these tools in academic marketing programs has lagged behind that of marketing practitioners. RacerGISOnline is an innovative approach to integrating these…

  11. Developing a Cloud-Based Online Geospatial Information Sharing and Geoprocessing Platform to Facilitate Collaborative Education and Research

    NASA Astrophysics Data System (ADS)

    Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.

    2016-06-01

    Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.

  12. Geospatial tools for Ecosystem Services

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, population growth threatens lakes by, for instance, increasing nutrient loads. ...

  13. Geospatial Analysis of Climate-Related Changes in North American Arctic Ecosystems and Implications for Terrestrial Flora and Fauna

    NASA Astrophysics Data System (ADS)

    Amirazodi, S.; Griffin, R.

    2016-12-01

    Climate change induces range shifts among many terrestrial species in Arctic regions. At best, warming often forces poleward migration if a stable environment is to be maintained. At worst, marginal ecosystems may disappear entirely without a contiguous shift allowing migratory escape to similar environs. These changing migration patterns and poleward range expansion push species into higher latitudes where ecosystems are less stable and more sensitive to change. This project focuses on ecosystem geography and interspecies relationships and interactions by analyzing seasonality and changes over time in variables including the following: temperature, precipitation, vegetation, physical boundaries, population demographics, permafrost, sea ice, and food and water availability. Publicly available data from remote sensing platforms are used throughout, and processed with both commercially available and open sourced GIS tools. This analysis describes observed range changes for selected North American species, and attempts to provide insight into the causes and effects of these phenomena. As the responses to climate change are complex and varied, the goal is to produce the aforementioned results in an easily understood set of geospatial representations to better support decision making regarding conservation prioritization and enable adaptive responses and mitigation strategies.

  14. Image processing analysis of geospatial uav orthophotos for palm oil plantation monitoring

    NASA Astrophysics Data System (ADS)

    Fahmi, F.; Trianda, D.; Andayani, U.; Siregar, B.

    2018-03-01

    Unmanned Aerial Vehicle (UAV) is one of the tools that can be used to monitor palm oil plantation remotely. With the geospatial orthophotos, it is possible to identify which part of the plantation land is fertile for planted crops, means to grow perfectly. It is also possible furthermore to identify less fertile in terms of growth but not perfect, and also part of plantation field that is not growing at all. This information can be easily known quickly with the use of UAV photos. In this study, we utilized image processing algorithm to process the orthophotos for more accurate and faster analysis. The resulting orthophotos image were processed using Matlab including classification of fertile, infertile, and dead palm oil plants by using Gray Level Co-Occurrence Matrix (GLCM) method. The GLCM method was developed based on four direction parameters with specific degrees 0°, 45°, 90°, and 135°. From the results of research conducted with 30 image samples, it was found that the accuracy of the system can be reached by using the features extracted from the matrix as parameters Contras, Correlation, Energy, and Homogeneity.

  15. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, Meghan; Maclaurin, Galen

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  16. Downloading and Installing Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  17. Frequent Questions about Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  18. Development of Geospatial Map Based Election Portal

    NASA Astrophysics Data System (ADS)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  19. ASPECT (Airborne Spectral Photometric Environmental Collection Technology) Fact Sheet

    EPA Pesticide Factsheets

    This multi-sensor screening tool provides infrared and photographic images with geospatial, chemical, and radiological data within minutes to support emergency responses, home-land security missions, environmental surveys, and climate monitoring missions.

  20. A GeoNode-Based Multiscale Platform For Management, Visualization And Integration Of DInSAR Data With Different Geospatial Information Sources

    NASA Astrophysics Data System (ADS)

    Buonanno, Sabatino; Fusco, Adele; Zeni, Giovanni; Manunta, Michele; Lanari, Riccardo

    2017-04-01

    This work describes the implementation of an efficient system for managing, viewing, analyzing and updating remotely sensed data, with special reference to Differential Interferometric Synthetic Aperture Radar (DInSAR) data. The DInSAR products measure Earth surface deformation both in space and time, producing deformation maps and time series[1,2]. The use of these data in research or operational contexts requires tools that have to handle temporal and spatial variability with high efficiency. For this aim we present an implementation based on Spatial Data Infrastructure (SDI) for data integration, management and interchange, by using standard protocols[3]. SDI tools provide access to static datasets that operate only with spatial variability . In this paper we use the open source project GeoNode as framework to extend SDI infrastructure functionalities to ingest very efficiently DInSAR deformation maps and deformation time series. GeoNode allows to realize comprehensive and distributed infrastructure, following the standards of the Open Geospatial Consortium, Inc. - OGC, for remote sensing data management, analysis and integration [4,5]. In the current paper we explain the methodology used for manage the data complexity and data integration using the opens source project GeoNode. The solution presented in this work for the ingestion of DinSAR products is a very promising starting point for future developments of the OGC compliant implementation of a semi-automatic remote sensing data processing chain . [1] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 11, pp. 2375-2383. [2] Lanari R., F. Casu, M. Manzo, G. Zeni,, P. Berardino, M. Manunta and A. Pepe (2007), An overview of the Small Baseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, P. Appl. Geophys., 164, doi: 10.1007/s00024-007-0192-9. [3] Nebert, D.D. (ed). 2000. Developing Spatial data Infrastructures: The SDI Cookbook. [4] Geonode (www.geonode.org) [5] Kolodziej, k. (ed). 2004. OGC OpenGIS Web Map Server Cookbook. Open Geospatial Consortium, 1.0.2 edition.

  1. Tools for open geospatial science

    NASA Astrophysics Data System (ADS)

    Petras, V.; Petrasova, A.; Mitasova, H.

    2017-12-01

    Open science uses open source to deal with reproducibility challenges in data and computational sciences. However, just using open source software or making the code public does not make the research reproducible. Moreover, the scientists face the challenge of learning new unfamiliar tools and workflows. In this contribution, we will look at a graduate-level course syllabus covering several software tools which make validation and reuse by a wider professional community possible. For the novices in the open science arena, we will look at how scripting languages such as Python and Bash help us reproduce research (starting with our own work). Jupyter Notebook will be introduced as a code editor, data exploration tool, and a lab notebook. We will see how Git helps us not to get lost in revisions and how Docker is used to wrap all the parts together using a single text file so that figures for a scientific paper or a technical report can be generated with a single command. We will look at examples of software and publications in the geospatial domain which use these tools and principles. Scientific contributions to GRASS GIS, a powerful open source desktop GIS and geoprocessing backend, will serve as an example of why and how to publish new algorithms and tools as part of a bigger open source project.

  2. Development of tiger habitat suitability model using geospatial tools-a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India.

    PubMed

    Singh, R; Joshi, P K; Kumar, M; Dash, P P; Joshi, B D

    2009-08-01

    Geospatial tools supported by ancillary geo-database and extensive fieldwork regarding the distribution of tiger and its prey in Anchankmar Wildlife Sanctuary (AMWLS) were used to build a tiger habitat suitability model. This consists of a quantitative geographical information system (GIS) based approach using field parameters and spatial thematic information. The estimates of tiger sightings, its prey sighting and predicted distribution with the assistance of contextual environmental data including terrain, road network, settlement and drainage surfaces were used to develop the model. Eight variables in the dataset viz., forest cover type, forest cover density, slope, aspect, altitude, and distance from road, settlement and drainage were seen as suitable proxies and were used as independent variables in the analysis. Principal component analysis and binomial multiple logistic regression were used for statistical treatments of collected habitat parameters from field and independent variables respectively. The assessment showed a strong expert agreement between the predicted and observed suitable areas. A combination of the generated information and published literature was also used while building a habitat suitability map for the tiger. The modeling approach has taken the habitat preference parameters of the tiger and potential distribution of prey species into account. For assessing the potential distribution of prey species, independent suitability models were developed and validated with the ground truth. It is envisaged that inclusion of the prey distribution probability strengthens the model when a key species is under question. The results of the analysis indicate that tiger occur throughout the sanctuary. The results have been found to be an important input as baseline information for population modeling and natural resource management in the wildlife sanctuary. The development and application of similar models can help in better management of the protected areas of national interest.

  3. Leveraging geospatial data, technology, and methods for improving the health of communities: priorities and strategies from an expert panel convened by the CDC.

    PubMed

    Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L

    2010-04-01

    In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.

  4. Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data

    NASA Astrophysics Data System (ADS)

    Manikanta, K.; Rajan, K. S.

    2017-09-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  5. Geospatial Data Science Applications and Visualizations | Geospatial Data

    Science.gov Websites

    . Since before the time of Google Maps, NREL has used the internet to allow stakeholders to view and world, these maps drive understanding. See our collection of key maps for examples. Featured Analysis

  6. Local Government GIS and Geospatial Capabilities : Suitability for Integrated Transportation & Land Use Planning (California SB 375)

    DOT National Transportation Integrated Search

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates.

  7. Open Technology Approaches to Geospatial Interface Design

    NASA Astrophysics Data System (ADS)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  8. A View from Above Without Leaving the Ground

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In order to deliver accurate geospatial data and imagery to the remote sensing community, NASA is constantly developing new image-processing algorithms while refining existing ones for technical improvement. For 8 years, the NASA Regional Applications Center at Florida International University has served as a test bed for implementing and validating many of these algorithms, helping the Space Program to fulfill its strategic and educational goals in the area of remote sensing. The algorithms in return have helped the NASA Regional Applications Center develop comprehensive semantic database systems for data management, as well as new tools for disseminating geospatial information via the Internet.

  9. Unmanned aircraft systems for transportation decision support.

    DOT National Transportation Integrated Search

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  10. EPA Guidance for Geospatially Related Quality Assurance Project Plans

    EPA Pesticide Factsheets

    This March 2003 document discusses EPA's Quality Assurance (QA) Project Plan as a tool for project managers and planners to document the type and quality of data and information needed for making environmental decisions

  11. Geospatial optimization of siting large-scale solar projects

    USGS Publications Warehouse

    Macknick, Jordan; Quinby, Ted; Caulfield, Emmet; Gerritsen, Margot; Diffendorfer, James E.; Haines, Seth S.

    2014-01-01

    guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  12. High performance geospatial and climate data visualization using GeoJS

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring data and analysis regarding 1) the human trafficking domain, 2) New York City taxi drop-offs and pick-ups, and 3) the Ebola outbreak. GeoJS supports advanced visualization features such as picking and selecting, as well as clustering. It also supports 2D contour plots, vector plots, heat maps, and geospatial graphs.

  13. Innovating Big Data Computing Geoprocessing for Analysis of Engineered-Natural Systems

    NASA Astrophysics Data System (ADS)

    Rose, K.; Baker, V.; Bauer, J. R.; Vasylkivska, V.

    2016-12-01

    Big data computing and analytical techniques offer opportunities to improve predictions about subsurface systems while quantifying and characterizing associated uncertainties from these analyses. Spatial analysis, big data and otherwise, of subsurface natural and engineered systems are based on variable resolution, discontinuous, and often point-driven data to represent continuous phenomena. We will present examples from two spatio-temporal methods that have been adapted for use with big datasets and big data geo-processing capabilities. The first approach uses regional earthquake data to evaluate spatio-temporal trends associated with natural and induced seismicity. The second algorithm, the Variable Grid Method (VGM), is a flexible approach that presents spatial trends and patterns, such as those resulting from interpolation methods, while simultaneously visualizing and quantifying uncertainty in the underlying spatial datasets. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analyses to efficiently consume and utilize large geospatial data in these custom analytical algorithms through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom `Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations.

  14. Geospatial Data Combined With The Automated Geospatial Watershed Assessment (AGWA) Tool For Rapid Post-Fire Watershed Assessments

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Clifford, T. J.; Guertin, D. P.; Sheppard, B. S.; Barlow, J. E.; Korgaonkar, Y.; Burns, I. S.; Unkrich, C. C.

    2016-12-01

    Wildfires disasters are common throughout the western US. While many feel fire suppression is the largest cost of wildfires, case studies note rehabilitation costs often equal or greatly exceed suppression costs. Using geospatial data sets, and post-fire burn severity products, coupled with the Automated Geospatial Watershed Assessment tool (AGWA - www.tucson.ars.ag.gov/agwa), the Dept. of Interior, Burned Area Emergency Response (BAER) teams can rapidly analyze and identify at-risk areas to target rehabilitation efforts. AGWA employs nationally available geospatial elevation, soils, and land cover data to parameterize the KINEROS2 hydrology and erosion model. A pre-fire watershed simulation can be done prior to BAER deployment using design storms. As soon as the satellite-derived Burned Area Reflectance Classification (BARC) map is obtained, a post-fire watershed simulation using the same storm is conducted. The pre- and post-fire simulations can be spatially differenced in the GIS for rapid identification of high at-risk areas of erosion or flooding. This difference map is used by BAER teams to prioritize field observations and in-turn produce a final burn severity map that is used in AGWA/KINEROS2 simulations to provide report ready results. The 2013 Elk Wildfire Complex that burned over 52,600 ha east of Boise, Idaho provides a tangible example of how BAER experts combined AGWA and geospatial data that resulted in substantial rehabilitation cost savings. The BAER team initially, they identified approximately 6,500 burned ha for rehabilitation. The team then used the AGWA pre- and post-fire watershed simulation results, accessibility constraints, and land slope conditions in an interactive process to locate burned areas that posed the greatest threat to downstream values-at-risk. The group combined the treatable area, field observations, and the spatial results from AGWA to target seed and mulch treatments that most effectively reduced the threats. Using this process, the BAER Team reduced the treatable acres from the original 16,000 ha to between 800 and 1,600 ha depending on the selected alternative. The final awarded contract amounted to about 1,480/ha, therefore, a total savings of 7.2 - $8.4 million was realized for mulch treatment alone.

  15. Sea Level Rise Data Discovery

    NASA Astrophysics Data System (ADS)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  16. Developing geospatial thinking and the science practices of investigation and evalutation with geographic information systems

    NASA Astrophysics Data System (ADS)

    Hamilton, Kelli

    Geospatial thinking is a subset of spatial thinking, which has been identified by the National Geography Standards as an essential skill for students to gain through geography instruction (Heffron & Downs, 2013). One tool which has been shown to help students develop their geospatial thinking skills is Geographic Information Systems (GIS) (Kim & Bednraz, 2013; Lee & Bednarz, 2009; Patterson, 2007). Much of the research conducted with GIS has been in the context of social studies classrooms. This study examined the use of GIS with seventh grade students in a science classroom. Results of this study indicate that students who use GIS as part of their science instruction are able to practice geospatial thinking skills. In addition, this study examined how GIS could be used to enhance the instruction of the science practices of investigation and evaluation. The Next Generation Science Standards identify certain science practices which students should experience as part of science instruction (NGSS Lead States, 2013). Among those practices are investigation and evaluation. Students in this study used GIS to investigate and evaluate scientific data. Both the teacher and the students were able to identify ways that GIS enhanced both the investigation and evaluation of data.

  17. An integrated, open-source set of tools for urban vulnerability monitoring from Earth observation data

    NASA Astrophysics Data System (ADS)

    De Vecchi, Daniele; Harb, Mostapha; Dell'Acqua, Fabio; Aurelio Galeazzo, Daniel

    2015-04-01

    Aim: The paper introduces an integrated set of open-source tools designed to process medium and high-resolution imagery with the aim to extract vulnerability indicators [1]. Problem: In the context of risk monitoring [2], a series of vulnerability proxies can be defined, such as the extension of a built-up area or buildings regularity [3]. Different open-source C and Python libraries are already available for image processing and geospatial information (e.g. OrfeoToolbox, OpenCV and GDAL). They include basic processing tools but not vulnerability-oriented workflows. Therefore, it is of significant importance to provide end-users with a set of tools capable to return information at a higher level. Solution: The proposed set of python algorithms is a combination of low-level image processing and geospatial information handling tools along with high-level workflows. In particular, two main products are released under the GPL license: source code, developers-oriented, and a QGIS plugin. These tools were produced within the SENSUM project framework (ended December 2014) where the main focus was on earthquake and landslide risk. Further development and maintenance is guaranteed by the decision to include them in the platform designed within the FP 7 RASOR project . Conclusion: With the lack of a unified software suite for vulnerability indicators extraction, the proposed solution can provide inputs for already available models like the Global Earthquake Model. The inclusion of the proposed set of algorithms within the RASOR platforms can guarantee support and enlarge the community of end-users. Keywords: Vulnerability monitoring, remote sensing, optical imagery, open-source software tools References [1] M. Harb, D. De Vecchi, F. Dell'Acqua, "Remote sensing-based vulnerability proxies in the EU FP7 project SENSUM", Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30th January 2014, Bishkek, Kyrgyz Republic. [2] UNISDR, "Living with Risk", Geneva, Switzerland, 2004. [3] P. Bisch, E. Carvalho, H. Degree, P. Fajfar, M. Fardis, P. Franchin, M. Kreslin, A. Pecker, "Eurocode 8: Seismic Design of Buildings", Lisbon, 2011. (SENSUM: www.sensum-project.eu, grant number: 312972 ) (RASOR: www.rasor-project.eu, grant number: 606888 )

  18. Local government GIS and geospatial capabilities : suitability for integrated transportation and land use planning (California SB 375).

    DOT National Transportation Integrated Search

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates. The particular examples ...

  19. THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    A toolkit for distributed hydrologic modeling at multiple scales using a geographic information system is presented. This open-source, freely available software was developed through a collaborative endeavor involving two Universities and two government agencies. Called the Auto...

  20. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data

    Treesearch

    Rachel Riemann; Barry Tyler Wilson; Andrew Lister; Sarah Parks

    2010-01-01

    Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to...

  1. Using Web Crawler Technology for Text Analysis of Geo-Events: A Case Study of the Huangyan Island Incident

    NASA Astrophysics Data System (ADS)

    Hu, H.; Ge, Y. J.

    2013-11-01

    With the social networking and network socialisation have brought more text information and social relationships into our daily lives, the question of whether big data can be fully used to study the phenomenon and discipline of natural sciences has prompted many specialists and scholars to innovate their research. Though politics were integrally involved in the hyperlinked word issues since 1990s, automatic assembly of different geospatial web and distributed geospatial information systems utilizing service chaining have explored and built recently, the information collection and data visualisation of geo-events have always faced the bottleneck of traditional manual analysis because of the sensibility, complexity, relativity, timeliness and unexpected characteristics of political events. Based on the framework of Heritrix and the analysis of web-based text, word frequency, sentiment tendency and dissemination path of the Huangyan Island incident is studied here by combining web crawler technology and the text analysis method. The results indicate that tag cloud, frequency map, attitudes pie, individual mention ratios and dissemination flow graph based on the data collection and processing not only highlight the subject and theme vocabularies of related topics but also certain issues and problems behind it. Being able to express the time-space relationship of text information and to disseminate the information regarding geo-events, the text analysis of network information based on focused web crawler technology can be a tool for understanding the formation and diffusion of web-based public opinions in political events.

  2. Development of Geospatial Map Based Portal for New Delhi Municipal Council

    NASA Astrophysics Data System (ADS)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal (GMP) for New Delhi Municipal Council (NDMC) of NCT of Delhi. The GMP has been developed as a map based spatial decision support system (SDSS) for planning and development of NDMC area to the NDMC department and It's heaving the inbuilt information searching tools (identifying of location, nearest utilities locations, distance measurement etc.) for the citizens of NCTD. The GMP is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMP includes Circle, Division, Sub-division boundaries of department pertaining to New Delhi Municipal Council, Parcels of residential, commercial, and government buildings, basic amenities (Police Stations, Hospitals, Schools, Banks, ATMs and Fire Stations etc.), Over-ground and Underground utility network lines, Roads, Railway features. GMP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for development and management of MCD area. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  3. Development of Geospatial Map Based Portal for Delimitation of Mcd Wards

    NASA Astrophysics Data System (ADS)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW) and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc.,) for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMPDW includes Enumeration Block (EB) and Enumeration Blocks Group (EBG) boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  4. Geospatial analysis based on GIS integrated with LADAR.

    PubMed

    Fetterman, Matt R; Freking, Robert; Fernandez-Cull, Christy; Hinkle, Christopher W; Myne, Anu; Relyea, Steven; Winslow, Jim

    2013-10-07

    In this work, we describe multi-layered analyses of a high-resolution broad-area LADAR data set in support of expeditionary activities. High-level features are extracted from the LADAR data, such as the presence and location of buildings and cars, and then these features are used to populate a GIS (geographic information system) tool. We also apply line-of-sight (LOS) analysis to develop a path-planning module. Finally, visualization is addressed and enhanced with a gesture-based control system that allows the user to navigate through the enhanced data set in a virtual immersive experience. This work has operational applications including military, security, disaster relief, and task-based robotic path planning.

  5. A research on the security of wisdom campus based on geospatial big data

    NASA Astrophysics Data System (ADS)

    Wang, Haiying

    2018-05-01

    There are some difficulties in wisdom campus, such as geospatial big data sharing, function expansion, data management, analysis and mining geospatial big data for a characteristic, especially the problem of data security can't guarantee cause prominent attention increasingly. In this article we put forward a data-oriented software architecture which is designed by the ideology of orienting data and data as kernel, solve the problem of traditional software architecture broaden the campus space data research, develop the application of wisdom campus.

  6. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    NASA Astrophysics Data System (ADS)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.

  7. Qualitative-Geospatial Methods of Exploring Person-Place Transactions in Aging Adults: A Scoping Review.

    PubMed

    Hand, Carri; Huot, Suzanne; Laliberte Rudman, Debbie; Wijekoon, Sachindri

    2017-06-01

    Research exploring how places shape and interact with the lives of aging adults must be grounded in the places where aging adults live and participate. Combined participatory geospatial and qualitative methods have the potential to illuminate the complex processes enacted between person and place to create much-needed knowledge in this area. The purpose of this scoping review was to identify methods that can be used to study person-place relationships among aging adults and their neighborhoods by determining the extent and nature of research with aging adults that combines qualitative methods with participatory geospatial methods. A systematic search of nine databases identified 1,965 articles published from 1995 to late 2015. We extracted data and assessed whether the geospatial and qualitative methods were supported by a specified methodology, the methods of data analysis, and the extent of integration of geospatial and qualitative methods. Fifteen studies were included and used the photovoice method, global positioning system tracking plus interview, or go-along interviews. Most included articles provided sufficient detail about data collection methods, yet limited detail about methodologies supporting the study designs and/or data analysis. Approaches that combine participatory geospatial and qualitative methods are beginning to emerge in the aging literature. By more explicitly grounding studies in a methodology, better integrating different types of data during analysis, and reflecting on methods as they are applied, these methods can be further developed and utilized to provide crucial place-based knowledge that can support aging adults' health, well-being, engagement, and participation. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. [Geospatial models for local health surveillance].

    PubMed

    De Pietri, Diana Elba; García, Susana; Rico, Osvaldo

    2008-06-01

    To produce a geospatial model to evaluate lead exposure among school children from 6-8 years of age, in San Antonio Oeste, Rio Negro province, Argentina, an area contaminated by a foundry in the city center whose toxins were released into the open air. The spatial analysis conducted from October-April 2006 included satellite interpretation and mapping of the data to geographically plot the information. Residences on dirt roads were included, as was the distance for each of the study children's homes and/or schools to the site identified as the source of the exposure. Blood samples taken from children attending schools within the area surrounding the source showed higher lead levels than that of children in other areas. These lead levels were associated with the proximity to the source and/or with living on a dirt road. The highest blood lead levels corresponded to the higher environmental lead levels. Spatial analysis was shown to be a useful tool for site analysis and risk management since it indicated a definitive association between elevated lead levels and the proximity to the source, and/or residing on a dirt road, connections which had not been revealed with traditional epidemiological analyses. The results provided the scientific evidence needed to begin implementing interventions regarding the sources of exposure and education aimed at promoting more hygienic dietary habits among the population.

  9. Geospatial Tools for Evaluating Ecosystems in Lakes and Ponds of the Northeastern US

    EPA Science Inventory

    Northeastern lakes benefit residents and visitors by providing valuable ecosystem services such as nutrient retention, recreational opportunities, and aesthetic value. Concurrently, however, complex changes such landscape change, population growth, and management decisions influ...

  10. United States Geological Survey (USGS) Natural Hazards Response

    USGS Publications Warehouse

    Lamb, Rynn M.; Jones, Brenda K.

    2012-01-01

    The primary goal of U.S. Geological Survey (USGS) Natural Hazards Response is to ensure that the disaster response community has access to timely, accurate, and relevant geospatial products, imagery, and services during and after an emergency event. To accomplish this goal, products and services provided by the National Geospatial Program (NGP) and Land Remote Sensing (LRS) Program serve as a geospatial framework for mapping activities of the emergency response community. Post-event imagery and analysis can provide important and timely information about the extent and severity of an event. USGS Natural Hazards Response will also support the coordination of remotely sensed data acquisitions, image distribution, and authoritative geospatial information production as required for use in disaster preparedness, response, and recovery operations.

  11. The LANDFIRE Prototype Project: nationally consistent and locally relevant geospatial data for wildland fire management

    Treesearch

    Matthew G. Rollins; Christine K. Frame

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, began in April of 2002 and ended in April of 2005. The project was funded by the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior. The objectives of the LANDFIRE Prototype Project were to develop the methods, tools, and protocols...

  12. Data Quality, Provenance and IPR Management services: their role in empowering geospatial data suppliers and users

    NASA Astrophysics Data System (ADS)

    Millard, Keiran

    2015-04-01

    This paper looks at current experiences of geospatial users and geospatial suppliers and how they have been limited by suitable frameworks for managing and communicating data quality, data provenance and intellectual property rights (IPR). Current political and technological drivers mean that increasing volumes of geospatial data are available through a plethora of different products and services, and whilst this is inherently a good thing it does create a new generation of challenges. This paper consider two examples of where these issues have been examined and looks at the challenges and possible solutions from a data user and data supplier perspective. The first example is the IQmulus project that is researching fusion environments for big geospatial point clouds and coverages. The second example is the EU Emodnet programme that is establishing thematic data portals for public marine and coastal data. IQmulus examines big geospatial data; the data from sources such as LIDAR, SONAR and numerical simulations; these data are simply too big for routine and ad-hoc analysis, yet they could realise a myriad of disparate, and readily useable, information products with the right infrastructure in place. IQmulus is researching how to deliver this infrastructure technically, but a financially sustainable delivery depends on being able to track and manage ownership and IPR across the numerous data sets being processed. This becomes complex when the data is composed of multiple overlapping coverages, however managing this allows for uses to be delivered highly-bespoke products to meet their budget and technical needs. The Emodnet programme delivers harmonised marine data at the EU scale across seven thematic portals. As part of the Emodnet programme a series of 'check points' have been initiated to examine how useful these services and other public data services actually are to solve real-world problems. One key finding is that users have been confused by the fact that often data from the same source appears across multiple platforms and that current 19115-style metadata catalogues do not help the vast majority of users in making data selections. To address this, we have looked at approaches used in the leisure industry. This industry has established tools to support users selecting the best hotel for their needs from the metadata available, supported by peer to peer rating. We have looked into how this approach can support users in selecting the best data to meet their needs.

  13. Geo-epidemiologic mapping in the new public health surveillance. The malaria case in Chiapas, Mexico, 2002.

    PubMed

    Castillo-Salgado, Carlos

    2017-01-01

    The new public health surveillance requires at the global, national and local levels the use of new authoritative analytical approaches and tools for better recognition of the epidemiologic characteristics of the priority health events and risk factors affecting the population health. The identification of the events in time and space is of fundamental importance so that the geo-spatial description of the situation of diseases and health events facilitates the identification of social, environmental and health care related risks. This assessment examines the application and use of geo-spatial tools for identifying relevant spatial and epidemiological conglomerates of malaria in Chiapas, Mexico. The study design was ecological and the level of aggregation of the collected information of the epidemiological and spatial variables was municipalities. The data were collected in all municipalities of the state of Chiapas, Mexico during the years 2000-2002. The main outcome variable was cases and types of malaria diagnosed by blood smears in weekly reports. Independent variables were age, sex, ethnicity, literacy of the cases of malaria and environmental factors such as altitude, road type and network in the municipalities and cities of Chiapas. The production of thematic maps and the application of geo-spatial analytical tools such Moran and local indicator of spatial autocorrelation metrics for malaria clustering allowed the visualization and recognition that the important population risk factors associated with high malaria incidence in Chiapas were low literacy rate, areas with high percentage of indigenous population that reflects the social inequalities gaps in health and the great burden of disease that is affecting this important vulnerable group in Chiapas. The presence of road networks allowed greater spatial diffusion of Malaria. An important epidemiological and spatial cluster of malaria was identified in the areas and populations in the proximity of the southern border. The use of geospatial metrics in local areas will assist in the epidemiological stratification of malaria for better targeting more effective and equitable prevention and control interventions. Copyright: © 2017 SecretarÍa de Salud.

  14. MultiSpec: A Desktop and Online Geospatial Image Data Processing Tool

    NASA Astrophysics Data System (ADS)

    Biehl, L. L.; Hsu, W. K.; Maud, A. R. M.; Yeh, T. T.

    2017-12-01

    MultiSpec is an easy to learn and use, freeware image processing tool for interactively analyzing a broad spectrum of geospatial image data, with capabilities such as image display, unsupervised and supervised classification, feature extraction, feature enhancement, and several other functions. Originally developed for Macintosh and Windows desktop computers, it has a community of several thousand users worldwide, including researchers and educators, as a practical and robust solution for analyzing multispectral and hyperspectral remote sensing data in several different file formats. More recently MultiSpec was adapted to run in the HUBzero collaboration platform so that it can be used within a web browser, allowing new user communities to be engaged through science gateways. MultiSpec Online has also been extended to interoperate with other components (e.g., data management) in HUBzero through integration with the geospatial data building blocks (GABBs) project. This integration enables a user to directly launch MultiSpec Online from data that is stored and/or shared in a HUBzero gateway and to save output data from MultiSpec Online to hub storage, allowing data sharing and multi-step workflows without having to move data between different systems. MultiSpec has also been used in K-12 classes for which one example is the GLOBE program (www.globe.gov) and in outreach material such as that provided by the USGS (eros.usgs.gov/educational-activities). MultiSpec Online now provides teachers with another way to use MultiSpec without having to install the desktop tool. Recently MultiSpec Online was used in a geospatial data session with 30-35 middle school students at the Turned Onto Technology and Leadership (TOTAL) Camp in the summers of 2016 and 2017 at Purdue University. The students worked on a flood mapping exercise using Landsat 5 data to learn about land remote sensing using supervised classification techniques. Online documentation is available for MultiSpec (engineering.purdue.edu/ biehl/MultiSpec/) including a reference manual and several tutorials allowing young high-school students through research faculty to learn the basic functions in MultiSpec. Some of the tutorials have been translated to other languages by MultiSpec users.

  15. Ricardo Oliveira | NREL

    Science.gov Websites

    the System Modeling & Geospatial Data Science Group in the Strategic Energy Analysis Center. Areas Publications Oliveira, R and Moreno, R. 2016. Harvesting, Integrating and Distributing Large Open Geospatial Datasets Using Free and Open-Source Software. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7

  16. Green Infrastructure Design Evaluation Using the Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...

  17. Evaluation of Green Infrastructure Designs Using the Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...

  18. Automated Geospatial Watershed Assessment (AGWA) Tool for hydrologic modeling and watershed assessment

    EPA Pesticide Factsheets

    Using basic, easily attainable GIS data, AGWA provides a simple, direct, and repeatable methodology for hydrologic model setup, execution, and visualization. AGWA experiences activity from over 170 countries. It l has been downloaded over 11,000 times.

  19. The AgESGUI geospatial simulation system for environmental model application and evaluation

    USDA-ARS?s Scientific Manuscript database

    Practical decision making in spatially-distributed environmental assessment and management is increasingly being based on environmental process-based models linked to geographical information systems (GIS). Furthermore, powerful computers and Internet-accessible assessment tools are providing much g...

  20. Understanding the Role of Muscle and Body Composition in Studies of Cancer Risk and Prognosis in Cancer Survivors

    Cancer.gov

    The purpose of this conference is to bring together a community of researchers across the cancer control continuum using geospatial tools, models and approaches to address cancer prevention and control.

  1. PlanetSense: A Real-time Streaming and Spatio-temporal Analytics Platform for Gathering Geo-spatial Intelligence from Open Source Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Gautam S; Bhaduri, Budhendra L; Piburn, Jesse O

    Geospatial intelligence has traditionally relied on the use of archived and unvarying data for planning and exploration purposes. In consequence, the tools and methods that are architected to provide insight and generate projections only rely on such datasets. Albeit, if this approach has proven effective in several cases, such as land use identification and route mapping, it has severely restricted the ability of researchers to inculcate current information in their work. This approach is inadequate in scenarios requiring real-time information to act and to adjust in ever changing dynamic environments, such as evacuation and rescue missions. In this work, wemore » propose PlanetSense, a platform for geospatial intelligence that is built to harness the existing power of archived data and add to that, the dynamics of real-time streams, seamlessly integrated with sophisticated data mining algorithms and analytics tools for generating operational intelligence on the fly. The platform has four main components i) GeoData Cloud a data architecture for storing and managing disparate datasets; ii) Mechanism to harvest real-time streaming data; iii) Data analytics framework; iv) Presentation and visualization through web interface and RESTful services. Using two case studies, we underpin the necessity of our platform in modeling ambient population and building occupancy at scale.« less

  2. EnviroAtlas: Providing Nationwide Geospatial Ecosystem Goods and Services Indicators and Indices to Inform Decision-Making, Research, and Education

    NASA Astrophysics Data System (ADS)

    Neale, A. C.

    2016-12-01

    EnviroAtlas is a multi-organization effort led by the US Environmental Protection Agency to develop, host and display a large suite of nation-wide geospatial indicators and indices of ecosystem services. This open access tool allows users to view, analyze, and download a wealth of geospatial data and other resources related to ecosystem goods and services. More than 160 national indicators of ecosystem service supply, demand, and drivers of change provide a framework to inform decisions and policies at multiple spatial scales, educate a range of audiences, and supply data for research. A higher resolution component is also available, providing over 100 data layers for finer-scale analyses for selected communities across the US. The ecosystem goods and services data are organized into seven general ecosystem benefit categories: clean and plentiful water; natural hazard mitigation; food, fuel, and materials; climate stabilization; clean air; biodiversity conservation; and recreation, culture, and aesthetics. Each indicator is described in terms of how it is important to human health or well-being. EnviroAtlas includes data describing existing ecosystem markets for water quality and quantity, biodiversity, wetland mitigation, and carbon credits. This presentation will briefly describe the EnviroAtlas data and tools and how they are being developed and used in ongoing research studies and in decision-making contexts.

  3. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  4. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  5. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  6. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    ERIC Educational Resources Information Center

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  7. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…

  8. Geospatial Data Science Publications | Geospatial Data Science | NREL

    Science.gov Websites

    research in these publications. Featured Publications U.S. Renewable Energy Technical Potentials: A GIS -Based Analysis, NREL Technical Report (2012) 2016 Offshore Wind Energy Resource Assessment for the -Temperature Geothermal Resources of the United States, 40th GRC Annual Meeting (2016) High-Level Overview of

  9. Meghan Mooney | NREL

    Science.gov Websites

    @nrel.gov | 303-384-7315 Meghan Mooney is a member of the Geospatial Data Science team within the Systems Modeling & Geospatial Data Science Group in the Strategic Energy Analysis Center. Areas of Expertise and resiliency Education M.A., Geography, University of Denver B.S., Geographic Science, James Madison

  10. A robust and flexible Geospatial Modeling Interface (GMI) for environmental model deployment and evaluation

    USDA-ARS?s Scientific Manuscript database

    This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...

  11. A Geospatial Statistical Analysis of the Density of Lottery Outlets within Ethnically Concentrated Neighborhoods

    ERIC Educational Resources Information Center

    Wiggins, Lyna; Nower, Lia; Mayers, Raymond Sanchez; Peterson, N. Andrew

    2010-01-01

    This study examines the density of lottery outlets within ethnically concentrated neighborhoods in Middlesex County, New Jersey, using geospatial statistical analyses. No prior studies have empirically examined the relationship between lottery outlet density and population demographics. Results indicate that lottery outlets were not randomly…

  12. Integrating Remote Sensing Data with Directional Two- Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management.

    PubMed

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-02-19

    In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were distributed simultaneously to other agents using geographymarkup language. Real-time information allows successive platforms (agents) to work withlocal geospatial data for disaster management. Furthermore, the proposed is suitable fordetecting landslides in various regions on continental, regional, and local scales usingremotely sensed data in various resolutions derived from SPOT HRV, IKONOS, andQuickBird multispectral images.

  13. Open source tools for ATR development and performance evaluation

    NASA Astrophysics Data System (ADS)

    Baumann, James M.; Dilsavor, Ronald L.; Stubbles, James; Mossing, John C.

    2002-07-01

    Early in almost every engineering project, a decision must be made about tools; should I buy off-the-shelf tools or should I develop my own. Either choice can involve significant cost and risk. Off-the-shelf tools may be readily available, but they can be expensive to purchase and to maintain licenses, and may not be flexible enough to satisfy all project requirements. On the other hand, developing new tools permits great flexibility, but it can be time- (and budget-) consuming, and the end product still may not work as intended. Open source software has the advantages of both approaches without many of the pitfalls. This paper examines the concept of open source software, including its history, unique culture, and informal yet closely followed conventions. These characteristics influence the quality and quantity of software available, and ultimately its suitability for serious ATR development work. We give an example where Python, an open source scripting language, and OpenEV, a viewing and analysis tool for geospatial data, have been incorporated into ATR performance evaluation projects. While this case highlights the successful use of open source tools, we also offer important insight into risks associated with this approach.

  14. Evaluation of green infrastructure designs using the Automated Geospatial Watershed Assessment Tool

    USDA-ARS?s Scientific Manuscript database

    In arid and semi-arid regions, green infrastructure (GI) designs can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwater, addressi...

  15. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT: A GIS-BASED HYDROLOGIC MODELING TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extens...

  16. Leveraging Geospatial Intelligence (GEOINT) in Mission Command

    DTIC Science & Technology

    2009-03-21

    Operational artists at all levels need new conceptual tools commensurate to today’s demands. Conceptual aids derived from old, industrial-age analogies...are not up to the mental gymnastics demanded by 21 st –century missions. Because operational environments evince increasingly dynamic complexity

  17. Creating Ecosystem Services Indices with EnviroAtlas Metrics

    EPA Science Inventory

    To support the well-being of future generations, ecosystem services (ES) need to be fully understood and evaluated by decision-makers. Geospatial tools, such as the EnviroAtlas, allow decision-makers, urban planners, public health professionals, and other stakeholders to view and...

  18. GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium-host symbioses.

    PubMed

    Franklin, Erik C; Stat, Michael; Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D

    2012-03-01

    The genus Symbiodinium encompasses a group of unicellular, photosynthetic dinoflagellates that are found free living or in hospite with a wide range of marine invertebrate hosts including scleractinian corals. We present GeoSymbio, a hybrid web application that provides an online, easy to use and freely accessible interface for users to discover, explore and utilize global geospatial bioinformatic and ecoinformatic data on Symbiodinium-host symbioses. The novelty of this application lies in the combination of a variety of query and visualization tools, including dynamic searchable maps, data tables with filter and grouping functions, and interactive charts that summarize the data. Importantly, this application is hosted remotely or 'in the cloud' using Google Apps, and therefore does not require any specialty GIS, web programming or data programming expertise from the user. The current version of the application utilizes Symbiodinium data based on the ITS2 genetic marker from PCR-based techniques, including denaturing gradient gel electrophoresis, sequencing and cloning of specimens collected during 1982-2010. All data elements of the application are also downloadable as spatial files, tables and nucleic acid sequence files in common formats for desktop analysis. The application provides a unique tool set to facilitate research on the basic biology of Symbiodinium and expedite new insights into their ecology, biogeography and evolution in the face of a changing global climate. GeoSymbio can be accessed at https://sites.google.com/site/geosymbio/. © 2011 Blackwell Publishing Ltd.

  19. Giovanni - The Bridge Between Data and Science

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Acker, James

    2017-01-01

    This article describes new features in the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni), a user-friendly online tool that enables visualization, analysis, and assessment of NASA Earth science data sets without downloading data and software. Since the satellite era began, data collected from Earth-observing satellites have been widely used in research and applications; however, using satellite-based data sets can still be a challenge to many. To facilitate data access and evaluation, as well as scientific exploration and discovery, the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) has developed Giovanni for a wide range of users around the world. This article describes the latest capabilities of Giovanni with examples, and discusses future plans for this innovative system.

  20. Gerrymandering Educational Opportunity: The Extent to which School Boundaries Foster or Hinder Efforts at Enhancing School Diversity Depends on the Motivation and Political Will of District Leadership

    ERIC Educational Resources Information Center

    Richards, Meredith P.

    2017-01-01

    "Gerrymandering" is known best as a tool to manipulate boundaries for voting districts, but school districts have long used the same tool to manipulate school boundaries. The author used geospatial techniques--mapping various kinds of demographic data onto school boundaries--to examine public school attendance zones and their effect on…

  1. SDI-based business processes: A territorial analysis web information system in Spain

    NASA Astrophysics Data System (ADS)

    Béjar, Rubén; Latre, Miguel Á.; Lopez-Pellicer, Francisco J.; Nogueras-Iso, Javier; Zarazaga-Soria, F. J.; Muro-Medrano, Pedro R.

    2012-09-01

    Spatial Data Infrastructures (SDIs) provide access to geospatial data and operations through interoperable Web services. These data and operations can be chained to set up specialized geospatial business processes, and these processes can give support to different applications. End users can benefit from these applications, while experts can integrate the Web services in their own business processes and developments. This paper presents an SDI-based territorial analysis Web information system for Spain, which gives access to land cover, topography and elevation data, as well as to a number of interoperable geospatial operations by means of a Web Processing Service (WPS). Several examples illustrate how different territorial analysis business processes are supported. The system has been established by the Spanish National SDI (Infraestructura de Datos Espaciales de España, IDEE) both as an experimental platform for geoscientists and geoinformation system developers, and as a mechanism to contribute to the Spanish citizens knowledge about their territory.

  2. NativeView: A Geospatial Curriculum for Native Nation Building

    NASA Astrophysics Data System (ADS)

    Rattling Leaf, J.

    2007-12-01

    In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.

  3. A Practice Approach of Multi-source Geospatial Data Integration for Web-based Geoinformation Services

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.

    2014-04-01

    Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.

  4. Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott

    2016-01-01

    Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…

  5. GIS-BASED HYDROLOGIC MODELING: THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving from simple, local scale problems toward complex, spatially explicit regional ones. Such problems have to be
    addressed with distributed models that can compute runoff and erosion at different spatial a...

  6. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  7. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student learning proceed from research suggesting that students will be more engaged and able to utilize prior knowledge better when seeing the local and hence personal relevance of climate change and other pressing contemporary science-related issues. In these projects, the students look for climate change trends in geospatial Earth System data layers from weather stations, satellites, and models in relation to global trends. They examine these data to (1) reify what they are learning in science class about meteorology, climate, and ecology, (2) build inquiry skills by posing and seeking answers to research questions, and (3) build data literacy skills through experience generating appropriate data queries and examining data output on different forms of geospatial representations such as maps, elevation profiles, and time series plots. Teachers also are given the opportunity to have their students look at geospatially represented census data from the tool Social Explorer (http://www.socialexplorer.com/pub/maps/home.aspx) in order to better understand demographic trends in relation to climate change-related trends in the Earth system. Early results will be reported about teacher professional development and student learning, gleaned from interviews and observations.

  8. The geo-spatial information infrastructure at the Centre for Control and Prevention of Zoonoses, University of Ibadan, Nigeria: an emerging sustainable One-Health pavilion.

    PubMed

    Olugasa, B O

    2014-12-01

    The World-Wide-Web as a contemporary means of information sharing offers a platform for geo-spatial information dissemination to improve education about spatio-temporal patterns of disease spread at the human-animal-environment interface in developing countries of West Africa. In assessing the quality of exposure to geospatial information applications among students in five purposively selected institutions in West Africa, this study reviewed course contents and postgraduate programmes in zoonoses surveillance. Geospatial information content and associated practical exercises in zoonoses surveillance were scored.. Seven criteria were used to categorize and score capability, namely, spatial data capture; thematic map design and interpretation; spatio-temporal analysis; remote sensing of data; statistical modelling; the management of spatial data-profile; and web-based map sharing operation within an organization. These criteria were used to compute weighted exposure during training at the institutions. A categorical description of institution with highest-scoring of computed Cumulative Exposure Point Average (CEPA) was based on an illustration with retrospective records of rabies cases, using data from humans, animals and the environment, that were sourced from Grand Bassa County, Liberia to create and share maps and information with faculty, staff, students and the neighbourhood about animal bite injury surveillance and spatial distribution of rabies-like illness. Uniformly low CEPA values (0-1.3) were observed across academic departments. The highest (3.8) was observed at the Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Nigeria, where geospatial techniques were systematically taught, and thematic and predictive maps were produced and shared online with other institutions in West Africa. In addition, a short course in zoonosis surveillance, which offers inclusive learning in geospatial applications, is taught at CCPZ. The paper presents a graded capability for geospatial data capture, analysis and an emerging sustainable map pavilion dedicated to zoonoses disease surveillance training among collaborating institutions in West Africa.

  9. Not Just a Game … When We Play Together, We Learn Together: Interactive Virtual Environments and Gaming Engines for Geospatial Visualization

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Anderson, J. W.

    2017-12-01

    An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.

  10. Multi-source Geospatial Data Analysis with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  11. Geospatial analysis identifies critical mineral-resource potential in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Labay, Keith A.; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  12. Geospatial health: the first five years.

    PubMed

    Utzinger, Jürg; Rinaldi, Laura; Malone, John B; Krauth, Stefanie J; Kristensen, Thomas K; Cringoli, Giuseppe; Bergquist, Robert

    2011-11-01

    Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS). This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical information system (GIS) applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47), which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board. This overview takes stock of the first five years of publishing: 133 contributions have been published so far, primarily original research (79.7%), followed by reviews (7.5%), announcements (6.0%), editorials and meeting reports (3.0% each) and a preface in the first issue. A content analysis of all the original research articles and reviews reveals that three quarters of the publications focus on human health with the remainder dealing with veterinary health. Two thirds of the papers come from Africa, Asia and Europe with similar numbers of contributions from each continent. Studies of more than 35 different diseases, injuries and risk factors have been presented. Malaria and schistosomiasis were identified as the two most important diseases (11.2% each). Almost half the contributions were based on GIS, one third on spatial analysis, often using advanced Bayesian geostatistics (13.8%), and one quarter on remote sensing. The 120 original research articles, reviews and editorials were produced by 505 authors based at institutions and universities in 52 countries. Importantly, a considerable proportion of the authors come from countries with a low or medium human development index (29.3%). In view of the increasing number of submissions, we are considering to publish more than two issues per year in the future. Finally, our vision is to open-up a new section predominantly based on visual presentations, including brief video clips, as discussed in a symposium at the 60th annual meeting of the American Society of Tropical Medicine and Hygiene in December 2011.

  13. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  14. Alternative Land-Use Method for Spatially Informed Watershed Management Decision Making Using SWAT

    EPA Science Inventory

    In this study, a modification is proposed to the Soil and Water Assessment Tool (SWAT) to enable identification of areas where the implementation of best management practices would likely result in the most significant improvement in downstream water quality. To geospatially link...

  15. Towards an Automated Pipeline for the Translation and Optimization of Geospatial Data for Virtual Environments

    DTIC Science & Technology

    2008-12-01

    clearly observed in the game industry ( Introversion , 2008). Currently there are many tools available to assist in automating the production of large...Graphics and Interactive Techniques, Melbourne, Australia, February 11 – 14. Introversion Software, 2008: Procedural Content Generation. http

  16. Field Ground Truthing Data Collector - a Mobile Toolkit for Image Analysis and Processing

    NASA Astrophysics Data System (ADS)

    Meng, X.

    2012-07-01

    Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1) Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use) and health conditions of ecosystems and environments in the vicinity of the flight field; 2) Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3) Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  17. Increasing the value of geospatial informatics with open approaches for Big Data

    NASA Astrophysics Data System (ADS)

    Percivall, G.; Bermudez, L. E.

    2017-12-01

    Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."

  18. Agricultural capacity to increase the production of select fruits and vegetables in the US: A geospatial modeling analysis

    USDA-ARS?s Scientific Manuscript database

    The capacity of US agriculture to increase the output of specific foods to accommodate increased demand is not well documented. This research uses geospatial modeling to examine the capacity of the US agricultural land base to increase the per capita availability of an example set of nutrient-dense ...

  19. The Gerrymandering of School Attendance Zones and the Segregation of Public Schools: A Geospatial Analysis

    ERIC Educational Resources Information Center

    Richards, Meredith P.

    2014-01-01

    In this study, I employ geospatial techniques to assess the impact of school attendance zone "gerrymandering" on the racial/ethnic segregation of schools, using a large national sample of 15,290 attendance zones in 663 districts. I estimate the effect of gerrymandering on school diversity and school district segregation by comparing the…

  20. Geospatial cryptography: enabling researchers to access private, spatially referenced, human subjects data for cancer control and prevention.

    PubMed

    Jacquez, Geoffrey M; Essex, Aleksander; Curtis, Andrew; Kohler, Betsy; Sherman, Recinda; Emam, Khaled El; Shi, Chen; Kaufmann, Andy; Beale, Linda; Cusick, Thomas; Goldberg, Daniel; Goovaerts, Pierre

    2017-07-01

    As the volume, accuracy and precision of digital geographic information have increased, concerns regarding individual privacy and confidentiality have come to the forefront. Not only do these challenge a basic tenet underlying the advancement of science by posing substantial obstacles to the sharing of data to validate research results, but they are obstacles to conducting certain research projects in the first place. Geospatial cryptography involves the specification, design, implementation and application of cryptographic techniques to address privacy, confidentiality and security concerns for geographically referenced data. This article defines geospatial cryptography and demonstrates its application in cancer control and surveillance. Four use cases are considered: (1) national-level de-duplication among state or province-based cancer registries; (2) sharing of confidential data across cancer registries to support case aggregation across administrative geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. A secure multi-party system for geospatial cryptography is developed. Solutions under geospatial cryptography are presented and computation time is calculated. As services provided by cancer registries to the research community, de-duplication, case aggregation across administrative geographies and secure data linkage are often time-consuming and in some instances precluded by confidentiality and security concerns. Geospatial cryptography provides secure solutions that hold significant promise for addressing these concerns and for accelerating the pace of research with human subjects data residing in our nation's cancer registries. Pursuit of the research directions posed herein conceivably would lead to a geospatially encrypted geographic information system (GEGIS) designed specifically to promote the sharing and spatial analysis of confidential data. Geospatial cryptography holds substantial promise for accelerating the pace of research with spatially referenced human subjects data.

  1. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  2. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.

  3. Lower richness of small wild mammal species and chagas disease risk.

    PubMed

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Lima, Valdirene dos Santos; Monteiro, Kerla Joeline Lima; Otaviano, Joel Carlos Rodrigues; Ferreira da Silva, Luiz Felipe Coutinho; Jansen, Ana Maria

    2012-01-01

    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.

  4. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way of the user to get into the system and the portal faces a unique style of the graphical user interface. Main reference for further information: [1] enviroGRIDS Project, http://www.envirogrids.net/

  5. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR LANDSCAPE ASSESSMENT AND WATERSHED MANAGEMENT

    EPA Science Inventory

    The assessment of land use and land cover is an extremely important activity for contemporary land management. A large body of current literature suggests that human land-use practice is the most important factor influencing natural resource management and environmental condition...

  6. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING WITH THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits or consequences. Planning and assessment in land and water resource management are evolving toward complex, spatia...

  7. DOTAGWA: A CASE STUDY IN WEB-BASED ARCHITECTURES FOR CONNECTING SURFACE WATER MODELS TO SPATIALLY ENABLED WEB APPLICATIONS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, clima...

  8. Extent of coterminous US rangelands: Quantifying implications of differing agency perspectives

    Treesearch

    Matthew Clark Reeves; John E. Mitchell

    2011-01-01

    Rangeland extent is an important factor for evaluating critical indicators of rangeland sustainability. Rangeland areal extent was determined for the coterminous United States in a geospatial framework by evaluating spatially explicit data from the Landscape Fire and Resource Management Planning Tools (LANDFIRE) project describing historic and current vegetative...

  9. Distributed Earth observation data integration and on-demand services based on a collaborative framework of geospatial data service gateway

    NASA Astrophysics Data System (ADS)

    Xie, Jibo; Li, Guoqing

    2015-04-01

    Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.

  10. The role of visualization in learning from computer-based images

    NASA Astrophysics Data System (ADS)

    Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.

    2005-05-01

    Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.

  11. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application programming interface (API), which will allow other organizations to build their own custom applications and tools. New features such as finer scale aggregation and an online carbon calculator are being added to the LandCarbon web application to continue to make the site interactive, visually compelling, and useful for a wide range of users.

  12. U.S.-Mexico Border Geographic Information System

    USGS Publications Warehouse

    Parcher, Jean W.

    2008-01-01

    Geographic Information Systems (GIS) and the development of extensive geodatabases have become invaluable tools for addressing a variety of contemporary societal issues and for making predictions about the future. The United States-Mexico Geographic Information System (USMX-GIS) is based on fundamental datasets that are produced and/or approved by the national geography agencies of each country, the U.S. Geological Survey (USGS) and the Instituto Nacional de Estadistica Y Geografia (INEGI) of Mexico, and the International Boundary and Water Commission (IBWC). The data are available at various scales to allow both regional and local analysis. The USGS and the INEGI have an extensive history of collaboration for transboundary mapping including exchanging digital technology and developing methods for harmonizing seamless national level geospatial datasets for binational environmental monitoring, urban growth analysis, and other scientific applications.

  13. Large Scale Analysis of Geospatial Data with Dask and XArray

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Hamman, J.; Abernathey, R.; Evans, K. J.; Rocklin, M.; Zender, C. S.; Rocklin, M.

    2017-12-01

    The analysis of geospatial data with high level languages has acceleratedinnovation and the impact of existing data resources. However, as datasetsgrow beyond single-machine memory, data structures within these high levellanguages can become a bottleneck. New libraries like Dask and XArray resolve some of these scalability issues,providing interactive workflows that are both familiar tohigh-level-language researchers while also scaling out to much largerdatasets. This broadens the access of researchers to larger datasets on highperformance computers and, through interactive development, reducestime-to-insight when compared to traditional parallel programming techniques(MPI). This talk describes Dask, a distributed dynamic task scheduler, Dask.array, amulti-dimensional array that copies the popular NumPy interface, and XArray,a library that wraps NumPy/Dask.array with labeled and indexes axes,implementing the CF conventions. We discuss both the basic design of theselibraries and how they change interactive analysis of geospatial data, and alsorecent benefits and challenges of distributed computing on clusters ofmachines.

  14. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Treesearch

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  15. New directions in valuing geospatial information - how to value goespatial information for policy and business decisioins in the future

    NASA Astrophysics Data System (ADS)

    Smart, A. C.

    2014-12-01

    Governments are increasingly asking for more evidence of the benefits of investing in geospatial data and infrastructure before investing. They are looking for a clearer articulation of the economic, environmental and social benefits than has been possble in the past. Development of techniques has accelerated in the past five years as governments and industry become more involved in the capture and use of geospatial data. However evaluation practitioners have struggled to answer these emerging questions. The paper explores the types of questions that decision makers are asking and discusses the different approaches and methods that have been used recently to answer them. It explores the need for better buisness case models. The emerging approaches are then discussed and their attributes reviewed. These include methods of analysing tengible economic benefits, intangible benefits and societal benefits. The paper explores the use of value chain analysis and real options analysis to better articulate the impacts on international competitiveness and how to value the potential benefits of innovations enabled by the geospatial data that is produced. The paper concludes by illustrating the potential for these techniques in current and future decision making.

  16. GeoSearch: A lightweight broking middleware for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.

    2012-12-01

    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value-added additional information (such as, service quality and user feedback), which conveys important decision supporting information, is missing. To address these issues, we prototyped a distributed search engine, GeoSearch, based on brokering middleware framework to search, integrate and visualize heterogeneous geospatial resources. Specifically, 1) A lightweight discover broker is developed to conduct distributed search. The broker retrieves metadata records for geospatial resources and additional information from dispersed services (portals and catalogues) and other systems on the fly. 2) A quality monitoring and evaluation broker (i.e., QoS Checker) is developed and integrated to provide quality information for geospatial web services. 3) The semantic assisted search and relevance evaluation functions are implemented by loosely interoperating with ESIP Testbed component. 4) Sophisticated information and data visualization functionalities and tools are assembled to improve user experience and assist resource selection.

  17. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  18. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  19. Modern Technologies aspects for Oceanographic Data Management and Dissemination : The HNODC Implementation

    NASA Astrophysics Data System (ADS)

    Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.

    2009-04-01

    The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the creation of Dynamic Geographical Representations. • Communication protocols (messaging mechanisms) in all Layers such as XML and GML together with SOAP protocol via Apache/Axis. At the same time the application may interact with any other SOA application either in sending or receiving Geospatial Data through Geographical Layers, since it inherits the big advantage of interoperability between Web Services systems. Roughly the Architecture can denoted as follows: • At the back End Open source PostgreSQL DBMS stands as the data storage mechanism with more than one Data Base Schemas cause of the separation of the Geospatial Data and the non Geospatial Data. • UMN Map Server and Geoserver are the mechanisms for: Represent Geospatial Data via Web Map Service (WMS) Querying and Navigating in Geospatial and Meta Data Information via Web Feature Service (WFS) oAnd in the near future Transacting and processing new or existing Geospatial Data via Web Processing Service (WPS) • Map Bender, a geospatial portal site management software for OGC and OWS architectures acts as the integration module between the Geospatial Mechanisms. Mapbender comes with an embedded data model capable to manage interfaces for displaying, navigating and querying OGC compliant web map and feature services (WMS and transactional WFS). • Apache and Tomcat stand again as the Web Service middle Layers • Apache Axis with it's embedded implementation of the SOAP protocol ("Simple Object Access Protocol") acts as the No spatial data Mechanism of Web Services. These modules of the platform are still under development but their implementation will be fulfilled in the near future. • And a new Web user Interface for the end user based on enhanced and customized version of a MapBender GUI, a powerful Web Services client. For HNODC the interoperability of Web Services is the big advantage of the developed platform since it is capable to act in the future as provider and consumer of Web Services in both ways: • Either as data products provider for external SOA platforms. • Or as consumer of data products from external SOA platforms for new applications to be developed or for existing applications to be enhanced. A great paradigm of Data Managenet integration and dissemination via the use of such technologies is the European's Union Research Project Seadatanet, with the main objective to develop a standardized distributed system for managing and disseminating the large and diverse data sets and to enhance the currently existing infrastructures with Web Services Further more and when the technology of Web Processing Service (WPS), will be mature enough and applicable for development, the derived data products will be able to have any kind of GIS functionality for consumers across the network. From this point of view HNODC, joins the global scientific community by providing and consuming application Independent data products.

  20. Geospatial Resource Access Analysis In Hedaru, Tanzania

    NASA Astrophysics Data System (ADS)

    Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki

    2013-12-01

    Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.

  1. PANTHER. Pattern ANalytics To support High-performance Exploitation and Reasoning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuchlewski, Kristina Rodriguez; Hart, William E.

    Sandia has approached the analysis of big datasets with an integrated methodology that uses computer science, image processing, and human factors to exploit critical patterns and relationships in large datasets despite the variety and rapidity of information. The work is part of a three-year LDRD Grand Challenge called PANTHER (Pattern ANalytics To support High-performance Exploitation and Reasoning). To maximize data analysis capability, Sandia pursued scientific advances across three key technical domains: (1) geospatial-temporal feature extraction via image segmentation and classification; (2) geospatial-temporal analysis capabilities tailored to identify and process new signatures more efficiently; and (3) domain- relevant models of humanmore » perception and cognition informing the design of analytic systems. Our integrated results include advances in geographical information systems (GIS) in which we discover activity patterns in noisy, spatial-temporal datasets using geospatial-temporal semantic graphs. We employed computational geometry and machine learning to allow us to extract and predict spatial-temporal patterns and outliers from large aircraft and maritime trajectory datasets. We automatically extracted static and ephemeral features from real, noisy synthetic aperture radar imagery for ingestion into a geospatial-temporal semantic graph. We worked with analysts and investigated analytic workflows to (1) determine how experiential knowledge evolves and is deployed in high-demand, high-throughput visual search workflows, and (2) better understand visual search performance and attention. Through PANTHER, Sandia's fundamental rethinking of key aspects of geospatial data analysis permits the extraction of much richer information from large amounts of data. The project results enable analysts to examine mountains of historical and current data that would otherwise go untouched, while also gaining meaningful, measurable, and defensible insights into overlooked relationships and patterns. The capability is directly relevant to the nation's nonproliferation remote-sensing activities and has broad national security applications for military and intelligence- gathering organizations.« less

  2. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    NASA Astrophysics Data System (ADS)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions. Convolution with age distributions can be used to quickly ascertain likely future water-quality conditions. Although these models are admittedly very general and are still being tested, the hope is that they will be useful for answering questions related to water quality at the regional scale.

  3. Using GIS in ecological management: green assessment of the impacts of petroleum activities in the state of Texas.

    PubMed

    Merem, Edmund; Robinson, Bennetta; Wesley, Joan M; Yerramilli, Sudha; Twumasi, Yaw A

    2010-05-01

    Geo-information technologies are valuable tools for ecological assessment in stressed environments. Visualizing natural features prone to disasters from the oil sector spatially not only helps in focusing the scope of environmental management with records of changes in affected areas, but it also furnishes information on the pace at which resource extraction affects nature. Notwithstanding the recourse to ecosystem protection, geo-spatial analysis of the impacts remains sketchy. This paper uses GIS and descriptive statistics to assess the ecological impacts of petroleum extraction activities in Texas. While the focus ranges from issues to mitigation strategies, the results point to growth in indicators of ecosystem decline.

  4. Using GIS in Ecological Management: Green Assessment of the Impacts of Petroleum Activities in the State of Texas

    PubMed Central

    Merem, Edmund; Robinson, Bennetta; Wesley, Joan M.; Yerramilli, Sudha; Twumasi, Yaw A.

    2010-01-01

    Geo-information technologies are valuable tools for ecological assessment in stressed environments. Visualizing natural features prone to disasters from the oil sector spatially not only helps in focusing the scope of environmental management with records of changes in affected areas, but it also furnishes information on the pace at which resource extraction affects nature. Notwithstanding the recourse to ecosystem protection, geo-spatial analysis of the impacts remains sketchy. This paper uses GIS and descriptive statistics to assess the ecological impacts of petroleum extraction activities in Texas. While the focus ranges from issues to mitigation strategies, the results point to growth in indicators of ecosystem decline. PMID:20623014

  5. The National Map product and services directory

    USGS Publications Warehouse

    Newell, Mark R.

    2008-01-01

    As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program (NGP), The National Map is a collaborative effort among the USGS and other Federal, state, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added to create specific types of maps. Of major importance, The National Map currently is being transformed to better serve the geospatial community. The USGS National Geospatial Program Office (NGPO) was established to provide leadership for placing geographic knowledge at the fingertips of the Nation. The office supports The National Map, Geospatial One-Stop (GOS), National Atlas of the United States®, and the Federal Geographic Data Committee (FGDC). This integrated portfolio of geospatial information and data supports the essential components of delivering the National Spatial Data Infrastructure (NSDI) and capitalizing on the power of place.

  6. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    PubMed

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  7. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Treesearch

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  8. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING WITH THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA) TOOL

    EPA Science Inventory

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions...

  9. Assessing bioenergy harvest risks: Geospatially explicit tools for maintaining soil productivity in western US forests

    Treesearch

    Mark Kimsey; Deborah Page-Dumroese; Mark Coleman

    2011-01-01

    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...

  10. QUALITY ASSURANCE AND QUALITY CONTROL IN THE DEVELOPMENT AND APPLICATION OF THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA) TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving from simple, local-scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and t...

  11. Ecosystem services and emergent vulnerability in managed ecosystems: A geospatial decision-support tool

    Treesearch

    Colin M. Beier; Trista M. Patterson; F. Stuart Chapin III

    2008-01-01

    Managed ecosystems experience vulnerabilities when ecological resilience declines and key flows of ecosystem services become depleted or lost. Drivers of vulnerability often include local management actions in conjunction with other external, larger scale factors. To translate these concepts to management applications, we developed a conceptual model of feedbacks...

  12. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield

    USDA-ARS?s Scientific Manuscript database

    The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...

  13. Using AGWA and the KINEROS2 Model-to-Model Green Infrastructure in Two Typical Residential Lots in Prescott, AZ

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) Urban tool provides a step-by-step process to model subdivisions using the KINEROS2 model, with and without Green Infrastructure (GI) practices. AGWA utilizes the Kinematic Runoff and Erosion (KINEROS2) model, an event driven, ...

  14. Linking Data Access to Geospatial Data Models to Applications at Local to National Scales: The Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for Clean Water Act applications in coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to suppo...

  15. GeoThentic: Designing and Assessing with Technology, Pedagogy, and Content Knowledge

    ERIC Educational Resources Information Center

    Doering, Aaron; Scharber, Cassandra; Miller, Charles; Veletsianos, George

    2009-01-01

    GeoThentic, an online teaching and learning environment, focuses on engaging teachers and learners in solving real-world geography problems through use of geospatial technologies. The design of GeoThentic is grounded on the technology, pedagogy, and content knowledge (TPACK) framework as a metacognitive tool. This paper describes how the TPACK…

  16. Development and application of a geospatial wildfire exposure and risk calculation tool

    Treesearch

    Matthew P. Thompson; Jessica R. Haas; Julie W. Gilbertson-Day; Joe H. Scott; Paul Langowski; Elise Bowne; David E. Calkin

    2015-01-01

    Applying wildfire risk assessment models can inform investments in loss mitigation and landscape restoration, and can be used to monitor spatiotemporal trends in risk. Assessing wildfire risk entails the integration of fire modeling outputs, maps of highly valued resources and assets (HVRAs), characterization of fire effects, and articulation of relative importance...

  17. Real-time access of large volume imagery through low-bandwidth links

    NASA Astrophysics Data System (ADS)

    Phillips, James; Grohs, Karl; Brower, Bernard; Kelly, Lawrence; Carlisle, Lewis; Pellechia, Matthew

    2010-04-01

    Providing current, time-sensitive imagery and geospatial information to deployed tactical military forces or first responders continues to be a challenge. This challenge is compounded through rapid increases in sensor collection volumes, both with larger arrays and higher temporal capture rates. Focusing on the needs of these military forces and first responders, ITT developed a system called AGILE (Advanced Geospatial Imagery Library Enterprise) Access as an innovative approach based on standard off-the-shelf techniques to solving this problem. The AGILE Access system is based on commercial software called Image Access Solutions (IAS) and incorporates standard JPEG 2000 processing. Our solution system is implemented in an accredited, deployable form, incorporating a suite of components, including an image database, a web-based search and discovery tool, and several software tools that act in concert to process, store, and disseminate imagery from airborne systems and commercial satellites. Currently, this solution is operational within the U.S. Government tactical infrastructure and supports disadvantaged imagery users in the field. This paper presents the features and benefits of this system to disadvantaged users as demonstrated in real-world operational environments.

  18. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    EPA Pesticide Factsheets

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  19. Open cyberGIS software for geospatial research and education in the big data era

    NASA Astrophysics Data System (ADS)

    Wang, Shaowen; Liu, Yan; Padmanabhan, Anand

    CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  20. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    DOEpatents

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  1. Demonstration of CBR Modeling and Simulation Tool (CBRSim) Capabilities. Installation Technology Transfer Program

    DTIC Science & Technology

    2009-04-01

    Capabilities Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Kathy L. Simunich, Timothy K. Perkins, David M. Bailey, David Brown, and...inversion height in convective condition is estimated with a one- dimensional model of the atmospheric boundary layer based on the Drie- donks slab model...tool and its capabilities. Installation geospatial data, in CAD format, were obtained for select buildings, roads, and topographic features in

  2. A Webgis Framework for Disseminating Processed Remotely Sensed on Land Cover Transformations

    NASA Astrophysics Data System (ADS)

    Caradonna, Grazia; Novelli, Antonio; Tarantino, Eufemia; Cefalo, Raffaela; Fratino, Umberto

    2016-06-01

    Mediterranean regions have experienced significant soil degradation over the past decades. In this context, careful land observation using satellite data is crucial for understanding the long-term usage patterns of natural resources and facilitating their sustainable management to monitor and evaluate the potential degradation. Given the environmental and political interest on this problem, there is urgent need for a centralized repository and mechanism to share geospatial data, information and maps of land change. Geospatial data collecting is one of the most important task for many users because there are significant barriers in accessing and using data. This limit could be overcome by implementing a WebGIS through a combination of existing free and open source software for geographic information systems (FOSS4G). In this paper we preliminary discuss methods for collecting raster data in a geodatabase by processing open multi-temporal and multi-scale satellite data aimed at retrieving indicators for land degradation phenomenon (i.e. land cover/land use analysis, vegetation indices, trend analysis, etc.). Then we describe a methodology for designing a WebGIS framework in order to disseminate information through maps for territory monitoring. Basic WebGIS functions were extended with the help of POSTGIS database and OpenLayers libraries. Geoserver was customized to set up and enhance the website functions developing various advanced queries using PostgreSQL and innovative tools to carry out efficiently multi-layer overlay analysis. The end-product is a simple system that provides the opportunity not only to consult interactively but also download processed remote sensing data.

  3. Visa: AN Automatic Aware and Visual Aids Mechanism for Improving the Correct Use of Geospatial Data

    NASA Astrophysics Data System (ADS)

    Hong, J. H.; Su, Y. T.

    2016-06-01

    With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of "differences" implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  4. Geospatial Technology Applications and Infrastructure in the Biological Resources Division

    USGS Publications Warehouse

    D'Erchia, Frank; Getter, James; D'Erchia, Terry D.; Root, Ralph; Stitt, Susan; White, Barbara

    1998-01-01

    Executive Summary -- Automated spatial processing technology such as geographic information systems (GIS), telemetry, and satellite-based remote sensing are some of the more recent developments in the long history of geographic inquiry. For millennia, humankind has endeavored to map the Earth's surface and identify spatial relationships. But the precision with which we can locate geographic features has increased exponentially with satellite positioning systems. Remote sensing, GIS, thematic mapping, telemetry, and satellite positioning systems such as the Global Positioning System (GPS) are tools that greatly enhance the quality and rapidity of analysis of biological resources. These technologies allow researchers, planners, and managers to more quickly and accurately determine appropriate strategies and actions. Researchers and managers can view information from new and varying perspectives using GIS and remote sensing, and GPS receivers allow the researcher or manager to identify the exact location of interest. These geospatial technologies support the mission of the U.S. Geological Survey (USGS) Biological Resources Division (BRD) and the Strategic Science Plan (BRD 1996) by providing a cost-effective and efficient method for collection, analysis, and display of information. The BRD mission is 'to work with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.' A major responsibility of the BRD is to develop and employ advanced technologies needed to synthesize, analyze, and disseminate biological and ecological information. As the Strategic Science Plan (BRD 1996) states, 'fulfilling this mission depends on effectively balancing the immediate need for information to guide management of biological resources with the need for technical assistance and long-range, strategic information to understand and predict emerging patterns and trends in ecological systems.' Information sharing plays a key role in nearly everything BRD does. The Strategic Science Plan discusses the need to (1) develop tools and standards for information transfer, (2) disseminate information, and (3) facilitate effective use of information. This effort centers around the National Biological Information Infrastructure (NBII) and the National Spatial Data Infrastructure (NSDI), components of the National Information Infrastructure. The NBII and NSDI are distributed electronic networks of biological and geographical data and information, as well as tools to help users around the world easily find and retrieve the biological and geographical data and information they need. The BRD is responsible for developing scientifically and statistically reliable methods and protocols to assess the status and trends of the Nation's biological resources. Scientists also conduct important inventory and monitoring studies to maintain baseline information on these same resources. Research on those species for which the Department of the Interior (DOI) has trust responsibilities (including endangered species and migratory species) involves laboratory and field studies of individual animals and the environments in which they live. Researchboth tactical and strategicis conducted at the BRD's 17 science centers and 81 field stations, 54 Cooperative Fish and Wildlife Research Units in 40 states, and at 11 former Cooperative Park Study Units. Studies encompass fish, birds, mammals, and plants, as well as their ecosystems and the surrounding landscape. Biological Resources Division researchers use a variety of scientific tools in their endeavors to understand the causes of biological and ecological trends. Research results are used by managers to predict environmental changes and to help them take appropriate measures to manage resources effectively. The BRD Geospatial Technology Program facilitates the collection, analysis, and dissemination of data and informat

  5. Lunar Mapping and Modeling On-the-Go: A mobile framework for viewing and interacting with large geospatial datasets

    NASA Astrophysics Data System (ADS)

    Chang, G.; Kim, R.; Bui, B.; Sadaqathullah, S.; Law, E.; Malhotra, S.

    2012-12-01

    The Lunar Mapping and Modeling Portal (LMMP, https://www.lmmp.nasa.gov/) is a collaboration between four NASA centers, JPL, Marshall, Goddard, and Ames, along with the USGS and US Army to provide a centralized geospatial repository for storing processed lunar data collected from the Apollo missions to the latest data acquired by the Lunar Reconnaissance Orbiter (LRO). We offer various scientific and visualization tools to analyze rock and crater densities, lighting maps, thermal measurements, mineral concentrations, slope hazards, and digital elevation maps with the intention of serving not only scientists and lunar mission planners, but also the general public. The project has pioneered in leveraging new technologies and embracing new computing paradigms to create a system that is sophisticated, secure, robust, and scalable all the while being easy to use, streamlined, and modular. We have led innovations through the use of a hybrid cloud infrastructure, authentication through various sources, and utilizing an in-house GIS framework, TWMS (TiledWMS) as well as the commercial ArcGIS product from ESRI. On the client end, we also provide a Flash GUI framework as well as REST web services to interact with the portal. We have also developed a visualization framework on mobile devices, specifically Apple's iOS, which allows anyone from anywhere to interact with LMMP. At the most basic level, the framework allows users to browse LMMP's entire catalog of over 600 data imagery products ranging from global basemaps to LRO's Narrow Angle Camera (NAC) images that provide details of up to .5 meters/pixel. Users are able to view map metadata and can zoom in and out as well as pan around the entire lunar surface with the appropriate basemap. They can arbitrarily stack the maps and images on top of each other to show a layered view of the surface with layer transparency adjusted to suit the user's desired look. Once the user has selected a combination of layers, he can also bookmark those layers for quick access in subsequent sessions. A search tool is also provided to allow users to quickly find points of interests on the moon and to view the auxiliary data associated with that feature. More advanced features include the ability to interact with the data. Using the services provided by the portal, users will be able to log in and access the same scientific analysis tools provided on the web site including measuring between two points, generating subsets, and running other analysis tools, all by using a customized touch interface that are immediately familiar to users of these smart mobile devices. Users can also access their own storage on the portal and view or send the data to other users. Finally, there are features that will utilize functionality that can only be enabled by mobile devices. This includes the use of the gyroscopes and motion sensors to provide a haptic interface visualize lunar data in 3D, on the device as well as potentially on a large screen. The mobile framework that we have developed for LMMP provides a glimpse of what is possible in visualizing and manipulating large geospatial data on small portable devices. While the framework is currently tuned to our portal, we hope that we can generalize the tool to use data sources from any type of GIS services.

  6. Geospatial Data as a Service: Towards planetary scale real-time analytics

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.

    2017-12-01

    The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory analysis capabilities, for dealing with petabyte-scale geospatial data collections.

  7. Geospatial Information Response Team

    USGS Publications Warehouse

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of geospatial experts and equipment.

  8. Cloud Geospatial Analysis Tools for Global-Scale Comparisons of Population Models for Decision Making

    NASA Astrophysics Data System (ADS)

    Hancher, M.; Lieber, A.; Scott, L.

    2017-12-01

    The volume of satellite and other Earth data is growing rapidly. Combined with information about where people are, these data can inform decisions in a range of areas including food and water security, disease and disaster risk management, biodiversity, and climate adaptation. Google's platform for planetary-scale geospatial data analysis, Earth Engine, grants access to petabytes of continually updating Earth data, programming interfaces for analyzing the data without the need to download and manage it, and mechanisms for sharing the analyses and publishing results for data-driven decision making. In addition to data about the planet, data about the human planet - population, settlement and urban models - are now available for global scale analysis. The Earth Engine APIs enable these data to be joined, combined or visualized with economic or environmental indicators such as nighttime lights trends, global surface water, or climate projections, in the browser without the need to download anything. We will present our newly developed application intended to serve as a resource for government agencies, disaster response and public health programs, or other consumers of these data to quickly visualize the different population models, and compare them to ground truth tabular data to determine which model suits their immediate needs. Users can further tap into the power of Earth Engine and other Google technologies to perform a range of analysis from simple statistics in custom regions to more complex machine learning models. We will highlight case studies in which organizations around the world have used Earth Engine to combine population data with multiple other sources of data, such as water resources and roads data, over deep stacks of temporal imagery to model disease risk and accessibility to inform decisions.

  9. Providing Geospatial Education and Real World Applications of Data across the Climate Initiative Themes

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Bugbee, K.

    2015-12-01

    Various organizations such as the Group on Earth Observations (GEO) have developed a structure for general thematic areas in Earth science research, however the Climate Data Initiative (CDI) is addressing the challenging goal of organizing such datasets around core themes specifically related to climate change impacts. These thematic areas, which currently include coastal flooding, food resilience, ecosystem vulnerability, water, transportation, energy infrastructure, and human health, form the core of a new college course at the University of Alabama in Huntsville developed around real-world applications in the Earth sciences. The goal of this course is to educate students on the data available and scope of GIS applications in Earth science across the CDI climate themes. Real world applications and datasets serve as a pedagogical tool that provide a useful medium for instruction in scientific geospatial analysis and GIS software. With a wide range of potential research areas that fall under the rubric of "Earth science", thematic foci can help to structure a student's understanding of the potential uses of GIS across sub-disciplines, while communicating core data processing concepts. The learning modules and use-case scenarios for this course demonstrate the potential applications of CDI data to undergraduate and graduate Earth science students.

  10. The U.S. Geological Survey cartographic and geographic information science research activities 2006-2010

    USGS Publications Warehouse

    Usery, E. Lynn

    2011-01-01

    The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).

  11. Promising Practices in Building Geospatial Academic Pathways and Educator Capacity: Findings from a Multiyear Evaluation Study.

    NASA Astrophysics Data System (ADS)

    Peery, B.; Wilkerson, S.

    2015-12-01

    Geospatial technology, including geographical information systems, global positioning systems, remote sensing and the analysis and interpretation of spatial data, is a rapidly growing industry in the United States and touches almost every discipline from business to the environment to health and sciences. The demand for a larger and more qualified geospatial workforce is simultaneously increasing. The GeoTEd project aims to meet this demand in Virginia and the surrounding region by 1) developing academic-to-workforce pathways, 2) providing professional development for educators, and 3) increasing student participation and impact. Since 2009, Magnolia Consulting has been evaluating the GeoTEd project, particularly its professional development work through the GeoTEd Institute. This presentation will provide a look into the challenges and successes of GeoTEd, and examine its impact on the geospatial academic pathways in the Virginia region. The presentation will highlight promising elements of this project that could serve as models for other endeavors.

  12. Geo-portal as a planning instrument: supporting decision making and fostering market potential of Energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Brumana, Raffaella; Oreni, Daniela; Iannaccone, Giuliana; Sesana, Marta Maria

    2014-03-01

    Steady technological progress has led to a noticeable advancement in disciplines associated with Earth observation. This has enabled information transition regarding changing scenarios, both natural and urban, to occur in (almost) real time. In particular, the need for integration on a local scale with the wider territorial framework has occurred in analysis and monitoring of built environments over the last few decades. The progress of Geographic Information (GI) science has provided significant advancements when it comes to spatial analysis, while the almost free availability of the internet has ensured a fast and constant exchange of geo-information, even for everyday users' requirements. Due to its descriptive and semantic nature, geo-spatial information is capable of providing a complete overview of a certain phenomenon and of predicting the implications within the natural, social and economic context. However, in order to integrate geospatial data into decision making processes, it is necessary to provide a specific context, which is well supported by verified data. This paper investigates the potentials of geo-portals as planning instruments developed to share multi-temporal/multi-scale spatial data, responding to specific end-users' demands in the case of Energy efficiency in Buildings (EeB) across European countries. The case study regards the GeoCluster geo-portal and mapping tool (Project GE2O, FP7), built upon a GeoClustering methodology for mapping of indicators relevant for energy efficiency technologies in the construction sector.

  13. Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.

    2017-10-01

    Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.

  14. Exposure and Vulnerability Geospatial Analysis Using Earth Observation Data in the City of Liege, Belgium

    NASA Astrophysics Data System (ADS)

    Stephenne, N.; Beaumont, B.; Hallot, E.; Lenartz, F.; Lefebre, F.; Lauwaet, D.; Poelmans, L.; Wolff, E.

    2017-05-01

    Risk situation can be mitigated by prevention measures, early warning tools and adequate monitoring of past experiences where Earth Observation and geospatial analysis have an adding value. This paper discusses the potential use of Earth Observation data and especially Land Cover / Land Use map in addressing within the three aspects of the risk assessment: danger, exposure and vulnerability. Evidences of the harmful effects of air pollution or heat waves are widely admitted and should increase in the context of global warming. Moreover, urban areas are generally warmer than rural surroundings, the so-called urban heat island. Combined with in-situ measurements, this paper presents models of city or local climate (air pollution and urban heat island), with a resolution of less than one kilometer, developed by integrating several sources of information including Earth Observation data and in particular Land Cover / Land Use. This assessment of the danger is then be related to a map of exposure and vulnerable people. Using dasymetric method to disaggregate statistical information on Land Cover / Land Use data, the SmartPop project analyzes in parallel the map of danger with the maps of people exposure A special focus on some categories at risk such as the elderly has been proposed by Aubrecht and Ozceylan (2013). Perspectives of the project includes the integration of a new Land Cover / Land Use map in the danger, exposure and vulnerability models and proposition of several aspects of risk assessment with the stakeholders of Wallonia.

  15. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

    PubMed

    Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

    2018-04-27

    Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

  16. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  17. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    NASA Astrophysics Data System (ADS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-07-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.

  18. Information gathering, management and transferring for geospatial intelligence - A conceptual approach to create a spatial data infrastructure

    NASA Astrophysics Data System (ADS)

    Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena

    2017-06-01

    Since long ago, information is a key factor for military organizations. In military context the success of joint and combined operations depends on the accurate information and knowledge flow concerning the operational theatre: provision of resources, environment evolution, targets' location, where and when an event will occur. Modern military operations cannot be conceive without maps and geospatial information. Staffs and forces on the field request large volume of information during the planning and execution process, horizontal and vertical geospatial information integration is critical for decision cycle. Information and knowledge management are fundamental to clarify an environment full of uncertainty. Geospatial information (GI) management rises as a branch of information and knowledge management, responsible for the conversion process from raw data collect by human or electronic sensors to knowledge. Geospatial information and intelligence systems allow us to integrate all other forms of intelligence and act as a main platform to process and display geospatial-time referenced events. Combining explicit knowledge with person know-how to generate a continuous learning cycle that supports real time decisions, mitigates the influences of fog of war and provides the knowledge supremacy. This paper presents the analysis done after applying a questionnaire and interviews about the GI and intelligence management in a military organization. The study intended to identify the stakeholder's requirements for a military spatial data infrastructure as well as the requirements for a future software system development.

  19. Geospatial Analysis Using Remote Sensing Images: Case Studies of Zonguldak Test Field

    NASA Astrophysics Data System (ADS)

    Bayık, Çağlar; Topan, Hüseyin; Özendi, Mustafa; Oruç, Murat; Cam, Ali; Abdikan, Saygın

    2016-06-01

    Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey), the Universities, ESA, Airbus DS, ERSDAC (Japan) and Jülich Research Centre (Germany).

  20. GDAL Enhancements for Interoperability with EOS Data (GEE)

    NASA Astrophysics Data System (ADS)

    Tisdale, B.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying[MI1] an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting the data to the format and content required for use in GIS software.

  1. GDAL Enhancements for Interoperability with EOS Data

    NASA Astrophysics Data System (ADS)

    Tisdale, M.; Mathews, T. J.; Tisdale, B.; Sun, M.; Yang, C. P.; Lee, H.; Habermann, T.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and to make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting the data to the format and content required for use in GIS software.

  2. A Look Under the Hood: How the JPL Tropical Cyclone Information System Uses Database Technologies to Present Big Data to Users

    NASA Astrophysics Data System (ADS)

    Knosp, B.; Gangl, M.; Hristova-Veleva, S. M.; Kim, R. M.; Li, P.; Turk, J.; Vu, Q. A.

    2015-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data and model forecast related to tropical cyclones. The TCIS has been running a near-real time (NRT) data portal during North Atlantic hurricane season that typically runs from June through October each year, since 2010. Data collected by the TCIS varies by type, format, contents, and frequency and is served to the user in two ways: (1) as image overlays on a virtual globe and (2) as derived output from a suite of analysis tools. In order to support these two functions, the data must be collected and then made searchable by criteria such as date, mission, product, pressure level, and geospatial region. Creating a database architecture that is flexible enough to manage, intelligently interrogate, and ultimately present this disparate data to the user in a meaningful way has been the primary challenge. The database solution for the TCIS has been to use a hybrid MySQL + Solr implementation. After testing other relational database and NoSQL solutions, such as PostgreSQL and MongoDB respectively, this solution has given the TCIS the best offerings in terms of query speed and result reliability. This database solution also supports the challenging (and memory overwhelming) geospatial queries that are necessary to support analysis tools requested by users. Though hardly new technologies on their own, our implementation of MySQL + Solr had to be customized and tuned to be able to accurately store, index, and search the TCIS data holdings. In this presentation, we will discuss how we arrived on our MySQL + Solr database architecture, why it offers us the most consistent fast and reliable results, and how it supports our front end so that we can offer users a look into our "big data" holdings.

  3. Growing a Global Perspective: Utilizing Graduate Students as Scientists in the Classroom

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Prouhet, T.; Kincaid, J.; Williams, N.; Simms, M.; Evans, R.

    2006-12-01

    Advancing Geospatial Skills in Science and Social Sciences (AGSSS) is a NSF GK12 program designed to produce scientists with an interest in and skills related to education by bringing graduate students (termed Fellows) into science and social science classrooms. The AGSSS program is unique in the GK-12 program because of its emphasis on spatial thinking with and through geospatial technologies. Spatial thinking is defined as the knowledge, skills, and habits of mind to use concepts of space, tools of representation, and processes of reasoning to structure problems, find answers and express solutions to these problems. Working collaboratively, Fellows assist teachers in using technologies (many freely available) such as virtual globes, GIS, GPS, NASA's ISSEarthKAM, and online databases. Fellows also customize existing curricula based on teacher requests to focus on spatial thinking and skill development. Preliminary results of the program reveal that students' use of geospatial technologies in interactive lessons that highlight real world processes and global perspectives encourages the development of higher order thinking skills. Fellows perceive three primary benefits: developing collaboration and communication skills, solidifying their own understandings of spatial thinking and becoming more aware and skilled in working in educational settings.

  4. Towards a Web-Enabled Geovisualization and Analytics Platform for the Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Sanyal, J.; Chandola, V.; Sorokine, A.; Allen, M.; Berres, A.; Pang, H.; Karthik, R.; Nugent, P.; McManamay, R.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Interactive data analytics are playing an increasingly vital role in the generation of new, critical insights regarding the complex dynamics of the energy/water nexus (EWN) and its interactions with climate variability and change. Integration of impacts, adaptation, and vulnerability (IAV) science with emerging, and increasingly critical, data science capabilities offers a promising potential to meet the needs of the EWN community. To enable the exploration of pertinent research questions, a web-based geospatial visualization platform is being built that integrates a data analysis toolbox with advanced data fusion and data visualization capabilities to create a knowledge discovery framework for the EWN. The system, when fully built out, will offer several geospatial visualization capabilities including statistical visual analytics, clustering, principal-component analysis, dynamic time warping, support uncertainty visualization and the exploration of data provenance, as well as support machine learning discoveries to render diverse types of geospatial data and facilitate interactive analysis. Key components in the system architecture includes NASA's WebWorldWind, the Globus toolkit, postgresql, as well as other custom built software modules.

  5. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  6. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  7. Elevation Difference and Bouguer Anomaly Analysis Tool (EDBAAT) User's Guide

    USGS Publications Warehouse

    Smittle, Aaron M.; Shoberg, Thomas G.

    2017-06-16

    This report describes a software tool that imports gravity anomaly point data from the Gravity Database of the United States (GDUS) of the National Geospatial-Intelligence Agency and University of Texas at El Paso along with elevation data from The National Map (TNM) of the U.S. Geological Survey that lie within a user-specified geographic area of interest. Further, the tool integrates these two sets of data spatially and analyzes the consistency of the elevation of each gravity station from the GDUS with TNM elevation data; it also evaluates the consistency of gravity anomaly data within the GDUS data repository. The tool bins the GDUS data based on user-defined criteria of elevation misfit between the GDUS and TNM elevation data. It also provides users with a list of points from the GDUS data, which have Bouguer anomaly values that are considered outliers (two standard deviations or greater) with respect to other nearby GDUS anomaly data. “Nearby” can be defined by the user at time of execution. These outputs should allow users to quickly and efficiently choose which points from the GDUS would be most useful in reconnaissance studies or in augmenting and extending the range of individual gravity studies.

  8. Tsunami vertical-evacuation planning in the U.S. Pacific Northwest as a geospatial, multi-criteria decision problem

    USGS Publications Warehouse

    Wood, Nathan; Jones, Jeanne; Schelling, John; Schmidtlein, Mathew

    2014-01-01

    Tsunami vertical-evacuation (TVE) refuges can be effective risk-reduction options for coastal communities with local tsunami threats but no accessible high ground for evacuations. Deciding where to locate TVE refuges is a complex risk-management question, given the potential for conflicting stakeholder priorities and multiple, suitable sites. We use the coastal community of Ocean Shores (Washington, USA) and the local tsunami threat posed by Cascadia subduction zone earthquakes as a case study to explore the use of geospatial, multi-criteria decision analysis for framing the locational problem of TVE siting. We demonstrate a mixed-methods approach that uses potential TVE sites identified at community workshops, geospatial analysis to model changes in pedestrian evacuation times for TVE options, and statistical analysis to develop metrics for comparing population tradeoffs and to examine influences in decision making. Results demonstrate that no one TVE site can save all at-risk individuals in the community and each site provides varying benefits to residents, employees, customers at local stores, tourists at public venues, children at schools, and other vulnerable populations. The benefit of some proposed sites varies depending on whether or not nearby bridges will be functioning after the preceding earthquake. Relative rankings of the TVE sites are fairly stable under various criteria-weighting scenarios but do vary considerably when comparing strategies to exclusively protect tourists or residents. The proposed geospatial framework can serve as an analytical foundation for future TVE siting discussions.

  9. Geospatial tools for landscape character assessment in Cyprus

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Vogiatzakis, I. N.; Griffiths, G. H.; Warnock, S.; Vassou, V.; Zomeni, M.; Trigkas, V.

    2013-08-01

    The development of Landscape Typologies in Europe relies upon advances in geospatial tools and increasing availability of digital datasets. Landscape Character Assessment (LCA) is a technique used to classify, describe and understand the combined physical, ecological and cultural characteristics of a landscape. LCA uses a range of data sources to identify and describe areas of common character and can operate at a range of scales i.e.national and regional and local. The paper describes the steps taken to develop an island wide landscape typology for Cyprus, based on the use of GIS and remote sensing tools. The methodology involved integrating physiographical, ecological and cultural information about the Cypriot landscape. Datasets on the cultural attributes (e.g. settlement and field patterns) were not available, so they were created de novo based on information from topographical maps (for settlement dispersion and density) and medium resolution satellite imagery from Google Earth, from which a number of distinctive field patterns could be distinguished. The mapping work is carried out on two levels using a hierarchical approach. The first level at a 1:100, 000 scale has been completed resulting in a map with 17 distinct landscape types. The second level is under way with the view of producing a more detailed landscape typology at 1:50, 000 scale which will incorporate the cultural aspects of the island. This is the first time that such a typology has been produced for Cyprus and it is expected to provide an invaluable tool for landscape planning and management.

  10. Towards Innovative Geospatial Tools for Fit-For Land Rights Mapping

    NASA Astrophysics Data System (ADS)

    Koeva, M.; Bennett, R.; Gerke, M.; Crommelinck, S.; Stöcker, C.; Crompvoets, J.; Ho, S.; Schwering, A.; Chipofya, M.; Schultz, C.; Zein, T.; Biraro, M.; Alemie, B.; Wayumba, R.; Kundert, K.

    2017-09-01

    In large parts of sub Saharan Africa it remains an ongoing challenging to map millions of unrecognized land rights. Existing approaches for recognizing these rights have proven inappropriate in many cases. A new generation of tools needs to be developed to support faster, cheaper, easier, and more responsible land rights mapping. This is the main goal of its4land, an European Commission Horizon 2020 project that aims to develop innovative tools inspired by the continuum of land rights, fit-for-purpose land administration, and cadastral intelligence. its4land is using strategic collaboration between the EU and East Africa to deliver innovative, scalable, and transferrable ICT solutions. The innovation process incorporates a broad range of stakeholders and emergent geospatial technologies, including smart sketchmaps, UAVs, automated feature extraction, as well as geocloud services. The aim is to combine innovative technologies, capture the specific needs, market opportunities and readiness of end-users in the domain of land tenure information recording in Eastern Africa. The project consists of a four year work plan, € 3.9M funding, and eight consortium partners collaborating with stakeholders from six case study locations in Ethiopia, Kenya, and Rwanda. The major tasks include tool development, prototyping, and demonstration for local, national, regional, and international interest groups. The case locations cover different land uses such as: urban, peri-urban, rural smallholder, and (former) pastoralist. This paper describes the project's activities within the first 18 months and covers barriers discovered, lessons learned and results achieved.

  11. Geospatial Data Management Platform for Urban Groundwater

    NASA Astrophysics Data System (ADS)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis tools) and a front-end geoportal service. The SIMPA platform makes use of mark-up transfer standards to provide a user-friendly application that can be accessed through internet to query, analyse, and visualise geospatial data related to urban groundwater. The platform holds the information within the local groundwater geospatial databases and the user is able to access this data through a geoportal service. The database architecture allows storing accurate and very detailed geological, hydrogeological, and infrastructure information that can be straightforwardly generalized and further upscaled. The geoportal service offers the possibility of querying a dataset from the spatial database. The query is coded in a standard mark-up language, and sent to the server through a standard Hyper Text Transfer Protocol (http) to be processed by the local application. After the validation of the query, the results are sent back to the user to be displayed by the geoportal application. The main advantage of the SIMPA platform is that it offers to the user the possibility to make a primary multi-criteria query, which results in a smaller set of data to be analysed afterwards. This improves both the transfer process parameters and the user's means of creating the desired query.

  12. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  13. Evaluating hydrological response of future land cover change scenarios in the San Pedro river (U.S./Mexico) with the Automated Geospatial Watershed (AGWA) tool

    USDA-ARS?s Scientific Manuscript database

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Fu...

  14. Integrated national-scale assessment of wildfire risk to human and ecological values

    Treesearch

    Matthew P. Thompson; David E. Calkin; Mark A. Finney; Alan A. Ager; Julie W. Gilbertson-Day

    2011-01-01

    The spatial, temporal, and social dimensions of wildfire risk are challenging U.S. federal land management agencies to meet societal needs while maintaining the health of the lands they manage. In this paper we present a quantitative, geospatial wildfire risk assessment tool, developed in response to demands for improved risk-based decision frameworks. The methodology...

  15. Evaluating Hydrological Response of Future Land Cover Change Scenarios in the San Pedro River (U.S./Mexico) with the Automated Geospatial Watershed Assessment (AGWA) Tool.

    EPA Science Inventory

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban gro...

  16. Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project

    Treesearch

    Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...

  17. Wireless Mapping, GIS, and Learning about the Digital Divide: A Classroom Experience

    ERIC Educational Resources Information Center

    Giordano, Alberto; Lu, Yongmei; Anderson, Sharolyn; Fonstad, Mark

    2007-01-01

    The purpose of this article is to describe a capstone course in undergraduate student geographical research in which GIS and other geospatial tools were used to teach undergraduate students basic geographical principles. The course uses the "cooperative learning" pedagogical approach to address one of a number of client-supplied research projects,…

  18. Facilitating Data-Intensive Education and Research in Earth Science through Geospatial Web Services

    ERIC Educational Resources Information Center

    Deng, Meixia

    2009-01-01

    The realm of Earth science (ES) is increasingly data-intensive. Geoinformatics research attempts to robustly smooth and accelerate the flow of data to information, information to knowledge, and knowledge to decisions and to supply necessary infrastructure and tools for advancing ES. Enabling easy access to and use of large volumes of ES data and…

  19. Concept Maps as a Tool to Analyse College Students' Knowledge of Geospatial Concepts

    ERIC Educational Resources Information Center

    Oda, Katsuhiko

    2016-01-01

    This study focused on college students' development of conceptual knowledge in geographic information system (GIS). The aim of this study was to examine if and how students developed their conceptual knowledge during their enrollment in an introductory-level GIS course. Twelve undergraduate students constructed 36 concept maps and revised 24…

  20. NASA's Geospatial Interoperability Office(GIO)Program

    NASA Technical Reports Server (NTRS)

    Weir, Patricia

    2004-01-01

    NASA produces vast amounts of information about the Earth from satellites, supercomputer models, and other sources. These data are most useful when made easily accessible to NASA researchers and scientists, to NASA's partner Federal Agencies, and to society as a whole. A NASA goal is to apply its data for knowledge gain, decision support and understanding of Earth, and other planetary systems. The NASA Earth Science Enterprise (ESE) Geospatial Interoperability Office (GIO) Program leads the development, promotion and implementation of information technology standards that accelerate and expand the delivery of NASA's Earth system science research through integrated systems solutions. Our overarching goal is to make it easy for decision-makers, scientists and citizens to use NASA's science information. NASA's Federal partners currently participate with NASA and one another in the development and implementation of geospatial standards to ensure the most efficient and effective access to one another's data. Through the GIO, NASA participates with its Federal partners in implementing interoperability standards in support of E-Gov and the associated President's Management Agenda initiatives by collaborating on standards development. Through partnerships with government, private industry, education and communities the GIO works towards enhancing the ESE Applications Division in the area of National Applications and decision support systems. The GIO provides geospatial standards leadership within NASA, represents NASA on the Federal Geographic Data Committee (FGDC) Coordination Working Group and chairs the FGDC's Geospatial Applications and Interoperability Working Group (GAI) and supports development and implementation efforts such as Earth Science Gateway (ESG), Space Time Tool Kit and Web Map Services (WMS) Global Mosaic. The GIO supports NASA in the collection and dissemination of geospatial interoperability standards needs and progress throughout the agency including areas such as ESE Applications, the SEEDS Working Groups, the Facilities Engineering Division (Code JX) and NASA's Chief Information Offices (CIO). With these agency level requirements GIO leads, brokers and facilitates efforts to, develop, implement, influence and fully participate in standards development internationally, federally and locally. The GIO also represents NASA in the OpenGIS Consortium and ISO TC211. The OGC has made considerable progress in regards to relations with other open standards bodies; namely ISO, W3C and OASIS. ISO TC211 is the Geographic and Geomatics Information technical committee that works towards standardization in the field of digital geographic information. The GIO focuses on seamless access to data, applications of data, and enabling technologies furthering the interoperability of distributed data. Through teaming within the Applications Directorate and partnerships with government, private industry, education and communities, GIO works towards the data application goals of NASA, the ESE Applications Directorate, and our Federal partners by managing projects in four categories: Geospatial Standards and Leadership, Geospatial One Stop, Standards Development and Implementation, and National and NASA Activities.

  1. A Python Geospatial Language Toolkit

    NASA Astrophysics Data System (ADS)

    Fillmore, D.; Pletzer, A.; Galloy, M.

    2012-12-01

    The volume and scope of geospatial data archives, such as collections of satellite remote sensing or climate model products, has been rapidly increasing and will continue to do so in the near future. The recently launched (October 2011) Suomi National Polar-orbiting Partnership satellite (NPP) for instance, is the first of a new generation of Earth observation platforms that will monitor the atmosphere, oceans, and ecosystems, and its suite of instruments will generate several terabytes each day in the form of multi-spectral images and derived datasets. Full exploitation of such data for scientific analysis and decision support applications has become a major computational challenge. Geophysical data exploration and knowledge discovery could benefit, in particular, from intelligent mechanisms for extracting and manipulating subsets of data relevant to the problem of interest. Potential developments include enhanced support for natural language queries and directives to geospatial datasets. The translation of natural language (that is, human spoken or written phrases) into complex but unambiguous objects and actions can be based on a context, or knowledge domain, that represents the underlying geospatial concepts. This poster describes a prototype Python module that maps English phrases onto basic geospatial objects and operations. This module, along with the associated computational geometry methods, enables the resolution of natural language directives that include geographic regions of arbitrary shape and complexity.

  2. EPA Geospatial Quality Council Promoting Quality Assurance in the Geospatial Coummunity

    EPA Science Inventory

    After establishing a foundation for the EPA National Geospatial Program, the EPA Geospatial Quality Council (GQC) is, in part, focusing on improving administrative efficiency in the geospatial community. To realize this goal, the GQC is developing Standard Operating Procedures (S...

  3. Climate Impact and GIS Education Using Realistic Applications of Data.gov Thematic Datasets in a Structured Lesson-Based Workbook

    NASA Astrophysics Data System (ADS)

    Amirazodi, S.; Griffin, R.; Bugbee, K.; Ramachandran, R.; Weigel, A. M.

    2016-12-01

    This project created a workbook which teaches Earth Science education undergraduate and graduate students through guided in-class activities and take-home assignments organized around climate topics which use GIS to teach key geospatial analysis techniques and cartography skills. The workbook is structured to the White House's Data.gov climate change themes, which include Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Arctic, Food Resilience, Human Health, Transportation, Tribal Nations, Water. Each theme provides access to framing questions, associated data, interactive tools, and further reading (e.g. the US Climate Resilience Toolkit and National Climate Assessment). Lessons make use of the respective theme's available resources. The structured thematic approach is designed to encourage independent exploration. The goal is to teach climate concepts and concerns, GIS techniques and approaches, and effective cartographic representation and communication of results; and foster a greater awareness of publically available resources and datasets. To reach more audiences more effectively, a two level approach was used. Level 1 serves as an introductory study and relies on only freely available interactive tools to reach audiences with fewer resources and less familiarity. Level 2 presents a more advanced case study, and focuses on supporting common commercially available tool use and real-world analysis techniques.

  4. Climate Impact and GIS Education Using Realistic Applications of Data.gov Thematic Datasets in a Structured Lesson-Based Workbook

    NASA Technical Reports Server (NTRS)

    Amirazodi, Sara; Griffin, Robert; Bugbee, Kaylin; Ramachandran, Rahul; Weigel, Amanda

    2016-01-01

    This project created a workbook which teaches Earth Science to undergraduate and graduate students through guided in-class activities and take-home assignments organized around climate topics which use GIS to teach key geospatial analysis techniques and cartography skills. The workbook is structured to the White House's Data.gov climate change themes, which include Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Arctic, Food Resilience, Human Health, Transportation, Tribal Nations, and Water. Each theme provides access to framing questions, associated data, interactive tools, and further reading (e.g. The US Climate Resilience Toolkit and National Climate Assessment). Lessons make use of the respective theme's available resources. The structured thematic approach is designed to encourage independent exploration. The goal is to teach climate concepts and concerns, GIS techniques and approaches, and effective cartographic representation and communication results; and foster a greater awareness of publicly available resources and datasets. To reach more audiences more effectively, a two level approach was used. Level 1 serves as an introductory study and relies on only freely available interactive tools to reach audiences with fewer resources and less familiarity. Level 2 presents a more advanced case study, and focuses on supporting common commercially available tool use and real-world analysis techniques.

  5. A sub-national scale geospatial analysis of diamond deposit lootability: the case of the Central African Republic

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2014-01-01

    The Central African Republic (CAR), a country with rich diamond deposits and a tumultuous political history, experienced a government takeover by the Seleka rebel coalition in 2013. It is within this context that we developed and implemented a geospatial approach for assessing the lootability of high value-to-weight resource deposits, using the case of diamonds in CAR as an example. According to current definitions of lootability, or the vulnerability of deposits to exploitation, CAR's two major diamond deposits are similarly lootable. However, using this geospatial approach, we demonstrate that the deposits experience differing political geographic, spatial location, and cultural geographic contexts, rendering the eastern deposits more lootable than the western deposits. The patterns identified through this detailed analysis highlight the geographic complexities surrounding the issue of conflict resources and lootability, and speak to the importance of examining these topics at the sub-national scale, rather than relying on national-scale statistics.

  6. Robert Spencer | NREL

    Science.gov Websites

    & Simulation Research Interests Remote Sensing Natural Resource Modeling Machine Learning Education Analysis Center. Areas of Expertise Geospatial Analysis Data Visualization Algorithm Development Modeling

  7. Building Geospatial Web Services for Ecological Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.

    2008-12-01

    The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.

  8. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water Science Center, Computer Science Department at UIUC funded by the Adaptive Environmental Infrastructure Sensing and Information Systems initiative at UIUC.

  9. Grid Enabled Geospatial Catalogue Web Service

    NASA Technical Reports Server (NTRS)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  10. GSKY: A scalable distributed geospatial data server on the cloud

    NASA Astrophysics Data System (ADS)

    Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben

    2017-04-01

    Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as an independent service. An indexing service crawls data collections either locally or remotely by extracting, storing and indexing all spatio-temporal metadata associated with each individual record. GSKY provides the user with the ability of specifying how ingested data should be aggregated, transformed and presented. It presents an OGC standards-compliant interface, allowing ready accessibility for users of the data via Web Map Services (WMS), Web Processing Services (WPS) or raw data arrays using Web Coverage Services (WCS). The presentation will show some cases where we have used this new capability to provide a significant improvement over previous approaches.

  11. GIS based solid waste management information system for Nagpur, India.

    PubMed

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  12. Improving the Slum Planning Through Geospatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Shekhar, S.

    2014-11-01

    In India, a number of schemes and programmes have been launched from time to time in order to promote integrated city development and to enable the slum dwellers to gain access to the basic services. Despite the use of geospatial technologies in planning, the local, state and central governments have only been partially successful in dealing with these problems. The study on existing policies and programmes also proved that when the government is the sole provider or mediator, GIS can become a tool of coercion rather than participatory decision-making. It has also been observed that local level administrators who have adopted Geospatial technology for local planning continue to base decision-making on existing political processes. In this juncture, geospatial decision support system (GSDSS) can provide a framework for integrating database management systems with analytical models, graphical display, tabular reporting capabilities and the expert knowledge of decision makers. This assists decision-makers to generate and evaluate alternative solutions to spatial problems. During this process, decision-makers undertake a process of decision research - producing a large number of possible decision alternatives and provide opportunities to involve the community in decision making. The objective is to help decision makers and planners to find solutions through a quantitative spatial evaluation and verification process. The study investigates the options for slum development in a formal framework of RAY (Rajiv Awas Yojana), an ambitious program of Indian Government for slum development. The software modules for realizing the GSDSS were developed using the ArcGIS and Community -VIZ software for Gulbarga city.

  13. Contextualizing Cave Maps as Geospatial Information: Case Study of Indonesia

    NASA Astrophysics Data System (ADS)

    Reinhart, H.

    2017-12-01

    Caves are the result of solution processes. Because they are happened from geochemical and tectonic activity, they can be considered as geosphere phenomena. As one of the geosphere phenomena, especially at karst landform, caves have spatial dimensions and aspects. Cave’s utilizations and developments are increasing in many sectors such as hydrology, earth science, and tourism industry. However, spatial aspects of caves are poorly concerned dues to the lack of recognition toward cave maps. Many stakeholders have not known significances and importance of cave maps in determining development of a cave. Less information can be considered as the cause. Therefore, it is strongly necessary to put cave maps into the right context in order to make stakeholders realize the significance of it. Also, cave maps will be officially regarded as tools related to policy, development, and conservation act of caves hence they will have regulation in the usages and applications. This paper aims to make the contextualization of cave maps toward legal act. The act which is used is Act Number 4 Year 2011 About Geospatial Information. The contextualization is done by scrutinizing every articles and clauses related to cave maps and seek the contextual elements from both of them. The results are that cave maps can be regarded as geospatial information and classified as thematic geospatial information. The usages of them can be regulated through the Act Number 4 Year 2011. The regulations comprised by data acquisition, database, authorities, surveyor, and the obligation of providing cave maps in planning cave’s development and the environment surrounding.

  14. Geospatial techniques for developing a sampling frame of watersheds across a region

    USGS Publications Warehouse

    Gresswell, Robert E.; Bateman, Douglas S.; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  15. Visualization Beyond the Map: The Challenges of Managing Data for Re-Use

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C. R.; Wiebe, P. H.; Glover, D. M.

    2012-12-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) makes data publicly accessible via both a text-based and a geospatial interface, the latter using the Open Geospatial Consortium (OGC) compliant open-source MapServer software originally from the University of Minnesota. Making data available for reuse by the widest variety of users is one of the overriding goals of BCO-DMO and one of our greatest challenges. The biogeochemical, ecological and physical data we manage are extremely heterogeneous. Although it is not possible to be all things to all people, we are actively working on ways to make the data re-usable by the most people. Looking at data in a different way is one of the underpinnings of data re-use and the easier we can make data accessible, the more the community of users will benefit. We can help the user determine usefulness by providing some specific tools. Sufficiently well-informed metadata can often be enough to determine fitness for purpose, but many times our geospatial interface to the data and metadata is more compelling. Displaying the data visually in as many ways as possible enables the scientist, teacher or manager to decide if the data are useful and then being able to download the data right away with no login required is very attractive. We will present ways of visualizing different kinds of data and discuss using metadata to drive the visualization tools. We will also discuss our attempts to work with data providers to organize their data in ways to make them reusable to the largest audience and to solicit input from data users about the effectiveness of our solutions.

  16. The GLIMS Glacier Database

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2007-12-01

    The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), MapInfo, GML (Geography Markup Language) and GMT (Generic Mapping Tools). This "clip-and-ship" function allows users to download only the data they are interested in. Our flexible web interfaces to the database, which includes various support layers (e.g. a layer to help collaborators identify satellite imagery over their region of expertise) will facilitate enhanced analysis to be undertaken on glacier systems, their distribution, and their impacts on other Earth systems.

  17. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  18. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  19. Improving situation awareness with the Android Team Awareness Kit (ATAK)

    NASA Astrophysics Data System (ADS)

    Usbeck, Kyle; Gillen, Matthew; Loyall, Joseph; Gronosky, Andrew; Sterling, Joshua; Kohler, Ralph; Hanlon, Kelly; Scally, Andrew; Newkirk, Richard; Canestrare, David

    2015-05-01

    To make appropriate, timely decisions in the field, Situational Awareness (SA) needs to be conveyed in a decentralized manner to the users at the edge of the network as well as at operations centers. Sharing real-time SA efficiently between command centers and operational troops poses many challenges, including handling heterogeneous and dynamic networks, resource constraints, and varying needs for the collection, dissemination, and display of information, as well as recording that information. A mapping application that allows teams to share relevant geospatial information efficiently and to communicate effectively with one another and command centers has wide applicability to many vertical markets across the Department of Defense, as well as a wide variety of federal, state local, and non-profit agencies that need to share locations, text, photos, and video. This paper describes the Android Team Awareness Kit (ATAK), an advanced, distributed tool for commercial- off-the-shelf (COTS) mobile devices such as smartphones and tablets. ATAK provides a variety of useful SA functions for soldiers, law enforcement, homeland defense, and civilian collaborative use; including mapping and navigation, range and bearing, text chat, force tracking, geospatial markup tools, image and file sharing, video playback, site surveys, and many others. This paper describes ATAK, the SA tools that ATAK has built-in, and the ways it is being used by a variety of military, homeland security, and law enforcement users.

  20. Exploring U.S Cropland - A Web Service based Cropland Data Layer Visualization, Dissemination and Querying System (Invited)

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Han, W.; di, L.

    2010-12-01

    The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.

  1. Rapid Data Delivery System (RDDS)

    USGS Publications Warehouse

    Cress, Jill J.; Goplen, Susan E.

    2007-01-01

    Since the start of the active 2000 summer fire season, the U. S. Geological Survey (USGS) Rocky Mountain Geographic Science Center (RMGSC) has been actively engaged in providing crucial and timely support to Federal, State, and local natural hazards monitoring, analysis, response, and recovery activities. As part of this support, RMGSC has developed the Rapid Data Delivery System (RDDS) to provide emergency and incident response teams with timely access to geospatial data. The RDDS meets these needs by combining a simple web-enabled data viewer for the selection and preview of vector and raster geospatial data with an easy to use data ordering form. The RDDS viewer also incorporates geospatial locations for current natural hazard incidents, including wildfires, earthquakes, hurricanes, and volcanoes, allowing incident responders to quickly focus on their area of interest for data selection.

  2. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Rosli, A. Z.; Reba, M. N. M.; Roslan, N.; Room, M. H. M.

    2014-02-01

    In order to maintain the stability of natural ecosystems around urban areas, urban forestry will be the best initiative to maintain and control green space in our country. Integration between remote sensing (RS) and geospatial information system (GIS) serves as an effective tool for monitoring environmental changes and planning, managing and developing a sustainable urbanization. This paper aims to assess capability of the integration of RS and GIS to provide information for urban forest potential sites based on qualitative and quantitative by using priority parameter ranking in the new township of Nusajaya. SPOT image was used to provide high spatial accuracy while map of topography, landuse, soils group, hydrology, Digital Elevation Model (DEM) and soil series data were applied to enhance the satellite image in detecting and locating present attributes and features on the ground. Multi-Criteria Decision Making (MCDM) technique provides structural and pair wise quantification and comparison elements and criteria for priority ranking for urban forestry purpose. Slope, soil texture, drainage, spatial area, availability of natural resource, and vicinity of urban area are criteria considered in this study. This study highlighted the priority ranking MCDM is cost effective tool for decision-making in urban forestry planning and landscaping.

  3. Geospatial considerations for a multiorganizational, landscape-scale program

    USGS Publications Warehouse

    O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.

    2013-01-01

    Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.

  4. Considerations on Geospatial Big Data

    NASA Astrophysics Data System (ADS)

    LIU, Zhen; GUO, Huadong; WANG, Changlin

    2016-11-01

    Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.

  5. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    USGS Publications Warehouse

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  6. Data System Architectures: Recent Experiences from Data Intensive Projects

    NASA Astrophysics Data System (ADS)

    Palanisamy, G.; Frame, M. T.; Boden, T.; Devarakonda, R.; Zolly, L.; Hutchison, V.; Latysh, N.; Krassovski, M.; Killeffer, T.; Hook, L.

    2014-12-01

    U.S. Federal agencies are frequently trying to address new data intensive projects that require next generation of data system architectures. This presentation will focus on two new such architectures: USGS's Science Data Catalog (SDC) and DOE's Next Generation Ecological Experiments - Arctic Data System. The U.S. Geological Survey (USGS) developed a Science Data Catalog (data.usgs.gov) to include records describing datasets, data collections, and observational or remotely-sensed data. The system was built using service oriented architecture and allows USGS scientists and data providers to create and register their data using either a standards-based metadata creation form or simply to register their already-created metadata records with the USGS SDC Dashboard. This dashboard then compiles the harvested metadata records and sends them to the post processing and indexing service using the JSON format. The post processing service, with the help of various ontologies and other geo-spatial validation services, auto-enhances these harvested metadata records and creates a Lucene index using the Solr enterprise search platform. Ultimately, metadata is made available via the SDC search interface. DOE's Next Generation Ecological Experiments (NGEE) Arctic project deployed a data system that allows scientists to prepare, publish, archive, and distribute data from field collections, lab experiments, sensors, and simulated modal outputs. This architecture includes a metadata registration form, data uploading and sharing tool, a Digital Object Identifier (DOI) tool, a Drupal based content management tool (http://ngee-arctic.ornl.gov), and a data search and access tool based on ORNL's Mercury software (http://mercury.ornl.gov). The team also developed Web-metric tools and a data ingest service to visualize geo-spatial and temporal observations.

  7. Towards a geospatial wikipedia

    NASA Astrophysics Data System (ADS)

    Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Kraxner, F.; Obersteiner, M.

    2009-04-01

    Based on the Google Earth (http://earth.google.com) platform we have developed a geospatial Wikipedia (geo-wiki.org). The tool allows everybody in the world to contribute to spatial validation and is made available to the internet community interested in that task. We illustrate how this tool can be used for different applications. In our first application we combine uncertainty hotspot information from three global land cover datasets (GLC, MODIS, GlobCover). With an ever increasing amount of high resolution images available on Google Earth, it is becoming increasingly possible to distinguish land cover features with a high degree of accuracy. We first direct the land cover validation community to certain hotspots of land cover uncertainty and then ask them to fill in a small popup menu on type of land cover, possibly a picture at that location with the different cardinal points as well as date and what type of validation was chosen (google earth imagery/panoramio or if the person has ground truth data). We have implemented the tool via a land cover validation community at FACEBOOK which is based on a snowball system which allows the tracking of individuals and the possibility to ignore users which misuse the system. In a second application we illustrate how the tool could possibly be used for mapping malaria occurrence and small water bodies as well as overall malaria risk. For this application we have implemented a polygon as well as attribute function using Google maps as along with virtual earth using openlayers. The third application deals with illegal logging and how an alert system for illegal logging detection within a certain land tenure system could be implemented. Here we show how the tool can be used to document illegal logging via a YouTube video.

  8. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  9. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams/liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.

  10. A model of clutter for complex, multivariate geospatial displays.

    PubMed

    Lohrenz, Maura C; Trafton, J Gregory; Beck, R Melissa; Gendron, Marlin L

    2009-02-01

    A novel model of measuring clutter in complex geospatial displays was compared with human ratings of subjective clutter as a measure of convergent validity. The new model is called the color-clustering clutter (C3) model. Clutter is a known problem in displays of complex data and has been shown to affect target search performance. Previous clutter models are discussed and compared with the C3 model. Two experiments were performed. In Experiment 1, participants performed subjective clutter ratings on six classes of information visualizations. Empirical results were used to set two free parameters in the model. In Experiment 2, participants performed subjective clutter ratings on aeronautical charts. Both experiments compared and correlated empirical data to model predictions. The first experiment resulted in a .76 correlation between ratings and C3. The second experiment resulted in a .86 correlation, significantly better than results from a model developed by Rosenholtz et al. Outliers to our correlation suggest further improvements to C3. We suggest that (a) the C3 model is a good predictor of subjective impressions of clutter in geospatial displays, (b) geospatial clutter is a function of color density and saliency (primary C3 components), and (c) pattern analysis techniques could further improve C3. The C3 model could be used to improve the design of electronic geospatial displays by suggesting when a display will be too cluttered for its intended audience.

  11. Stakeholder-driven geospatial modeling for assessing tsunami vertical-evacuation strategies in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Wood, N. J.; Schmidtlein, M.; Schelling, J.; Jones, J.; Ng, P.

    2012-12-01

    Recent tsunami disasters, such as the 2010 Chilean and 2011 Tohoku events, demonstrate the significant life loss that can occur from tsunamis. Many coastal communities in the world are threatened by near-field tsunami hazards that may inundate low-lying areas only minutes after a tsunami begins. Geospatial integration of demographic data and hazard zones has identified potential impacts on populations in communities susceptible to near-field tsunami threats. Pedestrian-evacuation models build on these geospatial analyses to determine if individuals in tsunami-prone areas will have sufficient time to reach high ground before tsunami-wave arrival. Areas where successful evacuations are unlikely may warrant vertical-evacuation (VE) strategies, such as berms or structures designed to aid evacuation. The decision of whether and where VE strategies are warranted is complex. Such decisions require an interdisciplinary understanding of tsunami hazards, land cover conditions, demography, community vulnerability, pedestrian-evacuation models, land-use and emergency-management policy, and decision science. Engagement with the at-risk population and local emergency managers in VE planning discussions is critical because resulting strategies include permanent structures within a community and their local ownership helps ensure long-term success. We present a summary of an interdisciplinary approach to assess VE options in communities along the southwest Washington coast (U.S.A.) that are threatened by near-field tsunami hazards generated by Cascadia subduction zone earthquakes. Pedestrian-evacuation models based on an anisotropic approach that uses path-distance algorithms were merged with population data to forecast the distribution of at-risk individuals within several communities as a function of travel time to safe locations. A series of community-based workshops helped identify potential VE options in these communities, collectively known as "Project Safe Haven" at the State of Washington Emergency Management Division. Models of the influence of stakeholder-driven VE options identified changes in the type and distribution of at-risk individuals. Insights from VE use and performance as an aid to evacuations from the 2011 Tohoku tsunami helped to inform the meetings and the analysis. We developed geospatial tools to automate parts of the pedestrian-evacuation models to support the iterative process of developing VE options and forecasting changes in population exposure. Our summary presents the interdisciplinary effort to forecast population impacts from near-field tsunami threats and to develop effective VE strategies to minimize fatalities in future events.

  12. E-learning based distance education programme on Remote Sensing and Geoinformation Science - An initiative of IIRS

    NASA Astrophysics Data System (ADS)

    Karnatak, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.; Srivastav, S. K.; Gupta, P. K.

    2014-11-01

    IIRS has initiated its interactive distance education based capacity building under IIRS outreach programme in year 2007 where more than 15000+ students were trained in the field of geospatial technology using Satellite based interactive terminals and internet based learning using A-View software. During last decade the utilization of Internet technology by different user groups in the society is emerged as a technological revaluation which has directly affect the life of human being. The Internet is used extensively in India for various purposes right from entrainment to critical decision making in government machinery. The role of internet technology is very important for capacity building in any discipline which can satisfy the needs of maximum users in minimum time. Further to enhance the outreach of geospatial science and technology, IIRS has initiated e-learning based certificate courses of different durations. The contents for e-learning based capacity building programme are developed for various target user groups including mid-career professionals, researchers, academia, fresh graduates, and user department professionals from different States and Central Government ministries. The official website of IIRS e-learning is hosted at http://elearning.iirs.gov.in. The contents of IIRS e-learning programme are flexible for anytime, anywhere learning keeping in mind the demands of geographically dispersed audience and their requirements. The program is comprehensive with variety of online delivery modes with interactive, easy to learn and having a proper blend of concepts and practical to elicit students' full potential. The course content of this programme includes Image Statistics, Basics of Remote Sensing, Photogrammetry and Cartography, Digital Image Processing, Geographical Information System, Global Positioning System, Customization of Geospatial tools and Applications of Geospatial Technologies. The syllabus of the courses is as per latest developments and trends in geo-spatial science and technologies with specific focus on Indian case studies for geo-spatial applications. The learning is made available through interactive 2D and 3D animations, audio, video for practical demonstrations, software operations with free data applications. The learning methods are implemented to make it more interactive and learner centric application with practical examples of real world problems.

  13. a Public Platform for Geospatial Data Sharing for Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Balbo, S.; Boccardo, P.; Dalmasso, S.; Pasquali, P.

    2013-01-01

    Several studies have been conducted in Africa to assist local governments in addressing the risk situation related to natural hazards. Geospatial data containing information on vulnerability, impacts, climate change, disaster risk reduction is usually part of the output of such studies and is valuable to national and international organizations to reduce the risks and mitigate the impacts of disasters. Nevertheless this data isn't efficiently widely distributed and often resides in remote storage solutions hardly reachable. Spatial Data Infrastructures are technical solutions capable to solve this issue, by storing geospatial data and making them widely available through the internet. Among these solutions, GeoNode, an open source online platform for geospatial data sharing, has been developed in recent years. GeoNode is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode data management tools allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains (http://geonode.org/). This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.

  14. Quality Metadata Management for Geospatial Scientific Workflows: from Retrieving to Assessing with Online Tools

    NASA Astrophysics Data System (ADS)

    Leibovici, D. G.; Pourabdollah, A.; Jackson, M.

    2011-12-01

    Experts and decision-makers use or develop models to monitor global and local changes of the environment. Their activities require the combination of data and processing services in a flow of operations and spatial data computations: a geospatial scientific workflow. The seamless ability to generate, re-use and modify a geospatial scientific workflow is an important requirement but the quality of outcomes is equally much important [1]. Metadata information attached to the data and processes, and particularly their quality, is essential to assess the reliability of the scientific model that represents a workflow [2]. Managing tools, dealing with qualitative and quantitative metadata measures of the quality associated with a workflow, are, therefore, required for the modellers. To ensure interoperability, ISO and OGC standards [3] are to be adopted, allowing for example one to define metadata profiles and to retrieve them via web service interfaces. However these standards need a few extensions when looking at workflows, particularly in the context of geoprocesses metadata. We propose to fill this gap (i) at first through the provision of a metadata profile for the quality of processes, and (ii) through providing a framework, based on XPDL [4], to manage the quality information. Web Processing Services are used to implement a range of metadata analyses on the workflow in order to evaluate and present quality information at different levels of the workflow. This generates the metadata quality, stored in the XPDL file. The focus is (a) on the visual representations of the quality, summarizing the retrieved quality information either from the standardized metadata profiles of the components or from non-standard quality information e.g., Web 2.0 information, and (b) on the estimated qualities of the outputs derived from meta-propagation of uncertainties (a principle that we have introduced [5]). An a priori validation of the future decision-making supported by the outputs of the workflow once run, is then provided using the meta-propagated qualities, obtained without running the workflow [6], together with the visualization pointing out the need to improve the workflow with better data or better processes on the workflow graph itself. [1] Leibovici, DG, Hobona, G Stock, K Jackson, M (2009) Qualifying geospatial workfow models for adaptive controlled validity and accuracy. In: IEEE 17th GeoInformatics, 1-5 [2] Leibovici, DG, Pourabdollah, A (2010a) Workflow Uncertainty using a Metamodel Framework and Metadata for Data and Processes. OGC TC/PC Meetings, September 2010, Toulouse, France [3] OGC (2011) www.opengeospatial.org [4] XPDL (2008) Workflow Process Definition Interface - XML Process Definition Language.Workflow Management Coalition, Document WfMC-TC-1025, 2008 [5] Leibovici, DG Pourabdollah, A Jackson, M (2011) Meta-propagation of Uncertainties for Scientific Workflow Management in Interoperable Spatial Data Infrastructures. In: Proceedings of the European Geosciences Union (EGU2011), April 2011, Austria [6] Pourabdollah, A Leibovici, DG Jackson, M (2011) MetaPunT: an Open Source tool for Meta-Propagation of uncerTainties in Geospatial Processing. In: Proceedings of OSGIS2011, June 2011, Nottingham, UK

  15. Ontology-based geospatial data query and integration

    USGS Publications Warehouse

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  16. I Want It, You've Got It - Effectively Connect Users to Geospatial Resources

    NASA Astrophysics Data System (ADS)

    White, C. E.

    2012-12-01

    How do users of scientific data find what they need? How do they know where to look, what to look for, how to evaluate, and - if they find the right resource - then how to get it? When the data is of a geospatial nature, other factors also come into play - is the data in a format/projection compatible with other data being used, does the user have access to tools that can analyze and display the data to adequately evaluate it, and does the user have knowledge on how to manage that access - especially if the data is being exposed by web services. Supporting users to connect them to geospatial data in a continually evolving technological climate is a challenge that reaches deeply into all levels of data management. In this talk, we will discuss specific challenges in how users discover and access resources, and how Esri has evolved solutions over time to more effectively connect users to what they need. Some of the challenges - and current solutions - that will be discussed are: balancing a straightforward user experience with rich functionality, providing simple descriptions while maintaining complete metadata, enabling data access to work with an organization's content while being compatible with other organizations' access mechanisms, and the ability to publish data once yet share it in many venues.

  17. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  18. Challenges in sharing of geospatial data by data custodians in South Africa

    NASA Astrophysics Data System (ADS)

    Kay, Sissiel E.

    2018-05-01

    As most development planning and rendering of public services happens at a place or in a space, geospatial data is required. This geospatial data is best managed through a spatial data infrastructure, which has as a key objective to share geospatial data. The collection and maintenance of geospatial data is expensive and time consuming and so the principle of "collect once - use many times" should apply. It is best to obtain the geospatial data from the authoritative source - the appointed data custodian. In South Africa the South African Spatial Data Infrastructure (SASDI) is the means to achieve the requirement for geospatial data sharing. This requires geospatial data sharing to take place between the data custodian and the user. All data custodians are expected to comply with the Spatial Data Infrastructure Act (SDI Act) in terms of geo-spatial data sharing. Currently data custodians are experiencing challenges with regard to the sharing of geospatial data. This research is based on the current ten data themes selected by the Committee for Spatial Information and the organisations identified as the data custodians for these ten data themes. The objectives are to determine whether the identified data custodians comply with the SDI Act with respect to geospatial data sharing, and if not what are the reasons for this. Through an international comparative assessment it then determines if the compliance with the SDI Act is not too onerous on the data custodians. The research concludes that there are challenges with geospatial data sharing in South Africa and that the data custodians only partially comply with the SDI Act in terms of geospatial data sharing. However, it is shown that the South African legislation is not too onerous on the data custodians.

  19. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.

  20. Using Airborne Remote Sensing to Increase Situational Awareness in Civil Protection and Humanitarian Relief - the Importance of User Involvement

    NASA Astrophysics Data System (ADS)

    Römer, H.; Kiefl, R.; Henkel, F.; Wenxi, C.; Nippold, R.; Kurz, F.; Kippnich, U.

    2016-06-01

    Enhancing situational awareness in real-time (RT) civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR) monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR's 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management) and product dissemination (editable web services). Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user's requirements.

  1. Geospatial Data Science Research Staff | Geospatial Data Science | NREL

    Science.gov Websites

    Oliveira, Ricardo Researcher II-Geospatial Science Ricardo.Oliveira@nrel.gov 303-275-3272 Gilroy, Nicholas Specialist Pamela.Gray.hann@nrel.gov 303-275-4626 Grue, Nicholas Researcher III-Geospatial Science Nick.Grue

  2. PLANNING QUALITY IN GEOSPATIAL PROJECTS

    EPA Science Inventory

    This presentation will briefly review some legal drivers and present a structure for the writing of geospatial Quality Assurance Projects Plans. In addition, the Geospatial Quality Council geospatial information life-cycle and sources of error flowchart will be reviewed.

  3. Automatic geospatial information Web service composition based on ontology interface matching

    NASA Astrophysics Data System (ADS)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  4. Geospatial Based Information System Development in Public Administration for Sustainable Development and Planning in Urban Environment

    NASA Astrophysics Data System (ADS)

    Kouziokas, Georgios N.

    2016-09-01

    It is generally agreed that the governmental authorities should actively encourage the development of an efficient framework of information and communication technology initiatives so as to advance and promote sustainable development and planning strategies. This paper presents a prototype Information System for public administration which was designed to facilitate public management and decision making for sustainable development and planning. The system was developed by using several programming languages and programming tools and also a Database Management System (DBMS) for storing and managing urban data of many kinds. Furthermore, geographic information systems were incorporated into the system in order to make possible to the authorities to deal with issues of spatial nature such as spatial planning. The developed system provides a technology based management of geospatial information, environmental and crime data of urban environment aiming at improving public decision making and also at contributing to a more efficient sustainable development and planning.

  5. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    PubMed

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. WikiPEATia - a web based platform for assembling peatland data through ‘crowd sourcing’

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Glidden, S.; Fieseher, C.; Treat, C. C.; Routhier, M.; Frolking, S. E.

    2009-12-01

    The Earth System Science community is realizing that peatlands are an important and unique terrestrial ecosystem that has not yet been well-integrated into large-scale earth system analyses. A major hurdle is the lack of accessible, geospatial data of peatland distribution, coupled with data on peatland properties (e.g., vegetation composition, peat depth, basal dates, soil chemistry, peatland class) at the global scale. This data, however, is available at the local scale. Although a comprehensive global database on peatlands probably lags similar data on more economically important ecosystems such as forests, grasslands, croplands, a large amount of field data have been collected over the past several decades. A few efforts have been made to map peatlands at large scales but existing data have not been assembled into a single geospatial database that is publicly accessible or do not depict data with a level of detail that is needed in the Earth System Science Community. A global peatland database would contribute to advances in a number of research fields such as hydrology, vegetation and ecosystem modeling, permafrost modeling, and earth system modeling. We present a Web 2.0 approach that uses state-of-the-art webserver and innovative online mapping technologies and is designed to create such a global database through ‘crowd-sourcing’. Primary functions of the online system include form-driven textual user input of peatland research metadata, spatial data input of peatland areas via a mapping interface, database editing and querying editing capabilities, as well as advanced visualization and data analysis tools. WikiPEATia provides an integrated information technology platform for assembling, integrating, and posting peatland-related geospatial datasets facilitates and encourages research community involvement. A successful effort will make existing peatland data much more useful to the research community, and will help to identify significant data gaps.

  7. 75 FR 6056 - National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary National Geospatial Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of renewal of National Geospatial Advisory Committee... renewed the National Geospatial Advisory Committee. The Committee will provide advice and recommendations...

  8. Geography in Italian Schools (An Example of a Cross-Curricular Project Using Geospatial Technologies for a Practical Contribution to Educators)

    ERIC Educational Resources Information Center

    De Vecchis, Gino; Pasquinelli D'Allegra, Daniela; Pesaresi, Cristiano

    2011-01-01

    During the last few years the Italian school system has seen significant changes but geography continues to be considered a boring and un-useful discipline by public institutions. The main problem is the widespread geographic illiteracy and the fact that very often people do not know the objectives, methodology and tools of geographical studies.…

  9. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs

    Treesearch

    Greg Dillon; James Menakis; Frank Fay

    2015-01-01

    Federal wildfire managers often want to know, over large landscapes, where wildfires are likely to occur and how intense they may be. To meet this need we developed a map that we call wildland fire potential (WFP) - a raster geospatial product that can help to inform evaluations of wildfire risk or prioritization of fuels management needs across very large spatial...

  10. Teaching the Geoweb: Interdisciplinary Undergraduate Research in Wireless Sensor Networks, Web Mapping, and Geospatial Data Management

    ERIC Educational Resources Information Center

    Abernathy, David

    2011-01-01

    This article addresses an effort to incorporate wireless sensor networks and the emerging tools of the Geoweb into undergraduate teaching and research at a small liberal arts college. The primary goal of the research was to identify the hardware, software, and skill sets needed to deploy a local sensor network, collect data, and transmit that data…

  11. Geospatial characteristics of Florida's coastal and offshore environments: Coastal habitats, artificial reefs, wrecks, dumping grounds, harbor obstructions and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, coastal habitats, artificial reefs, shipwrecks, dumping grounds, and harbor obstructions. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  12. WEB-GIS Decision Support System for CO2 storage

    NASA Astrophysics Data System (ADS)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module, and (4) a risk assessment module. The Database component is build by using the PostgreSQL and PostGIS open source technology. The visualization module allows the user to view data of CO2 injection sites in different ways: (1) geospatial visualization, (2) table view, (3) 3D visualization. The analysis module will allow the user to perform certain analysis like Injectivity, Containment and Capacity analysis. The Risk Assessment module focus on the site risk matrix approach. The Guidelines module contains the methodologies of CO2 injection and storage into deep saline aquifers guidelines.

  13. Implementing Extreme Value Analysis in a Geospatial Workflow for Storm Surge Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Catelli, J.; Nong, S.

    2014-12-01

    Gridded data of 100-yr (1%) and 500-yr (0.2%) storm surge flood elevations for the United States, Gulf of Mexico, and East Coast are critical to understanding this natural hazard. Storm surge heights were calculated across the study area utilizing SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model data for thousands of synthetic US landfalling hurricanes. Based on the results derived from SLOSH, a series of interpolations were performed using spatial analysis in a geographic information system (GIS) at both the SLOSH basin and the synthetic event levels. The result was a single grid of maximum flood elevations for each synthetic event. This project addresses the need to utilize extreme value theory in a geospatial environment to analyze coincident cells across multiple synthetic events. The results are 100-yr (1%) and 500-yr (0.2%) values for each grid cell in the study area. This talk details a geospatial approach to move raster data to SciPy's NumPy Array structure using the Python programming language. The data are then connected through a Python library to an outside statistical package like R to fit cell values to extreme value theory distributions and return values for specified recurrence intervals. While this is not a new process, the value behind this work is the ability to keep this process in a single geospatial environment and be able to easily replicate this process for other natural hazard applications and extreme event modeling.

  14. EPA GEOSPATIAL QUALITY COUNCIL

    EPA Science Inventory

    The EPA Geospatial Quality Council (previously known as the EPA GIS-QA Team - EPA/600/R-00/009 was created to fill the gap between the EPA Quality Assurance (QA) and Geospatial communities. All EPA Offices and Regions were invited to participate. Currently, the EPA Geospatial Q...

  15. Geospatial Thinking of Information Professionals

    ERIC Educational Resources Information Center

    Bishop, Bradley Wade; Johnston, Melissa P.

    2013-01-01

    Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…

  16. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  17. EPA Geospatial Quality Council Strategic and Implementation Plan 2010 to 2015

    EPA Science Inventory

    The EPA Geospatial Quality Council (GQC) was created to promote and provide Quality Assurance guidance for the development, use, and products of geospatial science. The GQC was created when the gap between the EPA Quality Assurance (QA) and Geospatial communities was recognized. ...

  18. US EPA GEOSPATIAL QUALITY COUNCIL: ENSURING QUALITY GEOSPATIAL SOLUTIONS

    EPA Science Inventory

    This presentation will discuss the history, strategy, products, and future plans of the EPA Geospatial Quality Council (GQC). A topical review of GQC products will be presented including:

    o Guidance for Geospatial Data Quality Assurance Project Plans.

    o GPS - Tec...

  19. TopoLens: Building a cyberGIS community data service for enhancing the usability of high-resolution National Topographic datasets

    USGS Publications Warehouse

    Hu, Hao; Hong, Xingchen; Terstriep, Jeff; Liu, Yan; Finn, Michael P.; Rush, Johnathan; Wendel, Jeffrey; Wang, Shaowen

    2016-01-01

    Geospatial data, often embedded with geographic references, are important to many application and science domains, and represent a major type of big data. The increased volume and diversity of geospatial data have caused serious usability issues for researchers in various scientific domains, which call for innovative cyberGIS solutions. To address these issues, this paper describes a cyberGIS community data service framework to facilitate geospatial big data access, processing, and sharing based on a hybrid supercomputer architecture. Through the collaboration between the CyberGIS Center at the University of Illinois at Urbana-Champaign (UIUC) and the U.S. Geological Survey (USGS), a community data service for accessing, customizing, and sharing digital elevation model (DEM) and its derived datasets from the 10-meter national elevation dataset, namely TopoLens, is created to demonstrate the workflow integration of geospatial big data sources, computation, analysis needed for customizing the original dataset for end user needs, and a friendly online user environment. TopoLens provides online access to precomputed and on-demand computed high-resolution elevation data by exploiting the ROGER supercomputer. The usability of this prototype service has been acknowledged in community evaluation.

  20. Geospatial analysis of spaceborne remote sensing data for assessing disaster impacts and modeling surface runoff in the built-environment

    NASA Astrophysics Data System (ADS)

    Wodajo, Bikila Teklu

    Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km x 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within +/-7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within +/-4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed models were implemented for a study area along I-10 considering the predominantly flood-induced damages in New Orleans. The BANS methodology was calibrated for 0.6-m QuickBird2 multispectral imagery of Karachi Port area in Pakistan. The results were accurate within +/-6% of the groundtruth. Due to its computational simplicity, the unit hydrograph method is recommended for geospatial visualization of surface runoff in the built-environment using BANS surface classification maps and elevations data. Key words. geospatial analysis, satellite imagery, built-environment, hurricane, disaster impacts, runoff.

  1. GeoBrain Computational Cyber-laboratory for Earth Science Studies

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2009-12-01

    Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and modeling through the web portal. The GeoBrain cyber-laboratory provides solutions to meet common needs of ES research and education, such as, distributed data access and analysis services, easy access to and use of ES data, and enhanced geoprocessing and geospatial modeling capability. It greatly facilitates ES research, education, and applications. The development of the cyber-laboratory provides insights, lessons-learned, and technology readiness to build more capable computing infrastructure for ES studies, which can meet wide-range needs of current and future generations of scientists, researchers, educators, and students for their formal or informal educational training, research projects, career development, and lifelong learning.

  2. Impacts of Geospatial Information for Decision Making

    NASA Astrophysics Data System (ADS)

    Pearlman, F.; Coote, A.; Friedl, L.; Stewart, M.

    2012-12-01

    Geospatial information contributes to decisions by both societal and individual decision-makers. More effective use of this information is essential as issues are increasingly complex and consequences can be critical for future economic and social development. To address this, a workshop brought together analysts, communicators, officials, and researchers from academia, government, non-governmental organizations, and the private sector. A range of policy issues, management needs, and resource requirements were discussed and a wide array of analyses, geospatial data, methods of analysis, and metrics were presented for assessing and communicating the value of geospatial information. It is clear that there are many opportunities for integrating science and engineering disciplines with the social sciences for addressing societal issues that would benefit from using geospatial information and earth observations. However, these collaborations must have outcomes that can be easily communicated to decision makers. This generally requires either succinct quantitative statements of value based on rigorous models and/or user testimonials of actual applications that save real money. An outcome of the workshop is to pursue the development of a community of practice or society that encompasses a wide range of scientific, social, management, and communication disciplines and fosters collaboration across specialties, helping to build trust across social and science aspects. A resource base is also necessary. This presentation will address approaches for creating a shared knowledge database, containing a glossary of terms, reference materials and examples of case studies and the potential applications for benefit analyses.

  3. Searching and exploitation of distributed geospatial data sources via the Naval Research Lab's Geospatial Information Database (GIDB) Portal System

    NASA Astrophysics Data System (ADS)

    McCreedy, Frank P.; Sample, John T.; Ladd, William P.; Thomas, Michael L.; Shaw, Kevin B.

    2005-05-01

    The Naval Research Laboratory"s Geospatial Information Database (GIDBTM) Portal System has been extended to now include an extensive geospatial search functionality. The GIDB Portal System interconnects over 600 distributed geospatial data sources via the Internet with a thick client, thin client and a PDA client. As the GIDB Portal System has rapidly grown over the last two years (adding hundreds of geospatial sources), the obvious requirement has arisen to more effectively mine the interconnected sources in near real-time. How the GIDB Search addresses this issue is the prime focus of this paper.

  4. The National Geospatial Technical Operations Center

    USGS Publications Warehouse

    Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.

    2009-01-01

    The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).

  5. NCI's Distributed Geospatial Data Server

    NASA Astrophysics Data System (ADS)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under different conventions. We will show some cases where we have used this new capability to provide a significant improvement over previous approaches.

  6. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    NASA Astrophysics Data System (ADS)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher/student perceptions of science and scientists. Evidence of the aforementioned changes are provided through external evaluation and results obtained from several assessment tools. The program also utilizes an internal evaluator to monitor participants thoughts and opinions on the previous years' collaboration. Additionally, graduate fellows maintain a reflective journal to provide insight into experiences occurring both in-class and among peers. Finally, student surveys administered prior to and concluding the academic year assess changes in student attitudes and self-perception of spatial thinking skills.

  7. Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO

    NASA Astrophysics Data System (ADS)

    Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.

    2016-10-01

    Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.

  8. Research and Practical Trends in Geospatial Sciences

    NASA Astrophysics Data System (ADS)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  9. LANDFIRE - A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning

    Treesearch

    Kevin C. Ryan; Tonja S. Opperman

    2013-01-01

    LANDFIRE is the working name given to the Landscape Fire and Resource Management Planning Tools Project (http://www.landfire.gov). The project was initiated in response to mega-fires and the need for managers to have consistent, wall-to-wall (i.e., all wildlands regardless of agency/ownership), geospatial data, on vegetation, fuels, and terrain to support use of fire...

  10. Improving the All-Hazards Homeland Security Enterprise Through the Use of an Emergency Management Intelligence Model

    DTIC Science & Technology

    2013-09-01

    Office of the Inspector General OSINT Open Source Intelligence PPD Presidential Policy Directive SIGINT Signals Intelligence SLFC State/Local Fusion...Geospatial Intelligence (GEOINT) from Geographic Information Systems (GIS), and Open Source Intelligence ( OSINT ) from Social Media. GIS is widely...and monitor make it a feasible tool to capitalize on for OSINT . A formalized EM intelligence process would help expedite the processing of such

  11. Remote Sensing Systems Optimization for Geobase Enhancement

    DTIC Science & Technology

    2003-03-01

    through feedback from base users, as well as the researcher’s observations. 3.1 GeoBase and GIS Learning GeoBase and Geographic Information System ...Abstract The U.S. Air Force is in the process of implementing GeoBase, a geographic information system (GIS), throughout its worldwide installations...Geographic Information System (GIS). A GIS is a computer database that contains geo-spatial information . It is the principal tool used to input, view

  12. Spatial clustering of high load ocular Chlamydia trachomatis infection in trachoma: a cross-sectional population-based study.

    PubMed

    Last, Anna; Burr, Sarah; Alexander, Neal; Harding-Esch, Emma; Roberts, Chrissy H; Nabicassa, Meno; Cassama, Eunice Teixeira da Silva; Mabey, David; Holland, Martin; Bailey, Robin

    2017-07-31

    Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infection and infectious cause of blindness (trachoma) worldwide. Understanding the spatial distribution of Ct infection may enable us to identify populations at risk and improve our understanding of Ct transmission. In this study, we sought to investigate the spatial distribution of Ct infection and the clinical features associated with high Ct load in trachoma-endemic communities on the Bijagós Archipelago (Guinea Bissau). We collected 1507 conjunctival samples and corresponding detailed clinical data during a cross-sectional population-based geospatially representative trachoma survey. We used droplet digital PCR to estimate Ct load on conjunctival swabs. Geostatistical tools were used to investigate clustering of ocular Ct infections. Spatial clusters (independent of age and gender) of individuals with high Ct loads were identified using local indicators of spatial association. We did not detect clustering of individuals with low load infections. These data suggest that infections with high bacterial load may be important in Ct transmission. These geospatial tools may be useful in the study of ocular Ct transmission dynamics and as part of trachoma surveillance post-treatment, to identify clusters of infection and thresholds of Ct load that may be important foci of re-emergent infection in communities. © FEMS 2017.

  13. Quantification of Impervious Surfaces Along the Wasatch Front, Utah: AN Object-Based Image Analysis Approach to Identifying AN Indicator for Wetland Stress

    NASA Astrophysics Data System (ADS)

    Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.

    2013-12-01

    The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.

  14. Infrastructure for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  15. Geospatial Perspective: Toward a Visual Political Literacy Project in Education, Health, and Human Services

    ERIC Educational Resources Information Center

    Hogrebe, Mark C.; Tate, William F., IV

    2012-01-01

    In this chapter, "geospatial" refers to geographic space that includes location, distance, and the relative position of things on the earth's surface. Geospatial perspective calls for the addition of a geographic lens that focuses on place and space as important contextual variables. A geospatial view increases one's understanding of…

  16. Geospatial Data Curation at the University of Idaho

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Godfrey, Bruce; Eckwright, Gail Z.

    2012-01-01

    The management and curation of digital geospatial data has become a central concern for many academic libraries. Geospatial data is a complex type of data critical to many different disciplines, and its use has become more expansive in the past decade. The University of Idaho Library maintains a geospatial data repository called the Interactive…

  17. Geospatial Engineering

    DTIC Science & Technology

    2017-02-22

    manages operations through guidance, policies, programs, and organizations. The NSG is designed to be a mutually supportive enterprise that...deliberate technical design and deliberate human actions. Geospatial engineer teams (GETs) within the geospatial intelligence cells are the day-to-day...standards working group and are designated by the AGC Geospatial Acquisition Support Directorate as required for interoperability. Applicable standards

  18. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  19. Grid computing enhances standards-compatible geospatial catalogue service

    NASA Astrophysics Data System (ADS)

    Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang

    2010-04-01

    A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.

  20. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes.

    PubMed

    Reynaud, Arnaud; Lanzanova, Denis

    2017-07-01

    This study presents the first meta-analysis on the economic value of ecosystem services delivered by lakes. A worldwide data set of 699 observations drawn from 133 studies combines information reported in primary studies with geospatial data. The meta-analysis explores antagonisms and synergies between ecosystem services. This is the first meta-analysis to incorporate simultaneously external geospatial data and ecosystem service interactions. We first show that it is possible to reliably predict the value of ecosystem services provided by lakes based on their physical and geographic characteristics. Second, we demonstrate that interactions between ecosystem services appear to be significant for explaining lake ecosystem service values. Third, we provide an estimation of the average value of ecosystem services provided by lakes: between 106 and 140 USD$2010 per respondent per year for non-hedonic price studies and between 169 and 403 USD$2010 per property per year for hedonic price studies.

  1. GODAN Local Farming Challenge 2017 - Encourage Geo-Innovation Solutions for Zero Hunger

    NASA Astrophysics Data System (ADS)

    Anand, Suchith; Hogan, Patrick; Brovelli, Maria; Schaap, Ben; Musker, Ruthie; Laperrière, André

    2017-04-01

    The initial ideas for Open Geospatial Science [1] were presented nearly a decade ago. They build upon the proposition of Open science which argues that scientific knowledge develops more rapidly and productively if openly shared (as early as is practical in the discovery process). The key ingredients that make Open Geospatial Science possible are enshrined in Open Principles, i.e.: open source geospatial software, open data, open standards, open educational resources, and open access to research publications. OpenCitySmart[2] is an initiative of Geo for All [3] that aims to develop a suite of tools for city-related infrastructure management (utilities, traffic, services, etc.). Its purpose will be to continually refine and add functionality that not only streamlines operational efficiency but also considers the need for sustainability and quality of urban life. OpenCitySmart employs Open solutions to build richer tools that empower organisations and individuals to utilizespatial and non-spatial data alike. This will create opportunities for innovation both globally and locally. As the population of cities grow, the concern of food security will shift from rural to urban areas. Currently, nearly 800 million people struggle with debilitating hunger and malnutrition and can be found in every corner of the globe. That's one in every nine people, with the majority being women and children. The Global Open Data for Agriculture and Nutrition (GODAN) [4] supports the proactive sharing of open data to make information about agriculture and nutrition available, accessible and usable to deal with the urgent challenge of ensuring world food security. A core principle behind GODAN is that a solution to Zero Hunger lies within existing, but often unavailable, agriculture and nutrition data. Through an online survey, GODAN found that the most needed data type across its 430+ partner network was geospatial data. Through the GODAN Europa Challenge we want to bring together researchers and students to work collaboratively on innovative ideas to create change using agriculture and nutrition data. The Europa Challenge is a World Challenge, though we use the wisdom of Europe's INSPIRE Directive to guide project development. The Europa Challenge is asking the world's *best and brightest* to deliver solutions serving city needs. With support from the NASA Europa Challenge[5], GODAN is launching a Local Farming Challenge. We welcome students to create innovative ideas that will help tackle the solutions of local farming in growing cities, using some aspect of the OpenCitySmart Design and uses NASA's open source virtual globe technology, WebWorldWind. Ideas may include ways for optimally linking local farming communities directly with potential customers, tools for visualising spatio-temporal aspects of local farming, tools for helping reducing wastage (for example linking with local food banks), and any number of solutions for helping our goal of Zero Hunger. 1. http://www.mdpi.com/journal/ijgi/special_issues/science-applications 2. http://www.geoforall.org/ 3. https://wiki.osgeo.org/wiki/Opencitysmart 4. http://www.godan.info 5. http://eurochallenge.como.polimi.it

  2. a Combination of Geospatial and Clinical Analysis in Predicting Disability Outcome after Road Traffic Injury (rti) in a District in Malaysia

    NASA Astrophysics Data System (ADS)

    Nik Hisamuddin, R.; Ruslan, R.; Syed Hatim, N.; Sharifah Mastura, S. M.

    2016-09-01

    This was a Prospective Cohort Study commencing from July 2011 until June 2013 involving all injuries related to motor vehicle crashes (MVC) attended Emergency Departments (ED) of two tertiary centers in a district in Malaysia. Selected attributes were geospatially analyzed by using ARCGIS (by ESRI) software version 10.1 licensed to the institution and Google Map free software and multiple logistic regression was performed by using SPSS version 22.0. A total of 439 cases were recruited. The mean age (SD) of the MVC victims was 26.04 years (s.d 15.26). Male comprised of 302 (71.7%) of the cases. Motorcyclists were the commonest type of victims involved [351(80.0%)]. Hotspot MVC locations occurred at certain intersections and on roads within borough of Kenali and Binjai. The number of severely injured and polytrauma are mostly on the road network within speed limit of 60 km/hour. A person with an increase in ISS of one score had a 37 % higher odd to have disability at hospital discharge (95% CI: 1.253, 1.499, p-value < 0.001). Pediatric age group (less than 19 years of age) had 52.1% lesser odds to have disability at discharge from hospital (95% CI: 0.258, 0.889, p-value < 0.001) and patients who underwent operation for definitive management had 4.14 times odds to have disability at discharge from hospital (95% CI: 1.681, 10.218, p-value = 0.002). Overall this study has proven that GIS with a combination of traditional statistical analysis is still a powerful tool in road traffic injury (RTI) related research.

  3. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  4. A bioavailable strontium isoscape for Western Europe: A machine learning approach

    PubMed Central

    von Holstein, Isabella C. C.; Laffoon, Jason E.; Willmes, Malte; Liu, Xiao-Ming; Davies, Gareth R.

    2018-01-01

    Strontium isotope ratios (87Sr/86Sr) are gaining considerable interest as a geolocation tool and are now widely applied in archaeology, ecology, and forensic research. However, their application for provenance requires the development of baseline models predicting surficial 87Sr/86Sr variations (“isoscapes”). A variety of empirically-based and process-based models have been proposed to build terrestrial 87Sr/86Sr isoscapes but, in their current forms, those models are not mature enough to be integrated with continuous-probability surface models used in geographic assignment. In this study, we aim to overcome those limitations and to predict 87Sr/86Sr variations across Western Europe by combining process-based models and a series of remote-sensing geospatial products into a regression framework. We find that random forest regression significantly outperforms other commonly used regression and interpolation methods, and efficiently predicts the multi-scale patterning of 87Sr/86Sr variations by accounting for geological, geomorphological and atmospheric controls. Random forest regression also provides an easily interpretable and flexible framework to integrate different types of environmental auxiliary variables required to model the multi-scale patterning of 87Sr/86Sr variability. The method is transferable to different scales and resolutions and can be applied to the large collection of geospatial data available at local and global levels. The isoscape generated in this study provides the most accurate 87Sr/86Sr predictions in bioavailable strontium for Western Europe (R2 = 0.58 and RMSE = 0.0023) to date, as well as a conservative estimate of spatial uncertainty by applying quantile regression forest. We anticipate that the method presented in this study combined with the growing numbers of bioavailable 87Sr/86Sr data and satellite geospatial products will extend the applicability of the 87Sr/86Sr geo-profiling tool in provenance applications. PMID:29847595

  5. Irrigation network extraction methodology from LiDAR DTM using Whitebox and ArcGIS

    NASA Astrophysics Data System (ADS)

    Mahor, M. A. P.; De La Cruz, R. M.; Olfindo, N. T.; Perez, A. M. C.

    2016-10-01

    Irrigation networks are important in distributing water resources to areas where rainfall is not enough to sustain agriculture. They are also crucial when it comes to being able to redirect vast amounts of water to decrease the risks of flooding in flat areas, especially near sources of water. With the lack of studies about irrigation feature extraction, which range from wide canals to small ditches, this study aims to present a method of extracting these features from LiDAR-derived digital terrain models (DTMs) using Geographic Information Systems (GIS) tools such as ArcGIS and Whitebox Geospatial Analysis Tools (Whitebox GAT). High-resolution LiDAR DTMs with 1-meter horizontal and 0.25-meter vertical accuracies were processed to generate the gully depth map. This map was then reclassified, converted to vector, and filtered according to segment length, and sinuosity to be able to isolate these irrigation features. Initial results in the test area show that the extraction completeness is greater than 80% when compared with data obtained from the National Irrigation Administration (NIA).

  6. To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne

    2012-08-01

    A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.

  7. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    NASA Astrophysics Data System (ADS)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data democracy not only provides benefits to a greater population, it enhances the value of science.

  8. Learning topography with Tangible Landscape games

    NASA Astrophysics Data System (ADS)

    Petrasova, A.; Tabrizian, P.; Harmon, B. A.; Petras, V.; Millar, G.; Mitasova, H.; Meentemeyer, R. K.

    2017-12-01

    Understanding topography and its representations is crucial for correct interpretation and modeling of surface processes. However, novice earth science and landscape architecture students often find reading topographic maps challenging. As a result, many students struggle to comprehend more complex spatial concepts and processes such as flow accumulation or sediment transport.We developed and tested a new method for teaching hydrology, geomorphology, and grading using Tangible Landscape—a tangible interface for geospatial modeling. Tangible Landscape couples a physical and digital model of a landscape through a real-time cycle of hands-on modeling, 3D scanning, geospatial computation, and projection. With Tangible Landscape students can sculpt a projection-augmented topographic model of a landscape with their hands and use a variety of tangible objects to immediately see how they are changing geospatial analytics such as contours, profiles, water flow, or landform types. By feeling and manipulating the shape of the topography, while seeing projected geospatial analytics, students can intuitively learn about 3D topographic form, its representations, and how topography controls physical processes. Tangible Landscape is powered by GRASS GIS, an open source geospatial platform with extensive libraries for geospatial modeling and analysis. As such, Tangible Landscape can be used to design a wide range of learning experiences across a large number of geoscience disciplines.As part of a graduate level course that teaches grading, 16 students participated in a series of workshops, which were developed as serious games to encourage learning through structured play. These serious games included 1) diverting rain water to a specified location with minimal changes to landscape, 2) building different combinations of landforms, and 3) reconstructing landscapes based on projected contour information with feedback.In this poster, we will introduce Tangible Landscape, and describe the games and their implementation. We will then present preliminary results of a user experience survey we conducted as part of the workshops. All developed materials and software are open source and available online.

  9. Enter Sandbox

    NASA Astrophysics Data System (ADS)

    Clucas, T.; Wirth, G. S.

    2015-12-01

    Interactive geospatial education tools can excite students and public audiences alike. Alaska EPSCoR and UAF GINA have taken one such tool - an augmented-reality sandbox invented at UC-Davis - and created a completely mobile version, which can be easily transported and deployed on and off the road system. In addition, EPSCoR has developed model curricula that use the sandbox to teach basic topography and hydrology skills. More advanced curricular modules in development will teach about flooding, tsunamis, and other hydrologic and landscape hazards. Instructions on building a mobile sandbox, curricula, and video of the sandbox in action are available at www.alaska.edu/epscor/Augmented-Reality%20Sandbox/

  10. A geospatial search engine for discovering multi-format geospatial data across the web

    Treesearch

    Christopher Bone; Alan Ager; Ken Bunzel; Lauren Tierney

    2014-01-01

    The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically...

  11. The Use of Geospatial Technologies Instruction within a Student/Teacher/Scientist Partnership: Increasing Students' Geospatial Skills and Atmospheric Concept Knowledge

    ERIC Educational Resources Information Center

    Hedley, Mikell Lynne; Templin, Mark A.; Czaljkowski, Kevin; Czerniak, Charlene

    2013-01-01

    Many 21st century careers rely on geospatial skills; yet, curricula and professional development lag behind in incorporating these skills. As a result, many teachers have limited experience or preparation for teaching geospatial skills. One strategy for overcoming such problems is the creation of a student/teacher/scientist (STS) partnership…

  12. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    NASA Astrophysics Data System (ADS)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  13. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  14. Economic assessment of the use value of geospatial information

    USGS Publications Warehouse

    Bernknopf, Richard L.; Shapiro, Carl D.

    2015-01-01

    Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI) contained in geospatial data is the difference between the net benefits (in present value terms) of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1) a retrospective model about environmental regulation of agrochemicals; (2) a prospective model about the impact and mitigation of earthquakes in urban areas; and (3) a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  15. Disaster Response Tools for Decision Support and Data Discovery - E-DECIDER and GeoGateway

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Parker, J. W.; Granat, R. A.; Lyzenga, G. A.; Pierce, M. E.; Wang, J.; Grant Ludwig, L.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2015-12-01

    Providing actionable data for situational awareness following an earthquake or other disaster is critical to decision makers in order to improve their ability to anticipate requirements and provide appropriate resources for response. E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) is a decision support system producing remote sensing and geophysical modeling products that are relevant to the emergency preparedness and response communities and serves as a gateway to enable the delivery of actionable information to these communities. GeoGateway is a data product search and analysis gateway for scientific discovery, field use, and disaster response focused on NASA UAVSAR and GPS data that integrates with fault data, seismicity and models. Key information on the nature, magnitude and scope of damage, or Essential Elements of Information (EEI), necessary to achieve situational awareness are often generated from a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. We have worked in partnership with the California Earthquake Clearinghouse to develop actionable data products for use in their response efforts, particularly in regularly scheduled, statewide exercises like the recent May 2015 Capstone/SoCal NLE/Ardent Sentry Exercises and in the August 2014 South Napa earthquake activation. We also provided a number of products, services, and consultation to the NASA agency-wide response to the April 2015 Gorkha, Nepal earthquake. We will present perspectives on developing tools for decision support and data discovery in partnership with the Clearinghouse and for the Nepal earthquake. Products delivered included map layers as part of the common operational data plan for the Clearinghouse, delivered through XchangeCore Web Service Data Orchestration, enabling users to create merged datasets from multiple providers. For the Nepal response effort, products included models, damage and loss estimates, and aftershock forecasts that were posted to a NASA information site and delivered directly to end-users such as USAID, OFDA, World Bank, and UNICEF.

  16. The Detection and Characterization of Urbanization, Industrialization, and Longwall Mining Impacts on Forest Ecosystems Through the Use of GiS and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pfeil-McCullough, Erin Kathleen

    Urbanization has far reaching and significant effects on forest ecosystems, directly through urban development and indirectly through supportive processes such as coal mining and agriculture. Urban processes modify the landscape leading to altered hillslope hydrology, increased disturbance, and the introduction of non-native forest pathogens. This dissertation addresses several challenges in our ability to detect these urbanization impacts on forests via geospatial analyses. The role of forests in urban hydrological processes has been extensively studied, but the impacts of urbanized hydrology on forests remain poorly examined. This dissertation documented impacts to hydrology and forests at variety of temporal and spatial scales: 1) A geospatial comparison of the historic and contemporary forests of Allegheny County, Pennsylvania revealed substantial shifts in tree species, but less change in the species soil moisture preference. These results document additional evidence that increased heterogeneity in urban soil moisture alters forest structure. 2) To examine soil moisture changes, impacts of longwall mine subsidence were assessed by using a Landsat based canopy moisture index and hot spot analysis tools at the forest patch scale. Declines in forest canopy moisture were detected over longwall mines as mining progressed through time, and results contradicted assumptions that the hydrological impacts overlying LMS recover within 4-5 years following subsidence of undermined land. 3) Utilizing a landslide susceptibility model (SINMAP), increases in landslide susceptibility were predicted in Pittsburgh, PA based on several scenarios of ash tree loss to the emerald ash borer (EAB), a bark beetle that rapidly kills ash trees. This model provides a tool to predict changes in landslide susceptibility following tree loss, increasing the understanding of urban forest function and its role in slope stability. Detecting how urbanized hydrology impacts forest health, function, and development is fundamental to sustaining the services forests provide. Results from this dissertation will ultimately allow improvements in the management and protection of both trees and water resources in urban systems and beyond.

  17. EPA National Geospatial Data Policy

    EPA Pesticide Factsheets

    National Geospatial Data Policy (NGDP) establishes principles, responsibilities, and requirements for collecting and managing geospatial data used by Federal environmental programs and projects within the jurisdiction of the U.S. EPA

  18. The Inter-American Geospatial Data Network— developing a Western Hemisphere geospatial data clearinghouse

    USGS Publications Warehouse

    Anthony, Michelle L.; Klaver, Jacqueline M.; Quenzer, Robert

    1998-01-01

    The US Geological Survey and US Agency for International Development are enhancing the geographic information infrastructure of the Western Hemisphere by establishing the Inter-American Geospatial Data Network (IGDN). In its efforts to strengthen the Western Hemisphere's information infrastructure, the IGDN is consistent with the goals of the Plan of Action that emerged from the 1994 Summit of the Americas. The IGDN is an on-line cooperative, or clearinghouse, of geospatial data. Internet technology is used to facilitate the discovery and access of Western Hemisphere geospatial data. It was established by using the standards and guidelines of the Federal Geographic Data Committee to provide a consistent data discovery mechanism that will help minimize geospatial data duplication, promote data availability, and coordinate data collection and research activities.

  19. Web mapping system for complex processing and visualization of environmental geospatial datasets

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.

  20. EPA Geospatial Applications

    EPA Pesticide Factsheets

    EPA has developed many applications that allow users to explore and interact with geospatial data. This page highlights some of the flagship geospatial web applications but these represent only a fraction of the total.

  1. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  2. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  3. A GEO Initiative to Support the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    The United Nations Agenda 2030 serves as a global development agenda for progress on economic, social and environmental sustainability. These Sustainable Development Goals (SDG) have a specific provision for the use of Earth observations and geospatial information to support progress. The international Group on Earth Observations, GEO, has a dedicated initiative focused on the SDGs. This initiative supports efforts to integrate Earth observations and geospatial information into national development and monitoring frameworks for the SDGs. It helps enables countries and stakeholders to leverage Earth observations to support the implementation, planning, measuring, monitoring, reporting, and evaluation of the SDGs. This paper will present an overview of the GEO initiative and ways that Earth observations support the development goals. It will address how information and knowledge can be shared on effective methods to apply Earth observations to the SDGs and their associated targets and indicators. It will also highlight some existing information sources and tools on the SDGs, which can help identify key approaches for developing a knowledge base.

  4. Augmenting Austrian flood management practices through geospatial predictive analytics: a study in Carinthia

    NASA Astrophysics Data System (ADS)

    Ward, S. M.; Paulus, G.

    2013-06-01

    The Danube River basin has long been the location of significant flooding problems across central Europe. The last decade has seen a sharp increase in the frequency, duration and intensity of these flood events, unveiling a dire need for enhanced flood management policy and tools in the region. Located in the southern portion of Austria, the state of Carinthia has experienced a significant volume of intense flood impacts over the last decade. Although the Austrian government has acknowledged these issues, their remedial actions have been primarily structural to date. Continued focus on controlling the natural environment through infrastructure while disregarding the need to consider alternative forms of assessing flood exposure will only act as a provisional solution to this inescapable risk. In an attempt to remedy this flaw, this paper highlights the application of geospatial predictive analytics and spatial recovery index as a proxy for community resilience, as well as the cultural challenges associated with the application of foreign models within an Austrian environment.

  5. Geospatial assessment of solar energy potential for utility scale parabolic trough collector power plant in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Gherboudj, Imen; Al Rished, Abdulaziz; Ghedira, Hosni

    2017-06-01

    Given ambitious plans to increase the amount of electricity production from renewable resources and the natural resources of the Kingdom of Saudi Arabia (KSA), solar energy stands as a technology with a great development potential in this country. In this work, the suitability of the territory is assess through a geospatial analysis, using a PTC performance model to account for the technical potential. As a result, a land suitability map is presented, where the North-West area of the country is identified as the one with more highly suitable area.

  6. The African Geospatial Sciences Institute (agsi): a New Approach to Geospatial Training in North Africa

    NASA Astrophysics Data System (ADS)

    Oeldenberger, S.; Khaled, K. B.

    2012-07-01

    The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses offered, to build geospatial capacity and ensure that AGSI graduates will have the appropriate skill-sets required for employment in the geospatial industry. Geospatial management courses and high-level seminars will be targeted at decision makers in government and industry to build awareness for geospatial applications and benefits. Online education will be developed together with international partners and internet-based activities will involve the public to familiarize them with geospatial data and its many applications.

  7. 78 FR 67103 - Request for Nominations of Members To Serve on the Census Scientific Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... analysis, survey methodology, geospatial analysis, econometrics, cognitive psychology, and computer science... following disciplines: demography, economics, geography, psychology, statistics, survey methodology, social... expertise in such areas as demography, economics, geography, psychology, statistics, survey methodology...

  8. 77 FR 1454 - Request for Nominations of Members To Serve on the Census Scientific Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ..., statistical analysis, survey methodology, geospatial analysis, econometrics, cognitive psychology, and... following disciplines: Demography, economics, geography, psychology, statistics, survey methodology, social... technical expertise in such areas as demography, economics, geography, psychology, statistics, survey...

  9. Knowledge to Action - Understanding Natural Hazards-Induced Power Outage Scenarios for Actionable Disaster Responses

    NASA Astrophysics Data System (ADS)

    Kar, B.; Robinson, C.; Koch, D. B.; Omitaomu, O.

    2017-12-01

    The Sendai Framework for Disaster Risk Reduction 2015-2030 identified the following four priorities to prevent and reduce disaster risks: i) understanding disaster risk; ii) strengthening governance to manage disaster risk; iii) investing in disaster risk reduction for resilience and; iv) enhancing disaster preparedness for effective response, and to "Build Back Better" in recovery, rehabilitation and reconstruction. While forecasting and decision making tools are in place to predict and understand future impacts of natural hazards, the knowledge to action approach that currently exists fails to provide updated information needed by decision makers to undertake response and recovery efforts following a hazard event. For instance, during a tropical storm event advisories are released every two to three hours, but manual analysis of geospatial data to determine potential impacts of the event tends to be time-consuming and a post-event process. Researchers at Oak Ridge National Laboratory have developed a Spatial Decision Support System that enables real-time analysis of storm impact based on updated advisory. A prototype of the tool that focuses on determining projected power outage areas and projected duration of outages demonstrates the feasibility of integrating science with decision making for emergency management personnel to act in real time to protect communities and reduce risk.

  10. Remote Sensing Image Analysis Without Expert Knowledge - A Web-Based Classification Tool On Top of Taverna Workflow Management System

    NASA Astrophysics Data System (ADS)

    Selsam, Peter; Schwartze, Christian

    2016-10-01

    Providing software solutions via internet has been known for quite some time and is now an increasing trend marketed as "software as a service". A lot of business units accept the new methods and streamlined IT strategies by offering web-based infrastructures for external software usage - but geospatial applications featuring very specialized services or functionalities on demand are still rare. Originally applied in desktop environments, the ILMSimage tool for remote sensing image analysis and classification was modified in its communicating structures and enabled for running on a high-power server and benefiting from Tavema software. On top, a GIS-like and web-based user interface guides the user through the different steps in ILMSimage. ILMSimage combines object oriented image segmentation with pattern recognition features. Basic image elements form a construction set to model for large image objects with diverse and complex appearance. There is no need for the user to set up detailed object definitions. Training is done by delineating one or more typical examples (templates) of the desired object using a simple vector polygon. The template can be large and does not need to be homogeneous. The template is completely independent from the segmentation. The object definition is done completely by the software.

  11. Server Side Applications And Plugins Architecture For The Analysis Of Geospatial Information And The Management Of Water Resources

    NASA Astrophysics Data System (ADS)

    Pierleoni, Arnaldo; Casagrande, Luca; Bellezza, Michele; Casadei, Stefano

    2010-05-01

    The need for increasingly complex geospatial algorithms dedicated to the management of water resources, the fact that many of them require specific knowledge and the need for dedicated computing machines has led to the necessity of centralizing and sharing all the server applications and the plugins developed. For this purpose, a Web Processing Service (WPS) that can make available to users a range of geospatial analysis algorithms, geostatistics, remote sensing procedures and that can be used simply by providing data and input parameters and download the results has been developed. The core of the system infrastructure is a GRASS GIS, which acts as a computational engine, providing more than 350 forms of analysis and the opportunity to create new and ad hoc procedures. The implementation of the WPS was performed using the software PyWPS written in Python that is easily manageable and configurable. All these instruments are managed by a daemon named "Arcibald" specifically created for the purpose of listing the order of the requests that come from the users. In fact, it may happen that there are already ongoing processes so the system will queue the new ones registering the request and running it only when the previous calculations have been completed. However, individual Geoprocessing have an indicator to assess the resources necessary to implement it, enabling you to run geoprocesses that do not require excessive computing time in parallel. This assessment is also made in relation to the size of the input file provided. The WPS standard defines methods for accessing and running Geoprocessing regardless of the client used, however, the project has been developed specifically for a graphical client to access the resources. The client was built as a plugin for the GIS QGis Software which provides the most common tools for the view and the consultation of geographically referenced data. The tool was tested using the data taken during the bathymetric campaign at the Montedoglio Reservoir on the Tiber River in order to generate a digital model of the reservoir bed. Starting from a text file containing coordinates and the depth of the points (previously statistically treated to remove any inaccuracy), we used the plugin for QGis to connect to the Web service and started the process of cross validation in order to obtain the parameters to be used for interpolation. This makes possible to highlight the morphological variations of the basin of reservoirs due to silting phenomena, therefore to consider the actual capacity of the basin for a proper evaluation of the available water resource. Indeed, this is a critical step for the next phase of management. In this case, since the procedure is very long (order of days), the system automatically choose to send the results via email. Moreover the system, once the procedures invoked end, allows to choose whether to share data and results or to remove all traces of the calculation. This because in some cases data and sensitive information are used and this could violate privacy policies if shared. The entire project is made only with open-source software.

  12. GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz

    2015-07-01

    Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from

  13. The geospatial data quality REST API for primary biodiversity data

    PubMed Central

    Otegui, Javier; Guralnick, Robert P.

    2016-01-01

    Summary: We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. Availability and implementation: The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial. Contact: javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26833340

  14. The geospatial data quality REST API for primary biodiversity data.

    PubMed

    Otegui, Javier; Guralnick, Robert P

    2016-06-01

    We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Geospatial Data as a Service: The GEOGLAM Rangelands and Pasture Productivity Map Experience

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Antony, J.; Guerschman, J. P.; Larraondo, P. R.; Richards, C. J.

    2017-12-01

    Empowering end-users like pastoralists, land management specialists and land policy makers in the use of earth observation data for both day-to-day and seasonal planning needs both interactive delivery of multiple geospatial datasets and the capability of supporting on-the-fly dynamic queries while simultaneously fostering a community around the effort. The use of and wide adoption of large data archives, like those produced by earth observation missions, are often limited by compute and storage capabilities of the remote user. We demonstrate that wide-scale use of large data archives can be facilitated by end-users dynamically requesting value-added products using open standards (WCS, WMS, WPS), with compute running in the cloud or dedicated data-centres and visualizing outputs on web-front ends. As an example, we will demonstrate how a tool called GSKY can empower a remote end-user by providing the data delivery and analytics capabilities for the GEOGLAM Rangelands and Pasture Productivity (RAPP) Map tool. The GEOGLAM RAPP initiative from the Group on Earth Observations (GEO) and its Agricultural Monitoring subgroup aims at providing practical tools to end-users focusing on the important role of rangelands and pasture systems in providing food production security from both agricultural crops and animal protein. Figure 1, is a screen capture from the RAPP Map interface for an important pasture area in the Namibian rangelands. The RAPP Map has been in production for six months and has garnered significant interest from groups and users all over the world. GSKY, being formulated around the theme of Open Geospatial Data-as-a-Service capabilities uses distributed computing and storage to facilitate this. It works behind the scenes, accepting OGC standard requests in WCS, WMS and WPS. Results from these requests are rendered on a web-front end. In this way, the complexities of data locality and compute execution are masked from an end user. On-the-fly computation of products such as NDVI, Leaf Area Index, vegetation cover and others from original source data including MODIS are achived, with Landsat and Sentinel-2 on the horizon. Innovative use of cloud computing and storage along with flexible front-ends, allow the democratization of data dissemination and we hope better outcomes for the planet.

  16. Using Remote Sensing and GIS in the Analysis of Ecosystem Decline along the River Niger Basin: The Case of Mali and Niger

    PubMed Central

    Twumasi, Yaw A.; Merem, Edmund C.

    2007-01-01

    In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub-Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first objective of the paper is to develop a new framework for analyzing the health of riverine ecosystems while the second objective seeks a contribution to the literature. The third objective is to design a geo-spatial tool for riverine ecosystem management and impact analysis. The fourth objective is to measure the nature of change in riverine environments with the latest advances in geo-spatial information technologies and methods. In terms of methodology, the paper relies on primary data sources analyzed with descriptive statistics, GIS techniques and remote sensing. The sections in the paper consist of a review of the major environmental effects and factors associated with the problem as well as mitigation measures in Mali and Niger. The paper concludes with some recommendations. The results point to growing modification along the riverine environments of the Mali and Niger portions of the River Niger Basin due to a host of factors. PMID:17617682

  17. Using remote sensing and GIS in the analysis of ecosystem decline along the River Niger Basin: the case of Mali and Niger.

    PubMed

    Twumasi, Yaw A; Merem, Edmund C

    2007-06-01

    In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub- Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first objective of the paper is to develop a new framework for analyzing the health of riverine ecosystems while the second objective seeks a contribution to the literature. The third objective is to design a geo-spatial tool for riverine ecosystem management and impact analysis. The fourth objective is to measure the nature of change in riverine environments with the latest advances in geo-spatial information technologies and methods. In terms of methodology, the paper relies on primary data sources analyzed with descriptive statistics, GIS techniques and remote sensing. The sections in the paper consist of a review of the major environmental effects and factors associated with the problem as well as mitigation measures in Mali and Niger. The paper concludes with some recommendations. The results point to growing modification along the riverine environments of the Mali and Niger portions of the River Niger Basin due to a host of factors.

  18. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p < .001. Teacher enactment factors, including adherence to implementing the critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  19. Mapping the world: cartographic and geographic visualization by the United Nations Geospatial Information Section (formerly Cartographic Section)

    NASA Astrophysics Data System (ADS)

    Kagawa, Ayako; Le Sourd, Guillaume

    2018-05-01

    United Nations Secretariat activities, mapping began in 1946, and by 1951, the need for maps increased and an office with a team of cartographers was established. Since then, with the development of technologies including internet, remote sensing, unmanned aerial systems, relationship database management and information systems, geospatial information provides an ever-increasing variation of support to the work of the Organization for planning of operations, decision-making and monitoring of crises. However, the need for maps has remained intact. This presentation aims to highlight some of the cartographic representation styles over the decades by reviewing the evolution of selected maps by the office, and noting the changing cognitive and semiotic aspects of cartographic and geographic visualization required by the United Nations. Through presentation and analysis of these maps, the changing dynamics of the Organization in information management can be reflected, with a reminder of the continuing and expanding deconstructionist role of a cartographer, now geospatial information management experts.

  20. Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Jewell, L. A.; Moore, G.; Verma, M.; McDonald, T.; Kim, S.; Muniz, A.

    2016-12-01

    Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.

  1. Geospatial Analysis of Food Environment Demonstrates Associations with Gestational Diabetes

    PubMed Central

    KAHR, Maike K.; SUTER, Melissa A.; BALLAS, Jerasimos; RAMIN, Susan M.; MONGA, Manju; LEE, Wesley; HU, Min; SHOPE, Cindy D.; CHESNOKOVA, Arina; KRANNICH, Laura; GRIFFIN, Emily N.; MASTROBATTISTA, Joan; DILDY, Gary A.; STREHLOW, Stacy L.; RAMPHUL, Ryan; HAMILTON, Winifred J; AAGAARD, Kjersti M.

    2015-01-01

    Background Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, co-variant environmental and sociodemographic factors may be additional determinants of GDM occurrence. Objectives We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous U.S. county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Study Design Utilizing a perinatal database with over 4900 encoded antenatal and outcome variables inclusive of zip code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on county-wide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5 digit zip code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each zip code were gathered from publicly available food permit sources. In order to independently authenticate our findings with objective data, we measured hemoglobin A1c (HbA1c) levels as a function of geospatial distribution of food environment in a matched subset (n=80). Results Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile, aOR: 1.63 [95% CI 1.21–2.19]). In multivariate analysis, this association held true after controlling for potential confounders (p=0.002). Measurement of HbA1c levels in a matched subset were significantly increased in association with residence in a zip code with a higher fast food/supermarket ratio (n=80, r=0.251 p<0.05). Conclusions As demonstrated by geospatial analysis, a relationship of food environment and risk for gestational diabetes was identified. PMID:26319053

  2. Geospatial analysis of food environment demonstrates associations with gestational diabetes.

    PubMed

    Kahr, Maike K; Suter, Melissa A; Ballas, Jerasimos; Ramin, Susan M; Monga, Manju; Lee, Wesley; Hu, Min; Shope, Cindy D; Chesnokova, Arina; Krannich, Laura; Griffin, Emily N; Mastrobattista, Joan; Dildy, Gary A; Strehlow, Stacy L; Ramphul, Ryan; Hamilton, Winifred J; Aagaard, Kjersti M

    2016-01-01

    Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, covariant environmental and sociodemographic factors may be additional determinants of GDM occurrence. We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous US county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Utilizing a perinatal database with >4900 encoded antenatal and outcome variables inclusive of ZIP code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on countywide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5-digit ZIP code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each ZIP code were gathered from publicly available food permit sources. To independently authenticate our findings with objective data, we measured hemoglobin A1c levels as a function of geospatial distribution of food environment in a matched subset (n = 80). Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile: adjusted odds ratio, 1.63; 95% confidence interval, 1.21-2.19). In multivariate analysis, this association held true after controlling for potential confounders (P = .002). Measurement of hemoglobin A1c levels in a matched subset were significantly increased in association with residence in a ZIP code with a higher fast food/supermarket ratio (n = 80, r = 0.251 P < .05). As demonstrated by geospatial analysis, a relationship of food environment and risk for gestational diabetes was identified. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  4. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  5. The NorWeST summer stream temperature model and scenarios for the western U.S.: A crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams

    Treesearch

    Daniel J. Isaak; Seth J. Wenger; Erin E. Peterson; Jay M. Ver Hoef; David E. Nagel; Charles H. Luce; Steven W. Hostetler; Jason B. Dunham; Brett B. Roper; Sherry P. Wollrab; Gwynne L. Chandler; Dona L. Horan; Sharon Parkes-Payne

    2017-01-01

    Thermal regimes are fundamental determinants of aquatic ecosystems, which makes description and prediction of temperatures critical during a period of rapid global change. The advent of inexpensive temperature sensors dramatically increased monitoring in recent decades, and although most monitoring is done by individuals for agency-specific purposes, collectively these...

  6. Evaluating hydrological response of future land cover change scenarios in the San Pedro River (U.S./Mexico) with the automated geospatial watershed assessment (AGWA) tool

    Treesearch

    William G. Kepner; I. Shea Burns; David C Goodrich; D. Phillip Guertin; Gabriel S. Sidman; Lainie R. Levick; Wison W.S. Yee; Melissa M.A. Scianni; Clifton S. Meek; Jared B. Vollmer

    2016-01-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Future growth is represented by housing density maps generated in decadal...

  7. Geospatial tools effectively estimate nonexceedance probabilities of daily streamflow at ungauged and intermittently gauged locations in Ohio

    USGS Publications Warehouse

    Farmer, William H.; Koltun, Greg

    2017-01-01

    Study regionThe state of Ohio in the United States, a humid, continental climate.Study focusThe estimation of nonexceedance probabilities of daily streamflows as an alternative means of establishing the relative magnitudes of streamflows associated with hydrologic and water-quality observations.New hydrological insights for the regionSeveral methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index) and geospatial tools (kriging and topological kriging). These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.

  8. a New Approach for Progressive Dense Reconstruction from Consecutive Images Based on Prior Low-Density 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2017-09-01

    In recent years, the increasing incidence of climate-related disasters has tremendously affected our environment. In order to effectively manage and reduce dramatic impacts of such events, the development of timely disaster management plans is essential. Since these disasters are spatial phenomena, timely provision of geospatial information is crucial for effective development of response and management plans. Due to inaccessibility of the affected areas and limited budget of first-responders, timely acquisition of the required geospatial data for these applications is usually possible only using low-cost imaging and georefencing sensors mounted on unmanned platforms. Despite rapid collection of the required data using these systems, available processing techniques are not yet capable of delivering geospatial information to responders and decision makers in a timely manner. To address this issue, this paper introduces a new technique for dense 3D reconstruction of the affected scenes which can deliver and improve the needed geospatial information incrementally. This approach is implemented based on prior 3D knowledge of the scene and employs computationally-efficient 2D triangulation, feature descriptor, feature matching and point verification techniques to optimize and speed up 3D dense scene reconstruction procedure. To verify the feasibility and computational efficiency of the proposed approach, an experiment using a set of consecutive images collected onboard a UAV platform and prior low-density airborne laser scanning over the same area is conducted and step by step results are provided. A comparative analysis of the proposed approach and an available image-based dense reconstruction technique is also conducted to prove the computational efficiency and competency of this technique for delivering geospatial information with pre-specified accuracy.

  9. Statistical Validation of a Web-Based GIS Application and Its Applicability to Cardiovascular-Related Studies.

    PubMed

    Lee, Jae Eun; Sung, Jung Hye; Malouhi, Mohamad

    2015-12-22

    There is abundant evidence that neighborhood characteristics are significantly linked to the health of the inhabitants of a given space within a given time frame. This study is to statistically validate a web-based GIS application designed to support cardiovascular-related research developed by the NIH funded Research Centers in Minority Institutions (RCMI) Translational Research Network (RTRN) Data Coordinating Center (DCC) and discuss its applicability to cardiovascular studies. Geo-referencing, geocoding and geospatial analyses were conducted for 500 randomly selected home addresses in a U.S. southeastern Metropolitan area. The correlation coefficient, factor analysis and Cronbach's alpha (α) were estimated to quantify measures of the internal consistency, reliability and construct/criterion/discriminant validity of the cardiovascular-related geospatial variables (walk score, number of hospitals, fast food restaurants, parks and sidewalks). Cronbach's α for CVD GEOSPATIAL variables was 95.5%, implying successful internal consistency. Walk scores were significantly correlated with number of hospitals (r = 0.715; p < 0.0001), fast food restaurants (r = 0.729; p < 0.0001), parks (r = 0.773; p < 0.0001) and sidewalks (r = 0.648; p < 0.0001) within a mile from homes. It was also significantly associated with diversity index (r = 0.138, p = 0.0023), median household incomes (r = -0.181; p < 0.0001), and owner occupied rates (r = -0.440; p < 0.0001). However, its non-significant correlation was found with median age, vulnerability, unemployment rate, labor force, and population growth rate. Our data demonstrates that geospatial data generated by the web-based application were internally consistent and demonstrated satisfactory validity. Therefore, the GIS application may be useful to apply to cardiovascular-related studies aimed to investigate potential impact of geospatial factors on diseases and/or the long-term effect of clinical trials.

  10. Analysis of Giga-size Earth Observation Data in Open Source GRASS GIS 7 - from Desktop to On-line Solutions.

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.; Mitasova, H.; Jasiewicz, J.; Neteler, M.; Gebbert, S.

    2014-12-01

    GRASS GIS is a leading open source GIS for geospatial analysis and modeling. In addition to being utilized as a desktop GIS it also serves as a processing engine for high performance geospatial computing for applications in diverse disciplines. The newly released GRASS GIS 7 supports big data analysis including temporal framework, image segmentation, watershed analysis, synchronized 2D/3D animations and many others. This presentation will focus on new GRASS GIS 7-powered tools for geoprocessing giga-size earth observation (EO) data using spatial pattern analysis. Pattern-based analysis connects to human visual perception of space as well as makes geoprocessing of giga-size EO data possible in an efficient and robust manner. GeoPAT is a collection of GRASS GIS 7 modules that fully integrates procedures for pattern representation of EO data and patterns similarity calculations with standard GIS tasks of mapping, maps overlay, segmentation, classification(Fig 1a), change detections etc. GeoPAT works very well on a desktop but it also underpins several GeoWeb applications (http://sil.uc.edu/ ) which allow users to do analysis on selected EO datasets without the need to download them. The GRASS GIS 7 temporal framework and high resolution visualizations will be illustrated using time series of giga-size, lidar-based digital elevation models representing the dynamics of North Carolina barrier islands over the past 15 years. The temporal framework supports efficient raster and vector data series analysis and simplifies data input for visual analysis of dynamic landscapes (Fig. 1b) allowing users to rapidly identify vulnerable locations, changes in built environment and eroding coastlines. Numerous improvements in GRASS GIS 7 were implemented to support terabyte size data processing for reconstruction of MODIS land surface temperature (LST) at 250m resolution using multiple regressions and PCA (Fig. 1c) . The new MODIS LST series (http://gis.cri.fmach.it/eurolst/) includes 4 maps per day since year 2000, provide improved data for the epidemiological predictions, viticulture, assessment of urban heat islands and numerous other applications. The presentation will conclude with outline of future development for big data interfaces to further enhance the web-based GRASS GIS data analysis.

  11. Monitoring of In-Field Variability for Site Specific Crop Management Through Open Geospatial Information

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Lukas, V.; Charvát, K.; Charvát, K., Jr.; Horáková, Š.; Křivánek, Z.; Herman, L.

    2016-06-01

    The agricultural sector is in a unique position due to its strategic importance around the world. It is crucial for both citizens (consumers) and the economy (both regional and global), which, ideally, should ensure that the whole sector is a network of interacting organisations. It is important to develop new tools, management methods, and applications to improve the management and logistic operations of agricultural producers (farms) and agricultural service providers. From a geospatial perspective, this involves identifying cost optimization pathways, reducing transport, reducing environmental loads, and improving the energy balance, while maintaining production levels, etc. This paper describes the benefits of, and open issues arising from, the development of the Open Farm Management Information System. Emphasis is placed on descriptions of available remote sensing and other geospatial data, and their harmonization, processing, and presentation to users. At the same time, the FOODIE platform also offers a novel approach of yield potential estimations. Validation for one farm demonstrated 70% successful rate when comparing yield results at a farm counting 1'284 hectares on one hand and results of a theoretical model of yield potential on the other hand. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture and water pollution monitoring by means of remote sensing.

  12. Map LineUps: Effects of spatial structure on graphical inference.

    PubMed

    Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

  13. River predisposition to ice jams: a simplified geospatial model

    NASA Astrophysics Data System (ADS)

    De Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2017-07-01

    Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

  14. UASs for geospatial data

    USDA-ARS?s Scientific Manuscript database

    Increasingly, consumer organizations, businesses, and academic researchers are using UAS to gather geospatial, environmental data on natural and man-made phenomena. These data may be either remotely sensed or measured directly (e. g., sampling of atmospheric constituents). The term geospatial data r...

  15. Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.

    2013-12-01

    Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.

  16. A Tale of Two Regions: Landscape Ecological Planning for Shale Gas Energy Futures

    NASA Astrophysics Data System (ADS)

    Murtha, T., Jr.; Schroth, O.; Orland, B.; Goldberg, L.; Mazurczyk, T.

    2015-12-01

    As we increasingly embrace deep shale gas deposits to meet global energy demands new and dispersed local and regional policy and planning challenges emerge. Even in regions with long histories of energy extraction, such as coal, shale gas and the infrastructure needed to produce the gas and transport it to market offers uniquely complex transformations in land use and landcover not previously experienced. These transformations are fast paced, dispersed and can overwhelm local and regional planning and regulatory processes. Coupled to these transformations is a structural confounding factor. While extraction and testing are carried out locally, regulation and decision-making is multilayered, often influenced by national and international factors. Using a geodesign framework, this paper applies a set of geospatial landscape ecological planning tools in two shale gas settings. First, we describe and detail a series of ongoing studies and tools that we have developed for communities in the Marcellus Shale region of the eastern United States, specifically the northern tier of Pennsylvania. Second, we apply a subset of these tools to potential gas development areas of the Fylde region in Lancashire, United Kingdom. For the past five years we have tested, applied and refined a set of place based and data driven geospatial models for forecasting, envisioning, analyzing and evaluating shale gas activities in northern Pennsylvania. These models are continuously compared to important landscape ecological planning challenges and priorities in the region, e.g. visual and cultural resource preservation. Adapting and applying these tools to a different landscape allow us to not only isolate and define important regulatory and policy exigencies in each specific setting, but also to develop and refine these models for broader application. As we continue to explore increasingly complex energy solutions globally, we need an equally complex comparative set of landscape ecological planning tools to inform policy, design and regional planning. Adapting tools and techniques developed in Pennsylvania where shale gas extraction is ongoing to Lancashire, where industry is still in the exploratory phase offers a key opportunity to test and refine more generalizable models.

  17. An Institutional Community-Driven effort to Curate and Preserve Geospatial Data using GeoBlacklight

    NASA Astrophysics Data System (ADS)

    Petters, J.; Coleman, S.; Andrea, O.

    2016-12-01

    A variety of geospatial data is produced or collected by both academic researchers and non-academic groups in the Virginia Tech community. In an effort to preserve, curate and make this geospatial data discoverable, the University Libraries have been building a local implementation of GeoBlacklight, a multi-institutional open-source collaborative project to improve the discoverability and sharing of geospatial data. We will discuss the local implementation of Geoblacklight at Virginia Tech, focusing on the efforts necessary to make it a sustainable resource for the institution and local community going forward. This includes technical challenges such as the development of uniform workflows for geospatial data produced within and outside the course of research, but organizational and economic barriers must be overcome as well. In spearheading this GeoBlacklight effort the Libraries have partnered with University Facilities and University IT. The IT group manages the storage and backup of geospatial data, allowing our group to focus on geospatial data collection and curation. Both IT and University Facilities are in possession of localized geospatial data of interest to Viriginia Tech researchers that all parties agreed should be made discoverable and accessible. The interest and involvement of these and other university stakeholders is key to establishing the sustainability of the infrastructure and the capabilities it can provide to the Virginia Tech community and beyond.

  18. NASA SensorWeb and OGC Standards for Disaster Management

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2010-01-01

    I. Goal: Enable user to cost-effectively find and create customized data products to help manage disasters; a) On-demand; b) Low cost and non-specialized tools such as Google Earth and browsers; c) Access via open network but with sufficient security. II. Use standards to interface various sensors and resultant data: a) Wrap sensors in Open Geospatial Consortium (OGC) standards; b) Wrap data processing algorithms and servers with OGC standards c) Use standardized workflows to orchestrate and script the creation of these data; products. III. Target Web 2.0 mass market: a) Make it simple and easy to use; b) Leverage new capabilities and tools that are emerging; c) Improve speed and responsiveness.

  19. FASTMap v. 2010.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bynum, Leo

    FASTMap is mapping application available for the web or on mobile devices (IOS and Android) that browses geospatial data and produces detailed reports of objects within any area of analysis. FASTMap can access any geospatial dataset. The software can provide immediate access to the selected data through a fully symbolized interactive mapping interface. FASTMap can load arbitrary contours that represent a region of interest and can dynamically identify and geospatially select objects that reside within the region. The software can produce a report listing the objects and aggregations for the region, as well as producing publication quality maps. FASTMap alsomore » has the ability to post and maintain authored maps, any GIS data included in the map, areas of interest, as well as any titles, and labels. These defining ingredients of a map are called map contexts. These mao contexts can be instantly broadcast via the internet through any of an infinite number of named channels to small or large numbers of users monitouring any of the channels being posted to, so a user can author a map and immediately share that map with others instantly, whether they are on traditional desktop computer, laptop, mobile tablet or smartphone. Further, users receiving broadcast maps can also alter the maps can also alter the maps, or create new ones and publish back to the channel in a collaborative manner. FASTMap can be configured to access virtually any geospatial data.« less

  20. 78 FR 69393 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    .... FOR FURTHER INFORMATION CONTACT: National Geospatial-Intelligence Agency (NGA), ATTN: Human...: Delete entry and replace with ``Human Development Directorate, National Geospatial-Intelligence Agency...; System of Records AGENCY: National Geospatial-Intelligence Agency, DoD. ACTION: Notice to alter a System...

Top