Sample records for geostatistical interpolation method

  1. Analysis and simulation of wireless signal propagation applying geostatistical interpolation techniques

    NASA Astrophysics Data System (ADS)

    Kolyaie, S.; Yaghooti, M.; Majidi, G.

    2011-12-01

    This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.

  2. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China.

    PubMed

    Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong

    2016-01-01

    Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.

  3. Introduction to Geostatistics

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.

    1997-05-01

    Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.

  4. Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Henebry, G. M.

    2010-12-01

    In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under

  5. Estimation of geotechnical parameters on the basis of geophysical methods and geostatistics

    NASA Astrophysics Data System (ADS)

    Brom, Aleksander; Natonik, Adrianna

    2017-12-01

    The paper presents possible implementation of ordinary cokriging and geophysical investigation on humidity data acquired in geotechnical studies. The Author describes concept of geostatistics, terminology of geostatistical modelling, spatial correlation functions, principles of solving cokriging systems, advantages of (co-)kriging in comparison with other interpolation methods, obstacles in this type of attempt. Cross validation and discussion of results was performed with an indication of prospect of applying similar procedures in various researches..

  6. Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.

    1994-01-01

    It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.

  7. Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site.

    PubMed

    Juang, K W; Lee, D Y; Ellsworth, T R

    2001-01-01

    The spatial distribution of a pollutant in contaminated soils is usually highly skewed. As a result, the sample variogram often differs considerably from its regional counterpart and the geostatistical interpolation is hindered. In this study, rank-order geostatistics with standardized rank transformation was used for the spatial interpolation of pollutants with a highly skewed distribution in contaminated soils when commonly used nonlinear methods, such as logarithmic and normal-scored transformations, are not suitable. A real data set of soil Cd concentrations with great variation and high skewness in a contaminated site of Taiwan was used for illustration. The spatial dependence of ranks transformed from Cd concentrations was identified and kriging estimation was readily performed in the standardized-rank space. The estimated standardized rank was back-transformed into the concentration space using the middle point model within a standardized-rank interval of the empirical distribution function (EDF). The spatial distribution of Cd concentrations was then obtained. The probability of Cd concentration being higher than a given cutoff value also can be estimated by using the estimated distribution of standardized ranks. The contour maps of Cd concentrations and the probabilities of Cd concentrations being higher than the cutoff value can be simultaneously used for delineation of hazardous areas of contaminated soils.

  8. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.

    PubMed

    Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H

    2014-01-10

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.

  9. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States.

    PubMed

    Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael

    2012-12-01

    A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.

  10. Comparison of different wind data interpolation methods for a region with complex terrain in Central Asia

    NASA Astrophysics Data System (ADS)

    Reinhardt, Katja; Samimi, Cyrus

    2018-01-01

    While climatological data of high spatial resolution are largely available in most developed countries, the network of climatological stations in many other regions of the world still constitutes large gaps. Especially for those regions, interpolation methods are important tools to fill these gaps and to improve the data base indispensible for climatological research. Over the last years, new hybrid methods of machine learning and geostatistics have been developed which provide innovative prospects in spatial predictive modelling. This study will focus on evaluating the performance of 12 different interpolation methods for the wind components \\overrightarrow{u} and \\overrightarrow{v} in a mountainous region of Central Asia. Thereby, a special focus will be on applying new hybrid methods on spatial interpolation of wind data. This study is the first evaluating and comparing the performance of several of these hybrid methods. The overall aim of this study is to determine whether an optimal interpolation method exists, which can equally be applied for all pressure levels, or whether different interpolation methods have to be used for the different pressure levels. Deterministic (inverse distance weighting) and geostatistical interpolation methods (ordinary kriging) were explored, which take into account only the initial values of \\overrightarrow{u} and \\overrightarrow{v} . In addition, more complex methods (generalized additive model, support vector machine and neural networks as single methods and as hybrid methods as well as regression-kriging) that consider additional variables were applied. The analysis of the error indices revealed that regression-kriging provided the most accurate interpolation results for both wind components and all pressure heights. At 200 and 500 hPa, regression-kriging is followed by the different kinds of neural networks and support vector machines and for 850 hPa it is followed by the different types of support vector machine and

  11. Usage of multivariate geostatistics in interpolation processes for meteorological precipitation maps

    NASA Astrophysics Data System (ADS)

    Gundogdu, Ismail Bulent

    2017-01-01

    Long-term meteorological data are very important both for the evaluation of meteorological events and for the analysis of their effects on the environment. Prediction maps which are constructed by different interpolation techniques often provide explanatory information. Conventional techniques, such as surface spline fitting, global and local polynomial models, and inverse distance weighting may not be adequate. Multivariate geostatistical methods can be more significant, especially when studying secondary variables, because secondary variables might directly affect the precision of prediction. In this study, the mean annual and mean monthly precipitations from 1984 to 2014 for 268 meteorological stations in Turkey have been used to construct country-wide maps. Besides linear regression, the inverse square distance and ordinary co-Kriging (OCK) have been used and compared to each other. Also elevation, slope, and aspect data for each station have been taken into account as secondary variables, whose use has reduced errors by up to a factor of three. OCK gave the smallest errors (1.002 cm) when aspect was included.

  12. Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.

    PubMed

    Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo

    2012-03-01

    Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.

  13. Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China

    PubMed Central

    Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo

    2012-01-01

    Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179

  14. Rtop - an R package for interpolation along the stream network

    NASA Astrophysics Data System (ADS)

    Skøien, J. O.

    2009-04-01

    Rtop - an R package for interpolation along the stream network Geostatistical methods have been used to a limited extent for estimation along stream networks, with a few exceptions(Gottschalk, 1993; Gottschalk, et al., 2006; Sauquet, et al., 2000; Skøien, et al., 2006). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the statistical environment R (R Development Core Team, 2004). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. Gottschalk, L. 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., I. Krasovskaia, E. Leblois, and E. Sauquet. 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. R Development Core Team. 2004. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Sauquet, E., L. Gottschalk, and E. Leblois. 2000. Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45 (6), 799-815. Skøien, J. O., R. Merz, and G. Blöschl. 2006. Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277-287.

  15. Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches

    NASA Astrophysics Data System (ADS)

    Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad

    2018-03-01

    Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.

  16. On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange

    NASA Astrophysics Data System (ADS)

    Ohmer, Marc; Liesch, Tanja; Goeppert, Nadine; Goldscheider, Nico

    2017-11-01

    The selection of the best possible method to interpolate a continuous groundwater surface from point data of groundwater levels is a controversial issue. In the present study four deterministic and five geostatistical interpolation methods (global polynomial interpolation, local polynomial interpolation, inverse distance weighting, radial basis function, simple-, ordinary-, universal-, empirical Bayesian and co-Kriging) and six error statistics (ME, MAE, MAPE, RMSE, RMSSE, Pearson R) were examined for a Jurassic karst aquifer and a Quaternary alluvial aquifer. We investigated the possible propagation of uncertainty of the chosen interpolation method on the calculation of the estimated vertical groundwater exchange between the aquifers. Furthermore, we validated the results with eco-hydrogeological data including the comparison between calculated groundwater depths and geographic locations of karst springs, wetlands and surface waters. These results show, that calculated inter-aquifer exchange rates based on different interpolations of groundwater potentials may vary greatly depending on the chosen interpolation method (by factor >10). Therefore, the choice of an interpolation method should be made with care, taking different error measures as well as additional data for plausibility control into account. The most accurate results have been obtained with co-Kriging incorporating secondary data (e.g. topography, river levels).

  17. The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L.) Link

    PubMed Central

    León Ruiz, Eduardo J.; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen

    2012-01-01

    Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered troughout the city and low mountains in the “Sierra de Córdoba” were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to ellaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps. PMID:22629169

  18. The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) link.

    PubMed

    León Ruiz, Eduardo J; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen

    2012-01-01

    Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered throughout the city and low mountains in the "Sierra de Córdoba" were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to elaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps.

  19. Use of geostatistics for remediation planning to transcend urban political boundaries.

    PubMed

    Milillo, Tammy M; Sinha, Gaurav; Gardella, Joseph A

    2012-11-01

    Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial-residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Directional kriging implementation for gridded data interpolation and comparative study with common methods

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Briggs, G.

    2016-12-01

    Gridded data sets, such as geoid models or datum shift grids, are commonly used in coordinate transformation algorithms. Grid files typically contain known or measured values at regular fixed intervals. The process of computing a value at an unknown location from the values in the grid data set is called "interpolation". Generally, interpolation methods predict a value at a given point by computing a weighted average of the known values in the neighborhood of the point. Geostatistical Kriging is a widely used interpolation method for irregular networks. Kriging interpolation first analyzes the spatial structure of the input data, then generates a general model to describe spatial dependencies. This model is used to calculate values at unsampled locations by finding direction, shape, size, and weight of neighborhood points. Because it is based on a linear formulation for the best estimation, Kriging it the optimal interpolation method in statistical terms. The Kriging interpolation algorithm produces an unbiased prediction, as well as the ability to calculate the spatial distribution of uncertainty, allowing you to estimate the errors in an interpolation for any particular point. Kriging is not widely used in geospatial applications today, especially applications that run on low power devices or deal with large data files. This is due to the computational power and memory requirements of standard Kriging techniques. In this paper, improvements are introduced in directional kriging implementation by taking advantage of the structure of the grid files. The regular spacing of points simplifies finding the neighborhood points and computing their pairwise distances, reducing the the complexity and improving the execution time of the Kriging algorithm. Also, the proposed method iteratively loads small portion of interest areas in different directions to reduce the amount of required memory. This makes the technique feasible on almost any computer processor. Comparison

  1. Geostatistics and spatial analysis in biological anthropology.

    PubMed

    Relethford, John H

    2008-05-01

    A variety of methods have been used to make evolutionary inferences based on the spatial distribution of biological data, including reconstructing population history and detection of the geographic pattern of natural selection. This article provides an examination of geostatistical analysis, a method used widely in geology but which has not often been applied in biological anthropology. Geostatistical analysis begins with the examination of a variogram, a plot showing the relationship between a biological distance measure and the geographic distance between data points and which provides information on the extent and pattern of spatial correlation. The results of variogram analysis are used for interpolating values of unknown data points in order to construct a contour map, a process known as kriging. The methods of geostatistical analysis and discussion of potential problems are applied to a large data set of anthropometric measures for 197 populations in Ireland. The geostatistical analysis reveals two major sources of spatial variation. One pattern, seen for overall body and craniofacial size, shows an east-west cline most likely reflecting the combined effects of past population dispersal and settlement. The second pattern is seen for craniofacial height and shows an isolation by distance pattern reflecting rapid spatial changes in the midlands region of Ireland, perhaps attributable to the genetic impact of the Vikings. The correspondence of these results with other analyses of these data and the additional insights generated from variogram analysis and kriging illustrate the potential utility of geostatistical analysis in biological anthropology. (c) 2008 Wiley-Liss, Inc.

  2. Rtop - an R package for interpolation along the stream network

    NASA Astrophysics Data System (ADS)

    Skøien, J. O.; Laaha, G.; Koffler, D.; Blöschl, G.; Pebesma, E.; Parajka, J.; Viglione, A.

    2012-04-01

    Geostatistical methods have a long tradition within analysis of data that can be conceptualized as simple point data, such as soil properties, or for regular blocks, such as mining data. However, these methods have been used to a limited extent for estimation along stream networks. A few exceptions are given by (Gottschalk 1993, Sauquet et al. 2000, Gottschalk et al. 2006, Skøien et al. 2006), and an overview by Laaha and Blöschl (2011). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the open source statistical environment R (R Development Core Team 2011). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. In addition to user feedback, the package has also been tested by colleagues whose only responsibility has been to search for bugs, inconsistencies and shortcomings of the documentation. The last part is often the part that gets the least attention in small open source projects, and we have solved this by acknowledging their effects as co-authors. The model will soon be uploaded to CRAN, but is in the meantime also available from R-forge and can be installed by: > install.packages("rtop", repos="http://R-Forge.R-project.org") Gottschalk, L., 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., Krasovskaia, I., Leblois, E. & Sauquet, E., 2006. Mapping mean and variance of runoff in a

  3. Geostatistical interpolation of individual average monthly temperature supported by MODIS MOD11C3 product

    NASA Astrophysics Data System (ADS)

    Perčec Tadić, M.

    2010-09-01

    The increased availability of satellite products of high spatial and temporal resolution together with developing user support, encourages the climatologists to use this data in research and practice. Since climatologists are mainly interested in monthly or even annual averages or aggregates, this high temporal resolution and hence, large amount of data, can be challenging for the less experienced users. Even if the attempt is made to aggregate e. g. the 15' (temporal) MODIS LST (land surface temperature) to daily temperature average, the development of the algorithm is not straight forward and should be done by the experts. Recent development of many temporary aggregated products on daily, several days or even monthly scale substantially decrease the amount of satellite data that needs to be processed and rise the possibility for development of various climatological applications. Here the attempt is presented in incorporating the MODIS satellite MOD11C3 product (Wan, 2009), that is monthly CMG (climate modelling 0.05 degree latitude/longitude grids) LST, as predictor in geostatistical interpolation of climatological data in Croatia. While in previous applications, e. g. in Climate Atlas of Croatia (Zaninović et al. 2008), the static predictors as digital elevation model, distance to the sea, latitude and longitude were used for the interpolation of monthly, seasonal and annual 30-years averages (reference climatology), here the monthly MOD11C3 is used to support the interpolation of the individual monthly average in the regression kriging framework. We believe that this can be a valuable show case of incorporating the remote sensed data for climatological application, especially in the areas that are under-sampled by conventional observations. Zaninović K, Gajić-Čapka M, Perčec Tadić M et al (2008) Klimatski atlas Hrvatske / Climate atlas of Croatia 1961-1990, 1971-2000. Meteorological and Hydrological Service of Croatia, Zagreb, pp 200. Wan Z, 2009

  4. Research on interpolation methods in medical image processing.

    PubMed

    Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian

    2012-04-01

    Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

  5. Rtop - an R package for interpolation of data with a variable spatial support - examples from river networks

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Laaha, Gregor; Koffler, Daniel; Blöschl, Günter; Pebesma, Edzer; Parajka, Juraj; Viglione, Alberto

    2013-04-01

    Geostatistical methods have been applied only to a limited extent for spatial interpolation in applications where the observations have an irregular support, such as runoff characteristics or population health data. Several studies have shown the potential of such methods (Gottschalk 1993, Sauquet et al. 2000, Gottschalk et al. 2006, Skøien et al. 2006, Goovaerts 2008), but these developments have so far not led to easily accessible, versatile, easy to apply and open source software. Based on the top-kriging approach suggested by Skøien et al. (2006), we will here present the package rtop, which has been implemented in the statistical environment R (R Core Team 2012). Taking advantage of the existing methods in R for analysis of spatial objects (Bivand et al. 2008), and the extensive possibilities for visualizing the results, rtop makes it easy to apply geostatistical interpolation methods when observations have a non-point spatial support. Although the package is flexible regarding data input, the main application so far has been for interpolation along river networks. We will present some examples showing how the package can easily be used for such interpolation. The model will soon be uploaded to CRAN, but is in the meantime also available from R-forge and can be installed by: > install.packages("rtop", repos="http://R-Forge.R-project.org") Bivand, R.S., Pebesma, E.J. & Gómez-Rubio, V., 2008. Applied spatial data analysis with r: Springer. Goovaerts, P., 2008. Kriging and semivariogram deconvolution in the presence of irregular geographical units. Mathematical Geosciences, 40 (1), 101-128. Gottschalk, L., 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., Krasovskaia, I., Leblois, E. & Sauquet, E., 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. R Core Team, 2012. R: A language and environment for statistical computing. Vienna

  6. Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal.

    PubMed

    Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J

    2016-08-15

    In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their

  7. Geostatistical interpolation of available copper in orchard soil as influenced by planting duration.

    PubMed

    Fu, Chuancheng; Zhang, Haibo; Tu, Chen; Li, Lianzhen; Luo, Yongming

    2018-01-01

    Mapping the spatial distribution of available copper (A-Cu) in orchard soils is important in agriculture and environmental management. However, data on the distribution of A-Cu in orchard soils is usually highly variable and severely skewed due to the continuous input of fungicides. In this study, ordinary kriging combined with planting duration (OK_PD) is proposed as a method for improving the interpolation of soil A-Cu. Four normal distribution transformation methods, namely, the Box-Cox, Johnson, rank order, and normal score methods, were utilized prior to interpolation. A total of 317 soil samples were collected in the orchards of the Northeast Jiaodong Peninsula. Moreover, 1472 orchards were investigated to obtain a map of planting duration using Voronoi tessellations. The soil A-Cu content ranged from 0.09 to 106.05 with a mean of 18.10 mg kg -1 , reflecting the high availability of Cu in the soils. Soil A-Cu concentrations exhibited a moderate spatial dependency and increased significantly with increasing planting duration. All the normal transformation methods successfully decreased the skewness and kurtosis of the soil A-Cu and the associated residuals, and also computed more robust variograms. OK_PD could generate better spatial prediction accuracy than ordinary kriging (OK) for all transformation methods tested, and it also provided a more detailed map of soil A-Cu. Normal score transformation produced satisfactory accuracy and showed an advantage in ameliorating smoothing effect derived from the interpolation methods. Thus, normal score transformation prior to kriging combined with planting duration (NSOK_PD) is recommended for the interpolation of soil A-Cu in this area.

  8. Random vectors and spatial analysis by geostatistics for geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less

  9. Assessment of spatial distribution of fallout radionuclides through geostatistics concept.

    PubMed

    Mabit, L; Bernard, C

    2007-01-01

    After introducing geostatistics concept and its utility in environmental science and especially in Fallout Radionuclide (FRN) spatialisation, a case study for cesium-137 ((137)Cs) redistribution at the field scale using geostatistics is presented. On a Canadian agricultural field, geostatistics coupled with a Geographic Information System (GIS) was used to test three different techniques of interpolation [Ordinary Kriging (OK), Inverse Distance Weighting power one (IDW1) and two (IDW2)] to create a (137)Cs map and to establish a radioisotope budget. Following the optimization of variographic parameters, an experimental semivariogram was developed to determine the spatial dependence of (137)Cs. It was adjusted to a spherical isotropic model with a range of 30 m and a very small nugget effect. This (137)Cs semivariogram showed a good autocorrelation (R(2)=0.91) and was well structured ('nugget-to-sill' ratio of 4%). It also revealed that the sampling strategy was adequate to reveal the spatial correlation of (137)Cs. The spatial redistribution of (137)Cs was estimated by Ordinary Kriging and IDW to produce contour maps. A radioisotope budget was established for the 2.16 ha agricultural field under investigation. It was estimated that around 2 x 10(7)Bq of (137)Cs were missing (around 30% of the total initial fallout) and were exported by physical processes (runoff and erosion processes) from the area under investigation. The cross-validation analysis showed that in the case of spatially structured data, OK is a better interpolation method than IDW1 or IDW2 for the assessment of potential radioactive contamination and/or pollution.

  10. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    NASA Astrophysics Data System (ADS)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  11. Geostatistical Interpolation of Particle-Size Curves in Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Menafoglio, A.; Secchi, P.

    2013-12-01

    We address the problem of predicting the spatial field of particle-size curves (PSCs) from measurements associated with soil samples collected at a discrete set of locations within an aquifer system. Proper estimates of the full PSC are relevant to applications related to groundwater hydrology, soil science and geochemistry and aimed at modeling physical and chemical processes occurring in heterogeneous earth systems. Hence, we focus on providing kriging estimates of the entire PSC at unsampled locations. To this end, we treat particle-size curves as cumulative distribution functions, model their densities as functional compositional data and analyze them by embedding these into the Hilbert space of compositional functions endowed with the Aitchison geometry. On this basis, we develop a new geostatistical methodology for the analysis of spatially dependent functional compositional data. Our functional compositional kriging (FCK) approach allows providing predictions at unsampled location of the entire particle-size curve, together with a quantification of the associated uncertainty, by fully exploiting both the functional form of the data and their compositional nature. This is a key advantage of our approach with respect to traditional methodologies, which treat only a set of selected features (e.g., quantiles) of PSCs. Embedding the full PSC into a geostatistical analysis enables one to provide a complete characterization of the spatial distribution of lithotypes in a reservoir, eventually leading to improved predictions of soil hydraulic attributes through pedotransfer functions as well as of soil geochemical parameters which are relevant in sorption/desorption and cation exchange processes. We test our new method on PSCs sampled along a borehole located within an alluvial aquifer near the city of Tuebingen, Germany. The quality of FCK predictions is assessed through leave-one-out cross-validation. A comparison between hydraulic conductivity estimates obtained

  12. Spatial interpolation of forest conditions using co-conditional geostatistical simulation

    Treesearch

    H. Todd Mowrer

    2000-01-01

    In recent work the author used the geostatistical Monte Carlo technique of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis of potential old-growth forest areas. The current study compares this earlier technique to that of co-conditional simulation, wherein the spatial cross-correlations between variables are included. As in the...

  13. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia

    NASA Astrophysics Data System (ADS)

    Šiljeg, A.; Lozić, S.; Šiljeg, S.

    2015-08-01

    The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar HydroStar 4300 and GPS devices; a Ashtech ProMark 500 base, and a Thales Z-Max® rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: (a) to compare the efficiency of 14 different interpolation methods and discover the most appropriate interpolators for the development of a raster model; (b) to calculate the surface area and volume of Lake Vrana, and (c) to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was multiquadric RBF (radio basis function), and the best geostatistical method was ordinary cokriging. The root mean square error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in two phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.

  14. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    PubMed

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  15. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia

    NASA Astrophysics Data System (ADS)

    Šiljeg, A.; Lozić, S.; Šiljeg, S.

    2014-12-01

    The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar Hydrostar 4300, GPS devices Ashtech Promark 500 - base, and a Thales Z-Max - rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: to compare the efficiency of 16 different interpolation methods, to discover the most appropriate interpolators for the development of a raster model, to calculate the surface area and volume of Lake Vrana, and to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was ROF multi-quadratic, and the best geostatistical, ordinary cokriging. The mean quadratic error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in 2 phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.

  16. Geostatistics, remote sensing and precision farming.

    PubMed

    Mulla, D J

    1997-01-01

    Precision farming is possible today because of advances in farming technology, procedures for mapping and interpolating spatial patterns, and geographic information systems for overlaying and interpreting several soil, landscape and crop attributes. The key component of precision farming is the map showing spatial patterns in field characteristics. Obtaining information for this map is often achieved by soil sampling. This approach, however, can be cost-prohibitive for grain crops. Soil sampling strategies can be simplified by use of auxiliary data provided by satellite or aerial photo imagery. This paper describes geostatistical methods for estimating spatial patterns in soil organic matter, soil test phosphorus and wheat grain yield from a combination of Thematic Mapper imaging and soil sampling.

  17. A practical primer on geostatistics

    USGS Publications Warehouse

    Olea, Ricardo A.

    2009-01-01

    The Challenge—Most geological phenomena are extraordinarily complex in their interrelationships and vast in their geographical extension. Ordinarily, engineers and geoscientists are faced with corporate or scientific requirements to properly prepare geological models with measurements involving a small fraction of the entire area or volume of interest. Exact description of a system such as an oil reservoir is neither feasible nor economically possible. The results are necessarily uncertain. Note that the uncertainty is not an intrinsic property of the systems; it is the result of incomplete knowledge by the observer.The Aim of Geostatistics—The main objective of geostatistics is the characterization of spatial systems that are incompletely known, systems that are common in geology. A key difference from classical statistics is that geostatistics uses the sampling location of every measurement. Unless the measurements show spatial correlation, the application of geostatistics is pointless. Ordinarily the need for additional knowledge goes beyond a few points, which explains the display of results graphically as fishnet plots, block diagrams, and maps.Geostatistical Methods—Geostatistics is a collection of numerical techniques for the characterization of spatial attributes using primarily two tools: probabilistic models, which are used for spatial data in a manner similar to the way in which time-series analysis characterizes temporal data, or pattern recognition techniques. The probabilistic models are used as a way to handle uncertainty in results away from sampling locations, making a radical departure from alternative approaches like inverse distance estimation methods.Differences with Time Series—On dealing with time-series analysis, users frequently concentrate their attention on extrapolations for making forecasts. Although users of geostatistics may be interested in extrapolation, the methods work at their best interpolating. This simple difference

  18. Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, B.; Elder, K.; Baron, Jill S.

    1998-01-01

    Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff.  In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado.  Geostatistics and classical statistics were used to estimate SWE distribution across the watershed.  Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances.  Snow densities were spatially modeled through regression analysis.  Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE.  The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths.  Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.

  19. A rational interpolation method to compute frequency response

    NASA Technical Reports Server (NTRS)

    Kenney, Charles; Stubberud, Stephen; Laub, Alan J.

    1993-01-01

    A rational interpolation method for approximating a frequency response is presented. The method is based on a product formulation of finite differences, thereby avoiding the numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and zero cancellation schemes are developed that increase the accuracy and efficiency of the interpolation method. Selection techniques of interpolation points are also discussed.

  20. A Nonparametric Geostatistical Method For Estimating Species Importance

    Treesearch

    Andrew J. Lister; Rachel Riemann; Michael Hoppus

    2001-01-01

    Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test statistics are...

  1. Survey: interpolation methods for whole slide image processing.

    PubMed

    Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

    2017-02-01

    Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. An application of geostatistics and fractal geometry for reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aasum, Y.; Kelkar, M.G.; Gupta, S.P.

    1991-03-01

    This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.

  3. Persons Camp Using Interpolation Method

    NASA Astrophysics Data System (ADS)

    Tawfiq, Luma Naji Mohammed; Najm Abood, Israa

    2018-05-01

    The aim of this paper is to estimate the rate of contaminated soils by using suitable interpolation method as an alternative accurate tool to evaluate the concentration of heavy metals in soil then compared with standard universal value to determine the rate of contamination in the soil. In particular, interpolation methods are extensively applied in the models of the different phenomena where experimental data must be used in computer studies where expressions of those data are required. In this paper the extended divided difference method in two dimensions is used to solve suggested problem. Then, the modification method is applied to estimate the rate of contaminated soils of displaced persons camp in Diyala Governorate, in Iraq.

  4. Interpolation Method Needed for Numerical Uncertainty

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.

    2014-01-01

    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.

  5. Timescape: a simple space-time interpolation geostatistical Algorithm

    NASA Astrophysics Data System (ADS)

    Ciolfi, Marco; Chiocchini, Francesca; Gravichkova, Olga; Pisanelli, Andrea; Portarena, Silvia; Scartazza, Andrea; Brugnoli, Enrico; Lauteri, Marco

    2016-04-01

    Environmental sciences include both time and space variability in their datasets. Some established tools exist for both spatial interpolation and time series analysis alone, but mixing space and time variability calls for compromise: Researchers are often forced to choose which is the main source of variation, neglecting the other. We propose a simple algorithm, which can be used in many fields of Earth and environmental sciences when both time and space variability must be considered on equal grounds. The algorithm has already been implemented in Java language and the software is currently available at https://sourceforge.net/projects/timescapeglobal/ (it is published under GNU-GPL v3.0 Free Software License). The published version of the software, Timescape Global, is focused on continent- to Earth-wide spatial domains, using global longitude-latitude coordinates for samples localization. The companion Timescape Local software is currently under development ad will be published with an open license as well; it will use projected coordinates for a local to regional space scale. The basic idea of the Timescape Algorithm consists in converting time into a sort of third spatial dimension, with the addition of some causal constraints, which drive the interpolation including or excluding observations according to some user-defined rules. The algorithm is applicable, as a matter of principle, to anything that can be represented with a continuous variable (a scalar field, technically speaking). The input dataset should contain position, time and observed value of all samples. Ancillary data can be included in the interpolation as well. After the time-space conversion, Timescape follows basically the old-fashioned IDW (Inverse Distance Weighted) interpolation Algorithm, although users have a wide choice of customization options that, at least partially, overcome some of the known issues of IDW. The three-dimensional model produced by the Timescape Algorithm can be

  6. An interpolation method for stream habitat assessments

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2015-01-01

    Interpolation of stream habitat can be very useful for habitat assessment. Using a small number of habitat samples to predict the habitat of larger areas can reduce time and labor costs as long as it provides accurate estimates of habitat. The spatial correlation of stream habitat variables such as substrate and depth improves the accuracy of interpolated data. Several geographical information system interpolation methods (natural neighbor, inverse distance weighted, ordinary kriging, spline, and universal kriging) were used to predict substrate and depth within a 210.7-m2 section of a second-order stream based on 2.5% and 5.0% sampling of the total area. Depth and substrate were recorded for the entire study site and compared with the interpolated values to determine the accuracy of the predictions. In all instances, the 5% interpolations were more accurate for both depth and substrate than the 2.5% interpolations, which achieved accuracies up to 95% and 92%, respectively. Interpolations of depth based on 2.5% sampling attained accuracies of 49–92%, whereas those based on 5% percent sampling attained accuracies of 57–95%. Natural neighbor interpolation was more accurate than that using the inverse distance weighted, ordinary kriging, spline, and universal kriging approaches. Our findings demonstrate the effective use of minimal amounts of small-scale data for the interpolation of habitat over large areas of a stream channel. Use of this method will provide time and cost savings in the assessment of large sections of rivers as well as functional maps to aid the habitat-based management of aquatic species.

  7. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area.

    PubMed

    Elumalai, Vetrimurugan; Brindha, K; Sithole, Bongani; Lakshmanan, Elango

    2017-04-01

    Mapping groundwater contaminants and identifying the sources are the initial steps in pollution control and mitigation. Due to the availability of different mapping methods and the large number of emerging pollutants, these methods need to be used together in decision making. The present study aims to map the contaminated areas in Richards Bay, South Africa and compare the results of ordinary kriging (OK) and inverse distance weighted (IDW) interpolation techniques. Statistical methods were also used for identifying contamination sources. Na-Cl groundwater type was dominant followed by Ca-Mg-Cl. Data analysis indicate that silicate weathering, ion exchange and fresh water-seawater mixing are the major geochemical processes controlling the presence of major ions in groundwater. Factor analysis also helped to confirm the results. Overlay analysis by OK and IDW gave different results. Areas where groundwater was unsuitable as a drinking source were 419 and 116 km 2 for OK and IDW, respectively. Such diverse results make decision making difficult, if only one method was to be used. Three highly contaminated zones within the study area were more accurately identified by OK. If large areas are identified as being contaminated such as by IDW in this study, the mitigation measures will be expensive. If these areas were underestimated, then even though management measures are taken, it will not be effective for a longer time. Use of multiple techniques like this study will help to avoid taking harsh decisions. Overall, the groundwater quality in this area was poor, and it is essential to identify alternate drinking water source or treat the groundwater before ingestion.

  8. Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Bergfeld, Deborah; Cardellini, Carlo; Chiodini, Giovanni; Granieri, Domenico; Varley, Nick; Werner, Cynthia A.

    2005-01-01

    We present a comparative study of soil CO2 flux (FCO2">FCO2) measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured FCO2 using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured FCO2 ranged from 218 to 14,719 g m−2 day−1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial FCO2 distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the FCO2 maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of FCO2, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.

  9. Classical and neural methods of image sequence interpolation

    NASA Astrophysics Data System (ADS)

    Skoneczny, Slawomir; Szostakowski, Jaroslaw

    2001-08-01

    An image interpolation problem is often encountered in many areas. Some examples are interpolation for coding/decoding process for transmission purposes, reconstruction a full frame from two interlaced sub-frames in normal TV or HDTV, or reconstruction of missing frames in old destroyed cinematic sequences. In this paper an overview of interframe interpolation methods is presented. Both direct as well as motion compensated interpolation techniques are given by examples. The used methodology can also be either classical or based on neural networks depending on demand of a specific interpolation problem solving person.

  10. Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series

    NASA Astrophysics Data System (ADS)

    Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results

  11. Reservoir property grids improve with geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, J.

    1993-09-01

    Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resultingmore » grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.« less

  12. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    PubMed

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  13. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.; Watson, Layne T.

    1998-01-01

    Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.

  14. Gradient-based interpolation method for division-of-focal-plane polarimeters.

    PubMed

    Gao, Shengkui; Gruev, Viktor

    2013-01-14

    Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.

  15. Interpolating of climate data using R

    NASA Astrophysics Data System (ADS)

    Reinhardt, Katja

    2017-04-01

    Interpolation methods are used in many different geoscientific areas, such as soil physics, climatology and meteorology. Thereby, unknown values are calculated by using statistical calculation approaches applied on known values. So far, the majority of climatologists have been using computer languages, such as FORTRAN or C++, but there is also an increasing number of climate scientists using R for data processing and visualization. Most of them, however, are still working with arrays and vector based data which is often associated with complex R code structures. For the presented study, I have decided to convert the climate data into geodata and to perform the whole data processing using the raster package, gstat and similar packages, providing a much more comfortable way for data handling. A central goal of my approach is to create an easy to use, powerful and fast R script, implementing the entire geodata processing and visualization into a single and fully automated R based procedure, which allows avoiding the necessity of using other software packages, such as ArcGIS or QGIS. Thus, large amount of data with recurrent process sequences can be processed. The aim of the presented study, which is located in western Central Asia, is to interpolate wind data based on the European reanalysis data Era-Interim, which are available as raster data with a resolution of 0.75˚ x 0.75˚ , to a finer grid. Therefore, various interpolation methods are used: inverse distance weighting, the geostatistical methods ordinary kriging and regression kriging, generalized additve model and the machine learning algorithms support vector machine and neural networks. Besides the first two mentioned methods, the methods are used with influencing factors, e.g. geopotential and topography.

  16. Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing

    NASA Astrophysics Data System (ADS)

    Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian

    2015-04-01

    The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The

  17. Selection of a Geostatistical Method to Interpolate Soil Properties of the State Crop Testing Fields using Attributes of a Digital Terrain Model

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.

    2018-03-01

    The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.

  18. [Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].

    PubMed

    Yuan, Zheming; Fu, Wei; Li, Fangyi

    2004-04-01

    Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.

  19. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Haberlandt, Uwe

    2007-01-01

    SummaryThe methods kriging with external drift (KED) and indicator kriging with external drift (IKED) are used for the spatial interpolation of hourly rainfall from rain gauges using additional information from radar, daily precipitation of a denser network, and elevation. The techniques are illustrated using data from the storm period of the 10th to the 13th of August 2002 that led to the extreme flood event in the Elbe river basin in Germany. Cross-validation is applied to compare the interpolation performance of the KED and IKED methods using different additional information with the univariate reference methods nearest neighbour (NN) or Thiessen polygons, inverse square distance weighting (IDW), ordinary kriging (OK) and ordinary indicator kriging (IK). Special attention is given to the analysis of the impact of the semivariogram estimation on the interpolation performance. Hourly and average semivariograms are inferred from daily, hourly and radar data considering either isotropic or anisotropic behaviour using automatic and manual fitting procedures. The multivariate methods KED and IKED clearly outperform the univariate ones with the most important additional information being radar, followed by precipitation from the daily network and elevation, which plays only a secondary role here. The best performance is achieved when all additional information are used simultaneously with KED. The indicator-based kriging methods provide, in some cases, smaller root mean square errors than the methods, which use the original data, but at the expense of a significant loss of variance. The impact of the semivariogram on interpolation performance is not very high. The best results are obtained using an automatic fitting procedure with isotropic variograms either from hourly or radar data.

  20. Geostatistical applications in environmental remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.N.; Purucker, S.T.; Lyon, B.F.

    1995-02-01

    Geostatistical analysis refers to a collection of statistical methods for addressing data that vary in space. By incorporating spatial information into the analysis, geostatistics has advantages over traditional statistical analysis for problems with a spatial context. Geostatistics has a history of success in earth science applications, and its popularity is increasing in other areas, including environmental remediation. Due to recent advances in computer technology, geostatistical algorithms can be executed at a speed comparable to many standard statistical software packages. When used responsibly, geostatistics is a systematic and defensible tool can be used in various decision frameworks, such as the Datamore » Quality Objectives (DQO) process. At every point in the site, geostatistics can estimate both the concentration level and the probability or risk of exceeding a given value. Using these probability maps can assist in identifying clean-up zones. Given any decision threshold and an acceptable level of risk, the probability maps identify those areas that are estimated to be above or below the acceptable risk. Those areas that are above the threshold are of the most concern with regard to remediation. In addition to estimating clean-up zones, geostatistics can assist in designing cost-effective secondary sampling schemes. Those areas of the probability map with high levels of estimated uncertainty are areas where more secondary sampling should occur. In addition, geostatistics has the ability to incorporate soft data directly into the analysis. These data include historical records, a highly correlated secondary contaminant, or expert judgment. The role of geostatistics in environmental remediation is a tool that in conjunction with other methods can provide a common forum for building consensus.« less

  1. Application of geostatistics to risk assessment.

    PubMed

    Thayer, William C; Griffith, Daniel A; Goodrum, Philip E; Diamond, Gary L; Hassett, James M

    2003-10-01

    Geostatistics offers two fundamental contributions to environmental contaminant exposure assessment: (1) a group of methods to quantitatively describe the spatial distribution of a pollutant and (2) the ability to improve estimates of the exposure point concentration by exploiting the geospatial information present in the data. The second contribution is particularly valuable when exposure estimates must be derived from small data sets, which is often the case in environmental risk assessment. This article addresses two topics related to the use of geostatistics in human and ecological risk assessments performed at hazardous waste sites: (1) the importance of assessing model assumptions when using geostatistics and (2) the use of geostatistics to improve estimates of the exposure point concentration (EPC) in the limited data scenario. The latter topic is approached here by comparing design-based estimators that are familiar to environmental risk assessors (e.g., Land's method) with geostatistics, a model-based estimator. In this report, we summarize the basics of spatial weighting of sample data, kriging, and geostatistical simulation. We then explore the two topics identified above in a case study, using soil lead concentration data from a Superfund site (a skeet and trap range). We also describe several areas where research is needed to advance the use of geostatistics in environmental risk assessment.

  2. Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Tobin, Cara; Nicotina, Ludovico; Parlange, Marc B.; Berne, Alexis; Rinaldo, Andrea

    2011-04-01

    SummaryThis paper presents a comparative study on the mapping of temperature and precipitation fields in complex Alpine terrain. Its relevance hinges on the major impact that inadequate interpolations of meteorological forcings bear on the accuracy of hydrologic predictions regardless of the specifics of the models, particularly during flood events. Three flood events measured in the Swiss Alps are analyzed in detail to determine the interpolation methods which best capture the distribution of intense, orographically-induced precipitation. The interpolation techniques comparatively examined include: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Kriging with External Drift (KED). Geostatistical methods rely on a robust anisotropic variogram for the definition of the spatial rainfall structure. Results indicate that IDW tends to significantly underestimate rainfall volumes whereas OK and KED methods capture spatial patterns and rainfall volumes induced by storm advection. Using numerical weather forecasts and elevation data as covariates for precipitation, we provide evidence for KED to outperform the other methods. Most significantly, the use of elevation as auxiliary information in KED of temperatures demonstrates minimal errors in estimated instantaneous rainfall volumes and provides instantaneous lapse rates which better capture snow/rainfall partitioning. Incorporation of the temperature and precipitation input fields into a hydrological model used for operational management was found to provide vastly improved outputs with respect to measured discharge volumes and flood peaks, with notable implications for flood modeling.

  3. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Interpolating scattered data points is a problem of wide ranging interest. A number of approaches for interpolation have been proposed both from theoretical domains such as computational geometry and in applications' fields such as geostatistics. Our motivation arises from geological and mining applications. In many instances data can be costly to compute and are available only at nonuniformly scattered positions. Because of the high cost of collecting measurements, high accuracy is required in the interpolants. One of the most popular interpolation methods in this field is called ordinary kriging. It is popular because it is a best linear unbiased estimator. The price for its statistical optimality is that the estimator is computationally very expensive. This is because the value of each interpolant is given by the solution of a large dense linear system. In practice, kriging problems have been solved approximately by restricting the domain to a small local neighborhood of points that lie near the query point. Determining the proper size for this neighborhood is a solved by ad hoc methods, and it has been shown that this approach leads to undesirable discontinuities in the interpolant. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. This process achieves its efficiency by replacing the large dense kriging system with a much sparser linear system. This technique has been applied to a restriction of our problem, called simple kriging, which is not unbiased for general data sets. In this paper we generalize these results by showing how to apply covariance tapering to the more general problem of ordinary kriging. Through experimentation we demonstrate the space and time efficiency and accuracy of approximating ordinary kriging through the use of covariance tapering combined with iterative methods for solving large sparse systems. We demonstrate our approach on large data sizes arising both

  4. Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Liu, P.; Tung, Y. K.

    2017-12-01

    Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.

  5. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.

    PubMed

    Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe

    2014-10-01

    The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.

  6. Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

    NASA Astrophysics Data System (ADS)

    Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.

    2011-05-01

    Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation

  7. Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

    NASA Astrophysics Data System (ADS)

    Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.

    2010-09-01

    Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation

  8. A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Bragg, L.J.; Tewalt, S.J.

    2001-01-01

    The US Geological Survey (USGS) is completing a national assessment of coal resources in the five top coal-producing regions in the US. Point-located data provide measurements on coal thickness and sulfur content. The sample data and their geologic interpretation represent the most regionally complete and up-to-date assessment of what is known about top-producing US coal beds. The sample data are analyzed using a combination of geologic and Geographic Information System (GIS) models to estimate tonnages and qualities of the coal beds. Traditionally, GIS practitioners use contouring to represent geographical patterns of "similar" data values. The tonnage and grade of coal resources are then assessed by using the contour lines as references for interpolation. An assessment taken to this point is only indicative of resource quantity and quality. Data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the sample data. To develop a quantitative approach, geostatistics were applied to the data on coal sulfur content from samples taken in the Pittsburgh coal bed (located in the eastern US, in the southwestern part of the state of Pennsylvania, and in adjoining areas in the states of Ohio and West Virginia). Geostatistical methods that account for regional and local trends were applied to blocks 2.7 mi (4.3 km) on a side. The data and geostatistics support conclusions concerning the average sulfur content and its degree of reliability at regional- and economic-block scale over the large, contiguous part of the Pittsburgh outcrop, but not to a mine scale. To validate the method, a comparison was made with the sulfur contents in sample data taken from 53 coal mines located in the study area. The comparison showed a high degree of similarity between the sulfur content in the mine samples and the sulfur content represented by the geostatistically derived contours. Published by Elsevier Science B.V.

  9. Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances

    NASA Astrophysics Data System (ADS)

    Wahir, N. A.; Nor, M. E.; Rusiman, M. S.; Gopal, K.

    2018-04-01

    Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.

  10. Transforming geographic scale: a comparison of combined population and areal weighting to other interpolation methods.

    PubMed

    Hallisey, Elaine; Tai, Eric; Berens, Andrew; Wilt, Grete; Peipins, Lucy; Lewis, Brian; Graham, Shannon; Flanagan, Barry; Lunsford, Natasha Buchanan

    2017-08-07

    Transforming spatial data from one scale to another is a challenge in geographic analysis. As part of a larger, primary study to determine a possible association between travel barriers to pediatric cancer facilities and adolescent cancer mortality across the United States, we examined methods to estimate mortality within zones at varying distances from these facilities: (1) geographic centroid assignment, (2) population-weighted centroid assignment, (3) simple areal weighting, (4) combined population and areal weighting, and (5) geostatistical areal interpolation. For the primary study, we used county mortality counts from the National Center for Health Statistics (NCHS) and population data by census tract for the United States to estimate zone mortality. In this paper, to evaluate the five mortality estimation methods, we employed address-level mortality data from the state of Georgia in conjunction with census data. Our objective here is to identify the simplest method that returns accurate mortality estimates. The distribution of Georgia county adolescent cancer mortality counts mirrors the Poisson distribution of the NCHS counts for the U.S. Likewise, zone value patterns, along with the error measures of hierarchy and fit, are similar for the state and the nation. Therefore, Georgia data are suitable for methods testing. The mean absolute value arithmetic differences between the observed counts for Georgia and the five methods were 5.50, 5.00, 4.17, 2.74, and 3.43, respectively. Comparing the methods through paired t-tests of absolute value arithmetic differences showed no statistical difference among the methods. However, we found a strong positive correlation (r = 0.63) between estimated Georgia mortality rates and combined weighting rates at zone level. Most importantly, Bland-Altman plots indicated acceptable agreement between paired arithmetic differences of Georgia rates and combined population and areal weighting rates. This research contributes to

  11. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    PubMed

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  12. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  13. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  14. The modal surface interpolation method for damage localization

    NASA Astrophysics Data System (ADS)

    Pina Limongelli, Maria

    2017-05-01

    The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).

  15. Prediction of soil attributes through interpolators in a deglaciated environment with complex landforms

    NASA Astrophysics Data System (ADS)

    Schünemann, Adriano Luis; Inácio Fernandes Filho, Elpídio; Rocha Francelino, Marcio; Rodrigues Santos, Gérson; Thomazini, Andre; Batista Pereira, Antônio; Gonçalves Reynaud Schaefer, Carlos Ernesto

    2017-04-01

    The knowledge of environmental variables values, in non-sampled sites from a minimum data set can be accessed through interpolation technique. Kriging and the classifier Random Forest algorithm are examples of predictors with this aim. The objective of this work was to compare methods of soil attributes spatialization in a recent deglaciated environment with complex landforms. Prediction of the selected soil attributes (potassium, calcium and magnesium) from ice-free areas were tested by using morphometric covariables, and geostatistical models without these covariables. For this, 106 soil samples were collected at 0-10 cm depth in Keller Peninsula, King George Island, Maritime Antarctica. Soil chemical analysis was performed by the gravimetric method, determining values of potassium, calcium and magnesium for each sampled point. Digital terrain models (DTMs) were obtained by using Terrestrial Laser Scanner. DTMs were generated from a cloud of points with spatial resolutions of 1, 5, 10, 20 and 30 m. Hence, 40 morphometric covariates were generated. Simple Kriging was performed using the R package software. The same data set coupled with morphometric covariates, was used to predict values of the studied attributes in non-sampled sites through Random Forest interpolator. Little differences were observed on the DTMs generated by Simple kriging and Random Forest interpolators. Also, DTMs with better spatial resolution did not improved the quality of soil attributes prediction. Results revealed that Simple Kriging can be used as interpolator when morphometric covariates are not available, with little impact regarding quality. It is necessary to go further in soil chemical attributes prediction techniques, especially in periglacial areas with complex landforms.

  16. Quantum realization of the nearest neighbor value interpolation method for INEQR

    NASA Astrophysics Data System (ADS)

    Zhou, RiGui; Hu, WenWen; Luo, GaoFeng; Liu, XingAo; Fan, Ping

    2018-07-01

    This paper presents the nearest neighbor value (NNV) interpolation algorithm for the improved novel enhanced quantum representation of digital images (INEQR). It is necessary to use interpolation in image scaling because there is an increase or a decrease in the number of pixels. The difference between the proposed scheme and nearest neighbor interpolation is that the concept applied, to estimate the missing pixel value, is guided by the nearest value rather than the distance. Firstly, a sequence of quantum operations is predefined, such as cyclic shift transformations and the basic arithmetic operations. Then, the feasibility of the nearest neighbor value interpolation method for quantum image of INEQR is proven using the previously designed quantum operations. Furthermore, quantum image scaling algorithm in the form of circuits of the NNV interpolation for INEQR is constructed for the first time. The merit of the proposed INEQR circuit lies in their low complexity, which is achieved by utilizing the unique properties of quantum superposition and entanglement. Finally, simulation-based experimental results involving different classical images and ratios (i.e., conventional or non-quantum) are simulated based on the classical computer's MATLAB 2014b software, which demonstrates that the proposed interpolation method has higher performances in terms of high resolution compared to the nearest neighbor and bilinear interpolation.

  17. Accelerating parallel transmit array B1 mapping in high field MRI with slice undersampling and interpolation by kriging.

    PubMed

    Ferrand, Guillaume; Luong, Michel; Cloos, Martijn A; Amadon, Alexis; Wackernagel, Hans

    2014-08-01

    Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.

  18. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    NASA Astrophysics Data System (ADS)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    response actions, such as designing optimal evacuation routes during flood emergencies. Geostatistical tools also provide a set of interpolation techniques for the prediction of the variable value at unstudied similar locations, basing on the sample point values and other variables related with the measured variable. We attempt different geostatistical interpolation methods to obtain continuous surfaces of the risk perception and level of awareness in the study area. The use of these maps for future extensions and actualizations of the Civil Protection Plan is evaluated. References Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management.Journal of Hydrology.

  19. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  20. The Choice of Spatial Interpolation Method Affects Research Conclusions

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Ijisesan, O. S.; Eludoyin, O. M.

    2017-12-01

    Studies from developing countries using spatial interpolations in geographical information systems (GIS) are few and recent. Many of the studies have adopted interpolation procedures including kriging, moving average or Inverse Weighted Average (IDW) and nearest point without the necessary recourse to their uncertainties. This study compared the results of modelled representations of popular interpolation procedures from two commonly used GIS software (ILWIS and ArcGIS) at the Obafemi Awolowo University, Ile-Ife, Nigeria. Data used were concentrations of selected biochemical variables (BOD5, COD, SO4, NO3, pH, suspended and dissolved solids) in Ere stream at Ayepe-Olode, in the southwest Nigeria. Water samples were collected using a depth-integrated grab sampling approach at three locations (upstream, downstream and along a palm oil effluent discharge point in the stream); four stations were sited along each location (Figure 1). Data were first subjected to examination of their spatial distributions and associated variogram variables (nugget, sill and range), using the PAleontological STatistics (PAST3), before the mean values were interpolated in selected GIS software for the variables using each of kriging (simple), moving average and nearest point approaches. Further, the determined variogram variables were substituted with the default values in the selected software, and their results were compared. The study showed that the different point interpolation methods did not produce similar results. For example, whereas the values of conductivity was interpolated to vary as 120.1 - 219.5 µScm-1 with kriging interpolation, it varied as 105.6 - 220.0 µScm-1 and 135.0 - 173.9µScm-1 with nearest point and moving average interpolations, respectively (Figure 2). It also showed that whereas the computed variogram model produced the best fit lines (with least associated error value, Sserror) with Gaussian model, the Spherical model was assumed default for all the

  1. Geostatistical simulations for radon indoor with a nested model including the housing factor.

    PubMed

    Cafaro, C; Giovani, C; Garavaglia, M

    2016-01-01

    The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Imprecise (fuzzy) information in geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardossy, A.; Bogardi, I.; Kelly, W.E.

    1988-05-01

    A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in amore » fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.« less

  3. 3-D ultrasound volume reconstruction using the direct frame interpolation method.

    PubMed

    Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin

    2010-11-01

    A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce

  4. An edge-directed interpolation method for fetal spine MR images.

    PubMed

    Yu, Shaode; Zhang, Rui; Wu, Shibin; Hu, Jiani; Xie, Yaoqin

    2013-10-10

    Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution.High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains

  5. Structure-preserving interpolation of temporal and spatial image sequences using an optical flow-based method.

    PubMed

    Ehrhardt, J; Säring, D; Handels, H

    2007-01-01

    Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.

  6. Use of shape-preserving interpolation methods in surface modeling

    NASA Technical Reports Server (NTRS)

    Ftitsch, F. N.

    1984-01-01

    In many large-scale scientific computations, it is necessary to use surface models based on information provided at only a finite number of points (rather than determined everywhere via an analytic formula). As an example, an equation of state (EOS) table may provide values of pressure as a function of temperature and density for a particular material. These values, while known quite accurately, are typically known only on a rectangular (but generally quite nonuniform) mesh in (T,d)-space. Thus interpolation methods are necessary to completely determine the EOS surface. The most primitive EOS interpolation scheme is bilinear interpolation. This has the advantages of depending only on local information, so that changes in data remote from a mesh element have no effect on the surface over the element, and of preserving shape information, such as monotonicity. Most scientific calculations, however, require greater smoothness. Standard higher-order interpolation schemes, such as Coons patches or bicubic splines, while providing the requisite smoothness, tend to produce surfaces that are not physically reasonable. This means that the interpolant may have bumps or wiggles that are not supported by the data. The mathematical quantification of ideas such as physically reasonable and visually pleasing is examined.

  7. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.

    PubMed

    Ding, Qian; Wang, Yong; Zhuang, Dafang

    2018-04-15

    The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for

  8. Quantifying Groundwater Fluctuations in the Southern High Plains with GIS and Geostatistics

    NASA Astrophysics Data System (ADS)

    Whitehead, B.

    2008-12-01

    Groundwater as a dwindling non-renewable natural resource has been an important research theme in agricultural studies coupled with human-environment interaction. This research incorporated contemporary Geographic Information System (GIS) methodologies and a universal kriging interpolator (geostatistics) to develop depth to groundwater surfaces for the southern portion of the High Plains, or Ogallala, aquifer. The variations in the interpolated surfaces were used to calculate the volume of water mined from the aquifer from 1980 to 2005. The findings suggest a nearly inverse relationship to the water withdrawal scenarios derived by the United States Geological Survey (USGS) during the Regional Aquifer System Analysis (RASA) performed in the early 1980's. These results advocate further research into regional climate change, groundwater-surface water interaction, and recharge mechanisms in the region, and provide a substantial contribution to the continuing and contentious issue concerning the environmental sustainability of the High Plains.

  9. Accuracy and uncertainty analysis of soil Bbf spatial distribution estimation at a coking plant-contaminated site based on normalization geostatistical technologies.

    PubMed

    Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin

    2015-12-01

    Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.

  10. Geostatistics and petroleum geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.

    1988-01-01

    This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.

  11. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.

    PubMed

    Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G

    2001-02-01

    ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.

  12. Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Groves, Curtis; Ilie, Marcel; Schallhorn, Paul

    2014-01-01

    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature

  13. An Immersed Boundary method with divergence-free velocity interpolation and force spreading

    NASA Astrophysics Data System (ADS)

    Bao, Yuanxun; Donev, Aleksandar; Griffith, Boyce E.; McQueen, David M.; Peskin, Charles S.

    2017-10-01

    The Immersed Boundary (IB) method is a mathematical framework for constructing robust numerical methods to study fluid-structure interaction in problems involving an elastic structure immersed in a viscous fluid. The IB formulation uses an Eulerian representation of the fluid and a Lagrangian representation of the structure. The Lagrangian and Eulerian frames are coupled by integral transforms with delta function kernels. The discretized IB equations use approximations to these transforms with regularized delta function kernels to interpolate the fluid velocity to the structure, and to spread structural forces to the fluid. It is well-known that the conventional IB method can suffer from poor volume conservation since the interpolated Lagrangian velocity field is not generally divergence-free, and so this can cause spurious volume changes. In practice, the lack of volume conservation is especially pronounced for cases where there are large pressure differences across thin structural boundaries. The aim of this paper is to greatly reduce the volume error of the IB method by introducing velocity-interpolation and force-spreading schemes with the properties that the interpolated velocity field in which the structure moves is at least C1 and satisfies a continuous divergence-free condition, and that the force-spreading operator is the adjoint of the velocity-interpolation operator. We confirm through numerical experiments in two and three spatial dimensions that this new IB method is able to achieve substantial improvement in volume conservation compared to other existing IB methods, at the expense of a modest increase in the computational cost. Further, the new method provides smoother Lagrangian forces (tractions) than traditional IB methods. The method presented here is restricted to periodic computational domains. Its generalization to non-periodic domains is important future work.

  14. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less

  15. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    NASA Astrophysics Data System (ADS)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz

  16. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2017-03-01

    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  17. The Natural Neighbour Radial Point Interpolation Meshless Method Applied to the Non-Linear Analysis

    NASA Astrophysics Data System (ADS)

    Dinis, L. M. J. S.; Jorge, R. M. Natal; Belinha, J.

    2011-05-01

    In this work the Natural Neighbour Radial Point Interpolation Method (NNRPIM), is extended to large deformation analysis of elastic and elasto-plastic structures. The NNPRIM uses the Natural Neighbour concept in order to enforce the nodal connectivity and to create a node-depending background mesh, used in the numerical integration of the NNRPIM interpolation functions. Unlike the FEM, where geometrical restrictions on elements are imposed for the convergence of the method, in the NNRPIM there are no such restrictions, which permits a random node distribution for the discretized problem. The NNRPIM interpolation functions, used in the Galerkin weak form, are constructed using the Radial Point Interpolators, with some differences that modify the method performance. In the construction of the NNRPIM interpolation functions no polynomial base is required and the used Radial Basis Function (RBF) is the Multiquadric RBF. The NNRPIM interpolation functions posses the delta Kronecker property, which simplify the imposition of the natural and essential boundary conditions. One of the scopes of this work is to present the validation the NNRPIM in the large-deformation elasto-plastic analysis, thus the used non-linear solution algorithm is the Newton-Rapson initial stiffness method and the efficient "forward-Euler" procedure is used in order to return the stress state to the yield surface. Several non-linear examples, exhibiting elastic and elasto-plastic material properties, are studied to demonstrate the effectiveness of the method. The numerical results indicated that NNRPIM handles large material distortion effectively and provides an accurate solution under large deformation.

  18. Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications.

    PubMed

    Behn, Andrew; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin

    2011-12-13

    The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).

  19. Contrast-guided image interpolation.

    PubMed

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  20. Geostatistical Investigations of Displacements on the Basis of Data from the Geodetic Monitoring of a Hydrotechnical Object

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, Barbara; Wynalek, Janusz

    2017-12-01

    ) were obtained for selected years (1995 and 2007), taking the ground height 136 m a.s.l. into calculation. To calculate raster maps of Z* interpolated values, methods of quick interpolation were also used, such as the technique of the inverse distance squares, a linear model of kriging, a spline kriging, which made the recognition of the general background of displacements possible, without the accuracy assessment of Z* value estimation, i.e., the value of σk. These maps are also related to 1995 and 2007 and the elevation. As a result of applying these techniques, clear boundaries of subsiding areas, upthrusting and also horizontal displacements on the examined hydrotechnical object were marked out, which can be interpreted as areas of local deformations of the object, important for the safety of the construction. The effect of geostatistical research conducted, including the structural analysis, semivariograms modeling, estimating the displacements of the hydrotechnical object, are rich cartographic characteristic (semivariograms, raster maps, block diagrams), which present the spatial visualization of the conducted various analyses of the monitored displacements. The prepared geostatistical model (3D) of displacement variability (analysed within the area of the dam, during its operating period and including its height) will be useful not only in the correct assessment of displacements and deformations, but it will also make it possible to forecast these phenomena, which is crucial when the operating safety of such constructions is taken into account.

  1. Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy.

    PubMed

    Blanda, Valeria; Blanda, Marcellocalogero; La Russa, Francesco; Scimeca, Rossella; Scimeca, Salvatore; D'Agostino, Rosalia; Auteri, Michelangelo; Torina, Alessandra

    2018-02-01

    Biting midges belonging to Culicoides imicola, Culicoides obsoletus complex and Culicoides pulicaris complex (Diptera: Ceratopogonidae) are increasingly implicated as vectors of bluetongue virus in Palaearctic regions. Culicoides obsoletus complex includes C. obsoletus (sensu stricto), C. scoticus, C. dewulfi and C. chiopterus. Culicoides pulicaris and C. lupicaris belong to the Culicoides pulicaris complex. The aim of this study was a geo-statistical analysis of the abundance and spatial distribution of Culicoides spp. involved in bluetongue virus transmission. As part of the national bluetongue surveillance plan 7081 catches were collected in 897 Sicilian farms from 2000 to 2013. Onderstepoort-type blacklight traps were used for sample collection and each catch was analysed for the presence of Culicoides spp. and for the presence and abundance of Culicoides vector species (C. imicola, C. pulicaris / C. obsoletus complexes). A geo-statistical analysis was carried out monthly via the interpolation of measured values based on the Inverse Distance Weighted method, using a GIS tool. Raster maps were reclassified into seven classes according to the presence and abundance of Culicoides, in order to obtain suitable maps for Map Algebra operations. Sicilian provinces showing a very high abundance of Culicoides vector species were Messina (80% of the whole area), Palermo (20%) and Catania (12%). A total of 5654 farms fell within the very high risk area for bluetongue (21% of the 26,676 farms active in Sicily); of these, 3483 farms were in Messina, 1567 in Palermo and 604 in Catania. Culicoides imicola was prevalent in Palermo, C. pulicaris in Messina and C. obsoletus complex was very abundant over the whole island with the highest abundance value in Messina. Our study reports the results of a geo-statistical analysis concerning the abundance and spatial distribution of Culicoides spp. in Sicily throughout the fourteen year study. It provides useful decision support in the

  2. High Performance Geostatistical Modeling of Biospheric Resources

    NASA Astrophysics Data System (ADS)

    Pedelty, J. A.; Morisette, J. T.; Smith, J. A.; Schnase, J. L.; Crosier, C. S.; Stohlgren, T. J.

    2004-12-01

    We are using parallel geostatistical codes to study spatial relationships among biospheric resources in several study areas. For example, spatial statistical models based on large- and small-scale variability have been used to predict species richness of both native and exotic plants (hot spots of diversity) and patterns of exotic plant invasion. However, broader use of geostastics in natural resource modeling, especially at regional and national scales, has been limited due to the large computing requirements of these applications. To address this problem, we implemented parallel versions of the kriging spatial interpolation algorithm. The first uses the Message Passing Interface (MPI) in a master/slave paradigm on an open source Linux Beowulf cluster, while the second is implemented with the new proprietary Xgrid distributed processing system on an Xserve G5 cluster from Apple Computer, Inc. These techniques are proving effective and provide the basis for a national decision support capability for invasive species management that is being jointly developed by NASA and the US Geological Survey.

  3. A comparison of different interpolation methods for wind data in Central Asia

    NASA Astrophysics Data System (ADS)

    Reinhardt, Katja; Samimi, Cyrus

    2017-04-01

    For the assessment of the global climate change and its consequences, the results of computer based climate models are of central importance. The quality of these results and the validity of the derived forecasts are strongly determined by the quality of the underlying climate data. However, in many parts of the world high resolution data are not available. This is particularly true for many regions in Central Asia, where the density of climatological stations has often to be described as thinned out. Due to this insufficient data base the use of statistical methods to improve the resolution of existing climate data is of crucial importance. Only this can provide a substantial data base for a well-founded analysis of past climate changes as well as for a reliable forecast of future climate developments for the particular region. The study presented here shows a comparison of different interpolation methods for the wind components u and v for a region in Central Asia with a pronounced topography. The aim of the study is to find out whether there is an optimal interpolation method which can equally be applied for all pressure levels or if different interpolation methods have to be applied for each pressure level. The European reanalysis data Era-Interim for the years 1989 - 2015 are used as input data for the pressure levels of 850 hPa, 500 hPa and 200 hPa. In order to improve the input data, two different interpolation procedures were applied: On the one hand pure interpolation methods were used, such as inverse distance weighting and ordinary kriging. On the other hand machine learning algorithms, generalized additive models and regression kriging were applied, considering additional influencing factors, e.g. geopotential and topography. As a result it can be concluded that regression kriging provides the best results for all pressure levels, followed by support vector machine, neural networks and ordinary kriging. Inverse distance weighting showed the worst

  4. Using geostatistics to evaluate cleanup goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcon, M.F.; Hopkins, L.P.

    1995-12-01

    Geostatistical analysis is a powerful predictive tool typically used to define spatial variability in environmental data. The information from a geostatistical analysis using kriging, a geostatistical. tool, can be taken a step further to optimize sampling location and frequency and help quantify sampling uncertainty in both the remedial investigation and remedial design at a hazardous waste site. Geostatistics were used to quantify sampling uncertainty in attainment of a risk-based cleanup goal and determine the optimal sampling frequency necessary to delineate the horizontal extent of impacted soils at a Gulf Coast waste site.

  5. Geostatistics and GIS: tools for characterizing environmental contamination.

    PubMed

    Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N

    2004-08-01

    Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.

  6. Interpolation of Superconducting Gravity Observations Using Least-Squares Collocation Method

    NASA Astrophysics Data System (ADS)

    Habel, Branislav; Janak, Juraj

    2014-05-01

    A pre-processing of the gravity data measured by superconducting gravimeter involves removing of spikes, offsets and gaps. Their presence in observations can limit the data analysis and degrades the quality of obtained results. Short data gaps are filling by theoretical signal in order to get continuous records of gravity. It requires the accurate tidal model and eventually atmospheric pressure at the observed site. The poster presents a design of algorithm for interpolation of gravity observations with a sampling rate of 1 min. Novel approach is based on least-squares collocation which combines adjustment of trend parameters, filtering of noise and prediction. It allows the interpolation of missing data up to a few hours without necessity of any other information. Appropriate parameters for covariance function are found using a Bayes' theorem by modified optimization process. Accuracy of method is improved by the rejection of outliers before interpolation. For filling of longer gaps the collocation model is combined with theoretical tidal signal for the rigid Earth. Finally, the proposed method was tested on the superconducting gravity observations at several selected stations of Global Geodynamics Project. Testing demonstrates its reliability and offers results comparable with the standard approach implemented in ETERNA software package without necessity of an accurate tidal model.

  7. Hydrogeologic unit flow characterization using transition probability geostatistics.

    PubMed

    Jones, Norman L; Walker, Justin R; Carle, Steven F

    2005-01-01

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.

  8. Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, G.; Chopra, A.K.; Severson, C.D.

    1997-12-01

    Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulationmore » techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.« less

  9. Geological, geomechanical and geostatistical assessment of rockfall hazard in San Quirico Village (Abruzzo, Italy)

    NASA Astrophysics Data System (ADS)

    Chiessi, Vittorio; D'Orefice, Maurizio; Scarascia Mugnozza, Gabriele; Vitale, Valerio; Cannese, Christian

    2010-07-01

    This paper describes the results of a rockfall hazard assessment for the village of San Quirico (Abruzzo region, Italy) based on an engineering-geological model. After the collection of geological, geomechanical, and geomorphological data, the rockfall hazard assessment was performed based on two separate approaches: i) simulation of detachment of rock blocks and their downhill movement using a GIS; and ii) application of geostatistical techniques to the analysis of georeferenced observations of previously fallen blocks, in order to assess the probability of arrival of blocks due to potential future collapses. The results show that the trajectographic analysis is significantly influenced by the input parameters, with particular reference to the coefficients of restitution values. In order to solve this problem, the model was calibrated based on repeated field observations. The geostatistical approach is useful because it gives the best estimation of point-source phenomena such as rockfalls; however, the sensitivity of results to basic assumptions, e.g. assessment of variograms and choice of a threshold value, may be problematic. Consequently, interpolations derived from different variograms have been used and compared among them; hence, those showing the lowest errors were adopted. The data sets which were statistically analysed are relevant to both kinetic energy and surveyed rock blocks in the accumulation area. The obtained maps highlight areas susceptible to rock block arrivals, and show that the area accommodating the new settlement of S. Quirico Village has the highest level of hazard according to both probabilistic and deterministic methods.

  10. Quantum realization of the bilinear interpolation method for NEQR.

    PubMed

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou

    2017-05-31

    In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.

  11. Interpolation for de-Dopplerisation

    NASA Astrophysics Data System (ADS)

    Graham, W. R.

    2018-05-01

    'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.

  12. Application of geostatistics to coal-resource characterization and mine planning. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, P.W.; Walton, D.R.; Martuneac, L.

    1981-12-01

    Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future researchmore » and demonstration projects.« less

  13. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    PubMed

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  14. Geostatistics applied to gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meunier, G.; Coulomb, C.; Laille, J.P.

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problemmore » of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.« less

  15. Geostatistics and petroleum geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.

    1988-01-01

    The book reviewed is designed as a practical guide to geostatistics or kriging for the petroleum geologists. The author's aim in the book is to explain geostatistics as a working tool for petroleum geologists through extensive use of case-study material mostly drawn from his own research in gas potential evaluation in West Virginia. Theory and mathematics are pared down to immediate needs.

  16. Testing geostatistical methods to combine radar and rain gauges for precipitation mapping in a mountainous region

    NASA Astrophysics Data System (ADS)

    Erdin, R.; Frei, C.; Sideris, I.; Kuensch, H.-R.

    2010-09-01

    There is an increasing demand for accurate mapping of precipitation at a spatial resolution of kilometers. Radar and rain gauges - the two main precipitation measurement systems - exhibit complementary strengths and weaknesses. Radar offers high spatial and temporal resolution but lacks accuracy of absolute values, whereas rain gauges provide accurate values at their specific point location but suffer from poor spatial representativeness. Methods of geostatistical mapping have been proposed to combine radar and rain gauge data for quantitative precipitation estimation (QPE). The aim is to combine the respective strengths and compensate for the respective weaknesses of the two observation platforms. Several studies have demonstrated the potential of these methods over topography of moderate complexity, but their performance remains unclear for high-mountain regions where rainfall patterns are complex, the representativeness of rain gauge measurements is limited and radar observations are obstructed. In this study we examine the potential and limitations of two frequently used geostatistical mapping methods for the territory of Switzerland, where the mountain chain of the Alps poses particular challenges to QPE. The two geostatistical methods explored are kriging with external drift (KED) using radar as drift variable and ordinary kriging of radar errors (OKRE). The radar data is a composite from three C-band radars using a constant Z-R relationship, advanced correction processings for visibility, ground clutter and beam shielding and a climatological bias adjustment. The rain gauge data originates from an automatic network with a typical inter-station distance of 25 km. Both combination methods are applied to a set of case examples representing typical rainfall situations in the Alps with their inherent challenges at daily and hourly time resolution. The quality of precipitation estimates is assessed by several skill scores calculated from cross validation errors at

  17. Calibration method of microgrid polarimeters with image interpolation.

    PubMed

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  18. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui

    2015-03-01

    A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.

  19. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  20. Restoring the missing features of the corrupted speech using linear interpolation methods

    NASA Astrophysics Data System (ADS)

    Rassem, Taha H.; Makbol, Nasrin M.; Hasan, Ali Muttaleb; Zaki, Siti Syazni Mohd; Girija, P. N.

    2017-10-01

    One of the main challenges in the Automatic Speech Recognition (ASR) is the noise. The performance of the ASR system reduces significantly if the speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low Signal to Noise Ratio (SNR) elements, the incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to the spectrogram in order to restore the missing elements, which is one direction. In another direction, speech recognizer should be able to restore the missing elements due to deleting low SNR elements before performing the recognition. This is can be done using different spectrogram reconstruction methods. In this paper, the geometrical spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox. In these geometrical reconstruction methods, the linear interpolation along time or frequency methods are used to predict the missing elements between adjacent observed elements in the spectrogram. Moreover, a new linear interpolation method using time and frequency together is presented. The CMU Sphinx III software is used in the experiments to test the performance of the linear interpolation reconstruction method. The experiments are done under different conditions such as different lengths of the window and different lengths of utterances. Speech corpus consists of 20 males and 20 females; each one has two different utterances are used in the experiments. As a result, 80% recognition accuracy is achieved with 25% SNR ratio.

  1. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  2. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUAL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    GEOPACK, a comprehensive user-friendly geostatistical software system, was developed to help in the analysis of spatially correlated data. The software system was developed to be used by scientists, engineers, regulators, etc., with little experience in geostatistical techniques...

  3. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUEL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    A comprehensive, user-friendly geostatistical software system called GEOPACk has been developed. The purpose of this software is to make available the programs necessary to undertake a geostatistical analysis of spatially correlated data. The programs were written so that they ...

  4. Spatiotemporal Interpolation for Environmental Modelling

    PubMed Central

    Susanto, Ferry; de Souza, Paulo; He, Jing

    2016-01-01

    A variation of the reduction-based approach to spatiotemporal interpolation (STI), in which time is treated independently from the spatial dimensions, is proposed in this paper. We reviewed and compared three widely-used spatial interpolation techniques: ordinary kriging, inverse distance weighting and the triangular irregular network. We also proposed a new distribution-based distance weighting (DDW) spatial interpolation method. In this study, we utilised one year of Tasmania’s South Esk Hydrology model developed by CSIRO. Root mean squared error statistical methods were performed for performance evaluations. Our results show that the proposed reduction approach is superior to the extension approach to STI. However, the proposed DDW provides little benefit compared to the conventional inverse distance weighting (IDW) method. We suggest that the improved IDW technique, with the reduction approach used for the temporal dimension, is the optimal combination for large-scale spatiotemporal interpolation within environmental modelling applications. PMID:27509497

  5. A geostatistical approach to data harmonization - Application to radioactivity exposure data

    NASA Astrophysics Data System (ADS)

    Baume, O.; Skøien, J. O.; Heuvelink, G. B. M.; Pebesma, E. J.; Melles, S. J.

    2011-06-01

    Environmental issues such as air, groundwater pollution and climate change are frequently studied at spatial scales that cross boundaries between political and administrative regions. It is common for different administrations to employ different data collection methods. If these differences are not taken into account in spatial interpolation procedures then biases may appear and cause unrealistic results. The resulting maps may show misleading patterns and lead to wrong interpretations. Also, errors will propagate when these maps are used as input to environmental process models. In this paper we present and apply a geostatistical model that generalizes the universal kriging model such that it can handle heterogeneous data sources. The associated best linear unbiased estimation and prediction (BLUE and BLUP) equations are presented and it is shown that these lead to harmonized maps from which estimated biases are removed. The methodology is illustrated with an example of country bias removal in a radioactivity exposure assessment for four European countries. The application also addresses multicollinearity problems in data harmonization, which arise when both artificial bias factors and natural drifts are present and cannot easily be distinguished. Solutions for handling multicollinearity are suggested and directions for further investigations proposed.

  6. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  7. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of themore » technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.« less

  8. Applications of geostatistics and Markov models for logo recognition

    NASA Astrophysics Data System (ADS)

    Pham, Tuan

    2003-01-01

    Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.

  9. A multistage motion vector processing method for motion-compensated frame interpolation.

    PubMed

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  10. Interpolation of Regional Groundwater Quality Parameters With Categorical and Real-Valued Secondary Information in the State of Baden-Württemberg, Germany

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Allmendinger, M.; Gnann, S.; Heisserer, T.; Bárdossy, A.

    2017-12-01

    The basic problem of geostatistics is to estimate the primary variable (e.g. groundwater quality, nitrate) at an un-sampled location based on point measurements at locations in the vicinity. Typically, models are being used that describe the spatial dependence based on the geometry of the observation network. This presentation demonstrates methods that take the following properties additionally into account: the statistical distribution of the measurements, a different degree of dependence in different quantiles, censored measurements, the composition of categorical additional information in the neighbourhood (exhaustive secondary information), and the spatial dependence of a dependent secondary variable, possibly measured with a different observation network (non-exhaustive secondary data). Two modelling approaches are demonstrated individually and combined: The non-stationarity in the marginal distribution is accounted for by locally mixed distribution functions that depend on the composition of the categorical variable in the neighbourhood of each interpolation location. This methodology is currently being implemented for operational use at the environmental state agency of Baden-Württemberg. An alternative to co-Kriging in copula space with an arbitrary number of secondary parameters is presented: The method performs better than traditional techniques if the primary variable is undersampled and does not produce erroneous negative estimates. Even more, the quality of the uncertainty estimates is much improved. The worth of the secondary information is thoroughly evaluated. The improved geostatistical hydrogeological models are being analyzed using measurements of a large observation network ( 2500 measurement locations) in the state of Baden-Württemberg ( 36.000 km2). Typical groundwater quality parameters such as nitrate, chloride, barium, antrazine, and desethylatrazine are being assessed, cross-validated, and compared with traditional geostatistical methods

  11. Interpolation of Water Quality Along Stream Networks from Synoptic Data

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.

    2005-12-01

    Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic

  12. Quasi interpolation with Voronoi splines.

    PubMed

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  13. Effect of the precipitation interpolation method on the performance of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, Alexandra

    2014-05-01

    Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method

  14. 5-D interpolation with wave-front attributes

    NASA Astrophysics Data System (ADS)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

  15. A Critical Comparison of Some Methods for Interpolation of Scattered Data

    DTIC Science & Technology

    1979-12-01

    because faster evaluation of the local interpolants is possible. KAll things considered, the method of choice here seems to be the Modified Quadratic...topography and other irregular surfaces," J. of Geophysical Research 76 ( 1971 ) 1905-1915I’ [23) HARDY, Rolland L. - "Analytical topographic surfaces by

  16. An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks

    PubMed Central

    Zhang, Jialin; Li, Xiuhong; Yang, Rongjin; Liu, Qiang; Zhao, Long; Dou, Baocheng

    2017-01-01

    In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Kriging method to interpolate with the aid of remote sensing images. The underlying idea is to extend the traditional Kriging by introducing spectral variables, and operating on spatial and spectral combined space. The algorithm has been applied to WSN-measured soil moisture data in HiWATER campaign to generate daily maps from 10 June to 15 July 2012. For comparison, three traditional Kriging methods are applied: Ordinary Kriging (OK), which used WSN data only, Co-kriging and KED, both of which integrated remote sensing data as covariate. Visual inspections indicate that the result from Extended Kriging shows more spatial details than that of OK, Co-kriging, and KED. The Root Mean Square Error (RMSE) of Extended Kriging was found to be the smallest among the four interpolation results. This indicates that the proposed method has advantages in combining remote sensing information and ground measurements in soil moisture interpolation. PMID:28617351

  17. Minimal norm constrained interpolation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Irvine, L. D.

    1985-01-01

    In computational fluid dynamics and in CAD/CAM, a physical boundary is usually known only discreetly and most often must be approximated. An acceptable approximation preserves the salient features of the data such as convexity and concavity. In this dissertation, a smooth interpolant which is locally concave where the data are concave and is locally convex where the data are convex is described. The interpolant is found by posing and solving a minimization problem whose solution is a piecewise cubic polynomial. The problem is solved indirectly by using the Peano Kernal theorem to recast it into an equivalent minimization problem having the second derivative of the interpolant as the solution. This approach leads to the solution of a nonlinear system of equations. It is shown that Newton's method is an exceptionally attractive and efficient method for solving the nonlinear system of equations. Examples of shape-preserving interpolants, as well as convergence results obtained by using Newton's method are also shown. A FORTRAN program to compute these interpolants is listed. The problem of computing the interpolant of minimal norm from a convex cone in a normal dual space is also discussed. An extension of de Boor's work on minimal norm unconstrained interpolation is presented.

  18. Analysis of dengue fever risk using geostatistics model in bone regency

    NASA Astrophysics Data System (ADS)

    Amran, Stang, Mallongi, Anwar

    2017-03-01

    This research aim is to analysis of dengue fever risk based on Geostatistics model in Bone Regency. Risk levels of dengue fever are denoted by parameter of Binomial distribution. Effect of temperature, rainfalls, elevation, and larvae abundance are investigated through Geostatistics model. Bayesian hierarchical method is used in estimation process. Using dengue fever data in eleven locations this research shows that temperature and rainfall have significant effect of dengue fever risk in Bone regency.

  19. Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model

    NASA Astrophysics Data System (ADS)

    Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef

    2016-10-01

    We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.

  20. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  1. LSHSIM: A Locality Sensitive Hashing based method for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Moura, Pedro; Laber, Eduardo; Lopes, Hélio; Mesejo, Daniel; Pavanelli, Lucas; Jardim, João; Thiesen, Francisco; Pujol, Gabriel

    2017-10-01

    Reservoir modeling is a very important task that permits the representation of a geological region of interest, so as to generate a considerable number of possible scenarios. Since its inception, many methodologies have been proposed and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are called patterns. In this paper, we propose a new MPS method that combines the application of a technique called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming similarity. Experiments with both categorical and continuous images show that LSHSIM is computationally efficient and produce good quality realizations. In particular, for categorical data, the results suggest that LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.

  2. A new interpolation method for gridded extensive variables with application in Lagrangian transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Hittmeir, Sabine; Philipp, Anne; Seibert, Petra

    2017-04-01

    In discretised form, an extensive variable usually represents an integral over a 3-dimensional (x,y,z) grid cell. In the case of vertical fluxes, gridded values represent integrals over a horizontal (x,y) grid face. In meteorological models, fluxes (precipitation, turbulent fluxes, etc.) are usually written out as temporally integrated values, thus effectively forming 3D (x,y,t) integrals. Lagrangian transport models require interpolation of all relevant variables towards the location in 4D space of each of the computational particles. Trivial interpolation algorithms usually implicitly assume the integral value to be a point value valid at the grid centre. If the integral value would be reconstructed from the interpolated point values, it would in general not be correct. If nonlinear interpolation methods are used, non-negativity cannot easily be ensured. This problem became obvious with respect to the interpolation of precipitation for the calculation of wet deposition FLEXPART (http://flexpart.eu) which uses ECMWF model output or other gridded input data. The presently implemented method consists of a special preprocessing in the input preparation software and subsequent linear interpolation in the model. The interpolated values are positive but the criterion of cell-wise conservation of the integral property is violated; it is also not very accurate as it smoothes the field. A new interpolation algorithm was developed which introduces additional supporting grid points in each time interval with linear interpolation to be applied in FLEXPART later between them. It preserves the integral precipitation in each time interval, guarantees the continuity of the time series, and maintains non-negativity. The function values of the remapping algorithm at these subgrid points constitute the degrees of freedom which can be prescribed in various ways. Combining the advantages of different approaches leads to a final algorithm respecting all the required conditions. To

  3. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.

    Treesearch

    Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan

    2005-01-01

    This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...

  4. LIP: The Livermore Interpolation Package, Version 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, F N

    2011-07-06

    This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the 'LEOS Interpolation Package'. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a 'LIP interpolation object' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as 'partial setup' options.) It is then possible to pass the object to functions that

  5. LIP: The Livermore Interpolation Package, Version 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, F N

    2011-01-04

    This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the ''LEOS Interpolation Package''. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a ''LIP interpolation object'' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as ''partial setup'' options.) It is then possible to pass the object to functions

  6. Geostatistical noise filtering of geophysical images : application to unexploded ordnance (UXO) sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Hirotaka; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-07-01

    Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.

  7. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  8. Interpolation Hermite Polynomials For Finite Element Method

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel

    2018-02-01

    We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.

  9. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  10. Comparison of two fractal interpolation methods

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

  11. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  12. Interpolation of diffusion weighted imaging datasets.

    PubMed

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R

    2014-12-01

    Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. Copyright © 2014. Published by Elsevier Inc.

  13. Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites

    NASA Astrophysics Data System (ADS)

    Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.

    2012-09-01

    Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.

  14. Fast image interpolation via random forests.

    PubMed

    Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui

    2015-10-01

    This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

  15. Accounting for irregular support in spatial interpolation - analysing the effect of using alternative distance measures

    NASA Astrophysics Data System (ADS)

    Skøien, J. O.; Gottschalk, L.; Leblois, E.

    2009-04-01

    Whereas geostatistical and objective methods mostly have been developed for observations with point support or a regular support, e.g. runoff related data can be assumed to have an irregular support in space, and sometimes also a temporal support. The correlations between observations and between observations and the prediction location are found through an integration of a point variogram or point correlation function, a method known as regularisation. Being a relatively simple method for observations with equal and regular support, it can be computationally demanding if the observations have irregular support. With improved speed of computers, solving such integrations has become easier, but there can still be numerical problems that are not easily solved even with high-resolution computations. This can particularly be a problem in hydrological sciences where catchments are overlapping, the correlations are high, and small numerical errors can give ill-posed covariance matrices. The problem increases with increasing number of spatial and/or temporal dimensions. Gottschalk [1993a; 1993b] suggested to replace the integration by a Taylor expansion, hence reducing the computation time considerably, and also expecting less numerical problems with the covariance matrices. In practice, the integrated correlation/semivariance between observations are replaced by correlations/semivariances using the so called Ghosh-distance. Although Gottschalk and collaborators have used the Ghosh-distance also in other papers [Sauquet, et al., 2000a; Sauquet, et al., 2000b], the properties of the simplification have not been examined in detail. Hence, we will here analyse the replacement of the integration by the use of Ghosh-distances, both in sense of the ability to reproduce regularised semivariogram and correlation values, and the influence on the final interpolated maps. Comparisons will be performed both for real observations with a support (hydrological data) and for more

  16. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  17. Markov random field model-based edge-directed image interpolation.

    PubMed

    Li, Min; Nguyen, Truong Q

    2008-07-01

    This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.

  18. Interpolation schemes for peptide rearrangements.

    PubMed

    Bauer, Marianne S; Strodel, Birgit; Fejer, Szilard N; Koslover, Elena F; Wales, David J

    2010-02-07

    A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.

  19. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads.

    PubMed

    Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio

    2018-05-29

    A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.

  20. Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools.

    PubMed

    Cafaro, C; Bossew, P; Giovani, C; Garavaglia, M

    2014-12-01

    Studying the geographical distribution of indoor radon concentration, using geostatistical interpolation methods, has become common for predicting and estimating the risk to the population. Here we analyse the case of Friuli Venezia Giulia (FVG), the north easternmost region of Italy. Mean value and standard deviation are, respectively, 153 Bq/m(3) and 183 Bq/m(3). The geometric mean value is 100 Bq/m(3). Spatial datasets of indoor radon concentrations are usually affected by clustering and apparent non-stationarity issues, which can eventually yield arguable results. The clustering of the present dataset seems to be non preferential. Therefore the areal estimations are not expected to be affected. Conversely, nothing can be said on the non stationarity issues and its effects. After discussing the correlation of geology with indoor radon concentration It appears they are created by the same geologic features influencing the mean and median values, and can't be eliminated via a map-based approach. To tackle these problems, in this work we deal with multiple definitions of RPA, but only in quaternary areas of FVG, using extensive simulation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    DOE PAGES

    Ducru, Pablo; Josey, Colin; Dibert, Karia; ...

    2017-01-25

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less

  2. Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Niu, Xiamu

    2016-01-01

    This paper is concerned with the feasibility of the classical nearest-neighbor interpolation based on flexible representation of quantum images (FRQI) and novel enhanced quantum representation (NEQR). Firstly, the feasibility of the classical image nearest-neighbor interpolation for quantum images of FRQI and NEQR is proven. Then, by defining the halving operation and by making use of quantum rotation gates, the concrete quantum circuit of the nearest-neighbor interpolation for FRQI is designed for the first time. Furthermore, quantum circuit of the nearest-neighbor interpolation for NEQR is given. The merit of the proposed NEQR circuit lies in their low complexity, which is achieved by utilizing the halving operation and the quantum oracle operator. Finally, in order to further improve the performance of the former circuits, new interpolation circuits for FRQI and NEQR are presented by using Control-NOT gates instead of a halving operation. Simulation results show the effectiveness of the proposed circuits.

  3. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    PubMed Central

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  4. Interlaminar Stresses by Refined Beam Theories and the Sinc Method Based on Interpolation of Highest Derivative

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Kapania, Rakesh K.; Tessler, Alexander

    2010-01-01

    Computation of interlaminar stresses from the higher-order shear and normal deformable beam theory and the refined zigzag theory was performed using the Sinc method based on Interpolation of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was proposed as an efficient method for determining through-the-thickness variations of interlaminar stresses from one- and two-dimensional analysis by integration of the equilibrium equations of three-dimensional elasticity. However, the use of traditional equivalent single layer theories often results in inaccuracies near the boundaries and when the lamina have extremely large differences in material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained by solving the higher-order shear and normal deformable beam theory and the refined zigzag theory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and bending stresses from the present approach were compared with a detailed finite element solution obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness distributions of interlaminar stresses from the beam theories. Moreover, the results indicate that the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to the piecewise continuous displacement field which more accurately represents interlaminar discontinuities in the strain field. The higher-order shear and normal deformable beam theory more accurately captures the interlaminar stresses at the ends of the beam because it allows transverse normal strain. However, the continuous nature of the displacement field requires a large number of monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag theory.

  5. Geostatistics: a new tool for describing spatially-varied surface conditions from timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud

    1997-01-01

    Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...

  6. Illumination estimation via thin-plate spline interpolation.

    PubMed

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  7. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation

  8. Mine planning and emission control strategies using geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, F.; Kim, Y.C.

    1983-03-01

    This paper reviews the past four years' research efforts performed jointly by the University of Arizona and the Homer City Owners in which geostatistics were applied to solve various problems associated with coal characterization, mine planning, and development of emission control strategies. Because geostatistics is the only technique which can quantify the degree of confidence associated with a given estimate (or prediction), it played an important role throughout the research efforts. Through geostatistics, it was learned that there is an urgent need for closely spaced sample information, if short-term coal quality predictions are to be made for mine planning purposes.

  9. Bayer Demosaicking with Polynomial Interpolation.

    PubMed

    Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil

    2016-08-30

    Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.

  10. Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects.

    PubMed

    Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou

    2008-10-01

    A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).

  11. Spatial Interpolation of Reference Evapotranspiration in India: Comparison of IDW and Kriging Methods

    NASA Astrophysics Data System (ADS)

    Hodam, Sanayanbi; Sarkar, Sajal; Marak, Areor G. R.; Bandyopadhyay, A.; Bhadra, A.

    2017-12-01

    In the present study, to understand the spatial distribution characteristics of the ETo over India, spatial interpolation was performed on the means of 32 years (1971-2002) monthly data of 131 India Meteorological Department stations uniformly distributed over the country by two methods, namely, inverse distance weighted (IDW) interpolation and kriging. Kriging was found to be better while developing the monthly surfaces during cross-validation. However, in station-wise validation, IDW performed better than kriging in almost all the cases, hence is recommended for spatial interpolation of ETo and its governing meteorological parameters. This study also checked if direct kriging of FAO-56 Penman-Monteith (PM) (Allen et al. in Crop evapotranspiration—guidelines for computing crop water requirements, Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations (FAO), Rome, 1998) point ETo produced comparable results against ETo estimated with individually kriged weather parameters (indirect kriging). Indirect kriging performed marginally well compared to direct kriging. Point ETo values were extended to areal ETo values by IDW and FAO-56 PM mean ETo maps for India were developed to obtain sufficiently accurate ETo estimates at unknown locations.

  12. Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography.

    PubMed

    Zhang, Hua; Sonke, Jan-Jakob

    2013-01-01

    Cone-beam (CB) computed tomography (CT) is widely used in the field of medical imaging for guidance. Inspired by Betram's directional interpolation (BDI) methods, directional sinogram interpolation (DSI) was implemented to generate more CB projections by optimized (iterative) double-orientation estimation in sinogram space and directional interpolation. A new CBCT was subsequently reconstructed with the Feldkamp algorithm using both the original and interpolated CB projections. The proposed method was evaluated on both phantom and clinical data, and image quality was assessed by correlation ratio (CR) between the interpolated image and a gold standard obtained from full measured projections. Additionally, streak artifact reduction and image blur were assessed. In a CBCT reconstructed by 40 acquired projections over an arc of 360 degree, streak artifacts dropped 20.7% and 6.7% in a thorax phantom, when our method was compared to linear interpolation (LI) and BDI methods. Meanwhile, image blur was assessed by a head-and-neck phantom, where image blur of DSI was 20.1% and 24.3% less than LI and BDI. When our method was compared to LI and DI methods, CR increased by 4.4% and 3.1%. Streak artifacts of sparsely acquired CBCT were decreased by our method and image blur induced by interpolation was constrained to below other interpolation methods.

  13. [An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].

    PubMed

    Wang, Xiangkui; Tang, Wenpu; Zhang, Lai; Wu, Minghu

    2016-04-01

    The selection of fiducial points has an important effect on electrocardiogram(ECG)denoise with cubic spline interpolation.An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper.Firstly the first order derivative of original ECG signal is calculated,and the maximum and minimum points of each beat are obtained,which are treated as the position of fiducial points.And then the original ECG is fed into a high pass filter with 1.5Hz cutoff frequency.The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points.Then cubic spline interpolation curve fitting is used to the fiducial points,and the fitting curve is the baseline drift curve.For the two simulated case test,the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242and0.13 compared with that from traditional cubic spline interpolation algorithm.And for the case of clinical baseline drift data,the average correlation coefficient from the presented algorithm achieved 0.972.

  14. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  15. Studying the Global Bifurcation Involving Wada Boundary Metamorphosis by a Method of Generalized Cell Mapping with Sampling-Adaptive Interpolation

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Ming; Jiang, Jun; Hong, Ling; Tang, Dafeng

    In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.

  16. G STL: the geostatistical template library in C++

    NASA Astrophysics Data System (ADS)

    Remy, Nicolas; Shtuka, Arben; Levy, Bruno; Caers, Jef

    2002-10-01

    The development of geostatistics has been mostly accomplished by application-oriented engineers in the past 20 years. The focus on concrete applications gave birth to many algorithms and computer programs designed to address different issues, such as estimating or simulating a variable while possibly accounting for secondary information such as seismic data, or integrating geological and geometrical data. At the core of any geostatistical data integration methodology is a well-designed algorithm. Yet, despite their obvious differences, all these algorithms share many commonalities on which to build a geostatistics programming library, lest the resulting library is poorly reusable and difficult to expand. Building on this observation, we design a comprehensive, yet flexible and easily reusable library of geostatistics algorithms in C++. The recent advent of the generic programming paradigm allows us elegantly to express the commonalities of the geostatistical algorithms into computer code. Generic programming, also referred to as "programming with concepts", provides a high level of abstraction without loss of efficiency. This last point is a major gain over object-oriented programming which often trades efficiency for abstraction. It is not enough for a numerical library to be reusable, it also has to be fast. Because generic programming is "programming with concepts", the essential step in the library design is the careful identification and thorough definition of these concepts shared by most geostatistical algorithms. Building on these definitions, a generic and expandable code can be developed. To show the advantages of such a generic library, we use G STL to build two sequential simulation programs working on two different types of grids—a surface with faults and an unstructured grid—without requiring any change to the G STL code.

  17. Optimization and comparison of three spatial interpolation methods for electromagnetic levels in the AM band within an urban area.

    PubMed

    Rufo, Montaña; Antolín, Alicia; Paniagua, Jesús M; Jiménez, Antonio

    2018-04-01

    A comparative study was made of three methods of interpolation - inverse distance weighting (IDW), spline and ordinary kriging - after optimization of their characteristic parameters. These interpolation methods were used to represent the electric field levels for three emission frequencies (774kHz, 900kHz, and 1107kHz) and for the electrical stimulation quotient, Q E , characteristic of complex electromagnetic environments. Measurements were made with a spectrum analyser in a village in the vicinity of medium-wave radio broadcasting antennas. The accuracy of the models was quantified by comparing their predictions with levels measured at the control points not used to generate the models. The results showed that optimizing the characteristic parameters of each interpolation method allows any of them to be used. However, the best results in terms of the regression coefficient between each model's predictions and the actual control point field measurements were for the IDW method. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  19. Reservoir studies with geostatistics to forecast performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, R.W.; Behrens, R.A.; Emanuel, A.S.

    1991-05-01

    In this paper example geostatistics and streamtube applications are presented for waterflood and CO{sub 2} flood in two low-permeability sandstone reservoirs. Thy hybrid approach of combining fine vertical resolution in cross-sectional models with streamtubes resulted in models that showed water channeling and provided realistic performance estimates. Results indicate that the combination of detailed geostatistical cross sections and fine-grid streamtube models offers a systematic approach for realistic performance forecasts.

  20. Geostatistical methods in evaluating spatial variability of groundwater quality in Al-Kharj Region, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Omran, Abdulrasoul M.; Aly, Anwar A.; Al-Wabel, Mohammad I.; Al-Shayaa, Mohammad S.; Sallam, Abdulazeam S.; Nadeem, Mahmoud E.

    2017-11-01

    The analyses of 180 groundwater samples of Al-Kharj, Saudi Arabia, recorded that most groundwaters are unsuitable for drinking uses due to high salinity; however, they can be used for irrigation with some restriction. The electric conductivity of studied groundwater ranged between 1.05 and 10.15 dS m-1 with an average of 3.0 dS m-1. Nitrate was also found in high concentration in some groundwater. Piper diagrams revealed that the majority of water samples are magnesium-calcium/sulfate-chloride water type. The Gibbs's diagram revealed that the chemical weathering of rock-forming minerals and evaporation are influencing the groundwater chemistry. A kriging method was used for predicting spatial distribution of salinity (EC dS m-1) and NO3 - (mg L-1) in Al-Kharj's groundwater using data of 180 different locations. After normalization of data, variogram was drawn, for selecting suitable model for fitness on experimental variogram, less residual sum of squares value was used. Then cross-validation and root mean square error were used to select the best method for interpolation. The kriging method was found suitable methods for groundwater interpolation and management using either GS+ or ArcGIS.

  1. Three-dimensional geostatistical inversion of flowmeter and pumping test data.

    PubMed

    Li, Wei; Englert, Andreas; Cirpka, Olaf A; Vereecken, Harry

    2008-01-01

    We jointly invert field data of flowmeter and multiple pumping tests in fully screened wells to estimate hydraulic conductivity using a geostatistical method. We use the steady-state drawdowns of pumping tests and the discharge profiles of flowmeter tests as our data in the inference. The discharge profiles need not be converted to absolute hydraulic conductivities. Consequently, we do not need measurements of depth-averaged hydraulic conductivity at well locations. The flowmeter profiles contain information about relative vertical distributions of hydraulic conductivity, while drawdown measurements of pumping tests provide information about horizontal fluctuation of the depth-averaged hydraulic conductivity. We apply the method to data obtained at the Krauthausen test site of the Forschungszentrum Jülich, Germany. The resulting estimate of our joint three-dimensional (3D) geostatistical inversion shows an improved 3D structure in comparison to the inversion of pumping test data only.

  2. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  3. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    PubMed

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  4. Multilayer perceptron with local constraint as an emerging method in spatial data analysis

    NASA Astrophysics Data System (ADS)

    de Bollivier, M.; Dubois, G.; Maignan, M.; Kanevsky, M.

    1997-02-01

    The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

  5. Quadratic polynomial interpolation on triangular domain

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhang, Congcong; Yu, Qian

    2018-04-01

    In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

  6. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    NASA Astrophysics Data System (ADS)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  7. Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Wei; Chen, Yi-Chun

    2014-02-01

    In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally.

  8. Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2013-01-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563

  9. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    PubMed

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  10. Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.

    PubMed

    Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu

    2016-08-01

    The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.

  11. Optimal sixteenth order convergent method based on quasi-Hermite interpolation for computing roots.

    PubMed

    Zafar, Fiza; Hussain, Nawab; Fatimah, Zirwah; Kharal, Athar

    2014-01-01

    We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some other newly developed sixteenth-order methods. Interval Newton's method is also used for finding the enough accurate initial approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions show the effectiveness of the method.

  12. Breast carcinoma, intratumour heterogeneity and histological grading, using geostatistics.

    PubMed

    Sharifi-Salamatian, V; de Roquancourt, A; Rigaut, J P

    2000-01-01

    Tumour progression is currently believed to result from genetic instability. Chromosomal patterns specific of a type of cancer are frequent even though phenotypic spatial heterogeneity is omnipresent. The latter is the usual cause of histological grading imprecision, a well documented problem, without any fully satisfactory solution up to now. The present article addresses this problem in breast carcinoma. The assessment of a genetic marker for human tumours requires quantifiable measures of intratumoral heterogeneity. If any invariance paradigm representing a stochastic or geostatistic function could be discovered, this might help in solving the grading problem. A novel methodological approach using geostatistics to measure heterogeneity is used. Twenty tumours from the three usual (Scarff-Bloom and Richardson) grades were obtained and paraffin sections stained by MIB-1 (Ki-67) and peroxidase staining. Whole two-dimensional sections were sampled. Morphometric grids of variable sizes allowed a simple and fast recording of positions of epithelial nuclei, marked or not by MIB-1. The geostatistical method is based here upon the asymptotic behaviour of dispersion variance. Measure of asymptotic exponent of dispersion variance shows an increase from grade 1 to grade 3. Preliminary results are encouraging: grades 1 and 3 on one hand and 2 and 3 on the other hand are totally separated. The final proof of an improved grading using this measure will of course require a confrontation with the results of survival studies.

  13. SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Lloyd A.; Paresol, Bernard

    This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

  14. Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover

    NASA Astrophysics Data System (ADS)

    de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio

    2017-07-01

    Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.

  15. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  16. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  17. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  18. Interpolating seismic data via the POCS method based on shearlet transform

    NASA Astrophysics Data System (ADS)

    Jicheng, Liu; Yongxin, Chou; Jianjiang, Zhu

    2018-06-01

    A method based on shearlet transform and the projection onto convex sets with L0-norm constraint is proposed to interpolate irregularly sampled 2D and 3D seismic data. The 2D directional filter of shearlet transform is constructed by modulating a low-pass diamond filter pair to minimize the effect of additional edges introduced by the missing traces. In order to abate the spatial aliasing and control the maximal gap between missing traces for a 3D data cube, a 2D separable jittered sampling strategy is discussed. Finally, numerical experiments on 2D and 3D synthetic and real data with different under-sampling rates prove the validity of the proposed method.

  19. INTERPOL's Surveillance Network in Curbing Transnational Terrorism

    PubMed Central

    Gardeazabal, Javier; Sandler, Todd

    2015-01-01

    Abstract This paper investigates the role that International Criminal Police Organization (INTERPOL) surveillance—the Mobile INTERPOL Network Database (MIND) and the Fixed INTERPOL Network Database (FIND)—played in the War on Terror since its inception in 2005. MIND/FIND surveillance allows countries to screen people and documents systematically at border crossings against INTERPOL databases on terrorists, fugitives, and stolen and lost travel documents. Such documents have been used in the past by terrorists to transit borders. By applying methods developed in the treatment‐effects literature, this paper establishes that countries adopting MIND/FIND experienced fewer transnational terrorist attacks than they would have had they not adopted MIND/FIND. Our estimates indicate that, on average, from 2008 to 2011, adopting and using MIND/FIND results in 0.5 fewer transnational terrorist incidents each year per 100 million people. Thus, a country like France with a population just above 64 million people in 2008 would have 0.32 fewer transnational terrorist incidents per year owing to its use of INTERPOL surveillance. This amounts to a sizeable average proportional reduction of about 30 percent.

  20. DEM interpolation weight calculation modulus based on maximum entropy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-wei; Yang, Xia

    2015-12-01

    There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.

  1. Antenna pattern interpolation by generalized Whittaker reconstruction

    NASA Astrophysics Data System (ADS)

    Tjonneland, K.; Lindley, A.; Balling, P.

    Whittaker reconstruction is an effective tool for interpolation of band limited data. Whittaker originally introduced the interpolation formula termed the cardinal function as the function that represents a set of equispaced samples but has no periodic components of period less than twice the sample spacing. It appears that its use for reflector antennas was pioneered in France. The method is now a useful tool in the analysis and design of multiple beam reflector antenna systems. A good description of the method has been given by Bucci et al. This paper discusses some problems encountered with the method and their solution.

  2. Gstat: a program for geostatistical modelling, prediction and simulation

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  3. The Interpolation Theory of Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Baxter, Brad

    2010-06-01

    In this dissertation, it is first shown that, when the radial basis function is a p-norm and 1 < p < 2, interpolation is always possible when the points are all different and there are at least two of them. We then show that interpolation is not always possible when p > 2. Specifically, for every p > 2, we construct a set of different points in some Rd for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the linear system to within a required tolerance can be independent of the number of interpolation points. The Toeplitz structure allows us to use fast Fourier transform techniques, which imp lies that the total number of operations is a multiple of n log n, where n is the number of interpolation points. Finally, we use some of our methods to study the behaviour of the multiquadric when its shape parameter increases to infinity. We find a surprising link with the sinus cardinalis or sinc function of Whittaker. Consequently, it can be highly useful to use a large shape parameter when approximating band-limited functions.

  4. Regional flow duration curves: Geostatistical techniques versus multivariate regression

    USGS Publications Warehouse

    Pugliese, Alessio; Farmer, William H.; Castellarin, Attilio; Archfield, Stacey A.; Vogel, Richard M.

    2016-01-01

    A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by sparse or missing streamflow observations. We present a detailed comparison of two methods which are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies on a metric for expressing the similarity between catchments computed as the negative deviation of the FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. using a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differences between the reproduction of FDC's occurred mostly for low flows with exceedance probability (i.e. duration) above 0.98.

  5. Evaluation of different distortion correction methods and interpolation techniques for an automated classification of celiac disease☆

    PubMed Central

    Gadermayr, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.

    2013-01-01

    Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification. PMID:23981585

  6. Interpolation algorithm for asynchronous ADC-data

    NASA Astrophysics Data System (ADS)

    Bramburger, Stefan; Zinke, Benny; Killat, Dirk

    2017-09-01

    This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT) algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

  7. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This

  8. Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Fouedjio, F.

    2017-12-01

    Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.

  9. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  10. Applications of Geostatistics in Plant Nematology

    PubMed Central

    Wallace, M. K.; Hawkins, D. M.

    1994-01-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the Ap horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities. PMID:19279938

  11. Applications of geostatistics in plant nematology.

    PubMed

    Wallace, M K; Hawkins, D M

    1994-12-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the A(p) horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities.

  12. EOS Interpolation and Thermodynamic Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammel, J. Tinka

    2015-11-16

    As discussed in LA-UR-08-05451, the current interpolator used by Grizzly, OpenSesame, EOSPAC, and similar routines is the rational function interpolator from Kerley. While the rational function interpolator is well-suited for interpolation on sparse grids with logarithmic spacing and it preserves monotonicity in 1-d, it has some known problems.

  13. A FRACTAL-BASED STOCHASTIC INTERPOLATION SCHEME IN SUBSURFACE HYDROLOGY

    EPA Science Inventory

    The need for a realistic and rational method for interpolating sparse data sets is widespread. Real porosity and hydraulic conductivity data do not vary smoothly over space, so an interpolation scheme that preserves irregularity is desirable. Such a scheme based on the properties...

  14. Breast Carcinoma, Intratumour Heterogeneity and Histological Grading, Using Geostatistics

    PubMed Central

    Sharifi‐Salamatian, Vénus; de Roquancourt, Anne; Rigaut, Jean Paul

    2000-01-01

    Tumour progression is currently believed to result from genetic instability. Chromosomal patterns specific of a type of cancer are frequent even though phenotypic spatial heterogeneity is omnipresent. The latter is the usual cause of histological grading imprecision, a well documented problem, without any fully satisfactory solution up to now. The present article addresses this problem in breast carcinoma. The assessment of a genetic marker for human tumours requires quantifiable measures of intratumoral heterogeneity. If any invariance paradigm representing a stochastic or geostatistic function could be discovered, this might help in solving the grading problem. A novel methodological approach using geostatistics to measure heterogeneity is used. Twenty tumours from the three usual (Scarff‐Bloom and Richardson) grades were obtained and paraffin sections stained by MIB‐1 (Ki‐67) and peroxidase staining. Whole two‐dimensional sections were sampled. Morphometric grids of variable sizes allowed a simple and fast recording of positions of epithelial nuclei, marked or not by MIB‐1. The geostatistical method is based here upon the asymptotic behaviour of dispersion variance. Measure of asymptotic exponent of dispersion variance shows an increase from grade 1 to grade 3. Preliminary results are encouraging: grades 1 and 3 on one hand and 2 and 3 on the other hand are totally separated. The final proof of an improved grading using this measure will of course require a confrontation with the results of survival studies. PMID:11153611

  15. Delimiting Areas of Endemism through Kernel Interpolation

    PubMed Central

    Oliveira, Ubirajara; Brescovit, Antonio D.; Santos, Adalberto J.

    2015-01-01

    We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units. PMID:25611971

  16. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.

    PubMed

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E

    2016-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.

  17. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets

    PubMed Central

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.

    2018-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777

  18. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, D.S.; Chopra, A.K.

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  19. Single-Image Super-Resolution Based on Rational Fractal Interpolation.

    PubMed

    Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming

    2018-08-01

    This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.

  20. Adapting geostatistics to analyze spatial and temporal trends in weed populations

    USDA-ARS?s Scientific Manuscript database

    Geostatistics were originally developed in mining to estimate the location, abundance and quality of ore over large areas from soil samples to optimize future mining efforts. Here, some of these methods were adapted to weeds to account for a limited distribution area (i.e., inside a field), variatio...

  1. A MS-lesion pattern discrimination plot based on geostatistics.

    PubMed

    Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark

    2016-03-01

    A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.

  2. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  3. Comparing interpolation techniques for annual temperature mapping across Xinjiang region

    NASA Astrophysics Data System (ADS)

    Ren-ping, Zhang; Jing, Guo; Tian-gang, Liang; Qi-sheng, Feng; Aimaiti, Yusupujiang

    2016-11-01

    Interpolating climatic variables such as temperature is challenging due to the highly variable nature of meteorological processes and the difficulty in establishing a representative network of stations. In this paper, based on the monthly temperature data which obtained from the 154 official meteorological stations in the Xinjiang region and surrounding areas, we compared five spatial interpolation techniques: Inverse distance weighting (IDW), Ordinary kriging, Cokriging, thin-plate smoothing splines (ANUSPLIN) and Empirical Bayesian kriging(EBK). Error metrics were used to validate interpolations against independent data. Results indicated that, the ANUSPLIN performed best than the other four interpolation methods.

  4. Developement of an Optimum Interpolation Analysis Method for the CYBER 205

    NASA Technical Reports Server (NTRS)

    Nestler, M. S.; Woollen, J.; Brin, Y.

    1985-01-01

    A state-of-the-art technique to assimilate the diverse observational database obtained during FGGE, and thus create initial conditions for numerical forecasts is described. The GLA optimum interpolation (OI) analysis method analyzes pressure, winds, and temperature at sea level, mixing ratio at six mandatory pressure levels up to 300 mb, and heights and winds at twelve levels up to 50 mb. Conversion to the CYBER 205 required a major re-write of the Amdahl OI code to take advantage of the CYBER vector processing capabilities. Structured programming methods were used to write the programs and this has resulted in a modular, understandable code. Among the contributors to the increased speed of the CYBER code are a vectorized covariance-calculation routine, an extremely fast matrix equation solver, and an innovative data search and sort technique.

  5. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or

  6. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  7. Sensor placement in nuclear reactors based on the generalized empirical interpolation method

    NASA Astrophysics Data System (ADS)

    Argaud, J.-P.; Bouriquet, B.; de Caso, F.; Gong, H.; Maday, Y.; Mula, O.

    2018-06-01

    In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to address the problem of sensor placement in nuclear reactors. This task is challenging due to the accumulation of a number of difficulties like the complexity of the underlying physics and the constraints in the admissible sensor locations and their number. As a result, the placement, still today, strongly relies on the know-how and experience of engineers from different areas of expertise. The present methodology contributes to making this process become more systematic and, in turn, simplify and accelerate the procedure.

  8. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    NASA Astrophysics Data System (ADS)

    Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed

  9. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  10. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  11. Spectral interpolation - Zero fill or convolution. [image processing

    NASA Technical Reports Server (NTRS)

    Forman, M. L.

    1977-01-01

    Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.

  12. Analysis of alluvial hydrostratigraphy using indicator geostatistics, with examples from Santa Clara Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    Current trends in hydrogeology seek to enlist sedimentary concepts in the interpretation of permeability structures. However, existing conceptual models of alluvial deposition tend to inadequately account for the heterogeneity caused by complex sedimentological and external factors. This dissertation presents three analyses of alluvial hydrostratigraphy using indicator geostatistics. This approach empirically acknowledges both the random and structured qualities of alluvial structures at scales relevant to site investigations. The first analysis introduces the indicator approach, whereby binary values are assigned to borehole-log intervals on the basis of inferred relative permeability; it presents a case study of indicator variography at a well-documented ground-watermore » contamination site, and uses indicator kriging to interpolate an aquifer-aquitard sequence in three dimensions. The second analysis develops an alluvial-architecture context for interpreting semivariograms, and performs comparative variography for a suite of alluvial sites in Santa Clara Valley, California. The third analysis investigates the use of a water well perforation indicator for assessing large-scale hydrostratigraphic structures within relatively deep production zones.« less

  13. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.

    PubMed

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik

    2007-01-01

    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  14. Directional view interpolation for compensation of sparse angular sampling in cone-beam CT.

    PubMed

    Bertram, Matthias; Wiegert, Jens; Schafer, Dirk; Aach, Til; Rose, Georg

    2009-07-01

    In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.

  15. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  16. Exploring the Role of Genetic Algorithms and Artificial Neural Networks for Interpolation of Elevation in Geoinformation Models

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadjadi, S. Y.; Sadeghian, S.

    2013-09-01

    One of the most significant tools to study many engineering projects is three-dimensional modelling of the Earth that has many applications in the Geospatial Information System (GIS), e.g. creating Digital Train Modelling (DTM). DTM has numerous applications in the fields of sciences, engineering, design and various project administrations. One of the most significant events in DTM technique is the interpolation of elevation to create a continuous surface. There are several methods for interpolation, which have shown many results due to the environmental conditions and input data. The usual methods of interpolation used in this study along with Genetic Algorithms (GA) have been optimised and consisting of polynomials and the Inverse Distance Weighting (IDW) method. In this paper, the Artificial Intelligent (AI) techniques such as GA and Neural Networks (NN) are used on the samples to optimise the interpolation methods and production of Digital Elevation Model (DEM). The aim of entire interpolation methods is to evaluate the accuracy of interpolation methods. Universal interpolation occurs in the entire neighbouring regions can be suggested for larger regions, which can be divided into smaller regions. The results obtained from applying GA and ANN individually, will be compared with the typical method of interpolation for creation of elevations. The resulting had performed that AI methods have a high potential in the interpolation of elevations. Using artificial networks algorithms for the interpolation and optimisation based on the IDW method with GA could be estimated the high precise elevations.

  17. Usability and potential of geostatistics for spatial discrimination of multiple sclerosis lesion patterns.

    PubMed

    Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg

    2014-01-01

    In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.

  18. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey

    NASA Astrophysics Data System (ADS)

    Göl, Ceyhun; Bulut, Sinan; Bolat, Ferhat

    2017-10-01

    The purpose of this research is to compare the spatial variability of soil organic carbon (SOC) in four adjacent land uses including the cultivated area, the grassland area, the plantation area and the natural forest area in the semi - arid region of Black Sea backward region of Turkey. Some of the soil properties, including total nitrogen, SOC, soil organic matter, and bulk density were measured on a grid with a 50 m sampling distance on the top soil (0-15 cm depth). Accordingly, a total of 120 samples were taken from the four adjacent land uses. Data was analyzed using geostatistical methods. The methods used were: Block kriging (BK), co - kriging (CK) with organic matter, total nitrogen and bulk density as auxiliary variables and inverse distance weighting (IDW) methods with the power of 1, 2 and 4. The methods were compared using a performance criteria that included root mean square error (RMSE), mean absolute error (MAE) and the coefficient of correlation (r). The one - way ANOVA test showed that differences between the natural (0.6653 ± 0.2901) - plantation forest (0.7109 ± 0.2729) areas and the grassland (1.3964 ± 0.6828) - cultivated areas (1.5851 ± 0.5541) were statistically significant at 0.05 level (F = 28.462). The best model for describing spatially variation of SOC was CK with the lowest error criteria (RMSE = 0.3342, MAE = 0.2292) and the highest coefficient of correlation (r = 0.84). The spatial structure of SOC could be well described by the spherical model. The nugget effect indicated that SOC was moderately dependent on the study area. The error distributions of the model showed that the improved model was unbiased in predicting the spatial distribution of SOC. This study's results revealed that an explanatory variable linked SOC increased success of spatial interpolation methods. In subsequent studies, this case should be taken into account for reaching more accurate outputs.

  19. PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization

    NASA Astrophysics Data System (ADS)

    Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh

    2017-05-01

    Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.

  20. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools

    NASA Astrophysics Data System (ADS)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.

    2017-12-01

    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  1. Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.

    PubMed

    Sukop, Michael C; Cunningham, Kevin J

    2016-03-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.

  2. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  3. Clustering of Multivariate Geostatistical Data

    NASA Astrophysics Data System (ADS)

    Fouedjio, Francky

    2017-04-01

    Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.

  4. Nearest neighbor, bilinear interpolation and bicubic interpolation geographic correction effects on LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Geographical correction effects on LANDSAT image data are identified, using the nearest neighbor, bilinear interpolation and bicubic interpolation techniques. Potential impacts of registration on image compression and classification are explored.

  5. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    PubMed

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or

  6. Geostatistical applications in ground-water modeling in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.

    1999-01-01

    This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described

  7. View-interpolation of sparsely sampled sinogram using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Lee, Hoyeon; Lee, Jongha; Cho, Suengryong

    2017-02-01

    Spare-view sampling and its associated iterative image reconstruction in computed tomography have actively investigated. Sparse-view CT technique is a viable option to low-dose CT, particularly in cone-beam CT (CBCT) applications, with advanced iterative image reconstructions with varying degrees of image artifacts. One of the artifacts that may occur in sparse-view CT is the streak artifact in the reconstructed images. Another approach has been investigated for sparse-view CT imaging by use of the interpolation methods to fill in the missing view data and that reconstructs the image by an analytic reconstruction algorithm. In this study, we developed an interpolation method using convolutional neural network (CNN), which is one of the widely used deep-learning methods, to find missing projection data and compared its performances with the other interpolation techniques.

  8. Principal Component Geostatistical Approach for large-dimensional inverse problems.

    PubMed

    Kitanidis, P K; Lee, J

    2014-07-01

    The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m , and the number of observations, n , is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m 2 n , though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n . The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m 2 as in the textbook approach. For problems of very large m , this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best.

  9. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  10. ON THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM. (R825689C037)

    EPA Science Inventory

    Abstract

    The geostatistical approach to the inverse problem is discussed with emphasis on the importance of structural analysis. Although the geostatistical approach is occasionally misconstrued as mere cokriging, in fact it consists of two steps: estimation of statist...

  11. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on

  12. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  13. Approaches in highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach implementation with PEST: documentation and instructions

    USGS Publications Warehouse

    Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.

    2013-01-01

    The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.

  14. Overview and technical and practical aspects for use of geostatistics in hazardous-, toxic-, and radioactive-waste-site investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.

    1999-10-01

    Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, asmore » is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation.« less

  15. Investigations of interpolation errors of angle encoders for high precision angle metrology

    NASA Astrophysics Data System (ADS)

    Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa

    2018-06-01

    Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.

  16. Edge directed image interpolation with Bamberger pyramids

    NASA Astrophysics Data System (ADS)

    Rosiles, Jose Gerardo

    2005-08-01

    Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.

  17. Patch-based frame interpolation for old films via the guidance of motion paths

    NASA Astrophysics Data System (ADS)

    Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi

    2018-04-01

    Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.

  18. Influence of survey strategy and interpolation model on DEM quality

    NASA Astrophysics Data System (ADS)

    Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.

    2009-11-01

    Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at

  19. Visualizing and Understanding the Components of Lagrange and Newton Interpolation

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…

  20. Interpolation of unevenly spaced data using a parabolic leapfrog correction method and cubic splines

    Treesearch

    Julio L. Guardado; William T. Sommers

    1977-01-01

    The technique proposed allows interpolation of data recorded at unevenly spaced sites to a regular grid or to other sites. Known data are interpolated to an initial guess field grid of unevenly spaced rows and columns by a simple distance weighting procedure. The initial guess field is then adjusted by using a parabolic leapfrog correction and the known data. The final...

  1. An improved local radial point interpolation method for transient heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang

    2013-06-01

    The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.

  2. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  3. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    PubMed

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  4. Image interpolation via regularized local linear regression.

    PubMed

    Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang

    2011-12-01

    The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE

  5. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  6. Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Zovi, Francesco; Camporese, Matteo; Hendricks Franssen, Harrie-Jan; Huisman, Johan Alexander; Salandin, Paolo

    2017-05-01

    Alluvial aquifers are often characterized by the presence of braided high-permeable paleo-riverbeds, which constitute an interconnected preferential flow network whose localization is of fundamental importance to predict flow and transport dynamics. Classic geostatistical approaches based on two-point correlation (i.e., the variogram) cannot describe such particular shapes. In contrast, multiple point geostatistics can describe almost any kind of shape using the empirical probability distribution derived from a training image. However, even with a correct training image the exact positions of the channels are uncertain. State information like groundwater levels can constrain the channel positions using inverse modeling or data assimilation, but the method should be able to handle non-Gaussianity of the parameter distribution. Here the normal score ensemble Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to tackle this issue. Multiple point geostatistics and NS-EnKF have already been tested in synthetic examples, but in this study they are used for the first time in a real-world case study. The test site is an alluvial unconfined aquifer in northeastern Italy with an extension of approximately 3 km2. A satellite training image showing the braid shapes of the nearby river and electrical resistivity tomography (ERT) images were used as conditioning data to provide information on channel shape, size, and position. Measured groundwater levels were assimilated with the NS-EnKF to update the spatially distributed groundwater parameters (hydraulic conductivity and storage coefficients). Results from the study show that the inversion based on multiple point geostatistics does not outperform the one with a multiGaussian model and that the information from the ERT images did not improve site characterization. These results were further evaluated with a synthetic study that mimics the experimental site. The synthetic results showed that only for a much

  7. New developments in spatial interpolation methods of Sea-Level Anomalies in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Barth, Alexander; Beckers, Jean-Marie; Pascual, Ananda

    2014-05-01

    The gridding of along-track Sea-Level Anomalies (SLA) measured by a constellation of satellites has numerous applications in oceanography, such as model validation, data assimilation or eddy tracking. Optimal Interpolation (OI) is often the preferred method for this task, as it leads to the lowest expected error and provides an error field associated to the analysed field. However, the numerical cost of the method may limit its utilization in situations where the number of data points is significant. Furthermore, the separation of non-adjacent regions with OI requires adaptation of the code, leading to a further increase of the numerical cost. To solve these issues, the Data-Interpolating Variational Analysis (DIVA), a technique designed to produce gridded from sparse in situ measurements, is applied on SLA data in the Mediterranean Sea. DIVA and OI have been shown to be equivalent (provided some assumptions on the covariances are made). The main difference lies in the covariance function, which is not explicitly formulated in DIVA. The particular spatial and temporal distributions of measurements required adaptation in the Software tool (data format, parameter determinations, ...). These adaptation are presented in the poster. The daily analysed and error fields obtained with this technique are compared with available products such as the gridded field from the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) data server. The comparison reveals an overall good agreement between the products. The time evolution of the mean error field evidences the need of a large number of simultaneous altimetry satellites: in period during which 4 satellites are available, the mean error is on the order of 17.5%, while when only 2 satellites are available, the error exceeds 25%. Finally, we propose the use sea currents to improve the results of the interpolation, especially in the coastal area. These currents can be constructed from the bathymetry

  8. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  9. A Comparison of Traditional, Step-Path, and Geostatistical Techniques in the Stability Analysis of a Large Open Pit

    NASA Astrophysics Data System (ADS)

    Mayer, J. M.; Stead, D.

    2017-04-01

    With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.

  10. Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, Christopher M.

    2012-08-13

    How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less

  11. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  12. Principal Component Geostatistical Approach for large-dimensional inverse problems

    PubMed Central

    Kitanidis, P K; Lee, J

    2014-01-01

    The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best. PMID:25558113

  13. The microcomputer scientific software series 9: user's guide to Geo-CLM: geostatistical interpolation of the historical climatic record in the Lake States.

    Treesearch

    Margaret R. Holdaway

    1994-01-01

    Describes Geo-CLM, a computer application (for Mac or DOS) whose primary aim is to perform multiple kriging runs to interpolate the historic climatic record at research plots in the Lake States. It is an exploration and analysis tool. Addition capabilities include climatic databases, a flexible test mode, cross validation, lat/long conversion, English/metric units,...

  14. A JACKNIFE APPROACH TO EXAMINE UNCERTAINTY AND TEMPORAL CHANGES IN THE SPATIL CORRELATION OF A VOC PLUME

    EPA Science Inventory

    ABSTRACT: The application of geostatistics to spatial interpolation of time-invariant properties in ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use of geostatistics on time-variant conditions such as ground-water quality is also be...

  15. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  16. TiConverter: A training image converting tool for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Fadlelmula F., Mohamed M.; Killough, John; Fraim, Michael

    2016-11-01

    TiConverter is a tool developed to ease the application of multiple-point geostatistics whether by the open source Stanford Geostatistical Modeling Software (SGeMS) or other available commercial software. TiConverter has a user-friendly interface and it allows the conversion of 2D training images into numerical representations in four different file formats without the need for additional code writing. These are the ASCII (.txt), the geostatistical software library (GSLIB) (.txt), the Isatis (.dat), and the VTK formats. It performs the conversion based on the RGB color system. In addition, TiConverter offers several useful tools including image resizing, smoothing, and segmenting tools. The purpose of this study is to introduce the TiConverter, and to demonstrate its application and advantages with several examples from the literature.

  17. Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.

    PubMed

    Sidek, Khairul Azami; Khalil, Ibrahim

    2013-01-01

    Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Robust geostatistical analysis of spatial data

    NASA Astrophysics Data System (ADS)

    Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.

    2012-04-01

    Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled

  19. Geostatistical enhancement of european hydrological predictions

    NASA Astrophysics Data System (ADS)

    Pugliese, Alessio; Castellarin, Attilio; Parajka, Juraj; Arheimer, Berit; Bagli, Stefano; Mazzoli, Paolo; Montanari, Alberto; Blöschl, Günter

    2016-04-01

    second phase, we develop a module, to be added to the flow-duration curve prediction framework, capable of enhancing E-HYPE-based predictions of FDCs by modelling the residuals obtained from the first phase. Among all possible methods, we apply geostatistical modelling of residuals and, alternatively, regional regression, so that residuals between empirical and E-HYPE-base predicted FDCs are described in terms of geomorphological and climatic catchment descriptors.

  20. Geostatistical Methods For Determination of Roughness, Topography, And Changes of Antarctic Ice Streams From SAR And Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.

    2002-01-01

    The central objective of this project has been the development of geostatistical methods fro mapping elevation and ice surface characteristics from satellite radar altimeter (RA) and Syntheitc Aperture Radar (SAR) data. The main results are an Atlas of elevation maps of Antarctica, from GEOSAT RA data and an Atlas from ERS-1 RA data, including a total of about 200 maps with 3 km grid resolution. Maps and digital terrain models are applied to monitor and study changes in Antarctic ice streams and glaciers, including Lambert Glacier/Amery Ice Shelf, Mertz and Ninnis Glaciers, Jutulstraumen Glacier, Fimbul Ice Shelf, Slessor Glacier, Williamson Glacier and others.

  1. A fast simulation method for radiation maps using interpolation in a virtual environment.

    PubMed

    Li, Meng-Kun; Liu, Yong-Kuo; Peng, Min-Jun; Xie, Chun-Li; Yang, Li-Qun

    2018-05-10

    In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.

  2. Traffic volume estimation using network interpolation techniques.

    DOT National Transportation Integrated Search

    2013-12-01

    Kriging method is a frequently used interpolation methodology in geography, which enables estimations of unknown values at : certain places with the considerations of distances among locations. When it is used in transportation field, network distanc...

  3. Importance of interpolation and coincidence errors in data fusion

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

    2018-02-01

    The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  4. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  5. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  6. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    PubMed

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  7. Ensemble learning for spatial interpolation of soil potassium content based on environmental information.

    PubMed

    Liu, Wei; Du, Peijun; Wang, Dongchen

    2015-01-01

    One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.

  8. Validation study of an interpolation method for calculating whole lung volumes and masses from reduced numbers of CT-images in ponies.

    PubMed

    Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A

    2014-12-01

    Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    NASA Astrophysics Data System (ADS)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  10. EFFICIENT MODEL-FITTING AND MODEL-COMPARISON FOR HIGH-DIMENSIONAL BAYESIAN GEOSTATISTICAL MODELS. (R826887)

    EPA Science Inventory

    Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...

  11. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation.

    PubMed

    Zhang, Xiangjun; Wu, Xiaolin

    2008-06-01

    The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the input low-resolution image. The pixel structure dictated by the learnt model is enforced by the soft-decision estimation process onto a block of pixels, including both observed and estimated. The result is equivalent to that of a high-order adaptive nonseparable 2-D interpolation filter. This new image interpolation approach preserves spatial coherence of interpolated images better than the existing methods, and it produces the best results so far over a wide range of scenes in both PSNR measure and subjective visual quality. Edges and textures are well preserved, and common interpolation artifacts (blurring, ringing, jaggies, zippering, etc.) are greatly reduced.

  12. Enhancement of panoramic image resolution based on swift interpolation of Bezier surface

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Yang, Guo-guang; Bai, Jian

    2007-01-01

    Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.

  13. Spatial interpolation of solar global radiation

    NASA Astrophysics Data System (ADS)

    Lussana, C.; Uboldi, F.; Antoniazzi, C.

    2010-09-01

    Solar global radiation is defined as the radiant flux incident onto an area element of the terrestrial surface. Its direct knowledge plays a crucial role in many applications, from agrometeorology to environmental meteorology. The ARPA Lombardia's meteorological network includes about one hundred of pyranometers, mostly distributed in the southern part of the Alps and in the centre of the Po Plain. A statistical interpolation method based on an implementation of the Optimal Interpolation is applied to the hourly average of the solar global radiation observations measured by the ARPA Lombardia's network. The background field is obtained using SMARTS (The Simple Model of the Atmospheric Radiative Transfer of Sunshine, Gueymard, 2001). The model is initialised by assuming clear sky conditions and it takes into account the solar position and orography related effects (shade and reflection). The interpolation of pyranometric observations introduces in the analysis fields information about cloud presence and influence. A particular effort is devoted to prevent observations affected by large errors of different kinds (representativity errors, systematic errors, gross errors) from entering the analysis procedure. The inclusion of direct cloud information from satellite observations is also planned.

  14. Adapting Better Interpolation Methods to Model Amphibious MT Data Along the Cascadian Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.

    2016-12-01

    Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new

  15. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  16. A comparison of interpolation methods for predicting spatial variability of soil organic matter content in Eastern Croatia

    NASA Astrophysics Data System (ADS)

    Đurđević, Boris; Jug, Irena; Jug, Danijel; Vukadinović, Vesna; Bogunović, Igor; Brozović, Bojana; Stipešević, Bojan

    2017-04-01

    Soil organic matter (SOM) plays crucial role in soil health and productivity and represents one of the key functions for determining soil degradation and soil suitability for crop production. Nowadays, continuing decline of organic matter in soils in agroecosystems, due to inappropriate agricultural practice (burning and removal of crop residue, overgrazing, inappropriate tillage, etc.) and environmental conditions (climate change, extreme weather conditions, erosion) leads to devastating soil degradation processes and decreases soil productivity. The main objectives of this research is to compare three different interpolation methods (Inverse Distance Weighting IDW, Ordinary kriging OK and Empirical Bayesian Kriging EBK) and provide best spatial predictor in order to ensure detailed analysis of the agricultural land in Osijek-Baranja County, Croatia. A number of 9,099 soil samples have been compiled from layer 0-30 cm and analyzed in laboratory. The average value of SOM in the study area was 2.66%, while 70.7 % of samples had SOM value below 3% in Osijek-Baranja County. Among the applied methods, the lowest root mean square error was recorded under Empirical Bayesian Kriging method which had most accurately assessed soil organic matter. The main advantage of EBK is that the process of creating a valid kriging model is automated so the manual parameter adjusting is eliminated, and this resulted with reduced uncertainty of EBK model. Conducted interpolation and visualization of data showed that 85.7% of agricultural land in Osijek-Baranja County has SOM content lower than 3%, which may indicate some sort of soil degradation process. By using interpolation methods combined with visualization of data, we can detect problematic areas much easier and with additional analysis, suggest measures to repair degraded soils. This kind of approach to problem solving in agriculture can be applied on various agroecological conditions and can significantly facilitate and

  17. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  18. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong

    2015-03-01

    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  19. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  20. Robust spatialization of soil water content at the scale of an agricultural field using geophysical and geostatistical methods

    NASA Astrophysics Data System (ADS)

    Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi

    2017-04-01

    Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization

  1. Full Waveform Modeling of Transient Electromagnetic Response Based on Temporal Interpolation and Convolution Method

    NASA Astrophysics Data System (ADS)

    Qi, Youzheng; Huang, Ling; Wu, Xin; Zhu, Wanhua; Fang, Guangyou; Yu, Gang

    2017-07-01

    Quantitative modeling of the transient electromagnetic (TEM) response requires consideration of the full transmitter waveform, i.e., not only the specific current waveform in a half cycle but also the bipolar repetition. In this paper, we present a novel temporal interpolation and convolution (TIC) method to facilitate the accurate TEM modeling. We first calculate the temporal basis response on a logarithmic scale using the fast digital-filter-based methods. Then, we introduce a function named hamlogsinc in the framework of discrete signal processing theory to reconstruct the basis function and to make the convolution with the positive half of the waveform. Finally, a superposition procedure is used to take account of the effect of previous bipolar waveforms. Comparisons with the established fast Fourier transform method demonstrate that our TIC method can get the same accuracy with a shorter computing time.

  2. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less

  3. Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models

    NASA Astrophysics Data System (ADS)

    Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.

    2013-12-01

    We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.

  4. Spatial interpolation techniques using R

    EPA Science Inventory

    Interpolation techniques are used to predict the cell values of a raster based on sample data points. For example, interpolation can be used to predict the distribution of sediment particle size throughout an estuary based on discrete sediment samples. We demonstrate some inter...

  5. Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky-Golay filtering.

    PubMed

    Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A

    2018-01-01

    Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.

  6. Robust geostatistical analysis of spatial data

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.

    2013-04-01

    Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R

  7. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter PM2:5 in the contiguous U.S. using parallel programming and k-d tree.

    PubMed

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-09-03

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  8. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    PubMed Central

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-01-01

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  9. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals

    PubMed Central

    Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G.

    2016-01-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors’ previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp–p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat. PMID:27382478

  10. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals.

    PubMed

    Guven, Onur; Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G

    2016-06-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors' previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp-p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat.

  11. Geostatistics for environmental and geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouhani, S.; Srivastava, R.M.; Desbarats, A.J.

    1996-12-31

    This conference was held January 26--27, 1995 in Phoenix, Arizona. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the technology of geostatistics and its applicability for environmental studies, especially site characterization. Individual papers have been processed separately for inclusion in the appropriate data bases.

  12. Spatial interpolation of river channel topography using the shortest temporal distance

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Xian, Cuiling; Chen, Huajin; Grieneisen, Michael L.; Liu, Jiaming; Zhang, Minghua

    2016-11-01

    It is difficult to interpolate river channel topography due to complex anisotropy. As the anisotropy is often caused by river flow, especially the hydrodynamic and transport mechanisms, it is reasonable to incorporate flow velocity into topography interpolator for decreasing the effect of anisotropy. In this study, two new distance metrics defined as the time taken by water flow to travel between two locations are developed, and replace the spatial distance metric or Euclidean distance that is currently used to interpolate topography. One is a shortest temporal distance (STD) metric. The temporal distance (TD) of a path between two nodes is calculated by spatial distance divided by the tangent component of flow velocity along the path, and the STD is searched using the Dijkstra algorithm in all possible paths between two nodes. The other is a modified shortest temporal distance (MSTD) metric in which both the tangent and normal components of flow velocity were combined. They are used to construct the methods for the interpolation of river channel topography. The proposed methods are used to generate the topography of Wuhan Section of Changjiang River and compared with Universal Kriging (UK) and Inverse Distance Weighting (IDW). The results clearly showed that the STD and MSTD based on flow velocity were reliable spatial interpolators. The MSTD, followed by the STD, presents improvement in prediction accuracy relative to both UK and IDW.

  13. A bivariate rational interpolation with a bi-quadratic denominator

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Zhang, Huanling; Liu, Aikui; Li, Huaigu

    2006-10-01

    In this paper a new rational interpolation with a bi-quadratic denominator is developed to create a space surface using only values of the function being interpolated. The interpolation function has a simple and explicit rational mathematical representation. When the knots are equally spaced, the interpolating function can be expressed in matrix form, and this form has a symmetric property. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points in the local interpolating region.

  14. A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching Interpolation.

    PubMed

    Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui

    2016-08-01

    The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed.

  15. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation.

    PubMed

    Ciotoli, G; Voltaggio, M; Tuccimei, P; Soligo, M; Pasculli, A; Beaubien, S E; Bigi, S

    2017-01-01

    In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central

  16. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    PubMed

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  17. Interpolation problem for the solutions of linear elasticity equations based on monogenic functions

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii

    2017-11-01

    Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

  18. Research progress and hotspot analysis of spatial interpolation

    NASA Astrophysics Data System (ADS)

    Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li

    2018-02-01

    In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.

  19. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application.

    PubMed

    Li, Lixin; Zhou, Xiaolu; Kalo, Marc; Piltner, Reinhard

    2016-07-25

    Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods on a data set of PM2.5 data in the contiguous U.S. Particle pollution, also known as particulate matter (PM), is composed of microscopic solids or liquid droplets that are so small that they can get deep into the lungs and cause serious health problems. PM2.5 refers to particles with a mean aerodynamic diameter less than or equal to 2.5 micrometers. Based on the error statistics results of k-fold cross validation, the SF-based method performed better overall than the IDW-based method. The interpolation results generated by the SF-based method are combined with population data to estimate the population exposure to PM2.5 in the contiguous U.S. We investigated the seasonal variations, identified areas where annual and daily PM2.5 were above the standards, and calculated the population size in these areas. Finally, a web application is developed to interpolate and visualize in real time the spatiotemporal variation of ambient air pollution across the contiguous U.S. using air pollution data from the U.S. Environmental Protection Agency (EPA)'s AirNow program.

  20. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application

    PubMed Central

    Li, Lixin; Zhou, Xiaolu; Kalo, Marc; Piltner, Reinhard

    2016-01-01

    Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods on a data set of PM2.5 data in the contiguous U.S. Particle pollution, also known as particulate matter (PM), is composed of microscopic solids or liquid droplets that are so small that they can get deep into the lungs and cause serious health problems. PM2.5 refers to particles with a mean aerodynamic diameter less than or equal to 2.5 micrometers. Based on the error statistics results of k-fold cross validation, the SF-based method performed better overall than the IDW-based method. The interpolation results generated by the SF-based method are combined with population data to estimate the population exposure to PM2.5 in the contiguous U.S. We investigated the seasonal variations, identified areas where annual and daily PM2.5 were above the standards, and calculated the population size in these areas. Finally, a web application is developed to interpolate and visualize in real time the spatiotemporal variation of ambient air pollution across the contiguous U.S. using air pollution data from the U.S. Environmental Protection Agency (EPA)’s AirNow program. PMID:27463722

  1. Digital x-ray tomosynthesis with interpolated projection data for thin slab objects

    NASA Astrophysics Data System (ADS)

    Ha, S.; Yun, J.; Kim, H. K.

    2017-11-01

    In relation with a thin slab-object inspection, we propose a digital tomosynthesis reconstruction with fewer numbers of measured projections in combinations with additional virtual projections, which are produced by interpolating the measured projections. Hence we can reconstruct tomographic images with less few-view artifacts. The projection interpolation assumes that variations in cone-beam ray path-lengths through an object are negligible and the object is rigid. The interpolation is performed in the projection-space domain. Pixel values in the interpolated projection are the weighted sum of pixel values of the measured projections considering their projection angles. The experimental simulation shows that the proposed method can enhance the contrast-to-noise performance in reconstructed images while sacrificing the spatial resolving power.

  2. Precise locating approach of the beacon based on gray gradient segmentation interpolation in satellite optical communications.

    PubMed

    Wang, Qiang; Liu, Yuefei; Chen, Yiqiang; Ma, Jing; Tan, Liying; Yu, Siyuan

    2017-03-01

    Accurate location computation for a beacon is an important factor of the reliability of satellite optical communications. However, location precision is generally limited by the resolution of CCD. How to improve the location precision of a beacon is an important and urgent issue. In this paper, we present two precise centroid computation methods for locating a beacon in satellite optical communications. First, in terms of its characteristics, the beacon is divided into several parts according to the gray gradients. Afterward, different numbers of interpolation points and different interpolation methods are applied in the interpolation area; we calculate the centroid position after interpolation and choose the best strategy according to the algorithm. The method is called a "gradient segmentation interpolation approach," or simply, a GSI (gradient segmentation interpolation) algorithm. To take full advantage of the pixels of the beacon's central portion, we also present an improved segmentation square weighting (SSW) algorithm, whose effectiveness is verified by the simulation experiment. Finally, an experiment is established to verify GSI and SSW algorithms. The results indicate that GSI and SSW algorithms can improve locating accuracy over that calculated by a traditional gray centroid method. These approaches help to greatly improve the location precision for a beacon in satellite optical communications.

  3. Accuration of Time Series and Spatial Interpolation Method for Prediction of Precipitation Distribution on the Geographical Information System

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Hartomo, K. D.

    2018-01-01

    The Spatial Plan of the Province of Central Java 2009-2029 identifies that most regencies or cities in Central Java Province are very vulnerable to landslide disaster. The data are also supported by other data from Indonesian Disaster Risk Index (In Indonesia called Indeks Risiko Bencana Indonesia) 2013 that suggest that some areas in Central Java Province exhibit a high risk of natural disasters. This research aims to develop an application architecture and analysis methodology in GIS to predict and to map rainfall distribution. We propose our GIS architectural application of “Multiplatform Architectural Spatiotemporal” and data analysis methods of “Triple Exponential Smoothing” and “Spatial Interpolation” as our significant scientific contribution. This research consists of 2 (two) parts, namely attribute data prediction using TES method and spatial data prediction using Inverse Distance Weight (IDW) method. We conduct our research in 19 subdistricts in the Boyolali Regency, Central Java Province, Indonesia. Our main research data is the biweekly rainfall data in 2000-2016 Climatology, Meteorology, and Geophysics Agency (In Indonesia called Badan Meteorologi, Klimatologi, dan Geofisika) of Central Java Province and Laboratory of Plant Disease Observations Region V Surakarta, Central Java. The application architecture and analytical methodology of “Multiplatform Architectural Spatiotemporal” and spatial data analysis methodology of “Triple Exponential Smoothing” and “Spatial Interpolation” can be developed as a GIS application framework of rainfall distribution for various applied fields. The comparison between the TES and IDW methods show that relative to time series prediction, spatial interpolation exhibit values that are approaching actual. Spatial interpolation is closer to actual data because computed values are the rainfall data of the nearest location or the neighbour of sample values. However, the IDW’s main weakness is that some

  4. A Linear Algebraic Approach to Teaching Interpolation

    ERIC Educational Resources Information Center

    Tassa, Tamir

    2007-01-01

    A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…

  5. Object Interpolation in Three Dimensions

    ERIC Educational Resources Information Center

    Kellman, Philip J.; Garrigan, Patrick; Shipley, Thomas F.

    2005-01-01

    Perception of objects in ordinary scenes requires interpolation processes connecting visible areas across spatial gaps. Most research has focused on 2-D displays, and models have been based on 2-D, orientation-sensitive units. The authors present a view of interpolation processes as intrinsically 3-D and producing representations of contours and…

  6. Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Sahimi, Muhammad

    2016-03-01

    In recent years, higher-order geostatistical methods have been used for modeling of a wide variety of large-scale porous media, such as groundwater aquifers and oil reservoirs. Their popularity stems from their ability to account for qualitative data and the great flexibility that they offer for conditioning the models to hard (quantitative) data, which endow them with the capability for generating realistic realizations of porous formations with very complex channels, as well as features that are mainly a barrier to fluid flow. One group of such models consists of pattern-based methods that use a set of data points for generating stochastic realizations by which the large-scale structure and highly-connected features are reproduced accurately. The cross correlation-based simulation (CCSIM) algorithm, proposed previously by the authors, is a member of this group that has been shown to be capable of simulating multimillion cell models in a matter of a few CPU seconds. The method is, however, sensitive to pattern's specifications, such as boundaries and the number of replicates. In this paper the original CCSIM algorithm is reconsidered and two significant improvements are proposed for accurately reproducing large-scale patterns of heterogeneities in porous media. First, an effective boundary-correction method based on the graph theory is presented by which one identifies the optimal cutting path/surface for removing the patchiness and discontinuities in the realization of a porous medium. Next, a new pattern adjustment method is proposed that automatically transfers the features in a pattern to one that seamlessly matches the surrounding patterns. The original CCSIM algorithm is then combined with the two methods and is tested using various complex two- and three-dimensional examples. It should, however, be emphasized that the methods that we propose in this paper are applicable to other pattern-based geostatistical simulation methods.

  7. Monotonicity preserving splines using rational cubic Timmer interpolation

    NASA Astrophysics Data System (ADS)

    Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md

    2017-08-01

    In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.

  8. Pricing and simulation for real estate index options: Radial basis point interpolation

    NASA Astrophysics Data System (ADS)

    Gong, Pu; Zou, Dong; Wang, Jiayue

    2018-06-01

    This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.

  9. An approach for land suitability evaluation using geostatistics, remote sensing, and geographic information system in arid and semiarid ecosystems.

    PubMed

    Emadi, Mostafa; Baghernejad, Majid; Pakparvar, Mojtaba; Kowsar, Sayyed Ahang

    2010-05-01

    This study was undertaken to incorporate geostatistics, remote sensing, and geographic information system (GIS) technologies to improve the qualitative land suitability assessment in arid and semiarid ecosystems of Arsanjan plain, southern Iran. The primary data were obtained from 85 soil samples collected from tree depths (0-30, 30-60, and 60-90 cm); the secondary information was acquired from the remotely sensed data from the linear imaging self-scanner (LISS-III) receiver of the IRS-P6 satellite. Ordinary kriging and simple kriging with varying local means (SKVLM) methods were used to identify the spatial dependency of soil important parameters. It was observed that using the data collected from the spectral values of band 1 of the LISS-III receiver as the secondary variable applying the SKVLM method resulted in the lowest mean square error for mapping the pH and electrical conductivity (ECe) in the 0-30-cm depth. On the other hand, the ordinary kriging method resulted in a reliable accuracy for the other soil properties with moderate to strong spatial dependency in the study area for interpolation in the unstamped points. The parametric land suitability evaluation method was applied on the density points (150 x 150 m(2)) instead of applying on the limited representative profiles conventionally, which were obtained by the kriging or SKVLM methods. Overlaying the information layers of the data was used with the GIS for preparing the final land suitability evaluation. Therefore, changes in land characteristics could be identified in the same soil uniform mapping units over a very short distance. In general, this new method can easily present the squares and limitation factors of the different land suitability classes with considerable accuracy in arbitrary land indices.

  10. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    PubMed

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  11. Efficient geostatistical inversion of transient groundwater flow using preconditioned nonlinear conjugate gradients

    NASA Astrophysics Data System (ADS)

    Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf

    2017-04-01

    In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.

  12. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  13. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-01

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  14. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.

    PubMed

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-21

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  15. Novel view synthesis by interpolation over sparse examples

    NASA Astrophysics Data System (ADS)

    Liang, Bodong; Chung, Ronald C.

    2006-01-01

    Novel view synthesis (NVS) is an important problem in image rendering. It involves synthesizing an image of a scene at any specified (novel) viewpoint, given some images of the scene at a few sample viewpoints. The general understanding is that the solution should bypass explicit 3-D reconstruction of the scene. As it is, the problem has a natural tie to interpolation, despite that mainstream efforts on the problem have been adopting formulations otherwise. Interpolation is about finding the output of a function f(x) for any specified input x, given a few input-output pairs {(xi,fi):i=1,2,3,...,n} of the function. If the input x is the viewpoint, and f(x) is the image, the interpolation problem becomes exactly NVS. We treat the NVS problem using the interpolation formulation. In particular, we adopt the example-based everything or interpolation (EBI) mechanism-an established mechanism for interpolating or learning functions from examples. EBI has all the desirable properties of a good interpolation: all given input-output examples are satisfied exactly, and the interpolation is smooth with minimum oscillations between the examples. We point out that EBI, however, has difficulty in interpolating certain classes of functions, including the image function in the NVS problem. We propose an extension of the mechanism for overcoming the limitation. We also present how the extended interpolation mechanism could be used to synthesize images at novel viewpoints. Real image results show that the mechanism has promising performance, even with very few example images.

  16. Geostatistics: a common link between medical geography, mathematical geology, and medical geology

    PubMed Central

    Goovaerts, P.

    2015-01-01

    Synopsis Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential ‘causes’ of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. PMID:25722963

  17. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    PubMed

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  18. High degree interpolation polynomial in Newton form

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1988-01-01

    Polynomial interpolation is an essential subject in numerical analysis. Dealing with a real interval, it is well known that even if f(x) is an analytic function, interpolating at equally spaced points can diverge. On the other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this result of convergence is true only on the theoretical level. It is shown that the algorithm which computes the divided differences is numerically stable only if: (1) the interpolating points are arranged in a different order, and (2) the size of the interval is 4.

  19. Zero-crossing sampling of Fourier-transform interferograms and spectrum reconstruction using the real-zero interpolation method.

    PubMed

    Minami, K; Kawata, S; Minami, S

    1992-10-10

    The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.

  20. Conditioning geostatistical simulations of a heterogeneous paleo-fluvial bedrock aquifer using lithologs and pumping tests

    NASA Astrophysics Data System (ADS)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2016-12-01

    Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.

  1. Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources.

    PubMed

    Pujades-Claumarchirant, Ma Carmen; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo; Melhus, Christopher; Rivard, Mark

    2010-03-01

    The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spatial locations not included in the radial dose function g L ( r ) and 2D anisotropy function F ( r , θ ) table entries for radial distance r and polar angle θ . The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive g L ( r ) and F ( r , θ ) from the reported data; 2) to determine the minimum number of entries in g L ( r ) and F ( r , θ ) that allow reproduction of dose distributions with sufficient accuracy. Four high-energy photon-emitting brachytherapy sources were studied: 60 Co model Co0.A86, 137 Cs model CSM-3, 192 Ir model Ir2.A85-2, and 169 Yb hypothetical model. The mesh used for r was: 0.25, 0.5, 0.75, 1, 1.5, 2-8 (integer steps) and 10 cm. Four different angular steps were evaluated for F ( r , θ ): 1°, 2°, 5° and 10°. Linear-linear and logarithmic-linear interpolation was evaluated for g L ( r ). Linear-linear interpolation was used to obtain F ( r , θ ) with resolution of 0.05 cm and 1°. Results were compared with values obtained from the Monte Carlo (MC) calculations for the four sources with the same grid. Linear interpolation of g L ( r ) provided differences ≤ 0.5% compared to MC for all four sources. Bilinear interpolation of F ( r , θ ) using 1° and 2° angular steps resulted in agreement ≤ 0.5% with MC for 60 Co, 192 Ir, and 169 Yb, while 137 Cs agreement was ≤ 1.5% for θ < 15°. The radial mesh studied was adequate for interpolating g L ( r ) for high-energy brachytherapy sources, and was similar to commonly found examples in the published literature. For F ( r , θ ) close to the source longitudinal-axis, polar angle step sizes of 1°-2° were sufficient to provide 2% accuracy for all sources.

  2. Precipitation interpolation in mountainous areas

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur

    2015-04-01

    Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.

  3. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2004-01-01

    The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to generate property tables from existing property packages and a method to facilitate the accurate interpretation of fluid thermodynamic property data from those tables. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package. The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  4. Advantages and applicability of commonly used homogenisation methods for climate data

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sara; Caineta, Júlio; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    provided for each method. Their advantages and applicability are discussed based on literature review and on the results of the HOME project. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  5. A geostatistical approach to estimate mining efficiency indicators with flexible meshes

    NASA Astrophysics Data System (ADS)

    Freixas, Genis; Garriga, David; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2014-05-01

    Geostatistics is a branch of statistics developed originally to predict probability distributions of ore grades for mining operations by considering the attributes of a geological formation at unknown locations as a set of correlated random variables. Mining exploitations typically aim to maintain acceptable mineral laws to produce commercial products based upon demand. In this context, we present a new geostatistical methodology to estimate strategic efficiency maps that incorporate hydraulic test data, the evolution of concentrations with time obtained from chemical analysis (packer tests and production wells) as well as hydraulic head variations. The methodology is applied to a salt basin in South America. The exploitation is based on the extraction of brines through vertical and horizontal wells. Thereafter, brines are precipitated in evaporation ponds to obtain target potassium and magnesium salts of economic interest. Lithium carbonate is obtained as a byproduct of the production of potassium chloride. Aside from providing an assemble of traditional geostatistical methods, the strength of this study falls with the new methodology developed, which focus on finding the best sites to exploit the brines while maintaining efficiency criteria. Thus, some strategic indicator efficiency maps have been developed under the specific criteria imposed by exploitation standards to incorporate new extraction wells in new areas that would allow maintain or improve production. Results show that the uncertainty quantification of the efficiency plays a dominant role and that the use flexible meshes, which properly describe the curvilinear features associated with vertical stratification, provides a more consistent estimation of the geological processes. Moreover, we demonstrate that the vertical correlation structure at the given salt basin is essentially linked to variations in the formation thickness, which calls for flexible meshes and non-stationarity stochastic processes.

  6. Geostatistical Study of Precipitation on the Island of Crete

    NASA Astrophysics Data System (ADS)

    Agou, Vasiliki D.; Varouchakis, Emmanouil A.; Hristopulos, Dionissios T.

    2015-04-01

    precipitation which are fitted locally to a three-parameter probability distribution, based on which a normalized index is derived. We use the Spartan variogram function to model space-time correlations, because it is more flexible than classical models [3]. The performance of the variogram model is tested by means of leave-one-out cross validation. The variogram model is then used in connection with ordinary kriging to generate precipitation maps for the entire island. In the future, we will explore the joint spatiotemporal evolution of precipitation patterns on Crete. References [1] P. Goovaerts. Geostatistical approaches for incorporating elevation into the spatial interpolation of precipitation. Journal of Hydrology, 228(1):113-129, 2000. [2] N. B. Guttman. Accepting the standardized precipitation index: a calculation algorithm. American Water Resource Association, 35(2):311-322, 1999. [3] D. T Hristopulos. Spartan Gibbs random field models for geostatistical applications. SIAM Journal on Scientific Computing, 24(6):2125-2162, 2003. [4] A.G. Koutroulis, A.-E.K. Vrohidou, and I.K. Tsanis. Spatiotemporal characteristics of meteorological drought for the island of Crete. Journal of Hydrometeorology, 12(2):206-226, 2011. [5] T. B. McKee, N. J. Doesken, and J. Kleist. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, page 179-184, Anaheim, California, 1993.

  7. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    PubMed

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  8. Heat Flow Contours and Well Data Around the Milford FORGE Site

    DOE Data Explorer

    Joe Moore

    2016-03-09

    This submission contains a shapefile of heat flow contour lines around the FORGE site located in Milford, Utah. The model was interpolated from data points in the Milford_wells shapefile. This heat flow model was interpolated from 66 data points using the kriging method in Geostatistical Analyst tool of ArcGIS. The resulting model was smoothed 100%. The well dataset contains 59 wells from various sources, with lat/long coordinates, temperature, quality, basement depth, and heat flow. This data was used to make models of the specific characteristics.

  9. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  10. Reconstruction of reflectance data using an interpolation technique.

    PubMed

    Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh

    2009-03-01

    A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

  11. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis

    USGS Publications Warehouse

    Hevesi, Joseph A.; Istok, Jonathan D.; Flint, Alan L.

    1992-01-01

    Values of average annual precipitation (AAP) are desired for hydrologic studies within a watershed containing Yucca Mountain, Nevada, a potential site for a high-level nuclear-waste repository. Reliable values of AAP are not yet available for most areas within this watershed because of a sparsity of precipitation measurements and the need to obtain measurements over a sufficient length of time. To estimate AAP over the entire watershed, historical precipitation data and station elevations were obtained from a network of 62 stations in southern Nevada and southeastern California. Multivariate geostatistics (cokriging) was selected as an estimation method because of a significant (p = 0.05) correlation of r = .75 between the natural log of AAP and station elevation. A sample direct variogram for the transformed variable, TAAP = ln [(AAP) 1000], was fitted with an isotropic, spherical model defined by a small nugget value of 5000, a range of 190 000 ft, and a sill value equal to the sample variance of 163 151. Elevations for 1531 additional locations were obtained from topographic maps to improve the accuracy of cokriged estimates. A sample direct variogram for elevation was fitted with an isotropic model consisting of a nugget value of 5500 and three nested transition structures: a Gaussian structure with a range of 61 000 ft, a spherical structure with a range of 70 000 ft, and a quasi-stationary, linear structure. The use of an isotropic, stationary model for elevation was considered valid within a sliding-neighborhood radius of 120 000 ft. The problem of fitting a positive-definite, nonlinear model of coregionalization to an inconsistent sample cross variogram for TAAP and elevation was solved by a modified use of the Cauchy-Schwarz inequality. A selected cross-variogram model consisted of two nested structures: a Gaussian structure with a range of 61 000 ft and a spherical structure with a range of 190 000 ft. Cross validation was used for model selection and for

  12. Interpolation Inequalities and Spectral Estimates for Magnetic Operators

    NASA Astrophysics Data System (ADS)

    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael

    2018-05-01

    We prove magnetic interpolation inequalities and Keller-Lieb-Thir-ring estimates for the principal eigenvalue of magnetic Schr{\\"o}dinger operators. We establish explicit upper and lower bounds for the best constants and show by numerical methods that our theoretical estimates are accurate.

  13. The Grand Tour via Geodesic Interpolation of 2-frames

    NASA Technical Reports Server (NTRS)

    Asimov, Daniel; Buja, Andreas

    1994-01-01

    Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.

  14. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    NASA Astrophysics Data System (ADS)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    ://www.ceip.at/. [3] Zyśk J., Wyrwa A. and Pluta M. Emissions of mercury from the power sector in Poland. Atmospheric Environment, 45:605-610, 2011. http://dx.doi.org/10.1016/j.atmosenv.2010.10.041/. [4] Głodek A., Pacyna J. Mercury emission from coal-fired power plants in Poland. Atmospheric Environment, 43:5668-5673, 2009. http://dx.doi.org/10.1016/j.atmosenv.2009.07.041. [5] NCEM. National emission database, 2014. NCEM Management at the IEP-NRI. [6] Zasina D. and Zawadzki J. Disaggregation problems using data derived from polish air pollutant emission management system, Systems Supporting Production Engineering. Review of Problems and Solutions, ISBN 978-83-937845-9-2, pp. 128-137, 2014. [7] EUROSTAT. EUROSTAT Energy Database, 2014. [8] Wackernagel H. Basics in Geostatistics 3 Geostatistical Monte-Carlo methods: Conditional simulation, 2013.

  15. Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region

    NASA Astrophysics Data System (ADS)

    Hatvani, István Gábor; Leuenberger, Markus; Kohán, Balázs; Kern, Zoltán

    2017-09-01

    Water stable isotopes preserved in ice cores provide essential information about polar precipitation. In the present study, multivariate regression and variogram analyses were conducted on 22 δ2H and 53 δ18O records from 60 ice cores covering the second half of the 20th century. Taking the multicollinearity of the explanatory variables into account, as also the model's adjusted R2 and its mean absolute error, longitude, elevation and distance from the coast were found to be the main independent geographical driving factors governing the spatial δ18O variability of firn/ice in the chosen Antarctic macro region. After diminishing the effects of these factors, using variography, the weights for interpolation with kriging were obtained and the spatial autocorrelation structure of the dataset was revealed. This indicates an average area of influence with a radius of 350 km. This allows the determination of the areas which are as yet not covered by the spatial variability of the existing network of ice cores. Finally, the regional isoscape was obtained for the study area, and this may be considered the first step towards a geostatistically improved isoscape for Antarctica.

  16. Image interpolation used in three-dimensional range data compression.

    PubMed

    Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian

    2016-05-20

    Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.

  17. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration.

    PubMed

    Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida

    2016-11-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.

  18. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  19. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  20. Application of validation data for assessing spatial interpolation methods for 8-h ozone or other sparsely monitored constituents.

    PubMed

    Joseph, John; Sharif, Hatim O; Sunil, Thankam; Alamgir, Hasanat

    2013-07-01

    The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  2. Accurate and efficient seismic data interpolation in the principal frequency wavenumber domain

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Lu, Wenkai

    2017-12-01

    Seismic data irregularity caused by economic limitations, acquisition environmental constraints or bad trace elimination, can decrease the performance of the below multi-channel algorithms, such as surface-related multiple elimination (SRME), though some can overcome the irregularity defects. Therefore, accurate interpolation to provide the necessary complete data is a pre-requisite, but its wide applications are constrained because of its large computational burden for huge data volume, especially in 3D explorations. For accurate and efficient interpolation, the curvelet transform- (CT) based projection onto convex sets (POCS) method in the principal frequency wavenumber (PFK) domain is introduced. The complex-valued PF components can characterize their original signal with a high accuracy, but are at least half the size, which can help provide a reasonable efficiency improvement. The irregularity of the observed data is transformed into incoherent noise in the PFK domain, and curvelet coefficients may be sparser when CT is performed on the PFK domain data, enhancing the interpolation accuracy. The performance of the POCS-based algorithms using complex-valued CT in the time space (TX), principal frequency space, and PFK domains are compared. Numerical examples on synthetic and field data demonstrate the validity and effectiveness of the proposed method. With less computational burden, the proposed method can achieve a better interpolation result, and it can be easily extended into higher dimensions.

  3. Spatial interpolation of hourly precipitation and dew point temperature for the identification of precipitation phase and hydrologic response in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.

    2012-12-01

    In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing

  4. Spatiotemporal Interpolation of Elevation Changes Derived from Satellite Altimetry for Jakobshavn Isbrae, Greenland

    NASA Technical Reports Server (NTRS)

    Hurkmans, R.T.W.L.; Bamber, J.L.; Sorensen, L. S.; Joughin, I. R.; Davis, C. H.; Krabill, W. B.

    2012-01-01

    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED).

  5. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media

    NASA Astrophysics Data System (ADS)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu

    2018-04-01

    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  6. A GPU-Accelerated Parameter Interpolation Thermodynamic Integration Free Energy Method.

    PubMed

    Giese, Timothy J; York, Darrin M

    2018-03-13

    There has been a resurgence of interest in free energy methods motivated by the performance enhancements offered by molecular dynamics (MD) software written for specialized hardware, such as graphics processing units (GPUs). In this work, we exploit the properties of a parameter-interpolated thermodynamic integration (PI-TI) method to connect states by their molecular mechanical (MM) parameter values. This pathway is shown to be better behaved for Mg 2+ → Ca 2+ transformations than traditional linear alchemical pathways (with and without soft-core potentials). The PI-TI method has the practical advantage that no modification of the MD code is required to propagate the dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict p K a values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.

  7. A Posteriori Error Bounds for the Empirical Interpolation Method

    DTIC Science & Technology

    2010-03-18

    paramètres (x̄1, x̄2) ≡ µ ∈ DII ≡ [0.4, 0.6]2 et α = 0.1 fixé, les résultats sont similaires au cas d’un seul paramètre (Fig. 2). 1. Introduction...and denote the set of all distinct multi-indices β of dimension P of length I by MPI . The cardinality of MPI is given by card (MPI ) = ( P+I−1 I...operations, and we compute the interpolation errors ‖F (β)(·; τ) − F (β)M (·; τ)‖L∞(Ω), 0 < |β| < p − 1, for all τ ∈ Φ, in O(nΦMN ) ∑p−1 j=0 card (MPj

  8. Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm.

    PubMed

    de las Heras, Hugo; Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph

    2008-01-01

    The robust algorithm OPED for the reconstruction of images from Radon data has been recently developed. This reconstructs an image from parallel data within a special scanning geometry that does not need rebinning but only a simple re-ordering, so that the acquired fan data can be used directly for the reconstruction. However, if the number of rays per fan view is increased, there appear empty cells in the sinogram. These cells need to be filled by interpolation before the reconstruction can be carried out. The present paper analyzes linear interpolation, cubic splines and parametric (or "damped") splines for the interpolation task. The reconstruction accuracy in the resulting images was measured by the Normalized Mean Square Error (NMSE), the Hilbert Angle, and the Mean Relative Error. The spatial resolution was measured by the Modulation Transfer Function (MTF). Cubic splines were confirmed to be the most recommendable method. The reconstructed images resulting from cubic spline interpolation show a significantly lower NMSE than the ones from linear interpolation and have the largest MTF for all frequencies. Parametric splines proved to be advantageous only for small sinograms (below 50 fan views).

  9. Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models

    USGS Publications Warehouse

    Phillips, D.L.; Marks, D.G.

    1996-01-01

    In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated

  10. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different

  11. EBSDinterp 1.0: A MATLAB® Program to Perform Microstructurally Constrained Interpolation of EBSD Data.

    PubMed

    Pearce, Mark A

    2015-08-01

    EBSDinterp is a graphic user interface (GUI)-based MATLAB® program to perform microstructurally constrained interpolation of nonindexed electron backscatter diffraction data points. The area available for interpolation is restricted using variations in pattern quality or band contrast (BC). Areas of low BC are not available for interpolation, and therefore cannot be erroneously filled by adjacent grains "growing" into them. Points with the most indexed neighbors are interpolated first and the required number of neighbors is reduced with each successive round until a minimum number of neighbors is reached. Further iterations allow more data points to be filled by reducing the BC threshold. This method ensures that the best quality points (those with high BC and most neighbors) are interpolated first, and that the interpolation is restricted to grain interiors before adjacent grains are grown together to produce a complete microstructure. The algorithm is implemented through a GUI, taking advantage of MATLAB®'s parallel processing toolbox to perform the interpolations rapidly so that a variety of parameters can be tested to ensure that the final microstructures are robust and artifact-free. The software is freely available through the CSIRO Data Access Portal (doi:10.4225/08/5510090C6E620) as both a compiled Windows executable and as source code.

  12. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  13. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  14. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  15. Using multi-dimensional Smolyak interpolation to make a sum-of-products potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Gustavo, E-mail: Gustavo-Avila@telefonica.net; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca

    2015-07-28

    We propose a new method for obtaining potential energy surfaces in sum-of-products (SOP) form. If the number of terms is small enough, a SOP potential surface significantly reduces the cost of quantum dynamics calculations by obviating the need to do multidimensional integrals by quadrature. The method is based on a Smolyak interpolation technique and uses polynomial-like or spectral basis functions and 1D Lagrange-type functions. When written in terms of the basis functions from which the Lagrange-type functions are built, the Smolyak interpolant has only a modest number of terms. The ideas are tested for HONO (nitrous acid)

  16. Comparing the performance of geostatistical models with additional information from covariates for sewage plume characterization.

    PubMed

    Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia

    2015-04-01

    In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

  17. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  19. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    USGS Publications Warehouse

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra

  20. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  1. On piecewise interpolation techniques for estimating solar radiation missing values in Kedah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2014-12-04

    This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Errormore » (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.« less

  2. Fine-grained sediment spatial distribution on the basis of a geostatistical analysis: Example of the eastern Bay of the Seine (France)

    NASA Astrophysics Data System (ADS)

    Méar, Y.; Poizot, E.; Murat, A.; Lesueur, P.; Thomas, M.

    2006-12-01

    relationship is shown to occur between the amount of fine fraction and the number of brittle-stars (ind. m -2). Classical statistical methods are not appropriate to study the spatial distribution of the mud fraction, because the spatial component of the percentage of the distribution is not integrated in the analysis. On the other hand, this is the main property of the geostatistic concepts. The use of geostatistic tools within a strict and clearly identified procedure enables the proposal of an accurate cartography. Further application of the proposed protocol (based on a semivariographic study and a conditional simulation interpolation) for surficial sediments mapping will help explain spatial and temporal variations of fine-grained fraction. Then assessments of sedimentation and erosion stages allow highlighting signature of environmental processes.

  3. Shape Control in Multivariate Barycentric Rational Interpolation

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa Thang; Cuyt, Annie; Celis, Oliver Salazar

    2010-09-01

    The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the rational interpolant in addition to a polefree region of interest. In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycentric rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in probability distributions, economics, population dynamics, tumor growth models etc.

  4. Effective Interpolation of Incomplete Satellite-Derived Leaf-Area Index Time Series for the Continental United States

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Borak, Jordan S.

    2008-01-01

    Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.

  5. Software for C1 interpolation

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1977-01-01

    The problem of mathematically defining a smooth surface, passing through a finite set of given points is studied. Literature relating to the problem is briefly reviewed. An algorithm is described that first constructs a triangular grid in the (x,y) domain, and first partial derivatives at the modal points are estimated. Interpolation in the triangular cells using a method that gives C sup.1 continuity overall is examined. Performance of software implementing the algorithm is discussed. Theoretical results are presented that provide valuable guidance in the development of algorithms for constructing triangular grids.

  6. Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments

    NASA Astrophysics Data System (ADS)

    Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.

    2015-12-01

    The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide

  7. A Modified Kriging Method to Interpolate the Soil Moisture Measured by Wireless Sensor Network with the Aid of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Q.; Li, X.; Niu, H.; Cai, E.

    2015-12-01

    In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.

  8. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    PubMed

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  9. Quantum interpolation for high-resolution sensing.

    PubMed

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  10. A training image evaluation and selection method based on minimum data event distance for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Feng, Wenjie; Wu, Shenghe; Yin, Yanshu; Zhang, Jiajia; Zhang, Ke

    2017-07-01

    A training image (TI) can be regarded as a database of spatial structures and their low to higher order statistics used in multiple-point geostatistics (MPS) simulation. Presently, there are a number of methods to construct a series of candidate TIs (CTIs) for MPS simulation based on a modeler's subjective criteria. The spatial structures of TIs are often various, meaning that the compatibilities of different CTIs with the conditioning data are different. Therefore, evaluation and optimal selection of CTIs before MPS simulation is essential. This paper proposes a CTI evaluation and optimal selection method based on minimum data event distance (MDevD). In the proposed method, a set of MDevD properties are established through calculation of the MDevD of conditioning data events in each CTI. Then, CTIs are evaluated and ranked according to the mean value and variance of the MDevD properties. The smaller the mean value and variance of an MDevD property are, the more compatible the corresponding CTI is with the conditioning data. In addition, data events with low compatibility in the conditioning data grid can be located to help modelers select a set of complementary CTIs for MPS simulation. The MDevD property can also help to narrow the range of the distance threshold for MPS simulation. The proposed method was evaluated using three examples: a 2D categorical example, a 2D continuous example, and an actual 3D oil reservoir case study. To illustrate the method, a C++ implementation of the method is attached to the paper.

  11. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction.

    PubMed

    Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan

    2017-04-04

    Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  13. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    PubMed

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  14. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Treesearch

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  15. Time-REferenced data Kriging (TREK): mapping hydrological statistics given their time of reference

    NASA Astrophysics Data System (ADS)

    Porcheron, Delphine; Leblois, Etienne; Sauquet, Eric

    2016-04-01

    A major issue in water sciences is to predict runoff parameters at ungauged sites. Estimates can be obtained by various methods. Among them, geostatistical approaches provide interpolation methods that consequently use explicit assumptions on the variable of interest. Geostatistical techniques have been applied to precipitation and temperature fields and later extended to estimate runoff features considered as basin-support variates along the river network (e.g. Gottschalk, 1993; Sauquet et al., 2000; Skoien et al., 2006; Gottschalk et al., 2011). To obtain robust estimations, the first step is to collect a relevant dataset. Sauquet et al. (2000) and Sauquet (2006) suggest including a large number of catchments with long and common observation periods to ensure both reliability and temporal consistency in runoff estimates. However most observation networks evolve with time. Several choices are thus possible to define an optimal reference period maximizing either spatial or temporal overlap. However, the constraints usually lead to discard a significant number of stations. Time-REferenced data Kriging method (TREK) has been developed to overcome this issue. Here is proposed a method of geostatistical estimation considering the temporal support over which a hydrological statistic has been estimated. This allows attenuating the loss of data previously caused by the application of a strict reference period. The time reference remains for the targeted map itself. The weights depend on the observation period of the data included in the dataset and how near this is to the target period. In this presentation, the concepts of TREK will be introduced and thereafter illustrated to map mean annual runoff in France. References Gottschalk, L., 1993, Correlation and covariance of runoff. Stochastic Hydrology and Hydraulics 7(2), 85-101. Sauquet, E., Gottschalk, L. and Leblois, E., 2000, Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation

  16. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.

    PubMed

    Gong, Gordon; Mattevada, Sravan; O'Bryant, Sid E

    2014-04-01

    Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10µg/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (p<0.0001). Correlation coefficient was significantly lower with cokriging than any other methods (p<0.006) for wells in Texas, east Texas or the Edwards aquifer. Correlation coefficient was significantly greater for wells in southwestern Texas Panhandle than in east Texas, and was higher for wells in Ogallala aquifer than in Edwards aquifer (p<0.0001) regardless of interpolation methods. In regression analysis, the best models are when well depth and/or elevation were entered into the model as covariates regardless of area/aquifer or interpolation methods, and models with IDW are better than kriging in any area/aquifer. In conclusion, the accuracy in estimating groundwater arsenic level depends on both interpolation methods and wells' geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular. Published by Elsevier Inc.

  17. An efficient interpolation filter VLSI architecture for HEVC standard

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

    2015-12-01

    The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

  18. Effect of interpolation on parameters extracted from seating interface pressure arrays.

    PubMed

    Wininger, Michael; Crane, Barbara

    2014-01-01

    Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.

  19. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration

    PubMed Central

    Goovaerts, P.; Albuquerque, Teresa; Antunes, Margarida

    2015-01-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R2=0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold’s paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization. PMID:27777638

  20. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based

  1. Objective Interpolation of Scatterometer Winds

    NASA Technical Reports Server (NTRS)

    Tang, Wenquing; Liu, W. Timothy

    1996-01-01

    Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.

  2. Quantum interpolation for high-resolution sensing

    PubMed Central

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-01-01

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy. PMID:28196889

  3. Spatial variability of nutrients (N, P) in a deep, temperate lake with a low trophic level supported by global navigation satellite systems, geographic information system and geostatistics.

    PubMed

    Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel

    2014-01-01

    We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.

  4. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  5. Investigations into the shape-preserving interpolants using symbolic computation

    NASA Technical Reports Server (NTRS)

    Lam, Maria

    1988-01-01

    Shape representation is a central issue in computer graphics and computer-aided geometric design. Many physical phenomena involve curves and surfaces that are monotone (in some directions) or are convex. The corresponding representation problem is given some monotone or convex data, and a monotone or convex interpolant is found. Standard interpolants need not be monotone or convex even though they may match monotone or convex data. Most of the methods of investigation of this problem involve the utilization of quadratic splines or Hermite polynomials. In this investigation, a similar approach is adopted. These methods require derivative information at the given data points. The key to the problem is the selection of the derivative values to be assigned to the given data points. Schemes for choosing derivatives were examined. Along the way, fitting given data points by a conic section has also been investigated as part of the effort to study shape-preserving quadratic splines.

  6. A study on characteristics of retrospective optimal interpolation with WRF testbed

    NASA Astrophysics Data System (ADS)

    Kim, S.; Noh, N.; Lim, G.

    2012-12-01

    This study presents the application of retrospective optimal interpolation (ROI) with Weather Research and Forecasting model (WRF). Song et al. (2009) suggest ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. Song and Lim (2011) improve the method by incorporating eigen-decomposition and covariance inflation. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In this study, ROI method is applied to WRF model to validate the algorithm and to investigate the capability. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance. Using the background error covariance in eigen-space, 1-profile assimilation experiment is performed. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation. The characteristics and strength/weakness of ROI method are investigated by conducting the experiments with other data assimilation method.

  7. Hermite-Birkhoff interpolation in the nth roots of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaretta, A.S. Jr.; Sharma, A.; Varga, R.S.

    1980-06-01

    Consider, as nodes for polynomial interpolation, the nth roots of unity. For a sufficiently smooth function f(z), we require a polynomial p(z) to interpolate f and certain of its derivatives at each node. It is shown that the so-called Polya conditions, which are necessary for unique interpolation, are in this setting also sufficient.

  8. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation

  9. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    PubMed

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound

    NASA Astrophysics Data System (ADS)

    Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    °For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

  11. Geostatistical mapping of effluent-affected sediment distribution on the Palos Verdes shelf

    USGS Publications Warehouse

    Murray, C.J.; Lee, H.J.; Hampton, M.A.

    2002-01-01

    Geostatistical techniques were used to study the spatial continuity of the thickness of effluent-affected sediment in the offshore Palos Verdes Margin area. The thickness data were measured directly from cores and indirectly from high-frequency subbottom profiles collected over the Palos Verdes Margin. Strong spatial continuity of the sediment thickness data was identified, with a maximum range of correlation in excess of 1.4 km. The spatial correlation showed a marked anisotropy, and was more than twice as continuous in the alongshore direction as in the cross-shelf direction. Sequential indicator simulation employing models fit to the thickness data variograms was used to map the distribution of the sediment, and to quantify the uncertainty in those estimates. A strong correlation between sediment thickness data and measurements of the mass of the contaminant p,p???-DDE per unit area was identified. A calibration based on the bivariate distribution of the thickness and p,p???-DDE data was applied using Markov-Bayes indicator simulation to extend the geostatistical study and map the contamination levels in the sediment. Integrating the map grids produced by the geostatistical study of the two variables indicated that 7.8 million m3 of effluent-affected sediment exist in the map area, containing approximately 61-72 Mg (metric tons) of p,p???-DDE. Most of the contaminated sediment (about 85% of the sediment and 89% of the p,p???-DDE) occurs in water depths < 100 m. The geostatistical study also indicated that the samples available for mapping are well distributed and the uncertainty of the estimates of the thickness and contamination level of the sediments is lowest in areas where the contaminated sediment is most prevalent. ?? 2002 Elsevier Science Ltd. All rights reserved.

  12. Minimized-Laplacian residual interpolation for color image demosaicking

    NASA Astrophysics Data System (ADS)

    Kiku, Daisuke; Monno, Yusuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2014-03-01

    A color difference interpolation technique is widely used for color image demosaicking. In this paper, we propose a minimized-laplacian residual interpolation (MLRI) as an alternative to the color difference interpolation, where the residuals are differences between observed and tentatively estimated pixel values. In the MLRI, we estimate the tentative pixel values by minimizing the Laplacian energies of the residuals. This residual image transfor- mation allows us to interpolate more easily than the standard color difference transformation. We incorporate the proposed MLRI into the gradient based threshold free (GBTF) algorithm, which is one of current state-of- the-art demosaicking algorithms. Experimental results demonstrate that our proposed demosaicking algorithm can outperform the state-of-the-art algorithms for the 30 images of the IMAX and the Kodak datasets.

  13. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  14. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that

  15. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    PubMed Central

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  16. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    PubMed

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  17. Catmull-Rom Curve Fitting and Interpolation Equations

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2010-01-01

    Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…

  18. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2017-12-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method

  19. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2018-01-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method

  20. Suitability of Spatial Interpolation Techniques in Varying Aquifer Systems of a Basaltic Terrain for Monitoring Groundwater Availability

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.

    2017-12-01

    Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic

  1. Spatial analysis of hazardous waste data using geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirschky, J.H.

    1984-01-01

    The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By usingmore » kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.« less

  2. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    PubMed Central

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283

  3. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    PubMed

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  4. The algorithms for rational spline interpolation of surfaces

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1986-01-01

    Two algorithms for interpolating surfaces with spline functions containing tension parameters are discussed. Both algorithms are based on the tensor products of univariate rational spline functions. The simpler algorithm uses a single tension parameter for the entire surface. This algorithm is generalized to use separate tension parameters for each rectangular subregion. The new algorithm allows for local control of tension on the interpolating surface. Both algorithms are illustrated and the results are compared with the results of bicubic spline and bilinear interpolation of terrain elevation data.

  5. Constraining geostatistical models with hydrological data to improve prediction realism

    NASA Astrophysics Data System (ADS)

    Demyanov, V.; Rojas, T.; Christie, M.; Arnold, D.

    2012-04-01

    Geostatistical models reproduce spatial correlation based on the available on site data and more general concepts about the modelled patters, e.g. training images. One of the problem of modelling natural systems with geostatistics is in maintaining realism spatial features and so they agree with the physical processes in nature. Tuning the model parameters to the data may lead to geostatistical realisations with unrealistic spatial patterns, which would still honour the data. Such model would result in poor predictions, even though although fit the available data well. Conditioning the model to a wider range of relevant data provide a remedy that avoid producing unrealistic features in spatial models. For instance, there are vast amounts of information about the geometries of river channels that can be used in describing fluvial environment. Relations between the geometrical channel characteristics (width, depth, wave length, amplitude, etc.) are complex and non-parametric and are exhibit a great deal of uncertainty, which is important to propagate rigorously into the predictive model. These relations can be described within a Bayesian approach as multi-dimensional prior probability distributions. We propose a way to constrain multi-point statistics models with intelligent priors obtained from analysing a vast collection of contemporary river patterns based on previously published works. We applied machine learning techniques, namely neural networks and support vector machines, to extract multivariate non-parametric relations between geometrical characteristics of fluvial channels from the available data. An example demonstrates how ensuring geological realism helps to deliver more reliable prediction of a subsurface oil reservoir in a fluvial depositional environment.

  6. Estimating Small-area Populations by Age and Sex Using Spatial Interpolation and Statistical Inference Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qai, Qiang; Rushton, Gerald; Bhaduri, Budhendra L

    The objective of this research is to compute population estimates by age and sex for small areas whose boundaries are different from those for which the population counts were made. In our approach, population surfaces and age-sex proportion surfaces are separately estimated. Age-sex population estimates for small areas and their confidence intervals are then computed using a binomial model with the two surfaces as inputs. The approach was implemented for Iowa using a 90 m resolution population grid (LandScan USA) and U.S. Census 2000 population. Three spatial interpolation methods, the areal weighting (AW) method, the ordinary kriging (OK) method, andmore » a modification of the pycnophylactic method, were used on Census Tract populations to estimate the age-sex proportion surfaces. To verify the model, age-sex population estimates were computed for paired Block Groups that straddled Census Tracts and therefore were spatially misaligned with them. The pycnophylactic method and the OK method were more accurate than the AW method. The approach is general and can be used to estimate subgroup-count types of variables from information in existing administrative areas for custom-defined areas used as the spatial basis of support in other applications.« less

  7. Validating spatial structure in canopy water content using geostatistics

    NASA Technical Reports Server (NTRS)

    Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.

    1995-01-01

    Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.

  8. Image re-sampling detection through a novel interpolation kernel.

    PubMed

    Hilal, Alaa

    2018-06-01

    Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Spatial distribution of Munida intermedia and M. sarsi (crustacea: Anomura) on the Galician continental shelf (NW Spain): Application of geostatistical analysis

    NASA Astrophysics Data System (ADS)

    Freire, J.; González-Gurriarán, E.; Olaso, I.

    1992-12-01

    Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.

  10. Diabat Interpolation for Polymorph Free-Energy Differences.

    PubMed

    Kamat, Kartik; Peters, Baron

    2017-02-02

    Existing methods to compute free-energy differences between polymorphs use harmonic approximations, advanced non-Boltzmann bias sampling techniques, and/or multistage free-energy perturbations. This work demonstrates how Bennett's diabat interpolation method ( J. Comput. Phys. 1976, 22, 245 ) can be combined with energy gaps from lattice-switch Monte Carlo techniques ( Phys. Rev. E 2000, 61, 906 ) to swiftly estimate polymorph free-energy differences. The new method requires only two unbiased molecular dynamics simulations, one for each polymorph. To illustrate the new method, we compute the free-energy difference between face-centered cubic and body-centered cubic polymorphs for a Gaussian core solid. We discuss the justification for parabolic models of the free-energy diabats and similarities to methods that have been used in studies of electron transfer.

  11. Bayesian geostatistics in health cartography: the perspective of malaria.

    PubMed

    Patil, Anand P; Gething, Peter W; Piel, Frédéric B; Hay, Simon I

    2011-06-01

    Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.

  12. Bayesian geostatistics in health cartography: the perspective of malaria

    PubMed Central

    Patil, Anand P.; Gething, Peter W.; Piel, Frédéric B.; Hay, Simon I.

    2011-01-01

    Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision. PMID:21420361

  13. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  14. Application of spatial methods to identify areas with lime requirement in eastern Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Kisic, Ivica; Mesic, Milan; Zgorelec, Zeljka; Percin, Aleksandra; Pereira, Paulo

    2016-04-01

    With more than 50% of acid soils in all agricultural land in Croatia, soil acidity is recognized as a big problem. Low soil pH leads to a series of negative phenomena in plant production and therefore as a compulsory measure for reclamation of acid soils is liming, recommended on the base of soil analysis. The need for liming is often erroneously determined only on the basis of the soil pH, because the determination of cation exchange capacity, the hydrolytic acidity and base saturation is a major cost to producers. Therefore, in Croatia, as well as some other countries, the amount of liming material needed to ameliorate acid soils is calculated by considering their hydrolytic acidity. For this research, several interpolation methods were tested to identify the best spatial predictor of hidrolitic acidity. The purpose of this study was to: test several interpolation methods to identify the best spatial predictor of hidrolitic acidity; and to determine the possibility of using multivariate geostatistics in order to reduce the number of needed samples for determination the hydrolytic acidity, all with an aim that the accuracy of the spatial distribution of liming requirement is not significantly reduced. Soil pH (in KCl) and hydrolytic acidity (Y1) is determined in the 1004 samples (from 0-30 cm) randomized collected in agricultural fields near Orahovica in eastern Croatia. This study tested 14 univariate interpolation models (part of ArcGIS software package) in order to provide most accurate spatial map of hydrolytic acidity on a base of: all samples (Y1 100%), and the datasets with 15% (Y1 85%), 30% (Y1 70%) and 50% fewer samples (Y1 50%). Parallel to univariate interpolation methods, the precision of the spatial distribution of the Y1 was tested by the co-kriging method with exchangeable acidity (pH in KCl) as a covariate. The soils at studied area had an average pH (KCl) 4,81, while the average Y1 10,52 cmol+ kg-1. These data suggest that liming is necessary

  15. An Approach to Unbiased Subsample Interpolation for Motion Tracking

    PubMed Central

    McCormick, Matthew M.; Varghese, Tomy

    2013-01-01

    Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609

  16. An approach to unbiased subsample interpolation for motion tracking.

    PubMed

    McCormick, Matthew M; Varghese, Tomy

    2013-04-01

    Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.

  17. Optimal interpolation and the Kalman filter. [for analysis of numerical weather predictions

    NASA Technical Reports Server (NTRS)

    Cohn, S.; Isaacson, E.; Ghil, M.

    1981-01-01

    The estimation theory of stochastic-dynamic systems is described and used in a numerical study of optimal interpolation. The general form of data assimilation methods is reviewed. The Kalman-Bucy, KB filter, and optimal interpolation (OI) filters are examined for effectiveness in performance as gain matrices using a one-dimensional form of the shallow-water equations. Control runs in the numerical analyses were performed for a ten-day forecast in concert with the OI method. The effects of optimality, initialization, and assimilation were studied. It was found that correct initialization is necessary in order to localize errors, especially near boundary points. Also, the use of small forecast error growth rates over data-sparse areas was determined to offset inaccurate modeling of correlation functions near boundaries.

  18. Optimized Quasi-Interpolators for Image Reconstruction.

    PubMed

    Sacht, Leonardo; Nehab, Diego

    2015-12-01

    We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.

  19. Introduction to this Special Issue on Geostatistics and Scaling of Remote Sensing

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1999-01-01

    The germination of this special PE&RS issue began at the Royal Geographical Society (with the Institute of British Geographers)(RCS-IBC) annual meeting in January, 1997 held at the University of Exeter in Exeter, England. The cold and snow of an England winter were greatly tempered by the friendly and cordial discussions that ensued at the meeting on possible ways to foster both dialog and research across "the Big Pond" between geographers in the US and the UK on the use of geostatistics and geospatial techniques for remote sensing of land surface processes. It was decided that one way to stimulate and enhance cooperation on the application of geostatistics and geospatial methods in remote sensing was to hold parallel sessions on these topics at appropriate meeting venues in 1998 in both the US and the UK Selected papers given at these sessions would be published as a special issue of PE&RS on the US side, and as a special issue of Computers and Geosciences (C&G) on the UK side, to highlight the commonality in research on geostatistics and geospatial methods in remote sensing and spatial data analysis on both sides of the Atlantic Ocean. As a consequence, a session on "Ceostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March, 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). A similar session was held at the RGS-IBG annual meeting in Guildford, Surrey, England in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). The six papers that in part, comprise this issue of PE&RS, are the US complement to such a dual journal publication effort. Both of us are co-editors of each of the journal special issues, with the lead editor of each journal being from their respective side of the Atlantic where the journals are published. The special

  20. CONORBIT: constrained optimization by radial basis function interpolation in trust regions

    DOE PAGES

    Regis, Rommel G.; Wild, Stefan M.

    2016-09-26

    Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less

  1. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  2. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    NASA Astrophysics Data System (ADS)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters

  3. Local Geostatistical Models and Big Data in Hydrological and Ecological Applications

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2015-04-01

    The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property

  4. Chapter J: Issues and challenges in the application of geostatistics and spatial-data analysis to the characterization of sand-and-gravel resources

    USGS Publications Warehouse

    Hack, Daniel R.

    2005-01-01

    Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors

  5. Investigation of interpolation techniques for the reconstruction of the first dimension of comprehensive two-dimensional liquid chromatography-diode array detector data.

    PubMed

    Allen, Robert C; Rutan, Sarah C

    2011-10-31

    Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. An Inverse Interpolation Method Utilizing In-Flight Strain Measurements for Determining Loads and Structural Response of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Shkarayev, S.; Krashantisa, R.; Tessler, A.

    2004-01-01

    An important and challenging technology aimed at the next generation of aerospace vehicles is that of structural health monitoring. The key problem is to determine accurately, reliably, and in real time the applied loads, stresses, and displacements experienced in flight, with such data establishing an information database for structural health monitoring. The present effort is aimed at developing a finite element-based methodology involving an inverse formulation that employs measured surface strains to recover the applied loads, stresses, and displacements in an aerospace vehicle in real time. The computational procedure uses a standard finite element model (i.e., "direct analysis") of a given airframe, with the subsequent application of the inverse interpolation approach. The inverse interpolation formulation is based on a parametric approximation of the loading and is further constructed through a least-squares minimization of calculated and measured strains. This procedure results in the governing system of linear algebraic equations, providing the unknown coefficients that accurately define the load approximation. Numerical simulations are carried out for problems involving various levels of structural approximation. These include plate-loading examples and an aircraft wing box. Accuracy and computational efficiency of the proposed method are discussed in detail. The experimental validation of the methodology by way of structural testing of an aircraft wing is also discussed.

  7. Sandia Unstructured Triangle Tabular Interpolation Package v 0.1 beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-09-24

    The software interpolates tabular data, such as for equations of state, provided on an unstructured triangular grid. In particular, interpolation occurs in a two dimensional space by looking up the triangle in which the desired evaluation point resides and then performing a linear interpolation over the n-tuples associated with the nodes of the chosen triangle. The interface to the interpolation routines allows for automated conversion of units from those tabulated to the desired output units. when multiple tables are included in a data file, new tables may be generated by on-the-fly mixing of the provided tables

  8. Regional soil erosion assessment based on a sample survey and geostatistics

    NASA Astrophysics Data System (ADS)

    Yin, Shuiqing; Zhu, Zhengyuan; Wang, Li; Liu, Baoyuan; Xie, Yun; Wang, Guannan; Li, Yishan

    2018-03-01

    Soil erosion is one of the most significant environmental problems in China. From 2010 to 2012, the fourth national census for soil erosion sampled 32 364 PSUs (Primary Sampling Units, small watersheds) with the areas of 0.2-3 km2. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were surveyed, and the soil loss rate for each land use in the PSUs was estimated using an empirical model, the Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate soil erosion conditions on a large scale; the problem of estimating soil erosion condition on a regional scale has not been addressed well. The aim of this study is to introduce a new model-based regional soil erosion assessment method combining a sample survey and geostatistics. We compared seven spatial interpolation models based on the bivariate penalized spline over triangulation (BPST) method to generate a regional soil erosion assessment from the PSUs. Shaanxi Province (3116 PSUs) in China was selected for the comparison and assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross-validation based on the PSU data showed the model assisted by the land use, rainfall erosivity factor (R), soil erodibility factor (K), slope steepness factor (S), and slope length factor (L) derived from a 1 : 10 000 topography map is the best one, with the model efficiency coefficient (ME) being 0.75 and the MSE being 55.8 % of that for the model assisted by the land use alone. Among four erosion factors as the covariates, the S factor contributed the most information, followed by K and L factors, and R factor made almost no contribution to the spatial estimation of soil loss. The LS factor derived from 30 or 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data

  9. Size-Dictionary Interpolation for Robot's Adjustment.

    PubMed

    Daneshmand, Morteza; Aabloo, Alvo; Anbarjafari, Gholamreza

    2015-01-01

    This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps toward completion of the whole realistic online fitting package is provided.

  10. Geostatistics as a tool to define various categories of resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, R.

    1983-02-01

    Definition of 'measured' and 'indicated' resources tend to be vague. Yet, the calculation of such categories of resources in a mineral deposit calls for specific technical criteria. The author discusses how a geostatistical methodology provides the technical criteria required to classify reasonably assured resources by levels of assurance of their existence.

  11. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  12. Empirical performance of interpolation techniques in risk-neutral density (RND) estimation

    NASA Astrophysics Data System (ADS)

    Bahaludin, H.; Abdullah, M. H.

    2017-03-01

    The objective of this study is to evaluate the empirical performance of interpolation techniques in risk-neutral density (RND) estimation. Firstly, the empirical performance is evaluated by using statistical analysis based on the implied mean and the implied variance of RND. Secondly, the interpolation performance is measured based on pricing error. We propose using the leave-one-out cross-validation (LOOCV) pricing error for interpolation selection purposes. The statistical analyses indicate that there are statistical differences between the interpolation techniques:second-order polynomial, fourth-order polynomial and smoothing spline. The results of LOOCV pricing error shows that interpolation by using fourth-order polynomial provides the best fitting to option prices in which it has the lowest value error.

  13. Joint seismic data denoising and interpolation with double-sparsity dictionary learning

    NASA Astrophysics Data System (ADS)

    Zhu, Lingchen; Liu, Entao; McClellan, James H.

    2017-08-01

    Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.

  14. New families of interpolating type IIB backgrounds

    NASA Astrophysics Data System (ADS)

    Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto

    2010-04-01

    We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are mathbb{T}2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either mathcal{N}=2 or mathcal{N}=1 supersymmetry. In the mathcal{N}=2 case it can be shown that the solutions are regular.

  15. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2003-01-01

    The availability and proper utilization of fluid properties is of fundamental importance in the process of mathematical modeling of propulsion systems. Real fluid properties provide the bridge between the realm of pure analytiis and empirical reality. The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described, for example, in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to be used to facilitate the accurate interpretation of fluid thermodynamic property data generated by existing property packages. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package (based on fundamental equations of state approach). The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  16. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  17. Optimal Interpolation scheme to generate reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco

    2018-05-01

    We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.

  18. Using Chebyshev polynomial interpolation to improve the computational efficiency of gravity models near an irregularly-shaped asteroid

    NASA Astrophysics Data System (ADS)

    Hu, Shou-Cun; Ji, Jiang-Hui

    2017-12-01

    In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes, which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped near-Earth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.

  19. Fitting Curves by Fractal Interpolation: AN Application to the Quantification of Cognitive Brain Processes

    NASA Astrophysics Data System (ADS)

    Navascues, M. A.; Sebastian, M. V.

    Fractal interpolants of Barnsley are defined for any continuous function defined on a real compact interval. The uniform distance between the function and its approximant is bounded in terms of the vertical scale factors. As a general result, the density of the affine fractal interpolation functions of Barnsley in the space of continuous functions in a compact interval is proved. A method of data fitting by means of fractal interpolation functions is proposed. The procedure is applied to the quantification of cognitive brain processes. In particular, the increase in the complexity of the electroencephalographic signal produced by the execution of a test of visual attention is studied. The experiment was performed on two types of children: a healthy control group and a set of children diagnosed with an attention deficit disorder.

  20. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new

  1. Quadratic trigonometric B-spline for image interpolation using GA

    PubMed Central

    Abbas, Samreen; Irshad, Misbah

    2017-01-01

    In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906

  2. Quadratic trigonometric B-spline for image interpolation using GA.

    PubMed

    Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah

    2017-01-01

    In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.

  3. Learning the dynamics of objects by optimal functional interpolation.

    PubMed

    Ahn, Jong-Hoon; Kim, In Young

    2012-09-01

    Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.

  4. 3-d interpolation in object perception: evidence from an objective performance paradigm.

    PubMed

    Kellman, Philip J; Garrigan, Patrick; Shipley, Thomas F; Yin, Carol; Machado, Liana

    2005-06-01

    Object perception requires interpolation processes that connect visible regions despite spatial gaps. Some research has suggested that interpolation may be a 3-D process, but objective performance data and evidence about the conditions leading to interpolation are needed. The authors developed an objective performance paradigm for testing 3-D interpolation and tested a new theory of 3-D contour interpolation, termed 3-D relatability. The theory indicates for a given edge which orientations and positions of other edges in space may be connected to it by interpolation. Results of 5 experiments showed that processing of orientation relations in 3-D relatable displays was superior to processing in 3-D nonrelatable displays and that these effects depended on object formation. 3-D interpolation and 3-D relatabilty are discussed in terms of their implications for computational and neural models of object perception, which have typically been based on 2-D-orientation-sensitive units. ((c) 2005 APA, all rights reserved).

  5. Geostatistical risk estimation at waste disposal sites in the presence of hot spots.

    PubMed

    Komnitsas, Kostas; Modis, Kostas

    2009-05-30

    The present paper aims to estimate risk by using geostatistics at the wider coal mining/waste disposal site of Belkovskaya, Tula region, in Russia. In this area the presence of hot spots causes a spatial trend in the mean value of the random field and a non-Gaussian data distribution. Prior to application of geostatistics, subtraction of trend and appropriate smoothing and transformation of the data into a Gaussian form were carried out; risk maps were then generated for the wider study area in order to assess the probability of exceeding risk thresholds. Finally, the present paper discusses the need for homogenization of soil risk thresholds regarding hazardous elements that will enhance reliability of risk estimation and enable application of appropriate rehabilitation actions in contaminated areas.

  6. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT.

    PubMed

    Veldkamp, Wouter J H; Joemai, Raoul M S; van der Molen, Aart J; Geleijns, Jacob

    2010-02-01

    Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses. The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images. Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found. The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully

  7. A novel power harmonic analysis method based on Nuttall-Kaiser combination window double spectrum interpolated FFT algorithm

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.

    2017-11-01

    Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.

  8. Contour interpolation: A case study in Modularity of Mind.

    PubMed

    Keane, Brian P

    2018-05-01

    In his monograph Modularity of Mind (1983), philosopher Jerry Fodor argued that mental architecture can be partly decomposed into computational organs termed modules, which were characterized as having nine co-occurring features such as automaticity, domain specificity, and informational encapsulation. Do modules exist? Debates thus far have been framed very generally with few, if any, detailed case studies. The topic is important because it has direct implications on current debates in cognitive science and because it potentially provides a viable framework from which to further understand and make hypotheses about the mind's structure and function. Here, the case is made for the modularity of contour interpolation, which is a perceptual process that represents non-visible edges on the basis of how surrounding visible edges are spatiotemporally configured. There is substantial evidence that interpolation is domain specific, mandatory, fast, and developmentally well-sequenced; that it produces representationally impoverished outputs; that it relies upon a relatively fixed neural architecture that can be selectively impaired; that it is encapsulated from belief and expectation; and that its inner workings cannot be fathomed through conscious introspection. Upon differentiating contour interpolation from a higher-order contour representational ability ("contour abstraction") and upon accommodating seemingly inconsistent experimental results, it is argued that interpolation is modular to the extent that the initiating conditions for interpolation are strong. As interpolated contours become more salient, the modularity features emerge. The empirical data, taken as a whole, show that at least certain parts of the mind are modularly organized. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  10. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  11. Sibsonian and non-Sibsonian natural neighbour interpolation of the total electron content value

    NASA Astrophysics Data System (ADS)

    Kotulak, Kacper; Froń, Adam; Krankowski, Andrzej; Pulido, German Olivares; Henrandez-Pajares, Manuel

    2017-03-01

    In radioastronomy the interferometric measurement between radiotelescopes located relatively close to each other helps removing ionospheric effects. Unfortunately, in case of networks such as LOw Frequency ARray (LOFAR), due to long baselines (currently up to 1500 km), interferometric methods fail to provide sufficiently accurate ionosphere delay corrections. Practically it means that systems such as LOFAR need external ionosphere information, coming from Global or Regional Ionospheric Maps (GIMs or RIMs, respectively). Thanks to the technology based on Global Navigation Satellite Systems (GNSS), the scientific community is provided with ionosphere sounding virtually worldwide. In this paper we compare several interpolation methods for RIMs computation based on scattered Vertical Total Electron Content measurements located on one thin ionospheric layer (Ionospheric Pierce Points—IPPs). The results of this work show that methods that take into account the topology of the data distribution (e.g., natural neighbour interpolation) perform better than those based on geometric computation only (e.g., distance-weighted methods).

  12. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks

    PubMed Central

    Mittag, U.; Kriechbaumer, A.; Rittweger, J.

    2017-01-01

    The authors propose a new 3D interpolation algorithm for the generation of digital geometric 3D-models of bones from existing image stacks obtained by peripheral Quantitative Computed Tomography (pQCT) or Magnetic Resonance Imaging (MRI). The technique is based on the interpolation of radial gray value profiles of the pQCT cross sections. The method has been validated by using an ex-vivo human tibia and by comparing interpolated pQCT images with images from scans taken at the same position. A diversity index of <0.4 (1 meaning maximal diversity) even for the structurally complex region of the epiphysis, along with the good agreement of mineral-density-weighted cross-sectional moment of inertia (CSMI), demonstrate the high quality of our interpolation approach. Thus the authors demonstrate that this interpolation scheme can substantially improve the generation of 3D models from sparse scan sets, not only with respect to the outer shape but also with respect to the internal gray-value derived material property distribution. PMID:28574415

  13. [Improvement of Digital Capsule Endoscopy System and Image Interpolation].

    PubMed

    Zhao, Shaopeng; Yan, Guozheng; Liu, Gang; Kuang, Shuai

    2016-01-01

    Traditional capsule image collects and transmits analog image, with weak anti-interference ability, low frame rate, low resolution. This paper presents a new digital image capsule, which collects and transmits digital image, with frame rate up to 30 frames/sec and pixels resolution of 400 x 400. The image is compressed in the capsule, and is transmitted to the outside of the capsule for decompression and interpolation. A new type of interpolation algorithm is proposed, which is based on the relationship between the image planes, to obtain higher quality colour images. capsule endoscopy, digital image, SCCB protocol, image interpolation

  14. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management

    NASA Astrophysics Data System (ADS)

    Yuval; Rimon, Y.; Graber, E. R.; Furman, A.

    2013-07-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanization often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data between points is thus an important tool for supplementing measured data. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range (up to a few orders of magnitude) of values in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. Local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. That inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the Coastal aquifer along the Israeli

  15. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management.

    PubMed

    Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex

    2014-08-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli

  16. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  17. Spatial Estimation of Sub-Hour Global Horizontal Irradiance Based on Official Observations and Remote Sensors

    PubMed Central

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-01-01

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations). PMID:24732102

  18. Spatial estimation of sub-hour Global Horizontal Irradiance based on official observations and remote sensors.

    PubMed

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-04-11

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations).

  19. Bi-cubic interpolation for shift-free pan-sharpening

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Baronti, Stefano; Selva, Massimo; Alparone, Luciano

    2013-12-01

    Most of pan-sharpening techniques require the re-sampling of the multi-spectral (MS) image for matching the size of the panchromatic (Pan) image, before the geometric details of Pan are injected into the MS image. This operation is usually performed in a separable fashion by means of symmetric digital low-pass filtering kernels with odd lengths that utilize piecewise local polynomials, typically implementing linear or cubic interpolation functions. Conversely, constant, i.e. nearest-neighbour, and quadratic kernels, implementing zero and two degree polynomials, respectively, introduce shifts in the magnified images, that are sub-pixel in the case of interpolation by an even factor, as it is the most usual case. However, in standard satellite systems, the point spread functions (PSF) of the MS and Pan instruments are centered in the middle of each pixel. Hence, commercial MS and Pan data products, whose scale ratio is an even number, are relatively shifted by an odd number of half pixels. Filters of even lengths may be exploited to compensate the half-pixel shifts between the MS and Pan sampling grids. In this paper, it is shown that separable polynomial interpolations of odd degrees are feasible with linear-phase kernels of even lengths. The major benefit is that bi-cubic interpolation, which is known to represent the best trade-off between performances and computational complexity, can be applied to commercial MS + Pan datasets, without the need of performing a further half-pixel registration after interpolation, to align the expanded MS with the Pan image.

  20. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  1. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  2. Elastic-wave-mode separation in TTI media with inverse-distance weighted interpolation involving position shading

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Meng, Xiaohong; Zheng, Wanqiu

    2017-10-01

    The elastic-wave reverse-time migration of inhomogeneous anisotropic media is becoming the hotspot of research today. In order to ensure the accuracy of the migration, it is necessary to separate the wave mode into P-wave and S-wave before migration. For inhomogeneous media, the Kelvin-Christoffel equation can be solved in the wave-number domain by using the anisotropic parameters of the mesh nodes, and the polarization vector of the P-wave and S-wave at each node can be calculated and transformed into the space domain to obtain the quasi-differential operators. However, this method is computationally expensive, especially for the process of quasi-differential operators. In order to reduce the computational complexity, the wave-mode separation of mixed domain can be realized on the basis of a reference model in the wave-number domain. But conventional interpolation methods and reference model selection methods reduce the separation accuracy. In order to further improve the separation effect, this paper introduces an inverse-distance interpolation method involving position shading and uses the reference model selection method of random points scheme. This method adds the spatial weight coefficient K, which reflects the orientation of the reference point on the conventional IDW algorithm, and the interpolation process takes into account the combined effects of the distance and azimuth of the reference points. Numerical simulation shows that the proposed method can separate the wave mode more accurately using fewer reference models and has better practical value.

  3. A robust interpolation method for constructing digital elevation models from remote sensing data

    NASA Astrophysics Data System (ADS)

    Chen, Chuanfa; Liu, Fengying; Li, Yanyan; Yan, Changqing; Liu, Guolin

    2016-09-01

    A digital elevation model (DEM) derived from remote sensing data often suffers from outliers due to various reasons such as the physical limitation of sensors and low contrast of terrain textures. In order to reduce the effect of outliers on DEM construction, a robust algorithm of multiquadric (MQ) methodology based on M-estimators (MQ-M) was proposed. MQ-M adopts an adaptive weight function with three-parts. The weight function is null for large errors, one for small errors and quadric for others. A mathematical surface was employed to comparatively analyze the robustness of MQ-M, and its performance was compared with those of the classical MQ and a recently developed robust MQ method based on least absolute deviation (MQ-L). Numerical tests show that MQ-M is comparative to the classical MQ and superior to MQ-L when sample points follow normal and Laplace distributions, and under the presence of outliers the former is more accurate than the latter. A real-world example of DEM construction using stereo images indicates that compared with the classical interpolation methods, such as natural neighbor (NN), ordinary kriging (OK), ANUDEM, MQ-L and MQ, MQ-M has a better ability of preserving subtle terrain features. MQ-M replaces thin plate spline for reference DEM construction to assess the contribution to our recently developed multiresolution hierarchical classification method (MHC). Classifying the 15 groups of benchmark datasets provided by the ISPRS Commission demonstrates that MQ-M-based MHC is more accurate than MQ-L-based and TPS-based MHCs. MQ-M has high potential for DEM construction.

  4. A geostatistical extreme-value framework for fast simulation of natural hazard events

    PubMed Central

    Stephenson, David B.

    2016-01-01

    We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student’s t-process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost. This makes the model viable for forming the hazard module of a catastrophe model. We illustrate the framework by simulating maximum wind gusts for European windstorms, which are found to have realistic marginal and spatial properties, and validate well against wind gust measurements. PMID:27279768

  5. Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador

    NASA Astrophysics Data System (ADS)

    Chicaiza, E. G.; Leiva, C. A.; Arranz, J. J.; Buenańo, X. E.

    2017-06-01

    Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA), trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.

  6. Soil moisture mapping in torrential headwater catchments using a local interpolation method (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Mallet, Florian; Marc, Vincent; Douvinet, Johnny; Rossello, Philippe; Le Bouteiller, Caroline; Malet, Jean-Philippe

    2016-04-01

    Soil moisture is a key parameter that controls runoff processes at the watershed scale. It is characterized by a high area and time variability, controlled by site properties such as soil texture, topography, vegetation cover and climate. Several recent studies showed that changes in water storage was a key variable to understand the distribution of water residence time and the shape of flood's hydrograph (McDonnell and Beven, 2014; Davies and Beven, 2015). Knowledge of high frequency soil moisture variation across scales is a prerequisite for better understanding the areal distribution of runoff generation. The present study has been carried out in the torrential Draix-Bléone's experimental catchments, where water storage processes are expected to occur mainly on the first meter of soil. The 0,86 km2 Laval marly torrential watershed has a peculiar hydrological behavior during flood events with specific discharge among the highest in the world. To better understand the Laval internal behavior and to identify explanatory parameters of runoff generation, additional field equipment has been setup in sub-basins with various land use and morphological characteristics. From fall 2015 onwards this new instrumentation helped to supplement the routine measurements (rainfall rate, streamflow) and to develop a network of high frequency soil water content sensors (moisture probes, mini lysimeter). Data collected since early May and complementary measurement campaigns (itinerant soil moisture measurements, geophysical measurements) make it now possible to propose a soil water content mapping procedure. We use the LISDQS spatial extrapolation model based on a local interpolation method (Joly et. al, 2008). The interpolation is carried out from different geographical variables which are derived from a high resolution DEM (1m LIDAR) and a land cover image. Unlike conventional interpolation procedure, this method takes into account local forcing parameters such as slope, aspect

  7. Delineating Hydrofacies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xuehang; Chen, Xingyuan; Ye, Ming

    2015-07-01

    This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less

  8. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  9. A novel iterative modified bicubic interpolation method enables high-contrast and high-resolution image generation for F-18 FDG-PET.

    PubMed

    Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji

    2017-12-01

    Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  10. Geostatistical screening of flood events in the groundwater levels of the diverted inner delta of the Danube River: implications for river bed clogging

    NASA Astrophysics Data System (ADS)

    Trásy, Balázs; Garamhegyi, Tamás; Laczkó-Dobos, Péter; Kovács, József; Hatvani, István Gábor

    2018-04-01

    The efficient operation of shallow groundwater (SGW) monitoring networks is crucial to water supply, in-land water protection, agriculture and nature conservation. In the present study, the spatial representativity of such a monitoring network in an area that has been thoroughly impacted by anthropogenic activity (river diversion/damming) is assessed, namely the Szigetköz adjacent to the River Danube. The main aims were to assess the spatial representativity of the SGW monitoring network in different discharge scenarios, and investigate the directional characteristics of this representativity, i.e. establish whether geostatistical anisotropy is present, and investigate how this changes with flooding. After the subtraction of a spatial trend from the time series of 85 shallow groundwater monitoring wells tracking flood events from 2006, 2009 and 2013, variography was conducted on the residuals, and the degree of anisotropy was assessed to explore the spatial autocorrelation structure of the network. Since the raw data proved to be insufficient, an interpolated grid was derived, and the final results were scaled to be representative of the original raw data. It was found that during floods the main direction of the spatial variance of the shallow groundwater monitoring wells alters, from perpendicular to the river to parallel with it for over a period of about two week. However, witht the passing of the flood, this returns to its original orientation in 2 months. It is likely that this process is related first to the fast removal of clogged riverbed strata by the flood, then to their slower replacement. In addition, the study highlights the importance of assessing the direction of the spatial autocorrelation structure of shallow groundwater monitoring networks, especially if the aim is to derive interpolated maps for the further investigation or modeling of flow.

  11. Accurate Energy Transaction Allocation using Path Integration and Interpolation

    NASA Astrophysics Data System (ADS)

    Bhide, Mandar Mohan

    This thesis investigates many of the popular cost allocation methods which are based on actual usage of the transmission network. The Energy Transaction Allocation (ETA) method originally proposed by A.Fradi, S.Brigonne and B.Wollenberg which gives unique advantage of accurately allocating the transmission network usage is discussed subsequently. Modified calculation of ETA based on simple interpolation technique is then proposed. The proposed methodology not only increase the accuracy of calculation but also decreases number of calculations to less than half of the number of calculations required in original ETAs.

  12. Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Ling, Ke; Tingting, He

    2017-03-01

    In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.

  13. Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Kurtulus, Bedri; Flipo, Nicolas

    2012-01-01

    The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.

  14. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  15. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  16. 3-D Interpolation in Object Perception: Evidence from an Objective Performance Paradigm

    ERIC Educational Resources Information Center

    Kellman, Philip J.; Garrigan, Patrick; Shipley, Thomas F.; Yin, Carol; Machado, Liana

    2005-01-01

    Object perception requires interpolation processes that connect visible regions despite spatial gaps. Some research has suggested that interpolation may be a 3-D process, but objective performance data and evidence about the conditions leading to interpolation are needed. The authors developed an objective performance paradigm for testing 3-D…

  17. DATASPACE - A PROGRAM FOR THE LOGARITHMIC INTERPOLATION OF TEST DATA

    NASA Technical Reports Server (NTRS)

    Ledbetter, F. E.

    1994-01-01

    Scientists and engineers work with the reduction, analysis, and manipulation of data. In many instances, the recorded data must meet certain requirements before standard numerical techniques may be used to interpret it. For example, the analysis of a linear visoelastic material requires knowledge of one of two time-dependent properties, the stress relaxation modulus E(t) or the creep compliance D(t), one of which may be derived from the other by a numerical method if the recorded data points are evenly spaced or increasingly spaced with respect to the time coordinate. The problem is that most laboratory data are variably spaced, making the use of numerical techniques difficult. To ease this difficulty in the case of stress relaxation data analysis, NASA scientists developed DATASPACE (A Program for the Logarithmic Interpolation of Test Data), to establish a logarithmically increasing time interval in the relaxation data. The program is generally applicable to any situation in which a data set needs increasingly spaced abscissa values. DATASPACE first takes the logarithm of the abscissa values, then uses a cubic spline interpolation routine (which minimizes interpolation error) to create an evenly spaced array from the log values. This array is returned from the log abscissa domain to the abscissa domain and written to an output file for further manipulation. As a result of the interpolation in the log abscissa domain, the data is increasingly spaced. In the case of stress relaxation data, the array is closely spaced at short times and widely spaced at long times, thus avoiding the distortion inherent in evenly spaced time coordinates. The interpolation routine gives results which compare favorably with the recorded data. The experimental data curve is retained and the interpolated points reflect the desired spacing. DATASPACE is written in FORTRAN 77 for IBM PC compatibles with a math co-processor running MS-DOS and Apple Macintosh computers running MacOS. With

  18. Accuracy of stream habitat interpolations across spatial scales

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  19. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.

    PubMed

    Wu, Wei Mo; Wang, Jia Qiang; Cao, Qi; Wu, Jia Ping

    2017-02-01

    Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m×1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Baye-sian geostatistical model to predict SOC content, and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK), sequential Gaussian simulation (SGS), and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g·kg -1 with a mean of 4.36 g·kg -1 and a standard deviation of 1.62 g·kg -1 . Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach, we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK, SGS and IDW, demonstrating the advantages of Bayesian approach in SOC prediction.

  20. Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT

    NASA Astrophysics Data System (ADS)

    Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin

    2011-05-01

    Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.