Using geostatistics to evaluate cleanup goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcon, M.F.; Hopkins, L.P.
1995-12-01
Geostatistical analysis is a powerful predictive tool typically used to define spatial variability in environmental data. The information from a geostatistical analysis using kriging, a geostatistical. tool, can be taken a step further to optimize sampling location and frequency and help quantify sampling uncertainty in both the remedial investigation and remedial design at a hazardous waste site. Geostatistics were used to quantify sampling uncertainty in attainment of a risk-based cleanup goal and determine the optimal sampling frequency necessary to delineate the horizontal extent of impacted soils at a Gulf Coast waste site.
NASA Astrophysics Data System (ADS)
Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.
2013-06-01
Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.
Adapting geostatistics to analyze spatial and temporal trends in weed populations
USDA-ARS?s Scientific Manuscript database
Geostatistics were originally developed in mining to estimate the location, abundance and quality of ore over large areas from soil samples to optimize future mining efforts. Here, some of these methods were adapted to weeds to account for a limited distribution area (i.e., inside a field), variatio...
Grist, Eric P M; Flegg, Jennifer A; Humphreys, Georgina; Mas, Ignacio Suay; Anderson, Tim J C; Ashley, Elizabeth A; Day, Nicholas P J; Dhorda, Mehul; Dondorp, Arjen M; Faiz, M Abul; Gething, Peter W; Hien, Tran T; Hlaing, Tin M; Imwong, Mallika; Kindermans, Jean-Marie; Maude, Richard J; Mayxay, Mayfong; McDew-White, Marina; Menard, Didier; Nair, Shalini; Nosten, Francois; Newton, Paul N; Price, Ric N; Pukrittayakamee, Sasithon; Takala-Harrison, Shannon; Smithuis, Frank; Nguyen, Nhien T; Tun, Kyaw M; White, Nicholas J; Witkowski, Benoit; Woodrow, Charles J; Fairhurst, Rick M; Sibley, Carol Hopkins; Guerin, Philippe J
2016-10-24
Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao
2014-01-01
The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables. PMID:25317762
Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao
2014-10-14
The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.
Sturrock, Hugh J W; Gething, Pete W; Ashton, Ruth A; Kolaczinski, Jan H; Kabatereine, Narcis B; Brooker, Simon
2011-09-01
In schistosomiasis control, there is a need to geographically target treatment to populations at high risk of morbidity. This paper evaluates alternative sampling strategies for surveys of Schistosoma mansoni to target mass drug administration in Kenya and Ethiopia. Two main designs are considered: lot quality assurance sampling (LQAS) of children from all schools; and a geostatistical design that samples a subset of schools and uses semi-variogram analysis and spatial interpolation to predict prevalence in the remaining unsurveyed schools. Computerized simulations are used to investigate the performance of sampling strategies in correctly classifying schools according to treatment needs and their cost-effectiveness in identifying high prevalence schools. LQAS performs better than geostatistical sampling in correctly classifying schools, but at a cost with a higher cost per high prevalence school correctly classified. It is suggested that the optimal surveying strategy for S. mansoni needs to take into account the goals of the control programme and the financial and drug resources available.
2010-08-01
Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, M.; Rouhani, S.
1995-02-01
A typical site investigation entails extensive sampling and monitoring. In the past, sampling plans have been designed on purely ad hoc bases, leading to significant expenditures and, in some cases, collection of redundant information. In many instances, sampling costs exceed the true worth of the collected data. The US Environmental Protection Agency (EPA) therefore has advocated the use of geostatistics to provide a logical framework for sampling and analysis of environmental data. Geostatistical methodology uses statistical techniques for the spatial analysis of a variety of earth-related data. The use of geostatistics was developed by the mining industry to estimate oremore » concentrations. The same procedure is effective in quantifying environmental contaminants in soils for risk assessments. Unlike classical statistical techniques, geostatistics offers procedures to incorporate the underlying spatial structure of the investigated field. Sample points spaced close together tend to be more similar than samples spaced further apart. This can guide sampling strategies and determine complex contaminant distributions. Geostatistic techniques can be used to evaluate site conditions on the basis of regular, irregular, random and even spatially biased samples. In most environmental investigations, it is desirable to concentrate sampling in areas of known or suspected contamination. The rigorous mathematical procedures of geostatistics allow for accurate estimates at unsampled locations, potentially reducing sampling requirements. The use of geostatistics serves as a decision-aiding and planning tool and can significantly reduce short-term site assessment costs, long-term sampling and monitoring needs, as well as lead to more accurate and realistic remedial design criteria.« less
Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale
2016-08-01
Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.
GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES
This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...
NASA Astrophysics Data System (ADS)
Abedini, M. J.; Nasseri, M.; Burn, D. H.
2012-04-01
In any geostatistical study, an important consideration is the choice of an appropriate, repeatable, and objective search strategy that controls the nearby samples to be included in the location-specific estimation procedure. Almost all geostatistical software available in the market puts the onus on the user to supply search strategy parameters in a heuristic manner. These parameters are solely controlled by geographical coordinates that are defined for the entire area under study, and the user has no guidance as to how to choose these parameters. The main thesis of the current study is that the selection of search strategy parameters has to be driven by data—both the spatial coordinates and the sample values—and cannot be chosen beforehand. For this purpose, a genetic-algorithm-based ordinary kriging with moving neighborhood technique is proposed. The search capability of a genetic algorithm is exploited to search the feature space for appropriate, either local or global, search strategy parameters. Radius of circle/sphere and/or radii of standard or rotated ellipse/ellipsoid are considered as the decision variables to be optimized by GA. The superiority of GA-based ordinary kriging is demonstrated through application to the Wolfcamp Aquifer piezometric head data. Assessment of numerical results showed that definition of search strategy parameters based on both geographical coordinates and sample values improves cross-validation statistics when compared with that based on geographical coordinates alone. In the case of a variable search neighborhood for each estimation point, optimization of local search strategy parameters for an elliptical support domain—the orientation of which is dictated by anisotropic axes—via GA was able to capture the dynamics of piezometric head in west Texas/New Mexico in an efficient way.
Geostatistical applications in environmental remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, R.N.; Purucker, S.T.; Lyon, B.F.
1995-02-01
Geostatistical analysis refers to a collection of statistical methods for addressing data that vary in space. By incorporating spatial information into the analysis, geostatistics has advantages over traditional statistical analysis for problems with a spatial context. Geostatistics has a history of success in earth science applications, and its popularity is increasing in other areas, including environmental remediation. Due to recent advances in computer technology, geostatistical algorithms can be executed at a speed comparable to many standard statistical software packages. When used responsibly, geostatistics is a systematic and defensible tool can be used in various decision frameworks, such as the Datamore » Quality Objectives (DQO) process. At every point in the site, geostatistics can estimate both the concentration level and the probability or risk of exceeding a given value. Using these probability maps can assist in identifying clean-up zones. Given any decision threshold and an acceptable level of risk, the probability maps identify those areas that are estimated to be above or below the acceptable risk. Those areas that are above the threshold are of the most concern with regard to remediation. In addition to estimating clean-up zones, geostatistics can assist in designing cost-effective secondary sampling schemes. Those areas of the probability map with high levels of estimated uncertainty are areas where more secondary sampling should occur. In addition, geostatistics has the ability to incorporate soft data directly into the analysis. These data include historical records, a highly correlated secondary contaminant, or expert judgment. The role of geostatistics in environmental remediation is a tool that in conjunction with other methods can provide a common forum for building consensus.« less
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
NASA Astrophysics Data System (ADS)
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically highlight the consideration of conceptual model uncertainty.
Spatial analysis of hazardous waste data using geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zirschky, J.H.
1984-01-01
The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By usingmore » kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.« less
PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization
NASA Astrophysics Data System (ADS)
Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh
2017-05-01
Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.
Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-03-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.
Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-01-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179
The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L.) Link
León Ruiz, Eduardo J.; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered troughout the city and low mountains in the “Sierra de Córdoba” were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to ellaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps. PMID:22629169
The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) link.
León Ruiz, Eduardo J; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered throughout the city and low mountains in the "Sierra de Córdoba" were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to elaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps.
Mine planning and emission control strategies using geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, F.; Kim, Y.C.
1983-03-01
This paper reviews the past four years' research efforts performed jointly by the University of Arizona and the Homer City Owners in which geostatistics were applied to solve various problems associated with coal characterization, mine planning, and development of emission control strategies. Because geostatistics is the only technique which can quantify the degree of confidence associated with a given estimate (or prediction), it played an important role throughout the research efforts. Through geostatistics, it was learned that there is an urgent need for closely spaced sample information, if short-term coal quality predictions are to be made for mine planning purposes.
Assessment of spatial distribution of fallout radionuclides through geostatistics concept.
Mabit, L; Bernard, C
2007-01-01
After introducing geostatistics concept and its utility in environmental science and especially in Fallout Radionuclide (FRN) spatialisation, a case study for cesium-137 ((137)Cs) redistribution at the field scale using geostatistics is presented. On a Canadian agricultural field, geostatistics coupled with a Geographic Information System (GIS) was used to test three different techniques of interpolation [Ordinary Kriging (OK), Inverse Distance Weighting power one (IDW1) and two (IDW2)] to create a (137)Cs map and to establish a radioisotope budget. Following the optimization of variographic parameters, an experimental semivariogram was developed to determine the spatial dependence of (137)Cs. It was adjusted to a spherical isotropic model with a range of 30 m and a very small nugget effect. This (137)Cs semivariogram showed a good autocorrelation (R(2)=0.91) and was well structured ('nugget-to-sill' ratio of 4%). It also revealed that the sampling strategy was adequate to reveal the spatial correlation of (137)Cs. The spatial redistribution of (137)Cs was estimated by Ordinary Kriging and IDW to produce contour maps. A radioisotope budget was established for the 2.16 ha agricultural field under investigation. It was estimated that around 2 x 10(7)Bq of (137)Cs were missing (around 30% of the total initial fallout) and were exported by physical processes (runoff and erosion processes) from the area under investigation. The cross-validation analysis showed that in the case of spatially structured data, OK is a better interpolation method than IDW1 or IDW2 for the assessment of potential radioactive contamination and/or pollution.
Geostatistical modeling of riparian forest microclimate and its implications for sampling
Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.
2011-01-01
Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Júnez-Ferreira, H E; Herrera, G S
2013-04-01
This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Lloyd A.; Paresol, Bernard
This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).
Application of geostatistics to risk assessment.
Thayer, William C; Griffith, Daniel A; Goodrum, Philip E; Diamond, Gary L; Hassett, James M
2003-10-01
Geostatistics offers two fundamental contributions to environmental contaminant exposure assessment: (1) a group of methods to quantitatively describe the spatial distribution of a pollutant and (2) the ability to improve estimates of the exposure point concentration by exploiting the geospatial information present in the data. The second contribution is particularly valuable when exposure estimates must be derived from small data sets, which is often the case in environmental risk assessment. This article addresses two topics related to the use of geostatistics in human and ecological risk assessments performed at hazardous waste sites: (1) the importance of assessing model assumptions when using geostatistics and (2) the use of geostatistics to improve estimates of the exposure point concentration (EPC) in the limited data scenario. The latter topic is approached here by comparing design-based estimators that are familiar to environmental risk assessors (e.g., Land's method) with geostatistics, a model-based estimator. In this report, we summarize the basics of spatial weighting of sample data, kriging, and geostatistical simulation. We then explore the two topics identified above in a case study, using soil lead concentration data from a Superfund site (a skeet and trap range). We also describe several areas where research is needed to advance the use of geostatistics in environmental risk assessment.
Wu, Wei Mo; Wang, Jia Qiang; Cao, Qi; Wu, Jia Ping
2017-02-01
Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m×1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Baye-sian geostatistical model to predict SOC content, and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK), sequential Gaussian simulation (SGS), and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g·kg -1 with a mean of 4.36 g·kg -1 and a standard deviation of 1.62 g·kg -1 . Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach, we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK, SGS and IDW, demonstrating the advantages of Bayesian approach in SOC prediction.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas
2017-12-01
Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.
Random vectors and spatial analysis by geostatistics for geotechnical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.S.
1987-08-01
Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less
Use of geostatistics for remediation planning to transcend urban political boundaries.
Milillo, Tammy M; Sinha, Gaurav; Gardella, Joseph A
2012-11-01
Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial-residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed
Watson, W.D.; Ruppert, L.F.; Bragg, L.J.; Tewalt, S.J.
2001-01-01
The US Geological Survey (USGS) is completing a national assessment of coal resources in the five top coal-producing regions in the US. Point-located data provide measurements on coal thickness and sulfur content. The sample data and their geologic interpretation represent the most regionally complete and up-to-date assessment of what is known about top-producing US coal beds. The sample data are analyzed using a combination of geologic and Geographic Information System (GIS) models to estimate tonnages and qualities of the coal beds. Traditionally, GIS practitioners use contouring to represent geographical patterns of "similar" data values. The tonnage and grade of coal resources are then assessed by using the contour lines as references for interpolation. An assessment taken to this point is only indicative of resource quantity and quality. Data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the sample data. To develop a quantitative approach, geostatistics were applied to the data on coal sulfur content from samples taken in the Pittsburgh coal bed (located in the eastern US, in the southwestern part of the state of Pennsylvania, and in adjoining areas in the states of Ohio and West Virginia). Geostatistical methods that account for regional and local trends were applied to blocks 2.7 mi (4.3 km) on a side. The data and geostatistics support conclusions concerning the average sulfur content and its degree of reliability at regional- and economic-block scale over the large, contiguous part of the Pittsburgh outcrop, but not to a mine scale. To validate the method, a comparison was made with the sulfur contents in sample data taken from 53 coal mines located in the study area. The comparison showed a high degree of similarity between the sulfur content in the mine samples and the sulfur content represented by the geostatistically derived contours. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Hengl, Tomislav
2015-04-01
Efficiency of spatial sampling largely determines success of model building. This is especially important for geostatistical mapping where an initial sampling plan should provide a good representation or coverage of both geographical (defined by the study area mask map) and feature space (defined by the multi-dimensional covariates). Otherwise the model will need to extrapolate and, hence, the overall uncertainty of the predictions will be high. In many cases, geostatisticians use point data sets which are produced using unknown or inconsistent sampling algorithms. Many point data sets in environmental sciences suffer from spatial clustering and systematic omission of feature space. But how to quantify these 'representation' problems and how to incorporate this knowledge into model building? The author has developed a generic function called 'spsample.prob' (Global Soil Information Facilities package for R) and which simultaneously determines (effective) inclusion probabilities as an average between the kernel density estimation (geographical spreading of points; analysed using the spatstat package in R) and MaxEnt analysis (feature space spreading of points; analysed using the MaxEnt software used primarily for species distribution modelling). The output 'iprob' map indicates whether the sampling plan has systematically missed some important locations and/or features, and can also be used as an input for geostatistical modelling e.g. as a weight map for geostatistical model fitting. The spsample.prob function can also be used in combination with the accessibility analysis (cost of field survey are usually function of distance from the road network, slope and land cover) to allow for simultaneous maximization of average inclusion probabilities and minimization of total survey costs. The author postulates that, by estimating effective inclusion probabilities using combined geographical and feature space analysis, and by comparing survey costs to representation efficiency, an optimal initial sampling plan can be produced which satisfies both criteria: (a) good representation (i.e. within a tolerance threshold), and (b) minimized survey costs. This sampling analysis framework could become especially interesting for generating sampling plans in new areas e.g. for which no previous spatial prediction model exists. The presentation includes data processing demos with standard soil sampling data sets Ebergotzen (Germany) and Edgeroi (Australia), also available via the GSIF package.
Goal-oriented Site Characterization in Hydrogeological Applications: An Overview
NASA Astrophysics Data System (ADS)
Nowak, W.; de Barros, F.; Rubin, Y.
2011-12-01
In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.
A practical primer on geostatistics
Olea, Ricardo A.
2009-01-01
The Challenge—Most geological phenomena are extraordinarily complex in their interrelationships and vast in their geographical extension. Ordinarily, engineers and geoscientists are faced with corporate or scientific requirements to properly prepare geological models with measurements involving a small fraction of the entire area or volume of interest. Exact description of a system such as an oil reservoir is neither feasible nor economically possible. The results are necessarily uncertain. Note that the uncertainty is not an intrinsic property of the systems; it is the result of incomplete knowledge by the observer.The Aim of Geostatistics—The main objective of geostatistics is the characterization of spatial systems that are incompletely known, systems that are common in geology. A key difference from classical statistics is that geostatistics uses the sampling location of every measurement. Unless the measurements show spatial correlation, the application of geostatistics is pointless. Ordinarily the need for additional knowledge goes beyond a few points, which explains the display of results graphically as fishnet plots, block diagrams, and maps.Geostatistical Methods—Geostatistics is a collection of numerical techniques for the characterization of spatial attributes using primarily two tools: probabilistic models, which are used for spatial data in a manner similar to the way in which time-series analysis characterizes temporal data, or pattern recognition techniques. The probabilistic models are used as a way to handle uncertainty in results away from sampling locations, making a radical departure from alternative approaches like inverse distance estimation methods.Differences with Time Series—On dealing with time-series analysis, users frequently concentrate their attention on extrapolations for making forecasts. Although users of geostatistics may be interested in extrapolation, the methods work at their best interpolating. This simple difference has significant methodological implications.Historical Remarks—As a discipline, geostatistics was firmly established in the 1960s by the French engineer Georges Matheron, who was interested in the appraisal of ore reserves in mining. Geostatistics did not develop overnight. Like other disciplines, it has built on previous results, many of which were formulated with different objectives in various fields.Pioneers—Seminal ideas conceptually related to what today we call geostatistics or spatial statistics are found in the work of several pioneers, including: 1940s: A.N. Kolmogorov in turbulent flow and N. Wiener in stochastic processing; 1950s: D. Krige in mining; 1960s: B. Mathern in forestry and L.S. Gandin in meteorologyCalculations—Serious applications of geostatistics require the use of digital computers. Although for most geostatistical techniques rudimentary implementation from scratch is fairly straightforward, coding programs from scratch is recommended only as part of a practice that may help users to gain a better grasp of the formulations.Software—For professional work, the reader should employ software packages that have been thoroughly tested to handle any sampling scheme, that run as efficiently as possible, and that offer graphic capabilities for the analysis and display of results. This primer employs primarily the package Stanford Geomodeling Software (SGeMS) - recently developed at the Energy Resources Engineering Department at Stanford University - as a way to show how to obtain results practically. This applied side of the primer should not be interpreted as the notes being a manual for the use of SGeMS. The main objective of the primer is to help the reader gain an understanding of the fundamental concepts and tools in geostatistics.Organization of the Primer—The chapters of greatest importance are those covering kriging and simulation. All other materials are peripheral and are included for better comprehension of these main geostatistical modeling tools. The choice of kriging versus simulation is often a big puzzle to the uninitiated, let alone the different variants of both of them. Chapters 14, 18, and 19 are intended to shed light on those subjects. The critical aspect of assessing and modeling spatial correlation is covered in chapter 7. Chapters 2 and 3 review relevant concepts in classical statistics.Course Objectives—This course offers stochastic solutions to common problems in the characterization of complex geological systems. At the end of the course, participants should have: an understanding of the theoretical foundations of geostatistics; a good grasp of its possibilities and limitations; and reasonable familiarity with the SGeMS software, thus opening the possibility of practically applying geostatistics.
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
Holcomb, David A; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R
2018-06-25
Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modeled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.
NASA Astrophysics Data System (ADS)
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
Saito, Hirotaka; McKenna, Sean A
2007-07-01
An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Linde, Niklas; Jacques, Diederik; Mariethoz, Grégoire
2016-04-01
The sequential geostatistical resampling (SGR) algorithm is a Markov chain Monte Carlo (MCMC) scheme for sampling from possibly non-Gaussian, complex spatially-distributed prior models such as geologic facies or categorical fields. In this work, we highlight the limits of standard SGR for posterior inference of high-dimensional categorical fields with realistically complex likelihood landscapes and benchmark a parallel tempering implementation (PT-SGR). Our proposed PT-SGR approach is demonstrated using synthetic (error corrupted) data from steady-state flow and transport experiments in categorical 7575- and 10,000-dimensional 2D conductivity fields. In both case studies, every SGR trial gets trapped in a local optima while PT-SGR maintains an higher diversity in the sampled model states. The advantage of PT-SGR is most apparent in an inverse transport problem where the posterior distribution is made bimodal by construction. PT-SGR then converges towards the appropriate data misfit much faster than SGR and partly recovers the two modes. In contrast, for the same computational resources SGR does not fit the data to the appropriate error level and hardly produces a locally optimal solution that looks visually similar to one of the two reference modes. Although PT-SGR clearly surpasses SGR in performance, our results also indicate that using a small number (16-24) of temperatures (and thus parallel cores) may not permit complete sampling of the posterior distribution by PT-SGR within a reasonable computational time (less than 1-2 weeks).
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools
NASA Astrophysics Data System (ADS)
Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.
2017-12-01
The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.
Applications of Geostatistics in Plant Nematology
Wallace, M. K.; Hawkins, D. M.
1994-01-01
The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the Ap horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities. PMID:19279938
Applications of geostatistics in plant nematology.
Wallace, M K; Hawkins, D M
1994-12-01
The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the A(p) horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities.
Farias, Paulo R S; Barbosa, José C; Busoli, Antonio C; Overal, William L; Miranda, Vicente S; Ribeiro, Susane M
2008-01-01
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In São Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.
COST-EFFECTIVE SAMPLING FOR SPATIALLY DISTRIBUTED PHENOMENA
Various measures of sampling plan cost and loss are developed and analyzed as they relate to a variety of multidisciplinary sampling techniques. The sampling choices examined include methods from design-based sampling, model-based sampling, and geostatistics. Graphs and tables ar...
Geostatistics, remote sensing and precision farming.
Mulla, D J
1997-01-01
Precision farming is possible today because of advances in farming technology, procedures for mapping and interpolating spatial patterns, and geographic information systems for overlaying and interpreting several soil, landscape and crop attributes. The key component of precision farming is the map showing spatial patterns in field characteristics. Obtaining information for this map is often achieved by soil sampling. This approach, however, can be cost-prohibitive for grain crops. Soil sampling strategies can be simplified by use of auxiliary data provided by satellite or aerial photo imagery. This paper describes geostatistical methods for estimating spatial patterns in soil organic matter, soil test phosphorus and wheat grain yield from a combination of Thematic Mapper imaging and soil sampling.
STATISTICAL SAMPLING AND DATA ANALYSIS
Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...
Bayesian geostatistics in health cartography: the perspective of malaria.
Patil, Anand P; Gething, Peter W; Piel, Frédéric B; Hay, Simon I
2011-06-01
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.
Bayesian geostatistics in health cartography: the perspective of malaria
Patil, Anand P.; Gething, Peter W.; Piel, Frédéric B.; Hay, Simon I.
2011-01-01
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision. PMID:21420361
Goal-Oriented Intelligence in Optimization of Distributed Parameter Systems
2004-08-01
Yarus, and R.L. Chambers, editors, AAPG Computer Applications in geology, No. 3, The American Association of Petroleum Geologists, Tulsa, OK, USA...Stochastic Modeling and Geostatistics – Principles, Methods, and Case Studies, AAPG Computer Applications in geology, No. 3, The American
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Mohd Khairul Bazli Mohd, E-mail: mkbazli@yahoo.com; Yusof, Fadhilah, E-mail: fadhilahy@utm.my; Daud, Zalina Mohd, E-mail: zalina@ic.utm.my
Recently, many rainfall network design techniques have been developed, discussed and compared by many researchers. Present day hydrological studies require higher levels of accuracy from collected data. In numerous basins, the rain gauge stations are located without clear scientific understanding. In this study, an attempt is made to redesign rain gauge network for Johor, Malaysia in order to meet the required level of accuracy preset by rainfall data users. The existing network of 84 rain gauges in Johor is optimized and redesigned into a new locations by using rainfall, humidity, solar radiation, temperature and wind speed data collected during themore » monsoon season (November - February) of 1975 until 2008. This study used the combination of geostatistics method (variance-reduction method) and simulated annealing as the algorithm of optimization during the redesigned proses. The result shows that the new rain gauge location provides minimum value of estimated variance. This shows that the combination of geostatistics method (variance-reduction method) and simulated annealing is successful in the development of the new optimum rain gauge system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, D.J.
1993-10-01
This paper discusses Carol Gotway`s paper, ``The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.`` The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out.
NASA Astrophysics Data System (ADS)
Khodabakhshi, M.; Jafarpour, B.
2013-12-01
Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.
Porosity estimation by semi-supervised learning with sparsely available labeled samples
NASA Astrophysics Data System (ADS)
Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi
2017-09-01
This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.
Lasmar, O; Zanetti, R; dos Santos, A; Fernandes, B V
2012-08-01
One of the fundamental steps in pest sampling is the assessment of the population distribution in the field. Several studies have investigated the distribution and appropriate sampling methods for leaf-cutting ants; however, more reliable methods are still required, such as those that use geostatistics. The objective of this study was to determine the spatial distribution and infestation rate of leaf-cutting ant nests in eucalyptus plantations by using geostatistics. The study was carried out in 2008 in two eucalyptus stands in Paraopeba, Minas Gerais, Brazil. All of the nests in the studied area were located and used for the generation of GIS maps, and the spatial pattern of distribution was determined considering the number and size of nests. Each analysis and map was made using the R statistics program and the geoR package. The nest spatial distribution in a savanna area of Minas Gerais was clustered to a certain extent. The models generated allowed the production of kriging maps of areas infested with leaf-cutting ants, where chemical intervention would be necessary, reducing the control costs, impact on humans, and the environment.
GY SAMPLING THEORY AND GEOSTATISTICS: ALTERNATE MODELS OF VARIABILITY IN CONTINUOUS MEDIA
In the sampling theory developed by Pierre Gy, sample variability is modeled as the sum of a set of seven discrete error components. The variogram used in geostatisties provides an alternate model in which several of Gy's error components are combined in a continuous mode...
NASA Astrophysics Data System (ADS)
Atzberger, C.; Richter, K.
2009-09-01
The robust and accurate retrieval of vegetation biophysical variables using radiative transfer models (RTM) is seriously hampered by the ill-posedness of the inverse problem. With this research we further develop our previously published (object-based) inversion approach [Atzberger (2004)]. The object-based RTM inversion takes advantage of the geostatistical fact that the biophysical characteristics of nearby pixel are generally more similar than those at a larger distance. A two-step inversion based on PROSPECT+SAIL generated look-up-tables is presented that can be easily implemented and adapted to other radiative transfer models. The approach takes into account the spectral signatures of neighboring pixel and optimizes a common value of the average leaf angle (ALA) for all pixel of a given image object, such as an agricultural field. Using a large set of leaf area index (LAI) measurements (n = 58) acquired over six different crops of the Barrax test site, Spain), we demonstrate that the proposed geostatistical regularization yields in most cases more accurate and spatially consistent results compared to the traditional (pixel-based) inversion. Pros and cons of the approach are discussed and possible future extensions presented.
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.
NASA Astrophysics Data System (ADS)
Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria
2017-04-01
Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and response actions, such as designing optimal evacuation routes during flood emergencies. Geostatistical tools also provide a set of interpolation techniques for the prediction of the variable value at unstudied similar locations, basing on the sample point values and other variables related with the measured variable. We attempt different geostatistical interpolation methods to obtain continuous surfaces of the risk perception and level of awareness in the study area. The use of these maps for future extensions and actualizations of the Civil Protection Plan is evaluated. References Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management.Journal of Hydrology.
Karimzadeh, R; Hejazi, M J; Helali, H; Iranipour, S; Mohammadi, S A
2011-10-01
Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is the most serious insect pest of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in Iran. In this study, spatio-temporal distribution of this pest was determined in wheat by using spatial analysis by distance indices (SADIE) and geostatistics. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution of this insect. The study was conducted for three growing seasons in Gharamalek, an agricultural region to the west of Tabriz, Iran. Weekly sampling began when E. integriceps adults migrated to wheat fields from overwintering sites and ended when the new generation adults appeared at the end of season. The adults were sampled using 1- by 1-m quadrat and distance-walk methods. A sweep net was used for sampling the nymphs, and five 180° sweeps were considered as the sampling unit. The results of spatial analyses by using geostatistics and SADIE indicated that E. integriceps adults were clumped after migration to fields and had significant spatial dependency. The second- and third-instar nymphs showed aggregated spatial structure in the middle of growing season. At the end of the season, population distribution changed toward random or regular patterns; and fourth and fifth instars had weaker spatial structure compared with younger nymphs. In Iran, management measures for E. integriceps in wheat fields are mainly applied against overwintering adults, as well as second and third instars. Because of the aggregated distribution of these life stages, site-specific spraying of chemicals is feasible in managing E. integriceps.
NASA Technical Reports Server (NTRS)
Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert
2017-01-01
Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.
[Application of ordinary Kriging method in entomologic ecology].
Zhang, Runjie; Zhou, Qiang; Chen, Cuixian; Wang, Shousong
2003-01-01
Geostatistics is a statistic method based on regional variables and using the tool of variogram to analyze the spatial structure and the patterns of organism. In simulating the variogram within a great range, though optimal simulation cannot be obtained, the simulation method of a dialogue between human and computer can be used to optimize the parameters of the spherical models. In this paper, the method mentioned above and the weighted polynomial regression were utilized to simulate the one-step spherical model, the two-step spherical model and linear function model, and the available nearby samples were used to draw on the ordinary Kriging procedure, which provided a best linear unbiased estimate of the constraint of the unbiased estimation. The sum of square deviation between the estimating and measuring values of varying theory models were figured out, and the relative graphs were shown. It was showed that the simulation based on the two-step spherical model was the best simulation, and the one-step spherical model was better than the linear function model.
Yates, M V; Yates, S R; Warrick, A W; Gerba, C P
1986-01-01
Water samples were collected from 71 public drinking-water supply wells in the Tucson, Ariz., basin. Virus decay rates in the water samples were determined with MS-2 coliphage as a model virus. The correlations between the virus decay rates and the sample locations were shown by fitting a spherical model to the experimental semivariogram. Kriging, a geostatistical technique, was used to calculate virus decay rates at unsampled locations by using the known values at nearby wells. Based on the regional characteristics of groundwater flow and the kriged estimates of virus decay rates, a contour map of the area was constructed. The map shows the variation in separation distances that would have to be maintained between wells and sources of contamination to afford similar degrees of protection from viral contamination of the drinking water in wells throughout the basin. PMID:3532954
NASA Astrophysics Data System (ADS)
Niazi, A.; Bentley, L. R.; Hayashi, M.
2016-12-01
Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.
Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.
Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H
2014-01-10
Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.
Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J
2016-01-01
A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.
NASA Astrophysics Data System (ADS)
Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.
2012-09-01
Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia
2014-01-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
Hevesi, Joseph A.; Istok, Jonathan D.; Flint, Alan L.
1992-01-01
Values of average annual precipitation (AAP) are desired for hydrologic studies within a watershed containing Yucca Mountain, Nevada, a potential site for a high-level nuclear-waste repository. Reliable values of AAP are not yet available for most areas within this watershed because of a sparsity of precipitation measurements and the need to obtain measurements over a sufficient length of time. To estimate AAP over the entire watershed, historical precipitation data and station elevations were obtained from a network of 62 stations in southern Nevada and southeastern California. Multivariate geostatistics (cokriging) was selected as an estimation method because of a significant (p = 0.05) correlation of r = .75 between the natural log of AAP and station elevation. A sample direct variogram for the transformed variable, TAAP = ln [(AAP) 1000], was fitted with an isotropic, spherical model defined by a small nugget value of 5000, a range of 190 000 ft, and a sill value equal to the sample variance of 163 151. Elevations for 1531 additional locations were obtained from topographic maps to improve the accuracy of cokriged estimates. A sample direct variogram for elevation was fitted with an isotropic model consisting of a nugget value of 5500 and three nested transition structures: a Gaussian structure with a range of 61 000 ft, a spherical structure with a range of 70 000 ft, and a quasi-stationary, linear structure. The use of an isotropic, stationary model for elevation was considered valid within a sliding-neighborhood radius of 120 000 ft. The problem of fitting a positive-definite, nonlinear model of coregionalization to an inconsistent sample cross variogram for TAAP and elevation was solved by a modified use of the Cauchy-Schwarz inequality. A selected cross-variogram model consisted of two nested structures: a Gaussian structure with a range of 61 000 ft and a spherical structure with a range of 190 000 ft. Cross validation was used for model selection and for comparing the geostatistical model with six alternate estimation methods. Multivariate geostatistics provided the best cross-validation results.
GEOPACK, a comprehensive user-friendly geostatistical software system, was developed to help in the analysis of spatially correlated data. The software system was developed to be used by scientists, engineers, regulators, etc., with little experience in geostatistical techniques...
Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models
NASA Astrophysics Data System (ADS)
Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.
2013-12-01
We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.
Laganà, Pasqualina; Moscato, Umberto; Poscia, Andrea; La Milia, Daniele Ignazio; Boccia, Stefania; Avventuroso, Emanuela; Delia, Santi
2015-01-01
Legionnaires' disease is normally acquired by inhalation of legionellae from a contaminated environmental source. Water systems of large buildings, such as hospitals, are often contaminated with legionellae and therefore represent a potential risk for the hospital population. The aim of this study was to evaluate the potential contamination of Legionella pneumophila (LP) in a large hospital in Italy through georeferential statistical analysis to assess the possible sources of dispersion and, consequently, the risk of exposure for both health care staff and patients. LP serogroups 1 and 2-14 distribution was considered in the wards housed on two consecutive floors of the hospital building. On the basis of information provided by 53 bacteriological analysis, a 'random' grid of points was chosen and spatial geostatistics or FAIk Kriging was applied and compared with the results of classical statistical analysis. Over 50% of the examined samples were positive for Legionella pneumophila. LP 1 was isolated in 69% of samples from the ground floor and in 60% of sample from the first floor; LP 2-14 in 36% of sample from the ground floor and 24% from the first. The iso-estimation maps show clearly the most contaminated pipe and the difference in the diffusion of the different L. pneumophila serogroups. Experimental work has demonstrated that geostatistical methods applied to the microbiological analysis of water matrices allows a better modeling of the phenomenon under study, a greater potential for risk management and a greater choice of methods of prevention and environmental recovery to be put in place with respect to the classical statistical analysis.
Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.
Monestiez, P; Goulard, M; Charmet, G
1994-04-01
Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.
Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming
2008-12-01
One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.
Geostatistics and petroleum geology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.
1988-01-01
This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.
A comprehensive, user-friendly geostatistical software system called GEOPACk has been developed. The purpose of this software is to make available the programs necessary to undertake a geostatistical analysis of spatially correlated data. The programs were written so that they ...
Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia
2015-04-01
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
NASA Astrophysics Data System (ADS)
Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang
2010-05-01
Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The applicability and advantages are shown in a synthetic example. Therefor, we consider a contaminant source, posing a threat on a drinking water well in an aquifer. Furthermore, we assume uncertainty in geostatistical parameters, boundary conditions and hydraulic gradient. The two mentioned measures evaluate the sensitivity of (1) general prediction confidence and (2) exceedance probability of a legal regulatory threshold value on sampling locations.
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variogram plays a crucial role in remote sensing application and geostatistics. It is very important to estimate variogram reliably from sufficient data. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100x100-pixel subset was chosen from ...
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...
Martins, Júlio C; Picanço, Marcelo C; Silva, Ricardo S; Gonring, Alfredo Hr; Galdino, Tarcísio Vs; Guedes, Raul Nc
2018-01-01
The spatial distribution of insects is due to the interaction between individuals and the environment. Knowledge about the within-field pattern of spatial distribution of a pest is critical to planning control tactics, developing efficient sampling plans, and predicting pest damage. The leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the main pest of tomato crops in several regions of the world. Despite the importance of this pest, the pattern of spatial distribution of T. absoluta on open-field tomato cultivation remains unknown. Therefore, this study aimed to characterize the spatial distribution of T. absoluta in 22 commercial open-field tomato cultivations with plants at the three phenological development stages by using geostatistical analysis. Geostatistical analysis revealed that there was strong evidence for spatially dependent (aggregated) T. absoluta eggs in 19 of the 22 sample tomato cultivations. The maps that were obtained demonstrated the aggregated structure of egg densities at the edges of the crops. Further, T. absoluta was found to accomplish egg dispersal along the rows more frequently than it does between rows. Our results indicate that the greatest egg densities of T. absoluta occur at the edges of tomato crops. These results are discussed in relation to the behavior of T. absoluta distribution within fields and in terms of their implications for improved sampling guidelines and precision targeting control methods that are essential for effective pest monitoring and management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Geostatistical mapping of effluent-affected sediment distribution on the Palos Verdes shelf
Murray, C.J.; Lee, H.J.; Hampton, M.A.
2002-01-01
Geostatistical techniques were used to study the spatial continuity of the thickness of effluent-affected sediment in the offshore Palos Verdes Margin area. The thickness data were measured directly from cores and indirectly from high-frequency subbottom profiles collected over the Palos Verdes Margin. Strong spatial continuity of the sediment thickness data was identified, with a maximum range of correlation in excess of 1.4 km. The spatial correlation showed a marked anisotropy, and was more than twice as continuous in the alongshore direction as in the cross-shelf direction. Sequential indicator simulation employing models fit to the thickness data variograms was used to map the distribution of the sediment, and to quantify the uncertainty in those estimates. A strong correlation between sediment thickness data and measurements of the mass of the contaminant p,p???-DDE per unit area was identified. A calibration based on the bivariate distribution of the thickness and p,p???-DDE data was applied using Markov-Bayes indicator simulation to extend the geostatistical study and map the contamination levels in the sediment. Integrating the map grids produced by the geostatistical study of the two variables indicated that 7.8 million m3 of effluent-affected sediment exist in the map area, containing approximately 61-72 Mg (metric tons) of p,p???-DDE. Most of the contaminated sediment (about 85% of the sediment and 89% of the p,p???-DDE) occurs in water depths < 100 m. The geostatistical study also indicated that the samples available for mapping are well distributed and the uncertainty of the estimates of the thickness and contamination level of the sediments is lowest in areas where the contaminated sediment is most prevalent. ?? 2002 Elsevier Science Ltd. All rights reserved.
Hack, Daniel R.
2005-01-01
Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors as common drilling methods jeopardizing the accuracy of the size-distribution curve, the application of formal geostatistical principles has other limitations. Many of the variables used in evaluating gravel deposits, including such sedimentologic parameters as sorting and such United Soil Classification System parameters as gradation coefficient, are nonadditive. Also, uniform sampling methods, such as drilling, are relatively uncommon, and sampling is generally accomplished by a combination of boreholes, water-well logs, test pits, trenches, stratigraphic columns from exposures, and, possibly, some geophysical cross sections. When evaluated in consideration of the fact that uniform mining blocks are also uncommon in practice, subsequent complexities in establishment of the volume/variance relation are inevitable. Several approaches exist to confront the limitations of geostatistical methods in evaluating sand-and-gravel deposits. Initially, we must acknowledge the practical requirements of the aggregate industry, as well as the limitations of the data collected by that industry, as a function of what the industry requires at the practical level, and consider that broader acceptance of formal geostatistics may require modifications of typical exploration and sampling protocols. Future investigations should utilize data from the full spectrum of sand-and-gravel deposits (flood plain, glacial, catastrophic flood, and marine), integrate such other disci plines as sedimentology and geophysics into the research, develop commodity-specific approaches to nonadditive variables, and include the results of comparative drilling.
Breast Carcinoma, Intratumour Heterogeneity and Histological Grading, Using Geostatistics
Sharifi‐Salamatian, Vénus; de Roquancourt, Anne; Rigaut, Jean Paul
2000-01-01
Tumour progression is currently believed to result from genetic instability. Chromosomal patterns specific of a type of cancer are frequent even though phenotypic spatial heterogeneity is omnipresent. The latter is the usual cause of histological grading imprecision, a well documented problem, without any fully satisfactory solution up to now. The present article addresses this problem in breast carcinoma. The assessment of a genetic marker for human tumours requires quantifiable measures of intratumoral heterogeneity. If any invariance paradigm representing a stochastic or geostatistic function could be discovered, this might help in solving the grading problem. A novel methodological approach using geostatistics to measure heterogeneity is used. Twenty tumours from the three usual (Scarff‐Bloom and Richardson) grades were obtained and paraffin sections stained by MIB‐1 (Ki‐67) and peroxidase staining. Whole two‐dimensional sections were sampled. Morphometric grids of variable sizes allowed a simple and fast recording of positions of epithelial nuclei, marked or not by MIB‐1. The geostatistical method is based here upon the asymptotic behaviour of dispersion variance. Measure of asymptotic exponent of dispersion variance shows an increase from grade 1 to grade 3. Preliminary results are encouraging: grades 1 and 3 on one hand and 2 and 3 on the other hand are totally separated. The final proof of an improved grading using this measure will of course require a confrontation with the results of survival studies. PMID:11153611
Breast carcinoma, intratumour heterogeneity and histological grading, using geostatistics.
Sharifi-Salamatian, V; de Roquancourt, A; Rigaut, J P
2000-01-01
Tumour progression is currently believed to result from genetic instability. Chromosomal patterns specific of a type of cancer are frequent even though phenotypic spatial heterogeneity is omnipresent. The latter is the usual cause of histological grading imprecision, a well documented problem, without any fully satisfactory solution up to now. The present article addresses this problem in breast carcinoma. The assessment of a genetic marker for human tumours requires quantifiable measures of intratumoral heterogeneity. If any invariance paradigm representing a stochastic or geostatistic function could be discovered, this might help in solving the grading problem. A novel methodological approach using geostatistics to measure heterogeneity is used. Twenty tumours from the three usual (Scarff-Bloom and Richardson) grades were obtained and paraffin sections stained by MIB-1 (Ki-67) and peroxidase staining. Whole two-dimensional sections were sampled. Morphometric grids of variable sizes allowed a simple and fast recording of positions of epithelial nuclei, marked or not by MIB-1. The geostatistical method is based here upon the asymptotic behaviour of dispersion variance. Measure of asymptotic exponent of dispersion variance shows an increase from grade 1 to grade 3. Preliminary results are encouraging: grades 1 and 3 on one hand and 2 and 3 on the other hand are totally separated. The final proof of an improved grading using this measure will of course require a confrontation with the results of survival studies.
Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D
2017-10-01
Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Vogel, J.R.; Brown, G.O.
2003-01-01
Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.
NASA Astrophysics Data System (ADS)
Hoerning, Sebastian; Bardossy, Andras; du Plessis, Jaco
2017-04-01
Most geostatistical inverse groundwater flow and transport modelling approaches utilize a numerical solver to minimize the discrepancy between observed and simulated hydraulic heads and/or hydraulic concentration values. The optimization procedure often requires many model runs, which for complex models lead to long run times. Random Mixing is a promising new geostatistical technique for inverse modelling. The method is an extension of the gradual deformation approach. It works by finding a field which preserves the covariance structure and maintains observed hydraulic conductivities. This field is perturbed by mixing it with new fields that fulfill the homogeneous conditions. This mixing is expressed as an optimization problem which aims to minimize the difference between the observed and simulated hydraulic heads and/or concentration values. To preserve the spatial structure, the mixing weights must lie on the unit hyper-sphere. We present a modification to the Random Mixing algorithm which significantly reduces the number of model runs required. The approach involves taking n equally spaced points on the unit circle as weights for mixing conditional random fields. Each of these mixtures provides a solution to the forward model at the conditioning locations. For each of the locations the solutions are then interpolated around the circle to provide solutions for additional mixing weights at very low computational cost. The interpolated solutions are used to search for a mixture which maximally reduces the objective function. This is in contrast to other approaches which evaluate the objective function for the n mixtures and then interpolate the obtained values. Keeping the mixture on the unit circle makes it easy to generate equidistant sampling points in the space; however, this means that only two fields are mixed at a time. Once the optimal mixture for two fields has been found, they are combined to form the input to the next iteration of the algorithm. This process is repeated until a threshold in the objective function is met or insufficient changes are produced in successive iterations.
NASA Astrophysics Data System (ADS)
Andrews, A. E.
2016-12-01
CarbonTracker-Lagrange (CT-L) is a flexible modeling framework developed to take advantage of newly available atmospheric data for CO2 and other long-lived gases such as CH4 and N2O. The North American atmospheric CO2 measurement network has grown from three sites in 2004 to >100 sites in 2015. The US network includes tall tower, mountaintop, surface, and aircraft sites in the NOAA Global Greenhouse Gas Reference Network along with sites maintained by university, government and private sector researchers. The Canadian network is operated by Environment and Climate Change Canada. This unprecedented dataset can provide spatially and temporally resolved CO2 emissions and uptake flux estimates and quantitative information about drivers of variability, such as drought and temperature. CT-L is a platform for systematic comparison of data assimilation techniques and evaluation of assumed prior, model and observation errors. A novel feature of CT-L is the optimization of boundary values along with surface fluxes, leveraging vertically resolved data available from NOAA's aircraft sampling program. CT-L uses observation footprints (influence functions) from the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) modeling system to relate atmospheric measurements to upwind fluxes and boundary values. Footprints are pre-computed and the optimization algorithms are efficient, so many variants of the calculation can be performed. Fluxes are adjusted using Bayesian or Geostatistical methods to provide optimal agreement with observations. Satellite measurements of CO2 and CH4 from GOSAT are available starting in July 2009 and from OCO-2 since September 2014. With support from the NASA Carbon Monitoring System, we are developing flux estimation strategies that use remote sensing and in situ data together, including geostatistical inversions using satellite retrievals of solar-induced chlorophyll fluorescence. CT-L enables quantitative investigation of what new measurements would best complement the existing carbon observing system. We are also working to implement multi-species inversions for CO2 flux estimation using CO2 data along with CO, δ13CO2, COS and radiocarbon observations and for CH4 flux estimation using data for various hydrocarbons.
NASA Astrophysics Data System (ADS)
Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.
2010-12-01
Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.
El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F
2007-02-01
We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.
Validating spatial structure in canopy water content using geostatistics
NASA Technical Reports Server (NTRS)
Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.
1995-01-01
Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.
NASA Astrophysics Data System (ADS)
Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.
2007-06-01
Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.
NASA Astrophysics Data System (ADS)
Babcock, Chad; Finley, Andrew O.; Andersen, Hans-Erik; Pattison, Robert; Cook, Bruce D.; Morton, Douglas C.; Alonzo, Michael; Nelson, Ross; Gregoire, Timothy; Ene, Liviu; Gobakken, Terje; Næsset, Erik
2018-06-01
The goal of this research was to develop and examine the performance of a geostatistical coregionalization modeling approach for combining field inventory measurements, strip samples of airborne lidar and Landsat-based remote sensing data products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed modeling strategy facilitates pixel-level mapping of AGB density predictions across the entire spatial domain. Additionally, the coregionalization framework allows for statistically sound estimation of total AGB for arbitrary areal units within the study area---a key advance to support diverse management objectives in interior Alaska. This research focuses on appropriate characterization of prediction uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the framework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from pixel-level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed coregionalization models consistently outperformed their counterpart lidar-free models in terms of point-level predictive performance and total AGB precision. Additionally, the inclusion of Landsat-derived forest cover as a covariate further improved estimation precision in regions with lower lidar sampling intensity. Our findings also demonstrate that model-based approaches that do not explicitly account for residual spatial dependence can grossly underestimate uncertainty, resulting in falsely precise estimates of AGB. On the other hand, in a geostatistical setting, residual spatial structure can be modeled within a Bayesian hierarchical framework to obtain statistically defensible assessments of uncertainty for AGB estimates.
NASA Astrophysics Data System (ADS)
Kitanidis, P. K.
1997-05-01
Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.
Application of geostatistics to coal-resource characterization and mine planning. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, P.W.; Walton, D.R.; Martuneac, L.
1981-12-01
Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future researchmore » and demonstration projects.« less
Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...
Reservoir property grids improve with geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, J.
1993-09-01
Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resultingmore » grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.« less
ON THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM. (R825689C037)
The geostatistical approach to the inverse problem is discussed with emphasis on the importance of structural analysis. Although the geostatistical approach is occasionally misconstrued as mere cokriging, in fact it consists of two steps: estimation of statist...
Time-REferenced data Kriging (TREK): mapping hydrological statistics given their time of reference
NASA Astrophysics Data System (ADS)
Porcheron, Delphine; Leblois, Etienne; Sauquet, Eric
2016-04-01
A major issue in water sciences is to predict runoff parameters at ungauged sites. Estimates can be obtained by various methods. Among them, geostatistical approaches provide interpolation methods that consequently use explicit assumptions on the variable of interest. Geostatistical techniques have been applied to precipitation and temperature fields and later extended to estimate runoff features considered as basin-support variates along the river network (e.g. Gottschalk, 1993; Sauquet et al., 2000; Skoien et al., 2006; Gottschalk et al., 2011). To obtain robust estimations, the first step is to collect a relevant dataset. Sauquet et al. (2000) and Sauquet (2006) suggest including a large number of catchments with long and common observation periods to ensure both reliability and temporal consistency in runoff estimates. However most observation networks evolve with time. Several choices are thus possible to define an optimal reference period maximizing either spatial or temporal overlap. However, the constraints usually lead to discard a significant number of stations. Time-REferenced data Kriging method (TREK) has been developed to overcome this issue. Here is proposed a method of geostatistical estimation considering the temporal support over which a hydrological statistic has been estimated. This allows attenuating the loss of data previously caused by the application of a strict reference period. The time reference remains for the targeted map itself. The weights depend on the observation period of the data included in the dataset and how near this is to the target period. In this presentation, the concepts of TREK will be introduced and thereafter illustrated to map mean annual runoff in France. References Gottschalk, L., 1993, Correlation and covariance of runoff. Stochastic Hydrology and Hydraulics 7(2), 85-101. Sauquet, E., Gottschalk, L. and Leblois, E., 2000, Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal 45(6), 799-815. Skoien, J.O., Merz, R. and Bloschl, G., 2006, Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences 10(2), 277-287. Gottschalk, L., Leblois, E. and Skoien, J.O., 2011, Correlation and covariance of runoff revisited. Journal of Hydrology 398(1-2), 76-90. Sauquet, E., 2006, Mapping mean annual river discharges: Geostatistical developments for incorporating river network dependencies. Journal of Hydrology 331(1-2), 300-314.
NASA Astrophysics Data System (ADS)
Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.
2012-12-01
Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty estimates. The method is demonstrated on a Danish field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the co-simulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin
2015-12-01
Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.
Garcia, A G; Araujo, M R; Uramoto, K; Walder, J M M; Zucchi, R A
2017-12-08
Fruit flies are among the most damaging insect pests of commercial fruit in Brazil. It is important to understand the landscape elements that may favor these flies. In the present study, spatial data from surveys of species of Anastrepha Schiner (Diptera: Tephritidae) in an urban area with forest fragments were analyzed, using geostatistics and Geographic Information System (GIS) to map the diversity of insects and evaluate how the forest fragments drive the spatial patterns. The results indicated a high diversity of species associated with large fragments, and a trend toward lower diversity in the more urbanized area, as the fragment sizes decreased. We concluded that the diversity of Anastrepha species is directly and positively related to large and continuous forest fragments in urbanized areas, and that combining geostatistics and GIS is a promising method for use in insect-pest management and sampling involving fruit flies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stochastic hydrogeology: what professionals really need?
Renard, Philippe
2007-01-01
Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, K.M.
1992-10-01
Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the characterization of uncertainty about the structure or behavior of natural systems. This report discusses a simulation experiment designed to study the quality of uncertainty bounds generated using SIS. The results indicate that, while SIS may produce reasonable uncertainty bounds in many situations, factors like the number and location of available sample data, the quality of variogram models produced by the user, and the characteristics of the geologic region to be modeled, can all have substantial effects on the accuracy and precision of estimated confidence limits. It ismore » recommended that users of SIS conduct validation studies for the technique on their particular regions of interest before accepting the output uncertainty bounds.« less
Komnitsas, Kostas; Modis, Kostas
2006-12-01
The present paper aims to map As and Zn contamination and assess the risk for agricultural soils in a wider disposal site containing wastes derived from coal beneficiation. Geochemical data related to environmental studies show that the waste characteristics favor solubilisation and mobilization of inorganic contaminants and in some cases the generation of acidic leachates. 135 soil samples were collected from a 34 km(2) area and analysed by using geostatistics under the maximum entropy principle in order to produce risk assessment maps and estimate the probability of soil contamination. In addition, the present paper discusses the main issues related to risk assessment in wider mining and waste disposal sites in order to assist decision makers in selecting feasible rehabilitation schemes.
A statistical evaluation of non-ergodic variogram estimators
Curriero, F.C.; Hohn, M.E.; Liebhold, A.M.; Lele, S.R.
2002-01-01
Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.
A Simulated Annealing based Optimization Algorithm for Automatic Variogram Model Fitting
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Safa, Mohammad
2016-09-01
Fitting a theoretical model to an experimental variogram is an important issue in geostatistical studies because if the variogram model parameters are tainted with uncertainty, the latter will spread in the results of estimations and simulations. Although the most popular fitting method is fitting by eye, in some cases use is made of the automatic fitting method on the basis of putting together the geostatistical principles and optimization techniques to: 1) provide a basic model to improve fitting by eye, 2) fit a model to a large number of experimental variograms in a short time, and 3) incorporate the variogram related uncertainty in the model fitting. Effort has been made in this paper to improve the quality of the fitted model by improving the popular objective function (weighted least squares) in the automatic fitting. Also, since the variogram model function (£) and number of structures (m) too affect the model quality, a program has been provided in the MATLAB software that can present optimum nested variogram models using the simulated annealing method. Finally, to select the most desirable model from among the single/multi-structured fitted models, use has been made of the cross-validation method, and the best model has been introduced to the user as the output. In order to check the capability of the proposed objective function and the procedure, 3 case studies have been presented.
Geostatistics and petroleum geology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.
1988-01-01
The book reviewed is designed as a practical guide to geostatistics or kriging for the petroleum geologists. The author's aim in the book is to explain geostatistics as a working tool for petroleum geologists through extensive use of case-study material mostly drawn from his own research in gas potential evaluation in West Virginia. Theory and mathematics are pared down to immediate needs.
Peter R. Robichaud
1997-01-01
Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...
NASA Astrophysics Data System (ADS)
Ruggeri, Paolo; Irving, James; Holliger, Klaus
2015-08-01
We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.
Multiple indicator cokriging with application to optimal sampling for environmental monitoring
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Dowd, Peter A.
2005-02-01
A probabilistic solution to the problem of spatial interpolation of a variable at an unsampled location consists of estimating the local cumulative distribution function (cdf) of the variable at that location from values measured at neighbouring locations. As this distribution is conditional to the data available at neighbouring locations it incorporates the uncertainty of the value of the variable at the unsampled location. Geostatistics provides a non-parametric solution to such problems via the various forms of indicator kriging. In a least squares sense indicator cokriging is theoretically the best estimator but in practice its use has been inhibited by problems such as an increased number of violations of order relations constraints when compared with simpler forms of indicator kriging. In this paper, we describe a methodology and an accompanying computer program for estimating a vector of indicators by simple indicator cokriging, i.e. simultaneous estimation of the cdf for K different thresholds, {F(u,zk),k=1,…,K}, by solving a unique cokriging system for each location at which an estimate is required. This approach produces a variance-covariance matrix of the estimated vector of indicators which is used to fit a model to the estimated local cdf by logistic regression. This model is used to correct any violations of order relations and automatically ensures that all order relations are satisfied, i.e. the estimated cumulative distribution function, F^(u,zk), is such that: F^(u,zk)∈[0,1],∀zk,andF^(u,zk)⩽F^(u,z)forzk
Niazi, Nabeel K; Bishop, Thomas F A; Singh, Balwant
2011-12-15
This study investigated the spatial variability of total and phosphate-extractable arsenic (As) concentrations in soil adjacent to a cattle-dip site, employing a linear mixed model-based geostatistical approach. The soil samples in the study area (n = 102 in 8.1 m(2)) were taken at the nodes of a 0.30 × 0.35 m grid. The results showed that total As concentration (0-0.2 m depth) and phosphate-extractable As concentration (at depths of 0-0.2, 0.2-0.4, and 0.4-0.6 m) in soil adjacent to the dip varied greatly. Both total and phosphate-extractable soil As concentrations significantly (p = 0.004-0.048) increased toward the cattle-dip. Using the linear mixed model, we suggest that 5 samples are sufficient to assess a dip site for soil (As) contamination (95% confidence interval of ±475.9 mg kg(-1)), but 15 samples (95% confidence interval of ±212.3 mg kg(-1)) is desirable baseline when the ultimate goal is to evaluate the effects of phytoremediation. Such guidelines on sampling requirements are crucial for the assessment of As contamination levels at other cattle-dip sites, and to determine the effect of phytoremediation on soil As.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791
Juang, K W; Lee, D Y; Ellsworth, T R
2001-01-01
The spatial distribution of a pollutant in contaminated soils is usually highly skewed. As a result, the sample variogram often differs considerably from its regional counterpart and the geostatistical interpolation is hindered. In this study, rank-order geostatistics with standardized rank transformation was used for the spatial interpolation of pollutants with a highly skewed distribution in contaminated soils when commonly used nonlinear methods, such as logarithmic and normal-scored transformations, are not suitable. A real data set of soil Cd concentrations with great variation and high skewness in a contaminated site of Taiwan was used for illustration. The spatial dependence of ranks transformed from Cd concentrations was identified and kriging estimation was readily performed in the standardized-rank space. The estimated standardized rank was back-transformed into the concentration space using the middle point model within a standardized-rank interval of the empirical distribution function (EDF). The spatial distribution of Cd concentrations was then obtained. The probability of Cd concentration being higher than a given cutoff value also can be estimated by using the estimated distribution of standardized ranks. The contour maps of Cd concentrations and the probabilities of Cd concentrations being higher than the cutoff value can be simultaneously used for delineation of hazardous areas of contaminated soils.
Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolcott, D.S.; Chopra, A.K.
1993-03-01
This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.
Network analysis reveals multiscale controls on streamwater chemistry
Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carle, S F
Compositional data are represented as vector variables with individual vector components ranging between zero and a positive maximum value representing a constant sum constraint, usually unity (or 100 percent). The earth sciences are flooded with spatial distributions of compositional data, such as concentrations of major ion constituents in natural waters (e.g. mole, mass, or volume fractions), mineral percentages, ore grades, or proportions of mutually exclusive categories (e.g. a water-oil-rock system). While geostatistical techniques have become popular in earth science applications since the 1970s, very little attention has been paid to the unique mathematical properties of geostatistical formulations involving compositional variables.more » The book 'Geostatistical Analysis of Compositional Data' by Vera Pawlowsky-Glahn and Ricardo Olea (Oxford University Press, 2004), unlike any previous book on geostatistics, directly confronts the mathematical difficulties inherent to applying geostatistics to compositional variables. The book righteously justifies itself with prodigious referencing to previous work addressing nonsensical ranges of estimated values and error, spurious correlation, and singular cross-covariance matrices.« less
Imprecise (fuzzy) information in geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardossy, A.; Bogardi, I.; Kelly, W.E.
1988-05-01
A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in amore » fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.« less
NASA Astrophysics Data System (ADS)
Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming
2017-12-01
Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and effectively handle different types of input information to perform large-scale geostatistical modelling.
Reservoir studies with geostatistics to forecast performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, R.W.; Behrens, R.A.; Emanuel, A.S.
1991-05-01
In this paper example geostatistics and streamtube applications are presented for waterflood and CO{sub 2} flood in two low-permeability sandstone reservoirs. Thy hybrid approach of combining fine vertical resolution in cross-sectional models with streamtubes resulted in models that showed water channeling and provided realistic performance estimates. Results indicate that the combination of detailed geostatistical cross sections and fine-grid streamtube models offers a systematic approach for realistic performance forecasts.
NASA Astrophysics Data System (ADS)
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
A Hypothesis-Driven Approach to Site Investigation
NASA Astrophysics Data System (ADS)
Nowak, W.
2008-12-01
Variability of subsurface formations and the scarcity of data lead to the notion of aquifer parameters as geostatistical random variables. Given an information need and limited resources for field campaigns, site investigation is often put into the context of optimal design. In optimal design, the types, numbers and positions of samples are optimized under case-specific objectives to meet the information needs. Past studies feature optimal data worth (balancing maximum financial profit in an engineering task versus the cost of additional sampling), or aim at a minimum prediction uncertainty of stochastic models for a prescribed investigation budget. Recent studies also account for other sources of uncertainty outside the hydrogeological range, such as uncertain toxicity, ingestion and behavioral parameters of the affected population when predicting the human health risk from groundwater contaminations. The current study looks at optimal site investigation from a new angle. Answering a yes/no question under uncertainty directly requires recasting the original question as a hypothesis test. Otherwise, false confidence in the resulting answer would be pretended. A straightforward example is whether a recent contaminant spill will cause contaminant concentrations in excess of a legal limit at a nearby drinking water well. This question can only be answered down to a specified chance of error, i.e., based on the significance level used in hypothesis tests. Optimal design is placed into the hypothesis-driven context by using the chance of providing a false yes/no answer as new criterion to be minimized. Different configurations apply for one-sided and two-sided hypothesis tests. If a false answer entails financial liability, the hypothesis-driven context can be re-cast in the context of data worth. The remaining difference is that failure is a hard constraint in the data worth context versus a monetary punishment term in the hypothesis-driven context. The basic principle is discussed and illustrated on the case of a hypothetical contaminant spill and the exceedance of critical contaminant levels at a downstream location. An tempting and important side question is whether site investigation could be tweaked towards a yes or no answer in maliciously biased campaigns by unfair formulation of the optimization objective.
Tang, Yunwei; Jing, Linhai; Li, Hui; Liu, Qingjie; Yan, Qi; Li, Xiuxia
2016-11-22
This study explores the ability of WorldView-2 (WV-2) imagery for bamboo mapping in a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in the image, and only a few sampled points derived were useful. In order to identify bamboos based on sparse training data, the sample size was expanded according to the reflectance of multispectral bands selected using the principal component analysis (PCA). Then, class separability based on the training data was calculated using a feature space optimization method to select the features for classification. Four regular object-based classification methods were applied based on both sets of training data. The results show that the k -nearest neighbor ( k -NN) method produced the greatest accuracy. A geostatistically-weighted k -NN classifier, accounting for the spatial correlation between classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the producer's and user's accuracies respectively for the bamboo class. The canopy densities were estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify small patches of understory bamboos given limited known samples, and the resulting bamboo distribution facilitates the assessments of the habitats of giant pandas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Hirotaka; McKenna, Sean Andrew; Coburn, Timothy C.
2004-07-01
Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
Menéndez, Lumila Paula
2016-11-01
The spatial variation of dental caries in late Holocene southern South American populations will be analyzed using geostatistical methods. The existence of a continuous geographical pattern of dental caries variation will be tested. The author recorded dental caries in 400 individuals, collated this information with published caries data from 666 additional individuals, and calculated a Caries Index. The caries spatial distribution was evaluated by means of 2D maps and scatterplots. Geostatistical analyses were performed by calculating Moran's I, correlograms and a Procrustes analysis. There is a relatively strong latitudinal continuous gradient of dental caries variation, especially in the extremes of the distribution. Moreover, the association between dental caries and geography was relatively high (m 12 = 0.6). Although northern and southern samples had the highest and lowest frequencies of dental caries, respectively, the central ones had the largest variation and had lower rates of caries than expected. The large variation in frequencies of dental caries in populations located in the center of the distribution could be explained by their subsistence strategies, characterized either by the consumption of wild cariogenic plants or cultigens (obtained locally or by exchange), a reliance on fishing, or the incorporation of plants rich in starch rather than carbohydrates. It is suggested that dental caries must be considered a multifactorial disease which results from the interaction of cultural practices and environmental factors. This can change how we understand subsistence strategies as well as how we interpret dental caries rates. Am. J. Hum. Biol., 2016. © 2016 Wiley Periodicals, Inc. Am. J. Hum. Biol. 28:825-836, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e
2014-01-01
The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893
Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias
2014-01-01
The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.
NASA Astrophysics Data System (ADS)
Jean, Pierre-Olivier; Bradley, Robert; Tremblay, Jean-Pierre
2015-04-01
An important asset for the management of wild ungulates is the ability to recognize the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data may be, however, difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighbouring DISTEX values to detect and map 'hot-spots' and 'cold-spots' of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Qu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colin, P.; Nicoletis, S.; Froidevaux, R.
1996-12-31
A case study is presented of building a map showing the probability that the concentration in polycyclic aromatic hydrocarbon (PAH) exceeds a critical threshold. This assessment is based on existing PAH sample data (direct information) and on an electrical resistivity survey (indirect information). Simulated annealing is used to build a model of the range of possible values for PAH concentrations and of the bivariate relationship between PAH concentrations and electrical resistivity. The geostatistical technique of simple indicator kriging is then used, together with the probabilistic model, to infer, at each node of a grid, the range of possible values whichmore » the PAH concentration can take. The risk map is then extracted for this characterization of the local uncertainty. The difference between this risk map and a traditional iso-concentration map is then discussed in terms of decision-making.« less
Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun
2006-10-01
Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.
An assessment of gas emanation hazard using a geographic information system and geostatistics.
Astorri, F; Beaubien, S E; Ciotoli, G; Lombardi, S
2002-03-01
This paper describes the use of geostatistical analysis and GIS techniques to assess gas emanation hazards. The Mt. Vulsini volcanic district was selected for this study because of the wide range of natural phenomena locally present that affect gas migration in the near surface. In addition, soil gas samples that were collected in this area should allow for a calibration between the generated risk/hazard models and the measured distribution of toxic gas species at surface. The approach used during this study consisted of three general stages. First data were digitally organized into thematic layers, then software functions in the GIS program "ArcView" were used to compare and correlate these various layers, and then finally the produced "potential-risk" map was compared with radon soil gas data in order to validate the model and/or to select zones for further, more-detailed soil gas investigations.
G STL: the geostatistical template library in C++
NASA Astrophysics Data System (ADS)
Remy, Nicolas; Shtuka, Arben; Levy, Bruno; Caers, Jef
2002-10-01
The development of geostatistics has been mostly accomplished by application-oriented engineers in the past 20 years. The focus on concrete applications gave birth to many algorithms and computer programs designed to address different issues, such as estimating or simulating a variable while possibly accounting for secondary information such as seismic data, or integrating geological and geometrical data. At the core of any geostatistical data integration methodology is a well-designed algorithm. Yet, despite their obvious differences, all these algorithms share many commonalities on which to build a geostatistics programming library, lest the resulting library is poorly reusable and difficult to expand. Building on this observation, we design a comprehensive, yet flexible and easily reusable library of geostatistics algorithms in C++. The recent advent of the generic programming paradigm allows us elegantly to express the commonalities of the geostatistical algorithms into computer code. Generic programming, also referred to as "programming with concepts", provides a high level of abstraction without loss of efficiency. This last point is a major gain over object-oriented programming which often trades efficiency for abstraction. It is not enough for a numerical library to be reusable, it also has to be fast. Because generic programming is "programming with concepts", the essential step in the library design is the careful identification and thorough definition of these concepts shared by most geostatistical algorithms. Building on these definitions, a generic and expandable code can be developed. To show the advantages of such a generic library, we use G STL to build two sequential simulation programs working on two different types of grids—a surface with faults and an unstructured grid—without requiring any change to the G STL code.
Estimation of geotechnical parameters on the basis of geophysical methods and geostatistics
NASA Astrophysics Data System (ADS)
Brom, Aleksander; Natonik, Adrianna
2017-12-01
The paper presents possible implementation of ordinary cokriging and geophysical investigation on humidity data acquired in geotechnical studies. The Author describes concept of geostatistics, terminology of geostatistical modelling, spatial correlation functions, principles of solving cokriging systems, advantages of (co-)kriging in comparison with other interpolation methods, obstacles in this type of attempt. Cross validation and discussion of results was performed with an indication of prospect of applying similar procedures in various researches..
Analysis of dengue fever risk using geostatistics model in bone regency
NASA Astrophysics Data System (ADS)
Amran, Stang, Mallongi, Anwar
2017-03-01
This research aim is to analysis of dengue fever risk based on Geostatistics model in Bone Regency. Risk levels of dengue fever are denoted by parameter of Binomial distribution. Effect of temperature, rainfalls, elevation, and larvae abundance are investigated through Geostatistics model. Bayesian hierarchical method is used in estimation process. Using dengue fever data in eleven locations this research shows that temperature and rainfall have significant effect of dengue fever risk in Bone regency.
Graham, S L; Barling, K S; Waghela, S; Scott, H M; Thompson, J A
2005-06-10
Environmental factors that enhance either the survivability or dispersion of Salmonella enterica serovar Typhimurium (S. Typhimurium) could result in a spatial pattern of disease risk. The objectives of this study were to: (1) describe herd status based on antibody response to Salmonella Typhimurium as estimated from bulk tank milk samples and (2) to describe the resulting geographical patterns found among Texas dairy herds. Eight hundred and fifty-two bulk milk samples were collected from georeferenced dairy farms and assayed by an indirect enzyme-linked immunosorbent assay (ELISA) using S. Typhimurium lipopolysaccharide (LPS). ELISA signal-to-noise ratios for each bulk tank milk sample were calculated and used for geostatistical analyses. Best-fit parameters for the exponential theoretical variogram included a range of 438.8 km, partial sill of 0.060 and nugget of 0.106. The partial sill is the classical geostatistical term for the variance that can be explained by the herd's location and the nugget is the spatially random component of the variance. We have identified a spatial process in bulk milk tank titers for S. Typhimurium in Texas dairy herds and present a map of the expected smoothed surface. Areas with higher expected titers should be targeted in further studies on controlling Salmonella infection with environmental modifications.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, G.; Chopra, A.K.; Severson, C.D.
1997-12-01
Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulationmore » techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.« less
Gstat: a program for geostatistical modelling, prediction and simulation
NASA Astrophysics Data System (ADS)
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
A MS-lesion pattern discrimination plot based on geostatistics.
Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark
2016-03-01
A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
TiConverter: A training image converting tool for multiple-point geostatistics
NASA Astrophysics Data System (ADS)
Fadlelmula F., Mohamed M.; Killough, John; Fraim, Michael
2016-11-01
TiConverter is a tool developed to ease the application of multiple-point geostatistics whether by the open source Stanford Geostatistical Modeling Software (SGeMS) or other available commercial software. TiConverter has a user-friendly interface and it allows the conversion of 2D training images into numerical representations in four different file formats without the need for additional code writing. These are the ASCII (.txt), the geostatistical software library (GSLIB) (.txt), the Isatis (.dat), and the VTK formats. It performs the conversion based on the RGB color system. In addition, TiConverter offers several useful tools including image resizing, smoothing, and segmenting tools. The purpose of this study is to introduce the TiConverter, and to demonstrate its application and advantages with several examples from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, F.P.; Dai, J.; Kerans, C.
1998-11-01
In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less
NASA Astrophysics Data System (ADS)
Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.
2011-05-01
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.
NASA Astrophysics Data System (ADS)
Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.
2010-09-01
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.
1999-10-01
Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, asmore » is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation.« less
Geostatistics and spatial analysis in biological anthropology.
Relethford, John H
2008-05-01
A variety of methods have been used to make evolutionary inferences based on the spatial distribution of biological data, including reconstructing population history and detection of the geographic pattern of natural selection. This article provides an examination of geostatistical analysis, a method used widely in geology but which has not often been applied in biological anthropology. Geostatistical analysis begins with the examination of a variogram, a plot showing the relationship between a biological distance measure and the geographic distance between data points and which provides information on the extent and pattern of spatial correlation. The results of variogram analysis are used for interpolating values of unknown data points in order to construct a contour map, a process known as kriging. The methods of geostatistical analysis and discussion of potential problems are applied to a large data set of anthropometric measures for 197 populations in Ireland. The geostatistical analysis reveals two major sources of spatial variation. One pattern, seen for overall body and craniofacial size, shows an east-west cline most likely reflecting the combined effects of past population dispersal and settlement. The second pattern is seen for craniofacial height and shows an isolation by distance pattern reflecting rapid spatial changes in the midlands region of Ireland, perhaps attributable to the genetic impact of the Vikings. The correspondence of these results with other analyses of these data and the additional insights generated from variogram analysis and kriging illustrate the potential utility of geostatistical analysis in biological anthropology. (c) 2008 Wiley-Liss, Inc.
Spatial interpolation and simulation of post-burn duff thickness after prescribed fire
Peter R. Robichaud; S. M. Miller
1999-01-01
Prescribed fire is used as a site treatment after timber harvesting. These fires result in spatial patterns with some portions consuming all of the forest floor material (duff) and others consuming little. Prior to the burn, spatial sampling of duff thickness and duff water content can be used to generate geostatistical spatial simulations of these characteristics....
Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng
2014-06-01
Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.
Mapping spatial patterns of denitrifiers at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
Spatio-temporal analysis of small-area intestinal parasites infections in Ghana.
Osei, F B; Stein, A
2017-09-22
Intestinal parasites infection is a major public health burden in low and middle-income countries. In Ghana, it is amongst the top five morbidities. In order to optimize scarce resources, reliable information on its geographical distribution is needed to guide periodic mass drug administration to populations of high risk. We analyzed district level morbidities of intestinal parasites between 2010 and 2014 using exploratory spatial analysis and geostatistics. We found a significantly positive Moran's Index of spatial autocorrelation for each year, suggesting that adjoining districts have similar risk levels. Using local Moran's Index, we found high-high clusters extending towards the Guinea and Sudan Savannah ecological zones, whereas low-low clusters extended within the semi-deciduous forest and transitional ecological zones. Variograms indicated that local and regional scale risk factors modulate the variation of intestinal parasites. Poisson kriging maps showed smoothed spatially varied distribution of intestinal parasites risk. These emphasize the need for a follow-up investigation into the exact determining factors modulating the observed patterns. The findings also underscored the potential of exploratory spatial analysis and geostatistics as tools for visualizing the spatial distribution of small area intestinal worms infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my
2016-02-01
Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less
NASA Astrophysics Data System (ADS)
de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio
2017-07-01
Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.
Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.
2013-01-01
The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.
Stochastic modeling of a lava-flow aquifer system
Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.
2014-01-01
This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.
NASA Astrophysics Data System (ADS)
Feng, Wenjie; Wu, Shenghe; Yin, Yanshu; Zhang, Jiajia; Zhang, Ke
2017-07-01
A training image (TI) can be regarded as a database of spatial structures and their low to higher order statistics used in multiple-point geostatistics (MPS) simulation. Presently, there are a number of methods to construct a series of candidate TIs (CTIs) for MPS simulation based on a modeler's subjective criteria. The spatial structures of TIs are often various, meaning that the compatibilities of different CTIs with the conditioning data are different. Therefore, evaluation and optimal selection of CTIs before MPS simulation is essential. This paper proposes a CTI evaluation and optimal selection method based on minimum data event distance (MDevD). In the proposed method, a set of MDevD properties are established through calculation of the MDevD of conditioning data events in each CTI. Then, CTIs are evaluated and ranked according to the mean value and variance of the MDevD properties. The smaller the mean value and variance of an MDevD property are, the more compatible the corresponding CTI is with the conditioning data. In addition, data events with low compatibility in the conditioning data grid can be located to help modelers select a set of complementary CTIs for MPS simulation. The MDevD property can also help to narrow the range of the distance threshold for MPS simulation. The proposed method was evaluated using three examples: a 2D categorical example, a 2D continuous example, and an actual 3D oil reservoir case study. To illustrate the method, a C++ implementation of the method is attached to the paper.
Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura
2015-01-01
A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.
Geostatistics and GIS: tools for characterizing environmental contamination.
Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N
2004-08-01
Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.
Epsky, Nancy D; Espinoza, Hernán R; Kendra, Paul E; Abernathy, Robert; Midgarden, David; Heath, Robert R
2010-10-01
Studies were conducted in Honduras to determine effective sampling range of a female-targeted protein-based synthetic attractant for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Multilure traps were baited with ammonium acetate, putrescine, and trimethylamine lures (three-component attractant) and sampled over eight consecutive weeks. Field design consisted of 38 traps (over 0.5 ha) placed in a combination of standard and high-density grids to facilitate geostatistical analysis, and tests were conducted in coffee (Coffea arabica L.),mango (Mangifera indica L.),and orthanique (Citrus sinensis X Citrus reticulata). Effective sampling range, as determined from the range parameter obtained from experimental variograms that fit a spherical model, was approximately 30 m for flies captured in tests in coffee or mango and approximately 40 m for flies captured in orthanique. For comparison, a release-recapture study was conducted in mango using wild (field-collected) mixed sex C. capitata and an array of 20 baited traps spaced 10-50 m from the release point. Contour analysis was used to document spatial distribution of fly recaptures and to estimate effective sampling range, defined by the area that encompassed 90% of the recaptures. With this approach, effective range of the three-component attractant was estimated to be approximately 28 m, similar to results obtained from variogram analysis. Contour maps indicated that wind direction had a strong influence on sampling range, which was approximately 15 m greater upwind compared with downwind from the release point. Geostatistical analysis of field-captured insects in appropriately designed trapping grids may provide a supplement or alternative to release-recapture studies to estimate sampling ranges for semiochemical-based trapping systems.
Using Predictions Based on Geostatistics to Monitor Trends in Aspergillus flavus Strain Composition.
Orum, T V; Bigelow, D M; Cotty, P J; Nelson, M R
1999-09-01
ABSTRACT Aspergillus flavus is a soil-inhabiting fungus that frequently produces aflatoxins, potent carcinogens, in cottonseed and other seed crops. A. flavus S strain isolates, characterized on the basis of sclerotial morphology, are highly toxigenic. Spatial and temporal characteristics of the percentage of the A. flavus isolates that are S strain (S strain incidence) were used to predict patterns across areas of more than 30 km(2). Spatial autocorrelation in S strain incidence in Yuma County, AZ, was shown to extend beyond field boundaries to adjacent fields. Variograms revealed both short-range (2 to 6 km) and long-range (20 to 30 km) spatial structure in S strain incidence. S strain incidence at 36 locations sampled in July 1997 was predicted with a high correlation between expected and observed values (R = 0.85, P = 0.0001) by kriging data from July 1995 and July 1996. S strain incidence at locations sampled in October 1997 and March 1998 was markedly less than predicted by kriging data from the same months in prior years. Temporal analysis of four locations repeatedly sampled from April 1995 through July 1998 also indicated a major reduction in S strain incidence in the Texas Hill area after July 1997. Surface maps generated by kriging point data indicated a similarity in the spatial pattern of S strain incidence among all sampling dates despite temporal changes in the overall S strain incidence. Geostatistics provided useful descriptions of variability in S strain incidence over space and time.
Tang, Yunwei; Jing, Linhai; Li, Hui; Liu, Qingjie; Yan, Qi; Li, Xiuxia
2016-01-01
This study explores the ability of WorldView-2 (WV-2) imagery for bamboo mapping in a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in the image, and only a few sampled points derived were useful. In order to identify bamboos based on sparse training data, the sample size was expanded according to the reflectance of multispectral bands selected using the principal component analysis (PCA). Then, class separability based on the training data was calculated using a feature space optimization method to select the features for classification. Four regular object-based classification methods were applied based on both sets of training data. The results show that the k-nearest neighbor (k-NN) method produced the greatest accuracy. A geostatistically-weighted k-NN classifier, accounting for the spatial correlation between classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the producer’s and user’s accuracies respectively for the bamboo class. The canopy densities were estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify small patches of understory bamboos given limited known samples, and the resulting bamboo distribution facilitates the assessments of the habitats of giant pandas. PMID:27879661
Lima, Carlos H O; Sarmento, Renato A; Galdino, Tarcísio V S; Pereira, Poliana S; Silva, Joedna; Souza, Danival J; Dos Santos, Gil R; Costa, Thiago L; Picanço, Marcelo C
2018-04-16
Spatiotemporal dynamics studies of crop pests enable the determination of the colonization pattern and dispersion of these insects in the landscape. Geostatistics is an efficient tool for these studies: to determine the spatial distribution pattern of the pest in the crops and to make maps that represent this situation. Analysis of these maps across the development of plants can be used as a tool in precision agriculture programs. Watermelon, Citrullus lanatus (Thunb.) Matsum. and Nakai (Cucurbitales: Cucurbitaceae), is the second most consumed fruit in the world, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important pests of this crop. Thus, the objective of this work was to determine the spatiotemporal distribution of B. tabaci in commercial watermelon crops using geostatistics. For 2 yr, we monitored adult whitefly densities in eight watermelon crops in a tropical climate region. The location of the samples and other crops in the landscape was georeferenced. Experimental data were submitted to geostatistical analysis. The colonization of B. tabaci had two patterns. In the first, the colonization started at the outermost parts of the crop. In the second, the insects occupied the whole area of the crop since the beginning of cultivation. The maximum distance between sites of watermelon crops in which spatial dependence of B. tabaci densities was observed was 19.69 m. The adult B. tabaci densities in the eight watermelon fields were positively correlated with rainfall and relative humidity, whereas wind speed negatively affected whiteflies population.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.
Singh, Akath; Santra, Priyabrata; Kumar, Mahesh; Panwar, Navraten; Meghwal, P R
2016-09-01
Soil organic carbon (SOC) is a major indicator of long-term sustenance of agricultural production system. Apart from sustaining productivity, SOC plays a crucial role in context of climate change. Keeping in mind these potentials, spatial variation of SOC contents of a fruit orchard comprising several arid fruit plantations located at arid region of India is assessed in this study through geostatistical approaches. For this purpose, surface and subsurface soil samples from 175 locations from a fruit orchard spreading over 14.33 ha area were collected along with geographical coordinates. SOC content and soil physicochemical properties of collected soil samples were determined followed by geostatistical analysis for mapping purposes. Average SOC stock density of the orchard was 14.48 Mg ha(-1) for 0- to 30-cm soil layer ranging from 9.01 Mg ha(-1) in Carissa carandas to 19.52 Mg ha(-1) in Prosopis cineraria block. Range of spatial variation of SOC content was found about 100 m, while two other soil physicochemical properties, e.g., pH and electrical conductivity (EC) also showed similar spatial trend. This indicated that minimum sampling distance for future SOC mapping programme may be kept lower than 100 m for better accuracy. Ordinary kriging technique satisfactorily predicted SOC contents (in percent) at unsampled locations with root-mean-squared residual (RMSR) of 0.35-0.37. Co-kriging approach was found slightly superior (RMSR = 0.26-0.28) than ordinary kriging for spatial prediction of SOC contents because of significant correlations of SOC contents with pH and EC. Uncertainty of SOC estimation was also presented in terms of 90 % confidence interval. Spatial estimates of SOC stock through ordinary kriging or co-kriging approach were also found with low uncertainty of estimation than non-spatial estimates, e.g., arithmetic averaging approach. Among different fruit block plantations of the orchard, the block with Prosopis cineraria ('khejri') has higher SOC stock density than others.
Hydrogeologic unit flow characterization using transition probability geostatistics.
Jones, Norman L; Walker, Justin R; Carle, Steven F
2005-01-01
This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.
Thompson, L.M.; Van Manen, F.T.; King, T.L.
2005-01-01
Highways are one of the leading causes of wildlife habitat fragmentation and may particularly affect wide-ranging species, such as American black bears (Ursus americanus). We initiated a research project in 2000 to determine potential effects of a 4-lane highway on black bear ecology in Washington County, North Carolina. The research design included a treatment area (highway construction) and a control area and a pre- and post-construction phase. We used data from the pre-construction phase to determine whether we could detect scale dependency or directionality among allele occurrence patterns using geostatistics. Detection of such patterns could provide a powerful tool to measure the effects of landscape fragmentation on gene flow. We sampled DNA from roots of black bear hair at 70 hair-sampling sites on each study area for 7 weeks during fall of 2000. We used microsatellite analysis based on 10 loci to determine unique multi-locus genotypes. We examined all alleles sampled at ???25 sites on each study area and mapped their presence or absence at each hair-sample site. We calculated semivariograms, which measure the strength of statistical correlation as a function of distance, and adjusted them for anisotropy to determine the maximum direction of spatial continuity. We then calculated the mean direction of spatial continuity for all examined alleles. The mean direction of allele frequency variation was 118.3?? (SE = 8.5) on the treatment area and 172.3?? (SE = 6.0) on the control area. Rayleigh's tests showed that these directions differed from random distributions (P = 0.028 and P < 0.001, respectively), indicating consistent directional patterns for the alleles we examined in each area. Despite the small spatial scale of our study (approximately 11,000 ha for each study area), we observed distinct and consistent patterns of allele occurrence, suggesting different directions of gene flow between the study areas. These directions seemed to coincide with the primary orientation of the best habitat areas. Furthermore, the patterns we observed suggest directions of potential source populations beyond the 2 study areas. Indeed, nearby areas classified as core black bear habitat exist in the directions indicated by our analysis. Geostatistical analysis of allele occurrence patterns may provide a useful technique to identify potential barriers to gene flow among bear populations.
Yadav, Bechu K V; Nandy, S
2015-05-01
Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.
Houngbedji, Clarisse A; Chammartin, Frédérique; Yapi, Richard B; Hürlimann, Eveline; N'Dri, Prisca B; Silué, Kigbafori D; Soro, Gotianwa; Koudou, Benjamin G; Assi, Serge-Brice; N'Goran, Eliézer K; Fantodji, Agathe; Utzinger, Jürg; Vounatsou, Penelope; Raso, Giovanna
2016-09-07
In Côte d'Ivoire, malaria remains a major public health issue, and thus a priority to be tackled. The aim of this study was to identify spatially explicit indicators of Plasmodium falciparum infection among school-aged children and to undertake a model-based spatial prediction of P. falciparum infection risk using environmental predictors. A cross-sectional survey was conducted, including parasitological examinations and interviews with more than 5,000 children from 93 schools across Côte d'Ivoire. A finger-prick blood sample was obtained from each child to determine Plasmodium species-specific infection and parasitaemia using Giemsa-stained thick and thin blood films. Household socioeconomic status was assessed through asset ownership and household characteristics. Children were interviewed for preventive measures against malaria. Environmental data were gathered from satellite images and digitized maps. A Bayesian geostatistical stochastic search variable selection procedure was employed to identify factors related to P. falciparum infection risk. Bayesian geostatistical logistic regression models were used to map the spatial distribution of P. falciparum infection and to predict the infection prevalence at non-sampled locations via Bayesian kriging. Complete data sets were available from 5,322 children aged 5-16 years across Côte d'Ivoire. P. falciparum was the predominant species (94.5 %). The Bayesian geostatistical variable selection procedure identified land cover and socioeconomic status as important predictors for infection risk with P. falciparum. Model-based prediction identified high P. falciparum infection risk in the north, central-east, south-east, west and south-west of Côte d'Ivoire. Low-risk areas were found in the south-eastern area close to Abidjan and the south-central and west-central part of the country. The P. falciparum infection risk and related uncertainty estimates for school-aged children in Côte d'Ivoire represent the most up-to-date malaria risk maps. These tools can be used for spatial targeting of malaria control interventions.
Geostatistical Interpolation of Particle-Size Curves in Heterogeneous Aquifers
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Menafoglio, A.; Secchi, P.
2013-12-01
We address the problem of predicting the spatial field of particle-size curves (PSCs) from measurements associated with soil samples collected at a discrete set of locations within an aquifer system. Proper estimates of the full PSC are relevant to applications related to groundwater hydrology, soil science and geochemistry and aimed at modeling physical and chemical processes occurring in heterogeneous earth systems. Hence, we focus on providing kriging estimates of the entire PSC at unsampled locations. To this end, we treat particle-size curves as cumulative distribution functions, model their densities as functional compositional data and analyze them by embedding these into the Hilbert space of compositional functions endowed with the Aitchison geometry. On this basis, we develop a new geostatistical methodology for the analysis of spatially dependent functional compositional data. Our functional compositional kriging (FCK) approach allows providing predictions at unsampled location of the entire particle-size curve, together with a quantification of the associated uncertainty, by fully exploiting both the functional form of the data and their compositional nature. This is a key advantage of our approach with respect to traditional methodologies, which treat only a set of selected features (e.g., quantiles) of PSCs. Embedding the full PSC into a geostatistical analysis enables one to provide a complete characterization of the spatial distribution of lithotypes in a reservoir, eventually leading to improved predictions of soil hydraulic attributes through pedotransfer functions as well as of soil geochemical parameters which are relevant in sorption/desorption and cation exchange processes. We test our new method on PSCs sampled along a borehole located within an alluvial aquifer near the city of Tuebingen, Germany. The quality of FCK predictions is assessed through leave-one-out cross-validation. A comparison between hydraulic conductivity estimates obtained via FCK approach and those predicted by classical kriging of effective particle diameters (i.e., quantiles of the PSCs) is finally performed.
USDA-ARS?s Scientific Manuscript database
Field-specific management could help achieve agricultural sustainability by increasing production and decreasing environmental impacts. Near-infrared spectroscopy (NIRS) and geostatistics are relatively unexplored tools that could reduce time, labor, and costs of soil analysis. Our objective was to ...
Geostatistical applications in ground-water modeling in south-central Kansas
Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.
1999-01-01
This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.
Demougeot-Renard, Helene; De Fouquet, Chantal
2004-10-01
Assessing the volume of soil requiring remediation and the accuracy of this assessment constitutes an essential step in polluted site management. If this remediation volume is not properly assessed, misclassification may lead both to environmental risks (polluted soils may not be remediated) and financial risks (unexpected discovery of polluted soils may generate additional remediation costs). To minimize such risks, this paper proposes a geostatistical methodology based on stochastic simulations that allows the remediation volume and the uncertainty to be assessed using investigation data. The methodology thoroughly reproduces the conditions in which the soils are classified and extracted at the remediation stage. The validity of the approach is tested by applying it on the data collected during the investigation phase of a former lead smelting works and by comparing the results with the volume that has actually been remediated. This real remediated volume was composed of all the remediation units that were classified as polluted after systematic sampling and analysis during clean-up stage. The volume estimated from the 75 samples collected during site investigation slightly overestimates (5.3% relative error) the remediated volume deduced from 212 remediation units. Furthermore, the real volume falls within the range of uncertainty predicted using the proposed methodology.
Mapping the distribution of the denitrifier community at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
Spatial epidemiology of bovine tuberculosis in Mexico.
Martínez, Horacio Zendejas; Suazo, Feliciano Milián; Cuador Gil, José Quintín; Bello, Gustavo Cruz; Anaya Escalera, Ana María; Márquez, Gabriel Huitrón; Casanova, Leticia García
2007-01-01
The purpose of this study was to use geographic information systems (GIS) and geo-statistical methods of ordinary kriging to predict the prevalence and distribution of bovine tuberculosis (TB) in Jalisco, Mexico. A random sample of 2 287 herds selected from a set of 48 766 was used for the analysis. Spatial location of herds was obtained by either a personal global positioning system (GPS), a database from the Instituto Nacional de Estadìstica Geografìa e Informàtica (INEGI) or Google Earth. Information on TB prevalence was provided by the Jalisco Commission for the Control and Eradication of Tuberculosis (COEETB). Prediction of TB was obtained using ordinary kriging in the geostatistical analyst module in ArcView8. A predicted high prevalence area of TB matching the distribution of dairy cattle was observed. This prediction was in agreement with the prevalence calculated on the total 48 766 herds. Validation was performed taking estimated values of TB prevalence at each municipality, extracted from the kriging surface and then compared with the real prevalence values using a correlation test, giving a value of 0.78, indicating that GIS and kriging are reliable tools for the estimation of TB distribution based on a random sample. This resulted in a significant savings of resources.
NASA Astrophysics Data System (ADS)
Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad
2018-03-01
Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.
NASA Astrophysics Data System (ADS)
Luo, Ning; Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.
2017-11-01
Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events.
Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon
2014-04-15
For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.
Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. J.; George, R.; Bush, B.
2009-04-29
This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.
A Nonparametric Geostatistical Method For Estimating Species Importance
Andrew J. Lister; Rachel Riemann; Michael Hoppus
2001-01-01
Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test statistics are...
ABSTRACT: The application of geostatistics to spatial interpolation of time-invariant properties in ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use of geostatistics on time-variant conditions such as ground-water quality is also be...
NASA Technical Reports Server (NTRS)
Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.
2002-01-01
Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy.
Blanda, Valeria; Blanda, Marcellocalogero; La Russa, Francesco; Scimeca, Rossella; Scimeca, Salvatore; D'Agostino, Rosalia; Auteri, Michelangelo; Torina, Alessandra
2018-02-01
Biting midges belonging to Culicoides imicola, Culicoides obsoletus complex and Culicoides pulicaris complex (Diptera: Ceratopogonidae) are increasingly implicated as vectors of bluetongue virus in Palaearctic regions. Culicoides obsoletus complex includes C. obsoletus (sensu stricto), C. scoticus, C. dewulfi and C. chiopterus. Culicoides pulicaris and C. lupicaris belong to the Culicoides pulicaris complex. The aim of this study was a geo-statistical analysis of the abundance and spatial distribution of Culicoides spp. involved in bluetongue virus transmission. As part of the national bluetongue surveillance plan 7081 catches were collected in 897 Sicilian farms from 2000 to 2013. Onderstepoort-type blacklight traps were used for sample collection and each catch was analysed for the presence of Culicoides spp. and for the presence and abundance of Culicoides vector species (C. imicola, C. pulicaris / C. obsoletus complexes). A geo-statistical analysis was carried out monthly via the interpolation of measured values based on the Inverse Distance Weighted method, using a GIS tool. Raster maps were reclassified into seven classes according to the presence and abundance of Culicoides, in order to obtain suitable maps for Map Algebra operations. Sicilian provinces showing a very high abundance of Culicoides vector species were Messina (80% of the whole area), Palermo (20%) and Catania (12%). A total of 5654 farms fell within the very high risk area for bluetongue (21% of the 26,676 farms active in Sicily); of these, 3483 farms were in Messina, 1567 in Palermo and 604 in Catania. Culicoides imicola was prevalent in Palermo, C. pulicaris in Messina and C. obsoletus complex was very abundant over the whole island with the highest abundance value in Messina. Our study reports the results of a geo-statistical analysis concerning the abundance and spatial distribution of Culicoides spp. in Sicily throughout the fourteen year study. It provides useful decision support in the field of epidemiology, allowing the identification of areas to be monitored as bases for improved surveillance plans. Moreover, this knowledge can become a tool for the evaluation of virus transmission risks, especially if related to vector competence.
Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Sahimi, Muhammad
2016-03-01
In recent years, higher-order geostatistical methods have been used for modeling of a wide variety of large-scale porous media, such as groundwater aquifers and oil reservoirs. Their popularity stems from their ability to account for qualitative data and the great flexibility that they offer for conditioning the models to hard (quantitative) data, which endow them with the capability for generating realistic realizations of porous formations with very complex channels, as well as features that are mainly a barrier to fluid flow. One group of such models consists of pattern-based methods that use a set of data points for generating stochastic realizations by which the large-scale structure and highly-connected features are reproduced accurately. The cross correlation-based simulation (CCSIM) algorithm, proposed previously by the authors, is a member of this group that has been shown to be capable of simulating multimillion cell models in a matter of a few CPU seconds. The method is, however, sensitive to pattern's specifications, such as boundaries and the number of replicates. In this paper the original CCSIM algorithm is reconsidered and two significant improvements are proposed for accurately reproducing large-scale patterns of heterogeneities in porous media. First, an effective boundary-correction method based on the graph theory is presented by which one identifies the optimal cutting path/surface for removing the patchiness and discontinuities in the realization of a porous medium. Next, a new pattern adjustment method is proposed that automatically transfers the features in a pattern to one that seamlessly matches the surrounding patterns. The original CCSIM algorithm is then combined with the two methods and is tested using various complex two- and three-dimensional examples. It should, however, be emphasized that the methods that we propose in this paper are applicable to other pattern-based geostatistical simulation methods.
Geostatistics for environmental and geotechnical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouhani, S.; Srivastava, R.M.; Desbarats, A.J.
1996-12-31
This conference was held January 26--27, 1995 in Phoenix, Arizona. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the technology of geostatistics and its applicability for environmental studies, especially site characterization. Individual papers have been processed separately for inclusion in the appropriate data bases.
Geostatistics as a tool to define various categories of resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, R.
1983-02-01
Definition of 'measured' and 'indicated' resources tend to be vague. Yet, the calculation of such categories of resources in a mineral deposit calls for specific technical criteria. The author discusses how a geostatistical methodology provides the technical criteria required to classify reasonably assured resources by levels of assurance of their existence.
NASA Technical Reports Server (NTRS)
Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.
1998-01-01
The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.
Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Haruko; Chen, X.; Hahn, Melanie S.
2010-10-21
This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are itsmore » ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.« less
Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model
NASA Astrophysics Data System (ADS)
Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef
2016-10-01
We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
An emission-weighted proximity model for air pollution exposure assessment.
Zou, Bin; Wilson, J Gaines; Zhan, F Benjamin; Zeng, Yongnian
2009-08-15
Among the most common spatial models for estimating personal exposure are Traditional Proximity Models (TPMs). Though TPMs are straightforward to configure and interpret, they are prone to extensive errors in exposure estimates and do not provide prospective estimates. To resolve these inherent problems with TPMs, we introduce here a novel Emission Weighted Proximity Model (EWPM) to improve the TPM, which takes into consideration the emissions from all sources potentially influencing the receptors. EWPM performance was evaluated by comparing the normalized exposure risk values of sulfur dioxide (SO(2)) calculated by EWPM with those calculated by TPM and monitored observations over a one-year period in two large Texas counties. In order to investigate whether the limitations of TPM in potential exposure risk prediction without recorded incidence can be overcome, we also introduce a hybrid framework, a 'Geo-statistical EWPM'. Geo-statistical EWPM is a synthesis of Ordinary Kriging Geo-statistical interpolation and EWPM. The prediction results are presented as two potential exposure risk prediction maps. The performance of these two exposure maps in predicting individual SO(2) exposure risk was validated with 10 virtual cases in prospective exposure scenarios. Risk values for EWPM were clearly more agreeable with the observed concentrations than those from TPM. Over the entire study area, the mean SO(2) exposure risk from EWPM was higher relative to TPM (1.00 vs. 0.91). The mean bias of the exposure risk values of 10 virtual cases between EWPM and 'Geo-statistical EWPM' are much smaller than those between TPM and 'Geo-statistical TPM' (5.12 vs. 24.63). EWPM appears to more accurately portray individual exposure relative to TPM. The 'Geo-statistical EWPM' effectively augments the role of the standard proximity model and makes it possible to predict individual risk in future exposure scenarios resulting in adverse health effects from environmental pollution.
Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J
2016-08-15
In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their environment are needed to improve human well-being. Copyright © 2016 Elsevier B.V. All rights reserved.
Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing
NASA Technical Reports Server (NTRS)
Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)
2000-01-01
The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical Geology for allowing us to use C&G as a vehicle to convey how geostatistics and geospatial techniques can be used to analyze remote sensing and other types of spatial data. We see this special issue of C&G. and its complementary issue of PE&RS. as a testament to the vitality and interest in the application of geostatistical and geospatial techniques in remote sensing. We also see these special journal issues as the beginning of a fruitful. and hopefully long-term relationship, between American and British geographers and other researchers interested in geostatistical and geospatial techniques applied to remote sensing and other spatial data.
Geostatistical methods in the assessment of the spatial variability of the quality of river water
NASA Astrophysics Data System (ADS)
Krasowska, Małgorzata; Banaszuk, Piotr
2017-11-01
The research was conducted in the agricultural catchment in north-eastern Poland. The aim of this study was to check how geostatistical analysis can be useful for the detection zones and forms of supply stream by water from different sources. The work was included the implementation of hydrochemical profiles. These profiles were made by measuring the electrical conductivity (EC) values and temperature along the river. On the basis of these results, the authors calculated the coefficient of Moran I and performed semivariogram and found that the EC values are correlated on a stretch of about 140 m. This means that the spatial correlation between samples of water in the stream is readable over a distance of about 140 meters. Therefore it is believed that the degree of water mineralization on this section is shaped by water entering the river channel migration in different ways: through tributaries, leachate drainage and surface runoff. In the case of the analyzed catchment, the potential sources of pollution were drainage systems. Therefore, the spatial analysis allowed the identification pollution sources in a catchment, especially in drained agricultural catchments.
Granulometric analysis at Lampulo Fishing Port (LFP) substrate, Banda Aceh, Indonesia
NASA Astrophysics Data System (ADS)
Purnawan, S.; Setiawan, I.; Haridhi, H. A.; Irham, M.
2018-01-01
The study of sediment granulometry was completed at Lampulo fishing port (LFP). The LFP is a main fishing port in Aceh Province, Indonesia, located at 5°34’35” N; 95°19’23” E. The purpose of the research is to study and construct the environment condition of the bottom substrate. The data was taken by incorporating coring method at 10 stations using purposive random sampling. The wet sieve method was used to analyze the grain size for geostatistical analysis. The geostatistical parameters analysis in this study is classified as mean, sorting, skewness and kurtosis. The result informs that the types of sediments are sand, sandy clay and clayey sand for all stations. Station 1, however, is found as the coarsest compares to the other stations. All of the sediment collected at each station displays moderately sorted to poor sorted, while kurtosis values may be categorized as very leptokurtic. The results of the sediment parameters indicate that the environment of harbor pool was in a stable state, related to a sheltered condition.
An application of geostatistics and fractal geometry for reservoir characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aasum, Y.; Kelkar, M.G.; Gupta, S.P.
1991-03-01
This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.
Regression and Geostatistical Techniques: Considerations and Observations from Experiences in NE-FIA
Rachel Riemann; Andrew Lister
2005-01-01
Maps of forest variables improve our understanding of the forest resource by allowing us to view and analyze it spatially. The USDA Forest Service's Northeastern Forest Inventory and Analysis unit (NE-FIA) has used geostatistical techniques, particularly stochastic simulation, to produce maps and spatial data sets of FIA variables. That work underscores the...
Spatial interpolation of forest conditions using co-conditional geostatistical simulation
H. Todd Mowrer
2000-01-01
In recent work the author used the geostatistical Monte Carlo technique of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis of potential old-growth forest areas. The current study compares this earlier technique to that of co-conditional simulation, wherein the spatial cross-correlations between variables are included. As in the...
Geostatistics applied to gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meunier, G.; Coulomb, C.; Laille, J.P.
1989-09-01
The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problemmore » of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.« less
Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, N L; Walker, J R; Carle, S F
2003-11-21
This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of themore » technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.« less
NASA Astrophysics Data System (ADS)
Masoud, Alaa A.; El-Horiny, Mohamed M.; Atwia, Mohamed G.; Gemail, Khaled S.; Koike, Katsuaki
2018-06-01
Salinization of groundwater and soil resources has long been a serious environmental hazard in arid regions. This study was conducted to investigate and document the factors controlling such salinization and their inter-relationships in the Dakhla Oasis (Egypt). To accomplish this, 60 groundwater samples and 31 soil samples were collected in February 2014. Factor analysis (FA) and hierarchical cluster analysis (HCA) were integrated with geostatistical analyses to characterize the chemical properties of groundwater and soil and their spatial patterns, identify the factors controlling the pattern variability, and clarify the salinization mechanism. Groundwater quality standards revealed emergence of salinization (av. 885.8 mg/L) and extreme occurrences of Fe2+ (av. 17.22 mg/L) and Mn2+ (av. 2.38 mg/L). Soils were highly salt-affected (av. 15.2 dS m-1) and slightly alkaline (av. pH = 7.7). Evaporation and ion-exchange processes governed the evolution of two main water types: Na-Cl (52%) and Ca-Mg-Cl (47%), respectively. Salinization leads the chemical variability of both resources. Distinctive patterns of slight salinization marked the northern part and intense salinization marked the middle and southern parts. Congruence in the resources clusters confirmed common geology, soil types, and urban and agricultural practices. Minimizing the environmental and socioeconomic impacts of the resources salinization urges the need for better understanding of the hydrochemical characteristics and prediction of quality changes.
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.
2017-06-01
Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
NASA Astrophysics Data System (ADS)
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
Wang, You-Qi; Bai, Yi-Ru; Wang, Jian-Yu
2014-07-01
Determining spatial distributions and analyses contamination condition of soil heavy metals play an important role in evaluation of the quality of agricultural ecological environment and the protection of food safety and human health. Topsoil samples (0-20 cm) from 223 sites in farmland were collected at two scales of sampling grid (1 m x 1 m, 10 m x 10 m) in the Yellow River irrigation area of Ningxia. The objectives of this study were to investigate the spatial variability of total copper (Cu), total zinc (Zn), total chrome (Cr), total cadmium (Cd) and total lead (Pb) on the two sampling scales by the classical and geostatistical analyses. The single pollution index (P(i)) and the Nemerow pollution index (P) were used to evaluate the soil heavy metal pollution. The classical statistical analyses showed that all soil heavy metals demonstrated moderate variability, the coefficient of variation (CV) changed in the following sequence: Cd > Pb > Cr > Zn > Cu. Geostatistical analyses showed that the nugget coefficient of Cd on the 10 m x 10 m scale and Pb on the 1 m x 1 m scale were 100% with pure nugget variograms, which showed weak variability affected by random factors. The nugget coefficient of the other indexes was less than 25%, which showed a strong variability affected by structural factors. The results combined with P(i) and P indicated that most soil heavy metals have slight pollution except total copper, and in general there were the trend of heavy metal accumulation in the study area.
Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)
NASA Astrophysics Data System (ADS)
Aksoy, A.; Yenilmez, F.; Duzgun, S.
2013-12-01
Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir
Local Geostatistical Models and Big Data in Hydrological and Ecological Applications
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios
2015-04-01
The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property helps to overcome a significant computational bottleneck of geostatistical models due to the poor scaling of the matrix inversion [4,5]. We present applications to real and simulated data sets, including the Walker lake data, and we investigate the SLI performance using various statistical cross validation measures. References [1] T. Hofmann, B. Schlkopf, A.J. Smola, Annals of Statistics, 36, 1171-1220 (2008). [2] D. T. Hristopulos, SIAM Journal on Scientific Computing, 24(6): 2125-2162 (2003). [3] D. T. Hristopulos and S. N. Elogne, IEEE Transactions on Signal Processing, 57(9): 3475-3487 (2009) [4] G. Jona Lasinio, G. Mastrantonio, and A. Pollice, Statistical Methods and Applications, 22(1):97-112 (2013) [5] Sun, Y., B. Li, and M. G. Genton (2012). Geostatistics for large datasets. In: Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics, pp. 55-77. Springer, Berlin-Heidelberg.
Schröder, Winfried; Pesch, Roland; Schmidt, Gunther
2006-03-01
In Germany, environmental monitoring is intended to provide a holistic view of the environmental condition. To this end the monitoring operated by the federal states must use harmonized, resp., standardized methods. In addition, the monitoring sites should cover the ecoregions without any geographical gaps, the monitoring design should have no gaps in terms of ecologically relevant measurement parameters, and the sample data should be spatially without any gaps. This article outlines the extent to which the Rhoen Biosphere Reserve, occupying a part of the German federal states of Bavaria, Hesse and Thuringia, fulfills the listed requirements. The investigation considered collection, data banking and analysis of monitoring data and metadata, ecological regionalization and geostatistics. Metadata on the monitoring networks were collected by questionnaires and provided a complete inventory and description of the monitoring activities in the reserve and its surroundings. The analysis of these metadata reveals that most of the monitoring methods are harmonized across the boundaries of the three federal states the Rhoen is part of. The monitoring networks that measure precipitation, surface water levels, and groundwater quality are particularly overrepresented in the central ecoregions of the biosphere reserve. Soil monitoring sites are more equally distributed within the ecoregions of the Rhoen. The number of sites for the monitoring of air pollutants is not sufficient to draw spatially valid conclusions. To fill these spatial gaps, additional data on the annual average values of the concentrations of air pollutants from monitoring sites outside of the biosphere reserve had therefore been subject to geostatistical analysis and estimation. This yields valid information on the spatial patterns and temporal trends of air quality. The approach illustrated is applicable to similar cases, as, for example, the harmonization of international monitoring networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, R.E.; Nance, H.S.; Laubach, S.E.
1995-06-01
Faults and joints are conduits for ground-water flow and targets for horizontal drilling in the petroleum industry. Spacing and size distribution are rarely predicted accurately by current structural models or documented adequately by conventional borehole or outcrop samples. Tunnel excavations present opportunities to measure fracture attributes in continuous subsurface exposures. These fracture measurements ran be used to improve structural models, guide interpretation of conventional borehole and outcrop data, and geostatistically quantify spatial and spacing characteristics for comparison to outcrop data or for generating distributions of fracture for numerical flow and transport modeling. Structure maps of over 9 mi of nearlymore » continuous tunnel excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, provide a unique database of fault and joint populations for geostatistical analysis. Observationally, small faults (<10 ft. throw) occur in clusters or swarms that have as many as 24 faults, fault swarms are as much as 2,000 ft. wide and appear to be on average 1,000 ft. apart, and joints are in swarms spaced 500 to more than 2l,000 ft. apart. Semi-variograms show varying degrees of spatial correlation. These variograms have structured sills that correlate directly to highs and lows in fracture frequency observed in the tunnel. Semi-variograms generated with respect to fracture spacing and number also have structured sills, but tend to not show any near-field correlation. The distribution of fault spacing can be described with a negative exponential, which suggests a random distribution. However, there is clearly some structure and clustering in the spacing data as shown by running average and variograms, which implies that a number of different methods should be utilized to characterize fracture spacing.« less
NASA Astrophysics Data System (ADS)
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The water level monitoring network of Mires basin has been optimized 6 times by removing 5, 8, 12, 15, 20 and 25 wells from the original network. In order to achieve the optimum solution in the minimum possible computational time, a stall generations criterion was set for each optimisation scenario. An improvement made to the classic genetic algorithm was the change of the mutation and crossover fraction in respect to the change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local minima, or, in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value. The choice of integer genetic algorithm in MATLAB 2015a poses the restriction of adding custom selection and crossover-mutation functions. Therefore, custom population and crossover-mutation-selection functions have been created to set the initial population type to custom and have the ability to change the mutation crossover probability in respect to the convergence of the genetic algorithm, achieving thus higher accuracy. The application of the network optimisation tool to Mires basin indicates that 25 wells can be removed with a relatively small deterioration of the groundwater level map. The results indicate the robustness of the network optimisation tool: Wells were removed from high well-density areas while preserving the spatial pattern of the original groundwater level map. Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49.
Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M
2011-12-15
Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020. Copyright © 2011 Elsevier B.V. All rights reserved.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
NASA Astrophysics Data System (ADS)
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao
2017-12-01
Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.
NASA Astrophysics Data System (ADS)
Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan
2016-02-01
In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.
2017-09-01
This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques, José, Jr.
2015-04-01
The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.
Geostatistical risk estimation at waste disposal sites in the presence of hot spots.
Komnitsas, Kostas; Modis, Kostas
2009-05-30
The present paper aims to estimate risk by using geostatistics at the wider coal mining/waste disposal site of Belkovskaya, Tula region, in Russia. In this area the presence of hot spots causes a spatial trend in the mean value of the random field and a non-Gaussian data distribution. Prior to application of geostatistics, subtraction of trend and appropriate smoothing and transformation of the data into a Gaussian form were carried out; risk maps were then generated for the wider study area in order to assess the probability of exceeding risk thresholds. Finally, the present paper discusses the need for homogenization of soil risk thresholds regarding hazardous elements that will enhance reliability of risk estimation and enable application of appropriate rehabilitation actions in contaminated areas.
Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan
2005-01-01
This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...
NASA Astrophysics Data System (ADS)
Zovi, Francesco; Camporese, Matteo; Hendricks Franssen, Harrie-Jan; Huisman, Johan Alexander; Salandin, Paolo
2017-05-01
Alluvial aquifers are often characterized by the presence of braided high-permeable paleo-riverbeds, which constitute an interconnected preferential flow network whose localization is of fundamental importance to predict flow and transport dynamics. Classic geostatistical approaches based on two-point correlation (i.e., the variogram) cannot describe such particular shapes. In contrast, multiple point geostatistics can describe almost any kind of shape using the empirical probability distribution derived from a training image. However, even with a correct training image the exact positions of the channels are uncertain. State information like groundwater levels can constrain the channel positions using inverse modeling or data assimilation, but the method should be able to handle non-Gaussianity of the parameter distribution. Here the normal score ensemble Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to tackle this issue. Multiple point geostatistics and NS-EnKF have already been tested in synthetic examples, but in this study they are used for the first time in a real-world case study. The test site is an alluvial unconfined aquifer in northeastern Italy with an extension of approximately 3 km2. A satellite training image showing the braid shapes of the nearby river and electrical resistivity tomography (ERT) images were used as conditioning data to provide information on channel shape, size, and position. Measured groundwater levels were assimilated with the NS-EnKF to update the spatially distributed groundwater parameters (hydraulic conductivity and storage coefficients). Results from the study show that the inversion based on multiple point geostatistics does not outperform the one with a multiGaussian model and that the information from the ERT images did not improve site characterization. These results were further evaluated with a synthetic study that mimics the experimental site. The synthetic results showed that only for a much larger number of conditioning piezometric heads, multiple point geostatistics and ERT could improve aquifer characterization. This shows that state of the art stochastic methods need to be supported by abundant and high-quality subsurface data.
Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series
NASA Astrophysics Data System (ADS)
Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina
2014-05-01
The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results were evaluated using the same performance metrics. This comparison opens new perspectives for the development of an innovative procedure based on the geostatistical stochastic approach. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").
Hevesi, Joseph A.; Flint, Alan L.; Istok, Jonathan D.
1992-01-01
Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca Mountain, and estimates of AAP were needed for an isohyetal mapping over a 2600-square-mile watershed containing Yucca Mountain. Estimates were obtained with a multivariate geostatistical model developed using AAP and elevation data from a network of 42 precipitation stations in southern Nevada and southeastern California. An additional 1531 elevations were obtained to improve estimation accuracy. Isohyets representing estimates obtained using univariate geostatistics (kriging) defined a smooth and continuous surface. Isohyets representing estimates obtained using multivariate geostatistics (cokriging) defined an irregular surface that more accurately represented expected local orographic influences on AAP. Cokriging results included a maximum estimate within the study area of 335 mm at an elevation of 7400 ft, an average estimate of 157 mm for the study area, and an average estimate of 172 mm at eight locations in the vicinity of the potential repository site. Kriging estimates tended to be lower in comparison because the increased AAP expected for remote mountainous topography was not adequately represented by the available sample. Regression results between cokriging estimates and elevation were similar to regression results between measured AAP and elevation. The position of the cokriging 250-mm isohyet relative to the boundaries of pinyon pine and juniper woodlands provided indirect evidence of improved estimation accuracy because the cokriging result agreed well with investigations by others concerning the relationship between elevation, vegetation, and climate in the Great Basin. Calculated estimation variances were also mapped and compared to evaluate improvements in estimation accuracy. Cokriging estimation variances were reduced by an average of 54% relative to kriging variances within the study area. Cokriging reduced estimation variances at the potential repository site by 55% relative to kriging. The usefulness of an existing network of stations for measuring AAP within the study area was evaluated using cokriging variances, and twenty additional stations were located for the purpose of improving the accuracy of future isohyetal mappings. Using the expanded network of stations, the maximum cokriging estimation variance within the study area was reduced by 78% relative to the existing network, and the average estimation variance was reduced by 52%.
Ferreira, Angélica B.; Ribeiro, Andreza P.; Ferreira, Maurício L.; Kniess, Cláudia T.; Quaresma, Cristiano C.; Lafortezza, Raffaele; Santos, José O.; Saiki, Mitiko; Saldiva, Paulo H.
2017-01-01
Industrialization in developing countries associated with urban growth results in a number of economic benefits, especially in small or medium-sized cities, but leads to a number of environmental and public health consequences. This problem is further aggravated when adequate infrastructure is lacking to monitor the environmental impacts left by industries and refineries. In this study, a new protocol was designed combining biomonitoring and geostatistics to evaluate the possible effects of shale industry emissions on human health and wellbeing. Futhermore, the traditional and expensive air quality method based on PM2.5 measuring was also used to validate the low-cost geostatistical approach. Chemical analysis was performed using Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) to measure inorganic elements in tree bark and shale retorted samples in São Mateus do Sul city, Southern Brazil. Fe, S, and Si were considered potential pollutants in the study area. Distribution maps of element concentrations were generated from the dataset and used to estimate the spatial behavior of Fe, S, and Si and the range from their hot spot(s), highlighting the regions sorrounding the shale refinery. This evidence was also demonstrated in the measurements of PM2.5 concentrations, which are in agreement with the information obtained from the biomonitoring and geostatistical model. Factor and descriptive analyses performed on the concentrations of tree bark contaminants suggest that Fe, S, and Si might be used as indicators of industrial emissions. The number of cases of respiratory diseases obtained from local basic health unit were used to assess a possible correlation between shale refinery emissions and cases of repiratory disease. These data are public and may be accessed on the website of the the Brazilian Ministry of Health. Significant associations were found between the health data and refinery activities. The combination of the spatial characterization of air pollution and clinical health data revealed that adverse effects were significant for individuals over 38 years of age. These results also suggest that a protocol designed to monitor urban air quality may be an effective and low-cost strategy in environmentally contaminated cities, especially in low- and middle-income countries. PMID:28979271
Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches
NASA Astrophysics Data System (ADS)
Klump, J. F.; Fouedjio, F.
2017-12-01
Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.
NASA Astrophysics Data System (ADS)
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.
Reay-Jones, Francis P F
2017-08-01
A 3-yr study was conducted in wheat, Triticum aestivum L., in South Carolina to characterize the spatial distribution of Oulema melanopus (L.) adults, eggs, and larvae using semivariograms, which provides a measure of spatial dependence among sampling data. Moran's I coefficients for peak densities of each life stage indicated significant positive autocorrelation for seven (two for eggs, one for larvae, and four for adults) of the 16 datasets. Aggregation was detected in 13 of these 16 datasets when analyzed by semivariogram modeling, with spherical, Gaussian, and exponential models best fitting for eight, four, and one dataset, respectively, and with models for two datasets having only one parameter (nugget) significantly different from zero. The nugget-to-sill ratios ranged from 0.043 to 0.774, and indicated strong spatial dependence in six models (three for adults, two for eggs, and one for larvae), moderate spatial dependence in six models (three for adults and six for eggs), and weak spatial dependence in one model (adults). Range values varied from 39.1 m to 234.1 m, with an average of 120.1 ± 14.0 m. Average range values were 104.9, 135.2, and 161.2 m for adults, eggs, and larvae, respectively. Because the majority of semivariogram models in our study indicated aggregated distributions, spatial sampling will provide more information than nonspatial random sampling. Developing our understanding of spatial dependence of crop pests is needed to optimize sampling plans and can provide a basis for exploring site-specific management tactics. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spatial Distribution of Soil Fauna In Long Term No Tillage
NASA Astrophysics Data System (ADS)
Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.
2012-04-01
The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.
NASA Astrophysics Data System (ADS)
Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald
2017-12-01
An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.
Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador
NASA Astrophysics Data System (ADS)
Chicaiza, E. G.; Leiva, C. A.; Arranz, J. J.; Buenańo, X. E.
2017-06-01
Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA), trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.
Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model
NASA Astrophysics Data System (ADS)
Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.
2018-07-01
Geostatistical analysis has been introduced over half a century ago to allow quantifying seemingly random spatial variations in earth quantities such as rock mineral content or permeability. The traditional approach has been to view such quantities as multivariate Gaussian random functions characterized by one or a few well-defined spatial correlation scales. There is, however, mounting evidence that many spatially varying quantities exhibit non-Gaussian behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad picture of the subject and its treatment in the literature. Instead, we focus on very recent advances in the recognition and analysis of this ubiquitous phenomenon, which transcends hydrology and the Earth sciences, brought about largely by our own work. In particular, we use porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian behavior, describe a very recent theoretical model that (for the first time) captures all these behavioral aspects in a comprehensive manner, show how this allows generating random realizations of the quantity conditional on sampled values, point toward ways of incorporating scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, and list open questions requiring further research.
NASA Astrophysics Data System (ADS)
Kolyaie, S.; Yaghooti, M.; Majidi, G.
2011-12-01
This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.
Greve, Klaus; Atiemo, Sampson M.
2016-01-01
Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962
Unsupervised classification of multivariate geostatistical data: Two algorithms
NASA Astrophysics Data System (ADS)
Romary, Thomas; Ors, Fabien; Rivoirard, Jacques; Deraisme, Jacques
2015-12-01
With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.
Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M
2016-01-01
This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.
NASA Astrophysics Data System (ADS)
Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton
2014-08-01
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.
Assessing the resolution-dependent utility of tomograms for geostatistics
Day-Lewis, F. D.; Lane, J.W.
2004-01-01
Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xuehang; Chen, Xingyuan; Ye, Ming
2015-07-01
This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S.C.
1993-08-01
This report discusses a field demonstration of a methodology for characterizing an aquifer's geohydrology in the detail required to design an optimum network of wells and/or infiltration galleries for bioreclamation systems. The project work was conducted on a 1-hectare test site at Columbus AFB, Mississippi. The technical report is divided into two volumes. Volume I describes the test site and the well network, the assumptions, and the application of equations that define groundwater flow to a well, the results of three large-scale aquifer tests, and the results of 160 single-pump tests. Volume II describes the bore hole flowmeter tests, themore » tracer tests, the geological investigations, the geostatistical analysis and the guidelines for using groundwater models to design bioreclamation systems. Site characterization, Hydraulic conductivity, Groundwater flow, Geostatistics, Geohydrology, Monitoring wells.« less
Geostatistical simulations for radon indoor with a nested model including the housing factor.
Cafaro, C; Giovani, C; Garavaglia, M
2016-01-01
The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geostatistical borehole image-based mapping of karst-carbonate aquifer pores
Michael Sukop,; Cunningham, Kevin J.
2016-01-01
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.
Three-dimensional geostatistical inversion of flowmeter and pumping test data.
Li, Wei; Englert, Andreas; Cirpka, Olaf A; Vereecken, Harry
2008-01-01
We jointly invert field data of flowmeter and multiple pumping tests in fully screened wells to estimate hydraulic conductivity using a geostatistical method. We use the steady-state drawdowns of pumping tests and the discharge profiles of flowmeter tests as our data in the inference. The discharge profiles need not be converted to absolute hydraulic conductivities. Consequently, we do not need measurements of depth-averaged hydraulic conductivity at well locations. The flowmeter profiles contain information about relative vertical distributions of hydraulic conductivity, while drawdown measurements of pumping tests provide information about horizontal fluctuation of the depth-averaged hydraulic conductivity. We apply the method to data obtained at the Krauthausen test site of the Forschungszentrum Jülich, Germany. The resulting estimate of our joint three-dimensional (3D) geostatistical inversion shows an improved 3D structure in comparison to the inversion of pumping test data only.
NASA Astrophysics Data System (ADS)
Bode, F.; Reuschen, S.; Nowak, W.
2015-12-01
Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, X.; Srinivasan, R.
2008-12-01
In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.
Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg
2014-01-01
In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Belkesier, Mohamed Saleh; Zeddouri, Aziez; Halassa, Younes; Kechiched, Rabah
2018-05-01
The region of Oued Righ contains large quantities of groundwater hosted by the three aquifers: the Terminal Complex (CT), the Continental Intercalary (CI) and the phreatic aquifer. The present study is focused on the water from CT aquifer in order to characterize their salinity using geostatistical tool for maping. Indeed, water in this aquifer show a high mineralization exceeding the OMS standards. The main hydro-chemical facies of this water is Chloride-Sodium and Sulfate-Sodium. The elementary statistics have been performed on the physico-chemical analysis from 97 wells whereas 766 wells were analyzed on salinity and are used for the geostatistical mapping. The obtained results show a spatial evolution of the salinity toward the direction South to the North. The salinity is locally strong in the central part of Oued Righ valley. The non-parametric geostatistic of indicator kriging was performed on the salinity data using a cut-off of 5230 mg/l which represents the average value in the studied area. The indicator Kriging allows the estimation of salinity probabilities I (5230 mg / l) in the water of the CT aquifer using bloc model (500 x 500 m). The automatic mapping is used to visualize the distribution of the kriged probabilities of salinity. These results can help to ensure a rational and a selective exploitation of groundwater according the salinity contents.
Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O
2014-06-01
Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0.20). On the basis of the observed spatial distribution patterns of SNP incidence, sampling curves were computed for different levels of reliability, emphasizing the importance of sample size for the detection of mutation incidence below the risk threshold for control failure.
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Pereira, Paulo; Đurđević, Boris
2017-04-01
Information on spatial distribution of soil nutrients in agroecosystems is critical for improving productivity and reducing environmental pressures in intensive farmed soils. In this context, spatial prediction of soil properties should be accurate. In this study we analyse 704 data of soil available phosphorus (AP) and potassium (AK); the data derive from soil samples collected across three arable fields in Baranja region (Croatia) in correspondence of different soil types: Cambisols (169 samples), Chernozems (131 samples) and Gleysoils (404 samples). The samples are collected in a regular sampling grid (distance 225 x 225 m). Several geostatistical techniques (Inverse Distance to a Weight (IDW) with the power of 1, 2 and 3; Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multiquadratic (MTQ), Completely Regularized Spline (CRS), Spline with Tension (SPT) and Thin Plate Spline (TPS); and Local Polynomial (LP) with the power of 1 and 2; two geostatistical techniques -Ordinary Kriging - OK and Simple Kriging - SK) were tested in order to evaluate the most accurate spatial variability maps using criteria of lowest RMSE during cross validation technique. Soil parameters varied considerably throughout the studied fields and their coefficient of variations ranged from 31.4% to 37.7% and from 19.3% to 27.1% for soil AP and AK, respectively. The experimental variograms indicate a moderate spatial dependence for AP and strong spatial dependence for all three locations. The best spatial predictor for AP at Chernozem field was Simple kriging (RMSE=61.711), and for AK inverse multiquadratic (RMSE=44.689). The least accurate technique was Thin plate spline (AP) and Inverse distance to a weight with a power of 1 (AK). Radial basis function models (Spline with Tension for AP at Gleysoil and Cambisol and Completely Regularized Spline for AK at Gleysol) were the best predictors, while Thin Plate Spline models were the least accurate in all three cases. The best interpolator for AK at Cambisol was the local polynomial with the power of 2 (RMSE=33.943), while the least accurate was Thin Plate Spline (RMSE=39.572).
Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa
O’Hanlon, Simon J.; Slater, Hannah C.; Cheke, Robert A.; Boatin, Boakye A.; Coffeng, Luc E.; Pion, Sébastien D. S.; Boussinesq, Michel; Zouré, Honorat G. M.; Stolk, Wilma A.; Basáñez, María-Gloria
2016-01-01
Background The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions. Methods and Findings Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2–90%) in 1975. Conclusions and Significance This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the feasibility of elimination with current and novel tools. PMID:26771545
Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set
Eggleston, J.R.; Rojstaczer, S.A.; Peirce, J.J.
1996-01-01
This study evaluates commonly used geostatistical methods to assess reproduction of hydraulic conductivity (K) structure and sensitivity under limiting amounts of data. Extensive conductivity measurements from the Cape Cod sand and gravel aquifer are used to evaluate two geostatistical estimation methods, conditional mean as an estimate and ordinary kriging, and two stochastic simulation methods, simulated annealing and sequential Gaussian simulation. Our results indicate that for relatively homogeneous sand and gravel aquifers such as the Cape Cod aquifer, neither estimation methods nor stochastic simulation methods give highly accurate point predictions of hydraulic conductivity despite the high density of collected data. Although the stochastic simulation methods yielded higher errors than the estimation methods, the stochastic simulation methods yielded better reproduction of the measured In (K) distribution and better reproduction of local contrasts in In (K). The inability of kriging to reproduce high In (K) values, as reaffirmed by this study, provides a strong instigation for choosing stochastic simulation methods to generate conductivity fields when performing fine-scale contaminant transport modeling. Results also indicate that estimation error is relatively insensitive to the number of hydraulic conductivity measurements so long as more than a threshold number of data are used to condition the realizations. This threshold occurs for the Cape Cod site when there are approximately three conductivity measurements per integral volume. The lack of improvement with additional data suggests that although fine-scale hydraulic conductivity structure is evident in the variogram, it is not accurately reproduced by geostatistical estimation methods. If the Cape Cod aquifer spatial conductivity characteristics are indicative of other sand and gravel deposits, then the results on predictive error versus data collection obtained here have significant practical consequences for site characterization. Heavily sampled sand and gravel aquifers, such as Cape Cod and Borden, may have large amounts of redundant data, while in more common real world settings, our results suggest that denser data collection will likely improve understanding of permeability structure.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E
2016-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.
2018-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777
Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.
Sukop, Michael C; Cunningham, Kevin J
2016-03-01
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.
Spatial Analysis of Rice Blast in China at Three Different Scales.
Guo, Fangfang; Chen, Xinglong; Lu, Minghong; Yang, Li; Wang, Shi Wei; Wu, Bo Ming
2018-05-22
In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from June 10 th to Sep. 10 th during 2009-2014, and surveyed in 143 fields in September, 2016; at county scale, 3 surveys were done covering 1-5 counties in 2015-2016; and at field scale, blast was evaluated in 6 fields in 2015-2016. Spatial cluster and hot spot analyses were conducted in GIS on the geographical pattern of the disease at regional scale, and geostatistical analysis performed at all the three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1080 km at regional scale, and 5 to 10 m at field scale, but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.
Duarte, F; Calvo, M V; Borges, A; Scatoni, I B
2015-08-01
The oriental fruit moth, Grapholita molesta (Busck), is the most serious pest in peach, and several insecticide applications are required to reduce crop damage to acceptable levels. Geostatistics and Geographic Information Systems (GIS) are employed to measure the range of spatial correlation of G. molesta in order to define the optimum sampling distance for performing spatial analysis and to determine the current distribution of the pest in peach orchards of southern Uruguay. From 2007 to 2010, 135 pheromone traps per season were installed and georeferenced in peach orchards distributed over 50,000 ha. Male adult captures were recorded weekly from September to April. Structural analysis of the captures was performed, yielding 14 semivariograms for the accumulated captures analyzed by generation and growing season. Two sets of maps were constructed to describe the pest distribution. Nine significant models were obtained in the 14 evaluated periods. The range estimated for the correlation was from 908 to 6884 m. Three hot spots of high population level and some areas with comparatively low populations were constant over the 3-year period, while there is a greater variation in the size of the population in different generations and years in other areas.
Reyes, Jeanette M; Hubbard, Heidi F; Stiegel, Matthew A; Pleil, Joachim D; Serre, Marc L
2018-01-09
Currently in the United States there are no regulatory standards for ambient concentrations of polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds with known carcinogenic species. As such, monitoring data are not routinely collected resulting in limited exposure mapping and epidemiologic studies. This work develops the log-mass fraction (LMF) Bayesian maximum entropy (BME) geostatistical prediction method used to predict the concentration of nine particle-bound PAHs across the US state of North Carolina. The LMF method develops a relationship between a relatively small number of collocated PAH and fine Particulate Matter (PM2.5) samples collected in 2005 and applies that relationship to a larger number of locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across the state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 data, the LMF BME method reduces mean squared error by 28.4% and produces more realistic spatial gradients compared to the traditional kriging approach based solely on observed PAH data. The LMF BME method efficiently creates PAH predictions in a PAH data sparse and PM2.5 data rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient PAH.
Geostatistics as a tool to study mite dispersion in physic nut plantations.
Rosado, J F; Picanço, M C; Sarmento, R A; Pereira, R M; Pedro-Neto, M; Galdino, T V S; de Sousa Saraiva, A; Erasmo, E A L
2015-08-01
Spatial distribution studies in pest management identify the locations where pest attacks on crops are most severe, enabling us to understand and predict the movement of such pests. Studies on the spatial distribution of two mite species, however, are rather scarce. The mites Polyphagotarsonemus latus and Tetranychus bastosi are the major pests affecting physic nut plantations (Jatropha curcas). Therefore, the objective of this study was to measure the spatial distributions of P. latus and T. bastosi in the physic nut plantations. Mite densities were monitored over 2 years in two different plantations. Sample locations were georeferenced. The experimental data were analyzed using geostatistical analyses. The total mite density was found to be higher when only one species was present (T. bastosi). When both the mite species were found in the same plantation, their peak densities occurred at different times. These mites, however, exhibited uniform spatial distribution when found at extreme densities (low or high). However, the mites showed an aggregated distribution in intermediate densities. Mite spatial distribution models were isotropic. Mite colonization commenced at the periphery of the areas under study, whereas the high-density patches extended until they reached 30 m in diameter. This has not been reported for J. curcas plants before.
Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida
2016-11-01
This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
NASA Astrophysics Data System (ADS)
Shafer, J. M.; Varljen, M. D.
1990-08-01
A fundamental requirement for geostatistical analyses of spatially correlated environmental data is the estimation of the sample semivariogram to characterize spatial correlation. Selecting an underlying theoretical semivariogram based on the sample semivariogram is an extremely important and difficult task that is subject to a great deal of uncertainty. Current standard practice does not involve consideration of the confidence associated with semivariogram estimates, largely because classical statistical theory does not provide the capability to construct confidence limits from single realizations of correlated data, and multiple realizations of environmental fields are not found in nature. The jackknife method is a nonparametric statistical technique for parameter estimation that may be used to estimate the semivariogram. When used in connection with standard confidence procedures, it allows for the calculation of closely approximate confidence limits on the semivariogram from single realizations of spatially correlated data. The accuracy and validity of this technique was verified using a Monte Carlo simulation approach which enabled confidence limits about the semivariogram estimate to be calculated from many synthetically generated realizations of a random field with a known correlation structure. The synthetically derived confidence limits were then compared to jackknife estimates from single realizations with favorable results. Finally, the methodology for applying the jackknife method to a real-world problem and an example of the utility of semivariogram confidence limits were demonstrated by constructing confidence limits on seasonal sample variograms of nitrate-nitrogen concentrations in shallow groundwater in an approximately 12-mi2 (˜30 km2) region in northern Illinois. In this application, the confidence limits on sample semivariograms from different time periods were used to evaluate the significance of temporal change in spatial correlation. This capability is quite important as it can indicate when a spatially optimized monitoring network would need to be reevaluated and thus lead to more robust monitoring strategies.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, Barbara
2016-04-01
This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed. These data were subjected to spatial analyses using statistical and geostatistical methods. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and along the wells depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, i.e. block diagrams allowed to determine the levels of increased values Z* of studied underground water quality parameters. Analysis of the variability in the selected quality parameters of underground water for an analyzed area in Klodzko water intake was enriched by referring to the results of geostatistical studies carried out for underground water quality parameters and also for a treated water and in Klodzko water supply system (iron Fe, manganese Mn, ammonium ion NH4+ contents), discussed in earlier works. Spatial and time variation in the latter-mentioned parameters was analysed on the basis of the data (2007÷2011, 2008÷2011). Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Kłodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.
Sustainable Mining Land Use for Lignite Based Energy Projects
NASA Astrophysics Data System (ADS)
Dudek, Michal; Krysa, Zbigniew
2017-12-01
This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.
NASA Astrophysics Data System (ADS)
Bezerra, J. M.; Siqueira, G. M.; Montenegro, A. A. A.; Silva, P. C. M.; Batista, R. O.
2012-04-01
The objective of this study was to assess the environmental changes with respect to the concentration of heavy metals in the sediment contained a stretch of the River Apodi-Mossoró (Rio Grande do Norte State, Brazil), considering changes in land use and soil. The sediment samples were collected at 30 points in the bed Apodi- Mossoró River in a section with features urban-rural town of Mossoró. The concentration of heavy metals in the sediment was determined using composite samples of surface sediments from the bottom with a depth of 20 cm, according to the methodology of APHAAWWA-WPCF (1998), where he subsequently held to determine the presence and quantity of metal concentration total by the technique of atomic absorption spectrometry, and analyzed the following heavy metals: aluminum(Al), cádmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). Data were analyzed using statistical and geostatistical. The geostatistical analysiswas performed by the construction of experimental semivariogramas self-assessment and adjustment by using the technique of Jack-kinifing. The elemento Cd was absent in the samples, which reduces the possibility of environmental contamination events. The average concentrations of the elements under study are within the limits proposed by the environmental legislation (National Environmental Council). However, for the elements Fe, Al and Mn no threshold values, because these are associated with the rocky material of geochemical origin. The elemento Fe had the highest range of values than the other, and all elements except for Zn and Cd showed the presence of outliers, suggesting the possibility that these points are listed as points liable to contribution by human activities. It was verified the presence of human influence, because the elements undergo an increase of concentration values from the point 11, which is located downstream of the urban bus consolidated. The experimental semivariogramas of elements Cu and Zn adjusted to the spherical model, while the elemen Fe was adjusted to the exponential model. The concentration of Mn is set to the Gaussian model, while the other elements (Al, Cr, Ni and Pb) showed pure nugget effect. The spatial variability of heavy metals analyzed in the study area has high spatial discontinuity, being influenced by the presence of human action, leading to the existence of trend in the semivariogram of the data of Al, Ni, Pb and Cr. Being derived values range from 350 m for Cu and Mn, Fe and 400 m to 425 m for Zn. It is recommended that future studies adopt a sampling grid with spacing less than 350 mand is expected to get a better response to the behavior of the spatial variability of the elements.
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Onoe, Hironori; Mok, Chin Man W.; Wen, Jet-Chau; Huang, Shao-Yang; Wang, Wenke
2017-04-01
Hydraulic tomography (HT) has become a mature aquifer test technology over the last two decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected information is then interpreted by inverse models. Among these models, the geostatistical approaches, built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random fields, which are characterized by means and covariance functions. They then use the spatial statistics as prior information with the aquifer response data to estimate the spatial distribution of the hydraulic properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features. Subsequently, we test this approach with synthetic numerical experiments. Results show that this approach, using conditional mean and covariance that reflect site-specific large-scale geologic features, indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-scale-fractured granite field site with a distinct fault zone. We find that by including fault information from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The improved estimates subsequently lead to better prediction of flow during a different pumping test at the site.
NASA Astrophysics Data System (ADS)
Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke
2015-08-01
Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.
NASA Astrophysics Data System (ADS)
Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke
2015-04-01
Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.
NASA Astrophysics Data System (ADS)
Trawinski, P. R.; Mackay, D. S.
2009-03-01
The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.
Spatial distribution of nematodes in soil cultivated with sugarcane under different uses
NASA Astrophysics Data System (ADS)
Cardoso, M. O.; Pedrosa, E. M. R.; Vicente, T. F. S.; Siqueira, G. M.; Montenegro, A. A. A.
2012-04-01
Sugarcane is a crop of major importance within the Brazilian economy, being an activity that generates energy and with high capacity to develop various economic sectors. Currently the greatest challenge is to maximize productivity and minimize environmental impacts. The plant-parasites nematodes have great expression, because influence directly the productive potential of sugarcane crops. Accordingly, little research has been devoted to the study of spatial variability of nematodes. Thus, the purpose of this work is to analyze the spatial distribution of nematodes in a soil cultivated with sugarcane in areas with and without irrigation, with distinct spacing of sampling to determine the differences between the sampling scales. The study area is located in the municipality of Goiana (Pernambuco State, Brazil). The experiment was conducted in two areas with 40 hectares each, being collected 90 samples at different spacing: 18 samples with spacing of 200.00 x 200.00 m, 36 samples with spacing of 20.00 m x 20.00 m and 36 samples with spacing of 2.00 m x 2.00 m. Soil samples were collected at deep of 0.00-0.20 m and nematodes were extracted per 300 cm3 of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit (plant-parasites, fungivores, bacterivores, omnivores and predators) and identified in level of genus or family. In irrigated area the amount of water applied was determined considering the evapotranspiration of culture. The data were analyzed using classical statistics and geostatistics. The results demonstrated that the data showed high values of coefficient of variation in both study areas. All attributes studied showed log normal frequency distribution. The area B (irrigated) has a population of nematodes more stable than the area A (non-irrigated), a fact confirmed by its mean value of the total population of nematodes (282.45 individuals). The use of geostatistics not allowed to assess the spatial distribution of populations of nematodes even with the data being collected at different scales, describing the spatial variability of groups of nematodes present in the areas evaluated is smaller than the smallest spacing used. Even with the data showing pure nugget effect was possible to verify the semivariogram for the groups of nematodes in the area A, where pairs of semivariance showed great dispersion.
A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.; Watson, Layne T.
1998-01-01
Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.
Constraining geostatistical models with hydrological data to improve prediction realism
NASA Astrophysics Data System (ADS)
Demyanov, V.; Rojas, T.; Christie, M.; Arnold, D.
2012-04-01
Geostatistical models reproduce spatial correlation based on the available on site data and more general concepts about the modelled patters, e.g. training images. One of the problem of modelling natural systems with geostatistics is in maintaining realism spatial features and so they agree with the physical processes in nature. Tuning the model parameters to the data may lead to geostatistical realisations with unrealistic spatial patterns, which would still honour the data. Such model would result in poor predictions, even though although fit the available data well. Conditioning the model to a wider range of relevant data provide a remedy that avoid producing unrealistic features in spatial models. For instance, there are vast amounts of information about the geometries of river channels that can be used in describing fluvial environment. Relations between the geometrical channel characteristics (width, depth, wave length, amplitude, etc.) are complex and non-parametric and are exhibit a great deal of uncertainty, which is important to propagate rigorously into the predictive model. These relations can be described within a Bayesian approach as multi-dimensional prior probability distributions. We propose a way to constrain multi-point statistics models with intelligent priors obtained from analysing a vast collection of contemporary river patterns based on previously published works. We applied machine learning techniques, namely neural networks and support vector machines, to extract multivariate non-parametric relations between geometrical characteristics of fluvial channels from the available data. An example demonstrates how ensuring geological realism helps to deliver more reliable prediction of a subsurface oil reservoir in a fluvial depositional environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-12-31
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-01-01
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Chen, Xingyuan; Ye, Ming
Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less
3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
NASA Astrophysics Data System (ADS)
Cardiff, M.; Barrash, W.
2011-12-01
We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.
Nogueira, F; Couto, E G; Bernardi, C J
2002-11-01
The Pantanal of Mato Grosso presents distinct landscape units: permanently, occasionally and periodically flooded areas. In the last ones, sampling is especially difficult due to the high heterogeneity occurring inter and intrastratas. This paper presents a comparison of different methodological approaches showing that they can influence decisively the knowledge of distribution organic matter dynamics. In such an area in order to understand the role of the flood pulse in the distribution dynamics of organic matter in a wetland at the Pantanal, we considered that there is spatial dependence between points. This consideration contradicts the classical statistic principle that focuses on the aleatority, and allowed the obtainment of a larger volume of information from a minor sampling effort, which means better performance, with time and money economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pombet, Denis; Desnoyers, Yvon; Charters, Grant
2013-07-01
The TruPro{sup R} process enables to collect a significant number of samples to characterize radiological materials. This innovative and alternative technique is experimented for the ANDRA quality-control inspection of cemented packages. It proves to be quicker and more prolific than the current methodology. Using classical statistics and geo-statistics approaches, the physical and radiological characteristics of two hulls containing immobilized wastes (sludges or concentrates) in a hydraulic binder are assessed in this paper. The waste homogeneity is also evaluated in comparison to ANDRA criterion. Sensibility to sample size (support effect), presence of extreme values, acceptable deviation rate and minimum number ofmore » data are discussed. The final objectives are to check the homogeneity of the two characterized radwaste packages and also to validate and reinforce this alternative characterization methodology. (authors)« less
Geostatistics: a common link between medical geography, mathematical geology, and medical geology
Goovaerts, P.
2015-01-01
Synopsis Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential ‘causes’ of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. PMID:25722963
Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics.
Saito, Hirotaka; Goovaerts, Pierre
2003-05-01
Selective soil remediation aims to reduce costs by cleaning only the fraction of an exposure unit (EU) necessary to lower the average concentration below the regulatory threshold. This approach requires a prior stratification of each EU into smaller remediation units (RU) which are then selected according to various criteria. This paper presents a geostatistical framework to account for uncertainties attached to both RU and EU average concentrations in selective remediation. The selection of RUs is based on their impact on the postremediation probability for the EU average concentration to exceed the regulatory threshold, which is assessed using geostatistical stochastic simulation. Application of the technique to a set of 600 dioxin concentrations collected at Piazza Road EPA Superfund site in Missouri shows a substantial decrease in the number of RU remediated compared with single phase remediation. The lower remediation costs achieved by the new strategy are obtained to the detriment of a higher risk of false negatives, yet for this data set this risk remains below the 5% rate set by EPA region 7.
Geostatistics: a common link between medical geography, mathematical geology, and medical geology.
Goovaerts, P
2014-08-01
Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J.M.
Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico atmore » an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.« less
NASA Astrophysics Data System (ADS)
Babcock, C. R.; Finley, A. O.; Andersen, H. E.; Moskal, L. M.; Morton, D. C.; Cook, B.; Nelson, R.
2017-12-01
Upcoming satellite lidar missions, such as GEDI and IceSat-2, are designed to collect laser altimetry data from space for narrow bands along orbital tracts. As a result lidar metric sets derived from these sources will not be of complete spatial coverage. This lack of complete coverage, or sparsity, means traditional regression approaches that consider lidar metrics as explanatory variables (without error) cannot be used to generate wall-to-wall maps of forest inventory variables. We implement a coregionalization framework to jointly model sparsely sampled lidar information and point-referenced forest variable measurements to create wall-to-wall maps with full probabilistic uncertainty quantification of all inputs. We inform the model with USFS Forest Inventory and Analysis (FIA) in-situ forest measurements and GLAS lidar data to spatially predict aboveground forest biomass (AGB) across the contiguous US. We cast our model within a Bayesian hierarchical framework to better model complex space-varying correlation structures among the lidar metrics and FIA data, which yields improved prediction and uncertainty assessment. To circumvent computational difficulties that arise when fitting complex geostatistical models to massive datasets, we use a Nearest Neighbor Gaussian process (NNGP) prior. Results indicate that a coregionalization modeling approach to leveraging sampled lidar data to improve AGB estimation is effective. Further, fitting the coregionalization model within a Bayesian mode of inference allows for AGB quantification across scales ranging from individual pixel estimates of AGB density to total AGB for the continental US with uncertainty. The coregionalization framework examined here is directly applicable to future spaceborne lidar acquisitions from GEDI and IceSat-2. Pairing these lidar sources with the extensive FIA forest monitoring plot network using a joint prediction framework, such as the coregionalization model explored here, offers the potential to improve forest AGB accounting certainty and provide maps for post-model fitting analysis of the spatial distribution of AGB.
Spatiotemporal patterns of the fish assemblages downstream of the Gezhouba Dam on the Yangtze River.
Tao, Jiangping; Gong, Yutian; Tan, Xichang; Yang, Zhi; Chang, Jianbo
2012-07-01
An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species. However, information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches. We used a combination of acoustic surveys, gillnet sampling, and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam, before and after the third impoundment of Three Gorges Reservoir (TGR). To conduct a hydroacoustic identification of individual species, we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys. An optimum threshold of target strength of -50 dB re 1 m(2) was defined, and acoustic surveys were purposefully extended to the selected fish assemblages (i.e., endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling. The relative proportion of fish species in acoustic surveys was allocated based on the composition (%) of the harvest in the gillnet surveys. Geostatistical simulations were likewise used to generate spatial patterns of fish distribution, and to determine the absolute abundance of the selected fish assemblages. We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR, wherein an immediate sharp population decline in the Coreius occurred. Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species, particularly the endemic Coreius species. To determine the factors responsible for the decline, we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.
Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V
2009-01-01
Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM) had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. Methods The following parameters were evaluated using "Before-After-Control-Impact" (BACI) design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. Results The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment areas led to a significant decrease (~44%) in the number of times when the larviciding threshold was reached. This reduction, in turn, resulted in a significant decrease (~74%) in the number of larvicide applications in the treatment areas post-project. The remaining larval habitat in the treatment areas had a different geographic distribution and was largely confined to the restored marsh surface (i.e. filled-in mosquito ditches); however only ~21% of the restored marsh surface supported mosquito production. Conclusion The geostatistical analysis showed that OMWM demonstrated considerable potential for effective mosquito control and compatibility with other natural resource management goals such as restoration, wildlife habitat enhancement, and invasive species abatement. GPS and GIS tools are invaluable for large scale project design, data collection, and data analysis, with geostatistical methods serving as an alternative or a supplement to the conventional inference statistics in evaluating the project outcome. PMID:19549297
NASA Astrophysics Data System (ADS)
Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi
2017-04-01
Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization framework to predict the soil water content distribution and the results were compared to initial simulations (Hydrus results). We obtained more reliable water content specialization models when using the BME method. The presented approach integrates ERT and TDR measurements, and results demonstrate that its use significantly improves the spatial distribution of water content estimations. The approach will be applied to the experimental dataset collected at the Boissy le Châtel site where ERT data were collected daily during one hydrological year, using Syscal pro 48 electrodes (with a financial support of Equipex-Critex) and 10 TDR probes were used to monitor water content variation. Hourly hydrological survey (tile drainage discharge, precipitation, evapotranspiration variables and water table depth) were conducted at the same site. Data analysis and the application of geostatistical framework on the experimental dataset of 2015-2016 show satisfactory results and are reliable with the hydrological behavior of the study site.
A stochastic-geometric model of soil variation in Pleistocene patterned ground
NASA Astrophysics Data System (ADS)
Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc
2013-04-01
In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.
Multilayer perceptron with local constraint as an emerging method in spatial data analysis
NASA Astrophysics Data System (ADS)
de Bollivier, M.; Dubois, G.; Maignan, M.; Kanevsky, M.
1997-02-01
The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.
Goovaerts, P.; Albuquerque, Teresa; Antunes, Margarida
2015-01-01
This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R2=0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold’s paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization. PMID:27777638
Assessment of the Spatial Distribution of Metal(Oid)s in Soils Around an Abandoned Pb-Smelter Plant
NASA Astrophysics Data System (ADS)
dos Santos, Nielson Machado; do Nascimento, Clístenes Williams Araújo; Matschullat, Jörg; de Olinda, Ricardo Alves
2017-03-01
Todos os Santos (All Saints) Bay area, NE-Brazil, is known for one of the most important cases of urban lead (Pb) contamination in the world. The main objective of this work was to assess and interpret the spatial distribution of As, Cd, Hg, Pb, and Zn in "background" soils of this environmentally impacted bay area, using a combination of geostatistical and multivariate analytical methods to distinguish between natural and anthropogenic sources of those metal(oid)s in soils. We collected 114 topsoil samples (0.0-0.2 m depth) from 38 sites. The median values for trace metal concentrations in soils (mg kg-1) followed the order Pb (33.9) > Zn (8.8) > As (1.2) > Cd (0.2) > Hg (0.07), clearly reflecting a Pb-contamination issue. Principal component analysis linked Cd, Pb, and Zn to the same factor (F1), chiefly corroborating their anthropogenic origin; yet, both Pb and Zn are also influenced by natural lithogenic sources. Arsenic and Hg concentrations (F2) are likely related to the natural component alone; their parent material (igneous-metamorphic rocks) seemingly confirm this hypothesis. The heterogeneity of sources and the complexity of the spatial distribution of metals in large areas such as the Todos os Santos Bay warrant, the importance of multivariate and geostatistical analyses in the interpretation of environmental data.
Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel
2014-01-01
We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.
Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.
Yang, Meng; Wang, Cheng; Yang, Zhao-Ping; Yan, Nan; Li, Feng-Ying; Diao, Yi-Wei; Chen, Min-Dong; Li, Hui-Ming; Wang, Jin-Hua; Qian, Xin
2018-05-30
Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as 'hotspots', and high-risk areas were delineated from risk maps. These 'hotspots' and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening 'hotspots' and priority areas of concern for cost-efficient health risk management. Copyright © 2018 Elsevier Inc. All rights reserved.
Castrignanò, Annamaria; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio
2017-01-01
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0–1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed. PMID:29207510
Castrignanò, Annamaria; Buttafuoco, Gabriele; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio; Venezia, Accursio
2017-12-03
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0-1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed.
Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel
2016-04-01
This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.
Preliminary study of a radiological survey in an abandoned uranium mining area in Madagascar
NASA Astrophysics Data System (ADS)
N, Rabesiranana; M, Rasolonirina; F, Solonjara A.; Andriambololona., Raoelina; L, Mabit
2010-05-01
The region of Vinaninkarena located in central Madagascar (47°02'40"E, 19°57'17"S), is known to be a high natural radioactive area. Uranium ore was extracted in this region during the 1950s and the early 1960s. In the mid-1960s, mining activities were stopped and the site abandoned. In the meantime, the region, which used to be without any inhabitants, has recently been occupied by new settlers with presumed increase in exposure of the local population to natural ionizing radiation. In order to assess radiological risk, a survey to assess the soil natural radioactivity background was conducted during the year 2004. This study was implemented in the frame of the FADES Project SP99v1b_21 entitled: Assessment of the environmental pollution by multidisciplinary approach, and the International Atomic Energy Agency Technical Cooperation Project MAG 7002 entitled: Effects of air and water pollution on human health. Global Positioning System (GPS) was used to determine the geographical coordinates of the top soil samples (0-15cm) collected. The sampling was performed using a multi integrated scale approach to estimate the spatial variability of the parameters under investigation (U, Th and K) using geo-statistical approach. A total of 205 soil samples was collected in the study site (16 km2). After humidity correction, the samples were sealed in 100 cm3 cylindrical air-tight plastic containers and stored for more than 6 months to reach a secular equilibrium between parents and short-lived progeny (226Ra and progeny, 238U and 234Th). Measurements were performed using a high-resolution HPGe Gamma-detector with a 30% relative efficiency and an energy resolution of 1.8 keV at 1332.5 keV, allowing the determination of the uranium and thorium series and 40K. In case of secular equilibrium, a non-gamma-emitting radionuclide activity was deduced from its gamma emitting progeny. This was the case for 238U (from 234Th), 226Ra (from 214Pb and 214Bi) and 232Th (from 228Ac, 212Pb or 208Tl). Furthermore, in order to assess the radiological effect, the kerma rate in the air at 1 m above ground level was calculated for each sampled points using standard activity-kerma rate conversion coefficients for uranium, thorium series and potassium. Geostatistical interpolation tools (e.g. Inverse Distance Weighting power 2 and Ordinary Kriging) were used to optimize the data set mapping. The measured Potassium-40 activity was 333 Bq kg-1 ± 95% (Mean ± Coefficient of Variation), the Uranium activity was 195 Bq kg-1 ± 53% and the Thorium activity was 139 Bq kg-1 ± 29%. The world average concentrations are reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as 400 Bq kg-1 for 40K, 35 Bq kg-1 for 238U and 30 Bq kg-1 for 232Th. The results show that generally, 40K concentrations in soils of the area are slightly lower than the world average value, whereas uranium and thorium series activities are noticeably higher. On average the kerma rate reaches 143 nGy h-1 with a standard deviation of 41 nGy h-1 and a coefficient of variation of 28%. The information obtained was mapped and the dose exposition was also assessed for the local settlers. Key-words: soil contamination, environmental radioactivity, radioecology, dose exposure.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Allmendinger, M.; Gnann, S.; Heisserer, T.; Bárdossy, A.
2017-12-01
The basic problem of geostatistics is to estimate the primary variable (e.g. groundwater quality, nitrate) at an un-sampled location based on point measurements at locations in the vicinity. Typically, models are being used that describe the spatial dependence based on the geometry of the observation network. This presentation demonstrates methods that take the following properties additionally into account: the statistical distribution of the measurements, a different degree of dependence in different quantiles, censored measurements, the composition of categorical additional information in the neighbourhood (exhaustive secondary information), and the spatial dependence of a dependent secondary variable, possibly measured with a different observation network (non-exhaustive secondary data). Two modelling approaches are demonstrated individually and combined: The non-stationarity in the marginal distribution is accounted for by locally mixed distribution functions that depend on the composition of the categorical variable in the neighbourhood of each interpolation location. This methodology is currently being implemented for operational use at the environmental state agency of Baden-Württemberg. An alternative to co-Kriging in copula space with an arbitrary number of secondary parameters is presented: The method performs better than traditional techniques if the primary variable is undersampled and does not produce erroneous negative estimates. Even more, the quality of the uncertainty estimates is much improved. The worth of the secondary information is thoroughly evaluated. The improved geostatistical hydrogeological models are being analyzed using measurements of a large observation network ( 2500 measurement locations) in the state of Baden-Württemberg ( 36.000 km2). Typical groundwater quality parameters such as nitrate, chloride, barium, antrazine, and desethylatrazine are being assessed, cross-validated, and compared with traditional geostatistical methods. The secondary information of land use is available on a 30m x 30m raster. We show that the presented methods are not only better estimators (e.g. in the sense of an average quadratic error), but exhibit a much more realistic structure of the uncertainty and hence are improvements compared to existing methods.
NASA Astrophysics Data System (ADS)
Zhao, Zhanfeng; Illman, Walter A.
2018-04-01
Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, B.; Bagherpour, H.; Nioc, A.
1995-08-01
The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less
Schröder, Winfried; Schmidt, Gunther; Hasenclever, Judith
2006-09-01
The rise of the air temperature is assured to be part of the global climatic change, but there is still a lack of knowledge about its effects at a regional scale. The article tackles the correlation of air temperature with the phenology of selected plants by the example of Baden-Württemberg to provide a spatial valid data base for regional climate change models. To this end, the data on air temperature and plant phenology, gathered from measurement sites without congruent coverage, were correlated after performing geostatistical analysis and estimation. In addition, geostatistics are used to analyze and cartographically depict the spatial structure of the phenology of plants in spring and in summer. The statistical analysis reveals a significant relationship between the rising air temperature and the earlier beginning of phenological phases like blooming or fruit maturation: From 1991 to 1999 spring time, as indicated by plant phenology, has begun up to 15 days earlier than from 1961 to 1990. As shown by geostatistics, this holds true for the whole territory of Baden-Württemberg. The effects of the rise of air temperature should be investigated not only by monitoring biological individuals, as for example plants, but on an ecosystem level as well. In Germany, the environmental monitoring should be supplemented by the study of the effects of the climatic change in ecosystems. Because air temperature and humidity have a great influence on the temporal and spatial distribution of pathogen carriers (vectors) and pathogens, mapping of the environmental determinants of vector and pathogen distribution in space and time should be performed in order to identify hot spots for risk assessment and further detailed epidemiological studies.
A geostatistical approach to estimate mining efficiency indicators with flexible meshes
NASA Astrophysics Data System (ADS)
Freixas, Genis; Garriga, David; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier
2014-05-01
Geostatistics is a branch of statistics developed originally to predict probability distributions of ore grades for mining operations by considering the attributes of a geological formation at unknown locations as a set of correlated random variables. Mining exploitations typically aim to maintain acceptable mineral laws to produce commercial products based upon demand. In this context, we present a new geostatistical methodology to estimate strategic efficiency maps that incorporate hydraulic test data, the evolution of concentrations with time obtained from chemical analysis (packer tests and production wells) as well as hydraulic head variations. The methodology is applied to a salt basin in South America. The exploitation is based on the extraction of brines through vertical and horizontal wells. Thereafter, brines are precipitated in evaporation ponds to obtain target potassium and magnesium salts of economic interest. Lithium carbonate is obtained as a byproduct of the production of potassium chloride. Aside from providing an assemble of traditional geostatistical methods, the strength of this study falls with the new methodology developed, which focus on finding the best sites to exploit the brines while maintaining efficiency criteria. Thus, some strategic indicator efficiency maps have been developed under the specific criteria imposed by exploitation standards to incorporate new extraction wells in new areas that would allow maintain or improve production. Results show that the uncertainty quantification of the efficiency plays a dominant role and that the use flexible meshes, which properly describe the curvilinear features associated with vertical stratification, provides a more consistent estimation of the geological processes. Moreover, we demonstrate that the vertical correlation structure at the given salt basin is essentially linked to variations in the formation thickness, which calls for flexible meshes and non-stationarity stochastic processes.
NASA Astrophysics Data System (ADS)
Cronin, S. P.; Trainor Guitton, W.; Team, P.; Pare, A.; Jreij, S.; Powers, H.
2017-12-01
In March 2016, a 4-week field data acquisition took place at Brady's Natural Lab (BNL), an enhanced geothermal system (EGS) in Fallan, NV. During these 4 weeks, a vibe truck executed 6,633 sweeps, recorded by nodal seismometers, horizontal distributed acoustic sensing (DAS) cable, and 400 meters of vertical DAS cable. DAS provides lower signal to noise ratio than traditional geophones but better spatial resolution. The analysis of DAS VSP included Fourier transform, and filtering to remove all up-going energy. Thus, allowing for accurate first arrival picking. We present an example of the Gradual Deformation Method (GDM) using DAS VSP and lithological data to produce a distribution of valid velocity models of BNL. GDM generates continuous perturbations of prior model realizations seeking the best match to the data (i.e. minimize the misfit). Prior model realizations honoring the lithological data were created using sequential Gaussian simulation, a commonly used noniterative geostatistical method. Unlike least-squares-based methods of inversion, GDM readily incorporates a priori information, such as a variogram calculated from well-based lithology information. Additionally, by producing a distribution of models, as opposed to one optimal model, GDM allows for uncertainty quantification. This project aims at assessing the integrated technologies ability to monitor changes in the water table (possibly to one meter resolution) by exploiting the dependence of seismic wave velocities on water saturation of the subsurface. This project, which was funded in part by the National Science Foundation, is a part of the PoroTomo project, funded by a grant from the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Nowak, W.; Schöniger, A.; Wöhling, T.; Illman, W. A.
2016-12-01
Model-based decision support requires justifiable models with good predictive capabilities. This, in turn, calls for a fine adjustment between predictive accuracy (small systematic model bias that can be achieved with rather complex models), and predictive precision (small predictive uncertainties that can be achieved with simpler models with fewer parameters). The implied complexity/simplicity trade-off depends on the availability of informative data for calibration. If not available, additional data collection can be planned through optimal experimental design. We present a model justifiability analysis that can compare models of vastly different complexity. It rests on Bayesian model averaging (BMA) to investigate the complexity/performance trade-off dependent on data availability. Then, we disentangle the complexity component from the performance component. We achieve this by replacing actually observed data by realizations of synthetic data predicted by the models. This results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum model complexity that can be justified by the available (or planned) amount and type of data. As a side product, the matrix quantifies model (dis-)similarity. We apply this analysis to aquifer characterization via hydraulic tomography, comparing four models with a vastly different number of parameters (from a homogeneous model to geostatistical random fields). As a testing scenario, we consider hydraulic tomography data. Using subsets of these data, we determine model justifiability as a function of data set size. The test case shows that geostatistical parameterization requires a substantial amount of hydraulic tomography data to be justified, while a zonation-based model can be justified with more limited data set sizes. The actual model performance (as opposed to model justifiability), however, depends strongly on the quality of prior geological information.
Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion
NASA Astrophysics Data System (ADS)
Lei, Zhao; Ling, Ke; Tingting, He
2017-03-01
In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.
Goovaerts, Pierre
2009-01-01
This paper presents a geostatistical approach to incorporate individual-level data (e.g. patient residences) and area-based data (e.g. rates recorded at census tract level) into the mapping of late-stage cancer incidence, with an application to breast cancer in three Michigan counties. Spatial trends in cancer incidence are first estimated from census data using area-to-point binomial kriging. This prior model is then updated using indicator kriging and individual-level data. Simulation studies demonstrate the benefits of this two-step approach over methods (kernel density estimation and indicator kriging) that process only residence data.
Yang, Chieh-Hou; Lee, Wei-Feng
2002-01-01
Ground water reservoirs in the Choshuichi alluvial fan, central western Taiwan, were investigated using direct-current (DC) resistivity soundings at 190 locations, combined with hydrogeological measurements from 37 wells. In addition, attempts were made to calculate aquifer transmissivity from both surface DC resistivity measurements and geostatistically derived predictions of aquifer properties. DC resistivity sounding data are highly correlated to the hydraulic parameters in the Choshuichi alluvial fan. By estimating the spatial distribution of hydraulic conductivity from the kriged well data and the cokriged thickness of the correlative aquifer from both resistivity sounding data and well information, the transmissivity of the aquifer at each location can be obtained from the product of kriged hydraulic conductivity and computed thickness of the geoelectric layer. Thus, the spatial variation of the transmissivities in the study area is obtained. Our work is more comparable to Ahmed et al. (1988) than to the work of Niwas and Singhal (1981). The first "constraint" from Niwas and Singhal's work is a result of their use of linear regression. The geostatistical approach taken here (and by Ahmed et al. [1988]) is a natural improvement on the linear regression approach.
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong
2015-03-01
A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.
NASA Astrophysics Data System (ADS)
Zhang, H.; Harter, T.; Sivakumar, B.
2005-12-01
Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Harter, Thomas; Sivakumar, Bellie
2006-06-01
Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range examined, the third moment of the traveltime pdf varies from negatively skewed to strongly positively skewed. We also show that the Markov chain approach may give significantly different traveltime distributions when compared to the more commonly used Gaussian random field approach, even when the first- and second-order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport, and uncertainty about that choice must be considered in evaluating the results.
NASA Astrophysics Data System (ADS)
Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.
2011-12-01
In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.
Spatial prediction of Plasmodium falciparum prevalence in Somalia
Noor, Abdisalan M; Clements, Archie CA; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W
2008-01-01
Background Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Methods Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. Results For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with ≥ 5% prevalence were predominantly in the south. Conclusion The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia. PMID:18717998
Spatial prediction of Plasmodium falciparum prevalence in Somalia.
Noor, Abdisalan M; Clements, Archie C A; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W
2008-08-21
Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with > or = 5% prevalence were predominantly in the south. The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.
Interpolation of Water Quality Along Stream Networks from Synoptic Data
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.
2005-12-01
Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
NASA Astrophysics Data System (ADS)
Méar, Y.; Poizot, E.; Murat, A.; Lesueur, P.; Thomas, M.
2006-12-01
The eastern Bay of the Seine (English Channel) was the subject in 1991 of a sampling survey of superficial sediments. Geostatistic tools were used to examine the complexity of the spatial distribution of the fine-grained fraction (<50 μm). A central depocentre of fine sediments (i.e. content up to 50%) oriented in a NW-SE direction in a muddy coastal strip, in a very high energy hydrodynamical situation due to storm swells and its megatidal setting, is for the first time recognised and discussed. Within this sedimentary unit, the distribution of the fine fraction is very heterogeneous, with mud patches of less than 4000 m diameter; the boundary between these mud patches and their substratum is very sharp. The distribution of this fine fraction appears to be controlled by an anticyclonic eddy located off the Pays de Caux. Under the influence of this, the suspended material expelled from the Seine estuary moves along the coast and swings off Antifer harbour, towards the NW. It is trapped within this eddy because of the settling of suspended particulate matter. Both at a general scale and a local scale the morphology (whether inherited or due to modern processes) has a strong influence on the spatial distribution of the fine fraction. At the general scale, the basin-like shape of the area facilitates the silting, and the presence of the submarine dunes, called "Ridins d'Antifer", clearly determines the northern limit of the muddy zone. At a local scale, the same influence is obvious: paleovalleys trap the fine sediments, whereas isolated sand dunes and ripples limit the silting. This duality of role of the morphology is therefore one of the reasons why the muddy surface is extremely heterogeneous spatially. The presence of an important population of suspension feeding echinoderm, the brittle-star Ophiothrix fragilis Abildgaard, has led to a local increase in the silting, and to the modification of the physicochemical and sedimentological parameters. A complex relationship is shown to occur between the amount of fine fraction and the number of brittle-stars (ind. m -2). Classical statistical methods are not appropriate to study the spatial distribution of the mud fraction, because the spatial component of the percentage of the distribution is not integrated in the analysis. On the other hand, this is the main property of the geostatistic concepts. The use of geostatistic tools within a strict and clearly identified procedure enables the proposal of an accurate cartography. Further application of the proposed protocol (based on a semivariographic study and a conditional simulation interpolation) for surficial sediments mapping will help explain spatial and temporal variations of fine-grained fraction. Then assessments of sedimentation and erosion stages allow highlighting signature of environmental processes.
Mondal, Ananya; Das, Subhasish; Sah, Rajesh Kumar; Bhattacharyya, Pradip; Bhattacharya, Satya Sundar
2017-12-31
Coal fired brick kiln factories generate significant of brick kiln bottom ash (BKBA) that contaminate soil and water environments of areas near the dumping sites through leaching of toxic metals (Pb, Cr, Cd, Zn, Mn, and Cu). However, characteristics and environmental effects of BKBAs are yet unknown. We collected BKBA samples from 32 strategic locations of two rapidly developing States (West Bengal and Assam) of India. Scanning electron microscope images indicated spherical and granular structures of BKBAs produced in West Bengal (WBKBA) and Assam (ABKBA) respectively; while energy dispersive spectroscopy and analytical assessments confirmed substantial occurrence of total organic C and nutrient elements (N, P, K, Ca, Mg, and S) in both the BKBAs. FTIR analysis revealed greater predominance of organic matter in ABKBAs than WBKBAs. Occurrence of toxic metals (Cd, Cr, Pb, Zn, Mn, and Cu) was higher in ABKBAs than in WBKBAs; while organic and residual fractions of metals were highly predominant in most of the BKBAs. Principal component analysis showed that metal contents and pH were the major distinguishing characteristics of the BKBAs generated in the two different environmental locations. Human health risk associated with BKBAs generated in Assam is of significant concern. Finally, geo-statistical tools enabled to predict the spatial distribution patterns of toxic metals contributed by the BKBAs in Assam and West Bengal respectively. Assessment of contamination index, geo-accumulation index, and ecological risk index revealed some BKBAs to be more toxic than others. Copyright © 2017. Published by Elsevier B.V.
Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo
2012-09-01
Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.
Liu, Xingmei; Wu, Jianjun; Xu, Jianming
2006-05-01
For many practical problems in environmental management, information about soil heavy metals, relative to threshold values that may be of practical importance is needed at unsampled sites. The Hangzhou-Jiaxing-Huzhou (HJH) Plain has always been one of the most important rice production areas in Zhejiang province, China, and the soil heavy metal concentration is directly related to the crop quality and ultimately the health of people. Four hundred and fifty soil samples were selected in topsoil in HJH Plain to characterize the spatial variability of Cu, Zn, Pb, Cr and Cd. Ordinary kriging and lognormal kriging were carried out to map the spatial patterns of heavy metals and disjunctive kriging was used to quantify the probability of heavy metal concentrations higher than their guide value. Cokriging method was used to minimize the sampling density for Cu, Zn and Cr. The results of this study could give insight into risk assessment of environmental pollution and decision-making for agriculture.
Water quality assessment for groundwater around a municipal waste dumpsite.
Kayode, Olusola T; Okagbue, Hilary I; Achuka, Justina A
2018-04-01
The dataset for this article contains geostatistical analysis of the level to which groundwater quality around a municipal waste dumpsite located in Oke-Afa, Oshodi/Isolo area of Lagos state, southwestern has been compromised for drinking. Groundwater samples were collected from eight hand-dug wells and two borehole wells around or near the dumpsite. The pH, turbidity, salinity, conductivity, total hydrocarbon, total dissolved solids (TDS), dissolved oxygen, chloride, Sulphate (SO 4 ), Nitrate (NO 3 ) and Phosphate (PO 4 ) were determined for the water samples and compared with World Health Organization (WHO) drinking water standard. Notably, the turbidity, TDS, chloride and conductivity of some of the samples were above the WHO acceptable limits. Also, high quantities of heavy metals such as Aluminum and Barium were also present as shown from the data. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the contaminants are above the recommended WHO drinking water standard.
NASA Technical Reports Server (NTRS)
Herzfeld, Ute C.
2002-01-01
The central objective of this project has been the development of geostatistical methods fro mapping elevation and ice surface characteristics from satellite radar altimeter (RA) and Syntheitc Aperture Radar (SAR) data. The main results are an Atlas of elevation maps of Antarctica, from GEOSAT RA data and an Atlas from ERS-1 RA data, including a total of about 200 maps with 3 km grid resolution. Maps and digital terrain models are applied to monitor and study changes in Antarctic ice streams and glaciers, including Lambert Glacier/Amery Ice Shelf, Mertz and Ninnis Glaciers, Jutulstraumen Glacier, Fimbul Ice Shelf, Slessor Glacier, Williamson Glacier and others.
Xu, Wenzhao; Collingsworth, Paris D.; Bailey, Barbara; Carlson Mazur, Martha L.; Schaeffer, Jeff; Minsker, Barbara
2017-01-01
This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
Geo-Statistical Approach to Estimating Asteroid Exploration Parameters
NASA Technical Reports Server (NTRS)
Lincoln, William; Smith, Jeffrey H.; Weisbin, Charles
2011-01-01
NASA's vision for space exploration calls for a human visit to a near earth asteroid (NEA). Potential human operations at an asteroid include exploring a number of sites and analyzing and collecting multiple surface samples at each site. In this paper two approaches to formulation and scheduling of human exploration activities are compared given uncertain information regarding the asteroid prior to visit. In the first approach a probability model was applied to determine best estimates of mission duration and exploration activities consistent with exploration goals and existing prior data about the expected aggregate terrain information. These estimates were compared to a second approach or baseline plan where activities were constrained to fit within an assumed mission duration. The results compare the number of sites visited, number of samples analyzed per site, and the probability of achieving mission goals related to surface characterization for both cases.
Regional flow duration curves: Geostatistical techniques versus multivariate regression
Pugliese, Alessio; Farmer, William H.; Castellarin, Attilio; Archfield, Stacey A.; Vogel, Richard M.
2016-01-01
A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by sparse or missing streamflow observations. We present a detailed comparison of two methods which are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies on a metric for expressing the similarity between catchments computed as the negative deviation of the FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. using a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differences between the reproduction of FDC's occurred mostly for low flows with exceedance probability (i.e. duration) above 0.98.
Influence of bedrock topography on the runoff generation under use of ERT data
NASA Astrophysics Data System (ADS)
Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin
2017-04-01
Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.
Zonal management of arsenic contaminated ground water in Northwestern Bangladesh.
Hill, Jason; Hossain, Faisal; Bagtzoglou, Amvrossios C
2009-09-01
This paper used ordinary kriging to spatially map arsenic contamination in shallow aquifers of Northwestern Bangladesh (total area approximately 35,000 km(2)). The Northwestern region was selected because it represents a relatively safer source of large-scale and affordable water supply for the rest of Bangladesh currently faced with extensive arsenic contamination in drinking water (such as the Southern regions). Hence, the work appropriately explored sustainability issues by building upon a previously published study (Hossain et al., 2007; Water Resources Management, vol. 21: 1245-1261) where a more general nation-wide assessment afforded by kriging was identified. The arsenic database for reference comprised the nation-wide survey (of 3534 drinking wells) completed in 1999 by the British Geological Survey (BGS) in collaboration with the Department of Public Health Engineering (DPHE) of Bangladesh. Randomly sampled networks of zones from this reference database were used to develop an empirical variogram and develop maps of zonal arsenic concentration for the Northwestern region. The remaining non-sampled zones from the reference database were used to assess the accuracy of the kriged maps. Two additional criteria were explored: (1) the ability of geostatistical interpolators such as kriging to extrapolate information on spatial structure of arsenic contamination beyond small-scale exploratory domains; (2) the impact of a priori knowledge of anisotropic variability on the effectiveness of geostatistically based management. On the average, the kriging method was found to have a 90% probability of successful prediction of safe zones according to the WHO safe limit of 10ppb while for the Bangladesh safe limit of 50ppb, the safe zone prediction probability was 97%. Compared to the previous study by Hossain et al. (2007) over the rest of the contaminated country side, the probability of successful detection of safe zones in the Northwest is observed to be about 25% higher. An a priori knowledge of anisotropy was found to have inconclusive impact on the effectiveness of kriging. It was, however, hypothesized that a preferential sampling strategy that honored anisotropy could be necessary to reach a more definitive conclusion in regards to this issue.
NASA Astrophysics Data System (ADS)
Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman
2017-04-01
Assimilation of satellite soil moisture and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and soil moisture predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite soil moisture products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed analysis of the joint and separate assimilation of streamflow and satellite soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the soil moisture at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite soil moisture inferred from the general Gaussian model can significantly improve the soil moisture predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a reliable and effective DA approach in hydrologic applications.
Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments
NASA Astrophysics Data System (ADS)
Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.
2015-12-01
The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide process information. They fall into three basic patterns: a channelized end member, a sheet flow end member, and one intermediate case. These represent the continuum between autogenic bypass or erosion, and net deposition.
NASA Astrophysics Data System (ADS)
He, Xin; Koch, Julian; Sonnenborg, Torben O.; Jørgensen, Flemming; Schamper, Cyril; Christian Refsgaard, Jens
2014-04-01
Geological heterogeneity is a very important factor to consider when developing geological models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heterogeneity in such models can be accounted for. However, various types of uncertainties are associated with both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatistical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Denmark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation process. The study uses two types of observation data: borehole data and airborne geophysical data. It is commonly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution information and thus to identify geostatistical properties more accurately especially in the horizontal direction. However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates can be expected as compared to the use of borehole data. We have proposed a histogram probability matching method in order to link the information on resistivity to hydrofacies, while considering the data uncertainty at the same time. Transition probabilities and Markov Chain models are established using the transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations indicate significant differences of spatial structure depending on the type of conditioning data selected. It is to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are used in conditional geostatistical simulations in TProGS. Therefore, it provides valuable insights regarding the advantages and challenges of using such comprehensive data.
Mercury emissions from coal combustion in Silesia, analysis using geostatistics
NASA Astrophysics Data System (ADS)
Zasina, Damian; Zawadzki, Jaroslaw
2015-04-01
Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http://www.ceip.at/. [3] Zyśk J., Wyrwa A. and Pluta M. Emissions of mercury from the power sector in Poland. Atmospheric Environment, 45:605-610, 2011. http://dx.doi.org/10.1016/j.atmosenv.2010.10.041/. [4] Głodek A., Pacyna J. Mercury emission from coal-fired power plants in Poland. Atmospheric Environment, 43:5668-5673, 2009. http://dx.doi.org/10.1016/j.atmosenv.2009.07.041. [5] NCEM. National emission database, 2014. NCEM Management at the IEP-NRI. [6] Zasina D. and Zawadzki J. Disaggregation problems using data derived from polish air pollutant emission management system, Systems Supporting Production Engineering. Review of Problems and Solutions, ISBN 978-83-937845-9-2, pp. 128-137, 2014. [7] EUROSTAT. EUROSTAT Energy Database, 2014. [8] Wackernagel H. Basics in Geostatistics 3 Geostatistical Monte-Carlo methods: Conditional simulation, 2013.
NASA Astrophysics Data System (ADS)
Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.
2016-12-01
The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D saturated transient model to assess the extent of the radionuclide plume in the groundwater and its most likely evolution over time by taking into account uncertainties associated with the source term spatial variability.
The role of geostatistics in medical geology
NASA Astrophysics Data System (ADS)
Goovaerts, Pierre
2014-05-01
Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences, to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviors, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentrations across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. Arsenic in drinking-water is a major problem and has received much attention because of the large human population exposed and the extremely high concentrations (e.g. 600 to 700 μg/L) recorded in many instances. Few studies have however assessed the risks associated with exposure to low levels of arsenic (say < 50 μg/L) most commonly found in drinking water in the United States. In the Michigan thumb region, arsenopyrite (up to 7% As by weight) has been identified in the bedrock of the Marshall Sandstone aquifer, one of the region's most productive aquifers. Epidemiologic studies have suggested a possible associationbetween exposure to inorganic arsenic and prostate cancer mortality, including a study of populations residing in Utah. The information available for the present ecological study (i.e. analysis of aggregated health outcomes) consist of: 1) 9,188 arsenic concentrations measured at 8,212 different private wells that were sampled between 1993 and 2002, 2) prostate cancer incidence recorded at the township level over the period 1985-2002, and 3) block-group population density that served as proxy for urbanization and use of regulated public water supply versus use of potentially contaminated private wells in rural areas.
ERIC Educational Resources Information Center
Jones, Thomas A.
1983-01-01
Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)
Indoor radon variations in central Iran and its geostatistical map
NASA Astrophysics Data System (ADS)
Hadad, Kamal; Mokhtari, Javad
2015-02-01
We present the results of 2 year indoor radon survey in 10 cities of Yazd province in Central Iran (covering an area of 80,000 km2). We used passive diffusive samplers with LATEX polycarbonate films as Solid State Nuclear Track Detector (SSNTD). This study carried out in central Iran where there are major minerals and uranium mines. Our results indicate that despite few extraordinary high concentrations, average annual concentrations of indoor radon are within ICRP guidelines. When geostatistical spatial distribution of radon mapped onto geographical features of the province it was observed that risk of high radon concentration increases near the Saqand, Bafq, Harat and Abarkooh cities, this depended on the elevation and vicinity of the ores and mines.
Supervised restoration of degraded medical images using multiple-point geostatistics.
Pham, Tuan D
2012-06-01
Reducing noise in medical images has been an important issue of research and development for medical diagnosis, patient treatment, and validation of biomedical hypotheses. Noise inherently exists in medical and biological images due to the acquisition and transmission in any imaging devices. Being different from image enhancement, the purpose of image restoration is the process of removing noise from a degraded image in order to recover as much as possible its original version. This paper presents a statistically supervised approach for medical image restoration using the concept of multiple-point geostatistics. Experimental results have shown the effectiveness of the proposed technique which has potential as a new methodology for medical and biological image processing. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A geostatistical extreme-value framework for fast simulation of natural hazard events
Stephenson, David B.
2016-01-01
We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student’s t-process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost. This makes the model viable for forming the hazard module of a catastrophe model. We illustrate the framework by simulating maximum wind gusts for European windstorms, which are found to have realistic marginal and spatial properties, and validate well against wind gust measurements. PMID:27279768
Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi
2013-10-01
The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.
Flegg, Jennifer A; Patil, Anand P; Venkatesan, Meera; Roper, Cally; Naidoo, Inbarani; Hay, Simon I; Sibley, Carol Hopkins; Guerin, Philippe J
2013-07-17
Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread. Prevalence measurements of single nucleotide polymorphisms in three codon positions of the dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E mutation in sub-Saharan Africa. The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability distributions of resistance prevalence in places where no data are available as well as insight on the spread of resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar techniques to design optimal strategies to monitor resistance to ACT.
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
Planning spatial sampling of the soil from an uncertain reconnaissance variogram
NASA Astrophysics Data System (ADS)
Lark, R. Murray; Hamilton, Elliott M.; Kaninga, Belinda; Maseka, Kakoma K.; Mutondo, Moola; Sakala, Godfrey M.; Watts, Michael J.
2017-12-01
An estimated variogram of a soil property can be used to support a rational choice of sampling intensity for geostatistical mapping. However, it is known that estimated variograms are subject to uncertainty. In this paper we address two practical questions. First, how can we make a robust decision on sampling intensity, given the uncertainty in the variogram? Second, what are the costs incurred in terms of oversampling because of uncertainty in the variogram model used to plan sampling? To achieve this we show how samples of the posterior distribution of variogram parameters, from a computational Bayesian analysis, can be used to characterize the effects of variogram parameter uncertainty on sampling decisions. We show how one can select a sample intensity so that a target value of the kriging variance is not exceeded with some specified probability. This will lead to oversampling, relative to the sampling intensity that would be specified if there were no uncertainty in the variogram parameters. One can estimate the magnitude of this oversampling by treating the tolerable grid spacing for the final sample as a random variable, given the target kriging variance and the posterior sample values. We illustrate these concepts with some data on total uranium content in a relatively sparse sample of soil from agricultural land near mine tailings in the Copperbelt Province of Zambia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.; Williams, G.; Parmelee, R.
1995-12-31
Spatial relationships among soil nematodes and soil microorganisms were investigated in a grassland ecosystem contaminated with heavy metals in the US Army`s Aberdeen Proving Ground. The study quantified fungal and bacterial biomass, the abundance of soil protozoa, and nematodes. Geostatistical techniques were used to determine spatial distributions of these parameters and to evaluate various cross-correlations. The cross-correlations among soil biota numbers were analyzed using two methods: a cross general relative semi-variogram and an interactive graphical data representation using geostatistically estimated data distributions. Both the visualization technique and the cross general relative semi-variogram and an interactive graphical data representation using geostatisticallymore » estimated data distributions. Both the visualization technique and the cross general relative semi-variogram showed a negative correlation between the abundance of fungivore nematodes and fungal biomass, the abundance of bacterivore nematodes and bacterial biomass, the abundance of omnivore/predator nematodes and numbers of protozoa, and between numbers of protozoa and both fungal and bacterial biomass. The negative cross-correlation between soil biota and metal concentrations showed that soil fungi were particularly sensitive to heavy metal concentrations and can be used for quantitative ecological risk assessment of metal-contaminated soils. This study found that geostatistics are a useful tool for describing and analyzing spatial relationships among components of food webs in the soil community.« less
Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L
2011-09-15
Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.
Statistical Estimation of Heterogeneities: A New Frontier in Well Testing
NASA Astrophysics Data System (ADS)
Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.
2001-12-01
Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
Mapping the Risk of Snakebite in Sri Lanka - A National Survey with Geospatial Analysis.
Ediriweera, Dileepa Senajith; Kasturiratne, Anuradhani; Pathmeswaran, Arunasalam; Gunawardena, Nipul Kithsiri; Wijayawickrama, Buddhika Asiri; Jayamanne, Shaluka Francis; Isbister, Geoffrey Kennedy; Dawson, Andrew; Giorgi, Emanuele; Diggle, Peter John; Lalloo, David Griffith; de Silva, Hithanadura Janaka
2016-07-01
There is a paucity of robust epidemiological data on snakebite, and data available from hospitals and localized or time-limited surveys have major limitations. No study has investigated the incidence of snakebite across a whole country. We undertook a community-based national survey and model based geostatistics to determine incidence, envenoming, mortality and geographical pattern of snakebite in Sri Lanka. The survey was designed to sample a population distributed equally among the nine provinces of the country. The number of data collection clusters was divided among districts in proportion to their population. Within districts clusters were randomly selected. Population based incidence of snakebite and significant envenoming were estimated. Model-based geostatistics was used to develop snakebite risk maps for Sri Lanka. 1118 of the total of 14022 GN divisions with a population of 165665 (0.8%of the country's population) were surveyed. The crude overall community incidence of snakebite, envenoming and mortality were 398 (95% CI: 356-441), 151 (130-173) and 2.3 (0.2-4.4) per 100000 population, respectively. Risk maps showed wide variation in incidence within the country, and snakebite hotspots and cold spots were determined by considering the probability of exceeding the national incidence. This study provides community based incidence rates of snakebite and envenoming for Sri Lanka. The within-country spatial variation of bites can inform healthcare decision making and highlights the limitations associated with estimates of incidence from hospital data or localized surveys. Our methods are replicable, and these models can be adapted to other geographic regions after re-estimating spatial covariance parameters for the particular region.
Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R 2 , mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R 2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.
A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots.
Turner, P A; Griffis, T J; Mulla, D J; Baker, J M; Venterea, R T
2016-12-01
Anthropogenic emissions of nitrous oxide (N 2 O), a trace gas with severe environmental costs, are greatest from agricultural soils amended with nitrogen (N) fertilizer. However, accurate N 2 O emission estimates at fine spatial scales are made difficult by their high variability, which represents a critical challenge for the management of N 2 O emissions. Here, static chamber measurements (n=60) and soil samples (n=129) were collected at approximately weekly intervals (n=6) for 42-d immediately following the application of N in a southern Minnesota cornfield (15.6-ha), typical of the systems prevalent throughout the U.S. Corn Belt. These data were integrated into a geostatistical model that resolved N 2 O emissions at a high spatial resolution (1-m). Field-scale N 2 O emissions exhibited a high degree of spatial variability, and were partitioned into three classes of emission strength: hotspots, intermediate, and coldspots. Rates of emission from hotspots were 2-fold greater than non-hotspot locations. Consequently, 36% of the field-scale emissions could be attributed to hotspots, despite representing only 21% of the total field area. Variations in elevation caused hotspots to develop in predictable locations, which were prone to nutrient and moisture accumulation caused by terrain focusing. Because these features are relatively static, our data and analyses indicate that targeted management of hotspots could efficiently reduce field-scale emissions by as much 17%, a significant benefit considering the deleterious effects of atmospheric N 2 O. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2013-12-01
The spatial variation of forest litter carbon (FLC) density in the typical subtropical forests in southeast China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (South-North) × 6 km (East-West) grid system in Zhejiang Province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using Local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas. While Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns in distribution map were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS could be used to study spatial patterns of environmental variables related to forest ecosystem.
Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators
NASA Astrophysics Data System (ADS)
Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T.
2015-11-01
A random field (RF) is a set of correlated random variables associated with different spatial locations. RF generation algorithms are of crucial importance for many scientific areas, such as astrophysics, geostatistics, computer graphics, and many others. Current approaches commonly make use of 3D fast Fourier transform (FFT), which does not scale well for RF bigger than the available memory; they are also limited to regular rectilinear meshes. We introduce random field generation with the turning band method (RAFT), an RF generation algorithm based on the turning band method that is optimized for massively parallel hardware such as GPUs and accelerators. Our algorithm replaces the 3D FFT with a lower-order, one-dimensional FFT followed by a projection step and is further optimized with loop unrolling and blocking. RAFT can easily generate RF on non-regular (non-uniform) meshes and efficiently produce fields with mesh sizes bigger than the available device memory by using a streaming, out-of-core approach. Our algorithm generates RF with the correct statistical behavior and is tested on a variety of modern hardware, such as NVIDIA Tesla, AMD FirePro and Intel Phi. RAFT is faster than the traditional methods on regular meshes and has been successfully applied to two real case scenarios: planetary nebulae and cosmological simulations.
NASA Astrophysics Data System (ADS)
Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.
2012-12-01
The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.
A NEW LOG EVALUATION METHOD TO APPRAISE MESAVERDE RE-COMPLETION OPPORTUNITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert Greer
2003-09-11
Artificial intelligence tools, fuzzy logic and neural networks were used to evaluate the potential of the behind pipe Mesaverde formation in BMG's Mancos formation wells. A fractal geostatistical mapping algorithm was also used to predict Mesaverde production. Additionally, a conventional geological study was conducted. To date one Mesaverde completion has been performed. The Janet No.3 Mesaverde completion was non-economic. Both the AI method and the geostatistical methods predicted the failure of the Janet No.3. The Gavilan No.1 in the Mesaverde was completed during the course of the study and was an extremely good well. This well was not included inmore » the statistical dataset. The AI method predicted very good production while the fractal map predicted a poor producer.« less
NASA Astrophysics Data System (ADS)
Reinhardt, Katja; Samimi, Cyrus
2018-01-01
While climatological data of high spatial resolution are largely available in most developed countries, the network of climatological stations in many other regions of the world still constitutes large gaps. Especially for those regions, interpolation methods are important tools to fill these gaps and to improve the data base indispensible for climatological research. Over the last years, new hybrid methods of machine learning and geostatistics have been developed which provide innovative prospects in spatial predictive modelling. This study will focus on evaluating the performance of 12 different interpolation methods for the wind components \\overrightarrow{u} and \\overrightarrow{v} in a mountainous region of Central Asia. Thereby, a special focus will be on applying new hybrid methods on spatial interpolation of wind data. This study is the first evaluating and comparing the performance of several of these hybrid methods. The overall aim of this study is to determine whether an optimal interpolation method exists, which can equally be applied for all pressure levels, or whether different interpolation methods have to be used for the different pressure levels. Deterministic (inverse distance weighting) and geostatistical interpolation methods (ordinary kriging) were explored, which take into account only the initial values of \\overrightarrow{u} and \\overrightarrow{v} . In addition, more complex methods (generalized additive model, support vector machine and neural networks as single methods and as hybrid methods as well as regression-kriging) that consider additional variables were applied. The analysis of the error indices revealed that regression-kriging provided the most accurate interpolation results for both wind components and all pressure heights. At 200 and 500 hPa, regression-kriging is followed by the different kinds of neural networks and support vector machines and for 850 hPa it is followed by the different types of support vector machine and ordinary kriging. Overall, explanatory variables improve the interpolation results.
Patch-based iterative conditional geostatistical simulation using graph cuts
NASA Astrophysics Data System (ADS)
Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas
2016-08-01
Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.
A Neural-Network-Based Semi-Automated Geospatial Classification Tool
NASA Astrophysics Data System (ADS)
Hale, R. G.; Herzfeld, U. C.
2014-12-01
North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to manually pre-sort imagery into classes is greatly reduced.
Revisiting the cape cod bacteria injection experiment using a stochastic modeling approach
Maxwell, R.M.; Welty, C.; Harvey, R.W.
2007-01-01
Bromide and resting-cell bacteria tracer tests conducted in a sandy aquifer at the U.S. Geological Survey Cape Cod site in 1987 were reinterpreted using a three-dimensional stochastic approach. Bacteria transport was coupled to colloid filtration theory through functional dependence of local-scale colloid transport parameters upon hydraulic conductivity and seepage velocity in a stochastic advection - dispersion/attachment - detachment model. Geostatistical information on the hydraulic conductivity (K) field that was unavailable at the time of the original test was utilized as input. Using geostatistical parameters, a groundwater flow and particle-tracking model of conservative solute transport was calibrated to the bromide-tracer breakthrough data. An optimization routine was employed over 100 realizations to adjust the mean and variance ofthe natural-logarithm of hydraulic conductivity (InK) field to achieve best fit of a simulated, average bromide breakthrough curve. A stochastic particle-tracking model for the bacteria was run without adjustments to the local-scale colloid transport parameters. Good predictions of mean bacteria breakthrough were achieved using several approaches for modeling components of the system. Simulations incorporating the recent Tufenkji and Elimelech (Environ. Sci. Technol. 2004, 38, 529-536) correlation equation for estimating single collector efficiency were compared to those using the older Rajagopalan and Tien (AIChE J. 1976, 22, 523-533) model. Both appeared to work equally well at predicting mean bacteria breakthrough using a constant mean bacteria diameter for this set of field conditions. Simulations using a distribution of bacterial cell diameters available from original field notes yielded a slight improvement in the model and data agreement compared to simulations using an average bacterial diameter. The stochastic approach based on estimates of local-scale parameters for the bacteria-transport process reasonably captured the mean bacteria transport behavior and calculated an envelope of uncertainty that bracketed the observations in most simulation cases. ?? 2007 American Chemical Society.
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
NASA Astrophysics Data System (ADS)
Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen
2015-04-01
Heavy metal pollution has adverse effects on not only the focal invertebrate species of this study, such as reduction in pupa weight and increased larval mortality, but also on the higher trophic level organisms which feed on them, either directly or indirectly, through the process of biomagnification. Despite this, few studies regarding remediation prioritization take species distribution or biological conservation priorities into consideration. This study develops a novel approach for delineating sites which are both contaminated by any of 5 readily bioaccumulated heavy metal soil contaminants and are of high ecological importance for the highly mobile, low trophic level focal species. The conservation priority of each site was based on the projected distributions of 6 moth species simulated via the presence-only maximum entropy species distribution model followed by the subsequent application of a systematic conservation tool. In order to increase the number of available samples, we also integrated crowd-sourced data with professionally-collected data via a novel optimization procedure based on a simulated annealing algorithm. This integration procedure was important since while crowd-sourced data can drastically increase the number of data samples available to ecologists, still the quality or reliability of crowd-sourced data can be called into question, adding yet another source of uncertainty in projecting species distributions. The optimization method screens crowd-sourced data in terms of the environmental variables which correspond to professionally-collected data. The sample distribution data was derived from two different sources, including the EnjoyMoths project in Taiwan (crowd-sourced data) and the Global Biodiversity Information Facility (GBIF) ?eld data (professional data). The distributions of heavy metal concentrations were generated via 1000 iterations of a geostatistical co-simulation approach. The uncertainties in distributions of the heavy metals were then quantified based on the overall consistency between realizations. Finally, Information-Gap Decision Theory (IGDT) was applied to rank the remediation priorities of contaminated sites in terms of both spatial consensus of multiple heavy metal realizations and the priority of specific conservation areas. Our results show that the crowd-sourced optimization algorithm developed in this study is effective at selecting suitable data from crowd-sourced data. By using this technique the available sample data increased to a total number of 96, 162, 72, 62, 69 and 62 or, that is, 2.6, 1.6, 2.5, 1.6, 1.2 and 1.8 times that originally available through the GBIF professionally-assembled database. Additionally, for all species considered the performance of models, in terms of test-AUC values, based on the combination of both data sources exceeded those models which were based on a single data source. Furthermore, the additional optimization-selected data lowered the overall variability, and therefore uncertainty, of model outputs. Based on the projected species distributions, our results revealed that around 30% of high species hotspot areas were also identified as contaminated. The decision-making tool, IGDT, successfully yielded remediation plans in terms of specific ecological value requirements, false positive tolerance rates of contaminated areas, and expected decision robustness. The proposed approach can be applied both to identify high conservation priority sites contaminated by heavy metals, based on the combination of screened crowd-sourced and professionally-collected data, and in making robust remediation decisions.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.
Hydraulic Tomography and the Curse of Storativity
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Li, W.; Englert, A.
2006-12-01
Pumping tests are among the most common techniques for hydrogeological site investigation. Their traditional analysis is based on fitting analytical expressions to measured time series of drawdown. These expressions were derived for homogeneous conditions, whereas all natural aquifers are heterogeneous. The mentioned conceptual inconsistency complicates the hydrogeological interpretation of the obtained coefficients. In particularly, it has been shown that the heterogeneity of transmissivity is aliased to variability in the estimated storativity. In hydraulic tomography, multiple pumping tests are jointly analyzed. The hydraulic parameters to be estimated are allowed to fluctuate in space. For regularization, a geostatistical smoothness criterion may be introduced. Thus, the inversion results in the most likely spatial distribution of parameters that is consistent with the drawdown measurements and follows a predefined geostatistical model. Applying the restricted maximum likelihood approach, the parameters of the prior covariance function (i.e., the prior variance and correlation length) can be inferred from the data as well. We have applied the quasi-linear geostatistical approach of inverse modeling to drawdown measurements of multiple, overlapping pumping tests performed at the test site Krauthausen near Jülich, Germany. To reduce the computational costs, we have characterized the drawdown curves by their temporal moments. In the estimation of the geostatistical parameters, the measurement error of heads turned out to be of vital importance. The less we trust the data, the larger is the estimated correlation length, resulting in a more uniform distribution of transmissivity. Similar to conventional pumping test analysis, the data analysis point to a high variability of storativity although the properties making up storativity are known to be only mildly heterogeneous. We conjecture that the unresolved small-scale spatial variability of conductivity is mapped to variability of storativity. This is rather unfortunate since reliable field data on the variability of storativity are missing. The study underscores that structural information is difficult to extract from hydraulic data alone. Information on length scales and major deterministic features may be gained by geophysical surveying, even if rock-laws directly relating geophysical to hydraulic properties are considered unreliable.
A visual LISP program for voxelizing AutoCAD solid models
NASA Astrophysics Data System (ADS)
Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz
2015-01-01
AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.
Geostatistical Sampling Methods for Efficient Uncertainty Analysis in Flow and Transport Problems
NASA Astrophysics Data System (ADS)
Liodakis, Stylianos; Kyriakidis, Phaedon; Gaganis, Petros
2015-04-01
In hydrogeological applications involving flow and transport of in heterogeneous porous media the spatial distribution of hydraulic conductivity is often parameterized in terms of a lognormal random field based on a histogram and variogram model inferred from data and/or synthesized from relevant knowledge. Realizations of simulated conductivity fields are then generated using geostatistical simulation involving simple random (SR) sampling and are subsequently used as inputs to physically-based simulators of flow and transport in a Monte Carlo framework for evaluating the uncertainty in the spatial distribution of solute concentration due to the uncertainty in the spatial distribution of hydraulic con- ductivity [1]. Realistic uncertainty analysis, however, calls for a large number of simulated concentration fields; hence, can become expensive in terms of both time and computer re- sources. A more efficient alternative to SR sampling is Latin hypercube (LH) sampling, a special case of stratified random sampling, which yields a more representative distribution of simulated attribute values with fewer realizations [2]. Here, term representative implies realizations spanning efficiently the range of possible conductivity values corresponding to the lognormal random field. In this work we investigate the efficiency of alternative methods to classical LH sampling within the context of simulation of flow and transport in a heterogeneous porous medium. More precisely, we consider the stratified likelihood (SL) sampling method of [3], in which attribute realizations are generated using the polar simulation method by exploring the geometrical properties of the multivariate Gaussian distribution function. In addition, we propose a more efficient version of the above method, here termed minimum energy (ME) sampling, whereby a set of N representative conductivity realizations at M locations is constructed by: (i) generating a representative set of N points distributed on the surface of a M-dimensional, unit radius hyper-sphere, (ii) relocating the N points on a representative set of N hyper-spheres of different radii, and (iii) transforming the coordinates of those points to lie on N different hyper-ellipsoids spanning the multivariate Gaussian distribution. The above method is applied in a dimensionality reduction context by defining flow-controlling points over which representative sampling of hydraulic conductivity is performed, thus also accounting for the sensitivity of the flow and transport model to the input hydraulic conductivity field. The performance of the various stratified sampling methods, LH, SL, and ME, is compared to that of SR sampling in terms of reproduction of ensemble statistics of hydraulic conductivity and solute concentration for different sample sizes N (numbers of realizations). The results indicate that ME sampling constitutes an equally if not more efficient simulation method than LH and SL sampling, as it can reproduce to a similar extent statistics of the conductivity and concentration fields, yet with smaller sampling variability than SR sampling. References [1] Gutjahr A.L. and Bras R.L. Spatial variability in subsurface flow and transport: A review. Reliability Engineering & System Safety, 42, 293-316, (1993). [2] Helton J.C. and Davis F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81, 23-69, (2003). [3] Switzer P. Multiple simulation of spatial fields. In: Heuvelink G, Lemmens M (eds) Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Coronet Books Inc., pp 629?635 (2000).
Clustering of Multivariate Geostatistical Data
NASA Astrophysics Data System (ADS)
Fouedjio, Francky
2017-04-01
Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.
NASA Astrophysics Data System (ADS)
Chiessi, Vittorio; D'Orefice, Maurizio; Scarascia Mugnozza, Gabriele; Vitale, Valerio; Cannese, Christian
2010-07-01
This paper describes the results of a rockfall hazard assessment for the village of San Quirico (Abruzzo region, Italy) based on an engineering-geological model. After the collection of geological, geomechanical, and geomorphological data, the rockfall hazard assessment was performed based on two separate approaches: i) simulation of detachment of rock blocks and their downhill movement using a GIS; and ii) application of geostatistical techniques to the analysis of georeferenced observations of previously fallen blocks, in order to assess the probability of arrival of blocks due to potential future collapses. The results show that the trajectographic analysis is significantly influenced by the input parameters, with particular reference to the coefficients of restitution values. In order to solve this problem, the model was calibrated based on repeated field observations. The geostatistical approach is useful because it gives the best estimation of point-source phenomena such as rockfalls; however, the sensitivity of results to basic assumptions, e.g. assessment of variograms and choice of a threshold value, may be problematic. Consequently, interpolations derived from different variograms have been used and compared among them; hence, those showing the lowest errors were adopted. The data sets which were statistically analysed are relevant to both kinetic energy and surveyed rock blocks in the accumulation area. The obtained maps highlight areas susceptible to rock block arrivals, and show that the area accommodating the new settlement of S. Quirico Village has the highest level of hazard according to both probabilistic and deterministic methods.
Boysen, Courtney; Davis, Elizabeth G.; Beard, Laurie A.; Lubbers, Brian V.; Raghavan, Ram K.
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed. PMID:26473728
Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R
2001-12-01
ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.
Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong
2016-01-01
Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.
NASA Astrophysics Data System (ADS)
Mariethoz, Gregoire; Lefebvre, Sylvain
2014-05-01
Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.
NASA Astrophysics Data System (ADS)
Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf
2017-04-01
In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.
Boysen, Courtney; Davis, Elizabeth G; Beard, Laurie A; Lubbers, Brian V; Raghavan, Ram K
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥ 1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥ 35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed.
On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
NASA Astrophysics Data System (ADS)
Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.
2016-11-01
This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.
Large-scale inverse model analyses employing fast randomized data reduction
NASA Astrophysics Data System (ADS)
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
Cd pollution and ecological risk assessment for mining activity zone in Karst Area
NASA Astrophysics Data System (ADS)
Yang, B.; He, J. L.; Wen, X. M.; Tan, H.
2017-08-01
The monitored soil samples were collected from farmland in the area with mining activity in Karst area in Liupanshui. In this article, moss bag technology and TSP were used simultaneously for Cd transportation and deposition in the study area. Geostatistics and GIS were then used for the spatial distribution of Cd in the soil. Afterwards, Cd pollution to the soil environment and human health was studied by using the geo-accumulation index and potential ecological risk index methods. The results indicated that atmospheric deposition is the major route of Cd pollution. A moderate to strong pollution of Cd in the area and the degree of potential ecological risk was in a high level in the study area. Furthermore, Cd pollution in Liupanshui may originate from mining activity and atmospheric deposition.
Determination of Time Dependent Virus Inactivation Rates
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Vogler, E. T.
2003-12-01
A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.
Chen, Yuanyuan; Wang, Jun; Shi, Guitao; Sun, Xiaojing; Chen, Zhenlou; Xu, Shiyuan
2011-12-01
The lead (Pb) content in atmospheric deposition was determined at 42 sampling sites in Baoshan District of Shanghai, China. Based on exposure and dose-response assessments, the health risk caused by Pb exposure in atmospheric deposition was investigated. The results indicated that Pb was significantly accumulated in atmospheric deposition. The spatial distribution of Pb was mapped by geostatistical analysis, and the results showed that pollution hotspots were present at traffic and industrial zones. Ingestion was the main route of Pb exposure in both adults and children. For children the risk value was above 1, whereas it was below 1 for the adult group. Therefore, children belong to the high-risk group for Pb exposure from atmospheric deposition in the observed area of Shanghai, China.
Ciotoli, G; Voltaggio, M; Tuccimei, P; Soligo, M; Pasculli, A; Beaubien, S E; Bigi, S
2017-01-01
In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central-northern sector of Lazio region) and to faulted and fractured carbonate rocks (central-southern and eastern sectors of the Lazio region). This typical local variability of autocorrelated phenomena can only be taken into account by using local methods for spatial data analysis. The constructed GRP map can be a useful tool to implement radon policies at both the national and local levels, providing critical data for land use and planning purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit
2008-02-01
Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.
Mapping the Risk of Snakebite in Sri Lanka - A National Survey with Geospatial Analysis
Ediriweera, Dileepa Senajith; Kasturiratne, Anuradhani; Pathmeswaran, Arunasalam; Gunawardena, Nipul Kithsiri; Wijayawickrama, Buddhika Asiri; Jayamanne, Shaluka Francis; Isbister, Geoffrey Kennedy; Dawson, Andrew; Giorgi, Emanuele; Diggle, Peter John; Lalloo, David Griffith; de Silva, Hithanadura Janaka
2016-01-01
Background There is a paucity of robust epidemiological data on snakebite, and data available from hospitals and localized or time-limited surveys have major limitations. No study has investigated the incidence of snakebite across a whole country. We undertook a community-based national survey and model based geostatistics to determine incidence, envenoming, mortality and geographical pattern of snakebite in Sri Lanka. Methodology/Principal Findings The survey was designed to sample a population distributed equally among the nine provinces of the country. The number of data collection clusters was divided among districts in proportion to their population. Within districts clusters were randomly selected. Population based incidence of snakebite and significant envenoming were estimated. Model-based geostatistics was used to develop snakebite risk maps for Sri Lanka. 1118 of the total of 14022 GN divisions with a population of 165665 (0.8%of the country’s population) were surveyed. The crude overall community incidence of snakebite, envenoming and mortality were 398 (95% CI: 356–441), 151 (130–173) and 2.3 (0.2–4.4) per 100000 population, respectively. Risk maps showed wide variation in incidence within the country, and snakebite hotspots and cold spots were determined by considering the probability of exceeding the national incidence. Conclusions/Significance This study provides community based incidence rates of snakebite and envenoming for Sri Lanka. The within-country spatial variation of bites can inform healthcare decision making and highlights the limitations associated with estimates of incidence from hospital data or localized surveys. Our methods are replicable, and these models can be adapted to other geographic regions after re-estimating spatial covariance parameters for the particular region. PMID:27391023
Emadi, Mostafa; Baghernejad, Majid; Pakparvar, Mojtaba; Kowsar, Sayyed Ahang
2010-05-01
This study was undertaken to incorporate geostatistics, remote sensing, and geographic information system (GIS) technologies to improve the qualitative land suitability assessment in arid and semiarid ecosystems of Arsanjan plain, southern Iran. The primary data were obtained from 85 soil samples collected from tree depths (0-30, 30-60, and 60-90 cm); the secondary information was acquired from the remotely sensed data from the linear imaging self-scanner (LISS-III) receiver of the IRS-P6 satellite. Ordinary kriging and simple kriging with varying local means (SKVLM) methods were used to identify the spatial dependency of soil important parameters. It was observed that using the data collected from the spectral values of band 1 of the LISS-III receiver as the secondary variable applying the SKVLM method resulted in the lowest mean square error for mapping the pH and electrical conductivity (ECe) in the 0-30-cm depth. On the other hand, the ordinary kriging method resulted in a reliable accuracy for the other soil properties with moderate to strong spatial dependency in the study area for interpolation in the unstamped points. The parametric land suitability evaluation method was applied on the density points (150 x 150 m(2)) instead of applying on the limited representative profiles conventionally, which were obtained by the kriging or SKVLM methods. Overlaying the information layers of the data was used with the GIS for preparing the final land suitability evaluation. Therefore, changes in land characteristics could be identified in the same soil uniform mapping units over a very short distance. In general, this new method can easily present the squares and limitation factors of the different land suitability classes with considerable accuracy in arbitrary land indices.
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping
2011-01-01
Background Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. Results In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Conclusions Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset. PMID:21978359
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.
Hampton, Kristen H; Serre, Marc L; Gesink, Dionne C; Pilcher, Christopher D; Miller, William C
2011-10-06
Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.
Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin
2014-08-15
An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiaopeng, QI; Liang, WEI; BARKER, Laurie; LEKIACHVILI, Akaki; Xingyou, ZHANG
2015-01-01
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature’s association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly—or 30-day—basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R2, mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS’s merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects. PMID:26167169
NASA Astrophysics Data System (ADS)
Séraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio
2016-11-01
This study reports an assessment of the water budget of the Crau aquifer (Southern France), which is poorly referenced in the literature. Anthropogenically controlled by a traditional irrigation practice, this alluvial type aquifer requires a robust quantification of the groundwater mass balance in order to establish sustainable water management in the region. In view of the high isotopic contrast between exogenous irrigation waters and local precipitations, stable isotopes of water can be used as conservative tracers to deduce their contributions to the surface recharge. Extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with an updated aquifer geometry, the isotopic data were implemented in a geostatistical approach to produce a conceptual equivalent homogeneous reservoir. This makes it possible to implement a parsimonious water and isotope mass-balance mixing model. The isotopic compositions of the two end-members were assessed, and the quantification of groundwater flows was then used to calculate the two recharge fluxes (natural and irrigation). Nearly at steady-state, the set of isotopic data treated by geostatistics gave a recharge by irrigation of 4.92 ± 0.89 m3 s-1, i.e. 1109 ± 202 mm yr-1, and a natural recharge of 2.19 ± 0.85 m3 s-1, i.e. 128 ± 50 mm yr-1. Thus, 69 ± 9% of the surface recharge is caused by irrigation return flow. This study constitutes a straightforward and independent approach to assess groundwater surface recharges including uncertainties and will help to constrain future transient groundwater models of the Crau aquifer.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2014-04-01
Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.
NASA Astrophysics Data System (ADS)
Hu, L.; Montzka, S. A.; Miller, B.; Andrews, A. E.; Miller, J. B.; Lehman, S.; Sweeney, C.; Miller, S. M.; Thoning, K. W.; Siso, C.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Gilman, J.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Chen, H.; Fischer, M. L.; Mountain, M. E.; Nehrkorn, T.; Biraud, S.; Tans, P. P.
2015-12-01
Global atmospheric observations suggest substantial ongoing emissions of carbon tetrachloride (CCl4) despite a 100% phase-out of production for dispersive uses since 1996 in developed countries and 2010 in other countries. Little progress has been made in understanding the causes of these ongoing emissions or identifying their contributing sources. In this study, we employed multiple inverse modeling techniques (i.e. Bayesian and geostatistical inversions) to assimilate CCl4 mole fractions observed from the National Oceanic and Atmospheric Administration (NOAA) flask-air sampling network over the US, and quantify its national and regional emissions during 2008 - 2012. Average national total emissions of CCl4 between 2008 and 2012 determined from these observations and an ensemble of inversions range between 2.1 and 6.1 Gg yr-1. This emission is substantially larger than the mean of 0.06 Gg/yr reported to the US EPA Toxics Release Inventory over these years, suggesting that under-reported emissions or non-reporting sources make up the bulk of CCl4 emissions from the US. But while the inventory does not account for the magnitude of observationally-derived CCl4 emissions, the regional distribution of derived and inventory emissions is similar. Furthermore, when considered relative to the distribution of uncapped landfills or population, the variability in measured mole fractions was most consistent with the distribution of industrial sources (i.e., those from the Toxics Release Inventory). Our results suggest that emissions from the US only account for a small fraction of the global on-going emissions of CCl4 (30 - 80 Gg yr-1 over this period). Finally, to ascertain the importance of the US emissions relative to the unaccounted global emission rate we considered multiple approaches to extrapolate our results to other countries and the globe.
NASA Astrophysics Data System (ADS)
Elhaja, Mohamed Eltom; Ibrahim, Ibrahim Saeed; Adam, Hassan Elnour; Csaplovics, Elmar
2014-11-01
One of the most important recent issues facing White Nile State, Sudan, as well as Sub Saharan Africa, is the threat of continued land degradation and desertification as a result of climatic factors and human activities. Remote sensing and satellites imageries with multi-temporal and spectral and GIS capability, plays a major role in developing a global and local operational capability for monitoring land degradation and desertification in dry lands, as well as in White Nile State. The process of desertification in form of sand encroachment in White Nile State has increased rapidly, and much effort has been devoted to define and study its causes and impacts. This study depicts the capability afforded by remote sensing and GIS to analyze and map the aggregate stability as indicator for the ability of soil to wind erosion process in White Nile State by using Geo-statistical techniques. Cloud-free subset Landsat; Enhance Thematic Mapper plus (ETM +) scenes covering the study area dated 2008 was selected in order to identify the different features covering the study area as well as to make the soil sampling map. Wet-sieving method was applied to determine the aggregate stability. The geo-statistical methods in EARDAS 9.1 software was used for mapping the aggregate stability. The results showed that the percentage of aggregate stability ranged from (0 to 61%) in the study area, which emphasized the phenomena of sand encroachment from the western part (North Kordofan) to the eastern part (White Nile State), following the wind direction. The study comes out with some valuable recommendations and comments, which could contribute positively in reducing sand encroachments
NASA Astrophysics Data System (ADS)
Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.
2013-10-01
Based on rainfall intensity-duration-frequency (IDF) curves, fitted in several locations of a given area, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimization can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables, and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short- and a long-term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. Therefore, it is proposed to augment it by 25, 50, 100 and 160% virtually, which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.
Spatial variability of soil moisture retrieved by SMOS satellite
NASA Astrophysics Data System (ADS)
Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy
2015-04-01
Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).
NASA Astrophysics Data System (ADS)
Erdin, R.; Frei, C.; Sideris, I.; Kuensch, H.-R.
2010-09-01
There is an increasing demand for accurate mapping of precipitation at a spatial resolution of kilometers. Radar and rain gauges - the two main precipitation measurement systems - exhibit complementary strengths and weaknesses. Radar offers high spatial and temporal resolution but lacks accuracy of absolute values, whereas rain gauges provide accurate values at their specific point location but suffer from poor spatial representativeness. Methods of geostatistical mapping have been proposed to combine radar and rain gauge data for quantitative precipitation estimation (QPE). The aim is to combine the respective strengths and compensate for the respective weaknesses of the two observation platforms. Several studies have demonstrated the potential of these methods over topography of moderate complexity, but their performance remains unclear for high-mountain regions where rainfall patterns are complex, the representativeness of rain gauge measurements is limited and radar observations are obstructed. In this study we examine the potential and limitations of two frequently used geostatistical mapping methods for the territory of Switzerland, where the mountain chain of the Alps poses particular challenges to QPE. The two geostatistical methods explored are kriging with external drift (KED) using radar as drift variable and ordinary kriging of radar errors (OKRE). The radar data is a composite from three C-band radars using a constant Z-R relationship, advanced correction processings for visibility, ground clutter and beam shielding and a climatological bias adjustment. The rain gauge data originates from an automatic network with a typical inter-station distance of 25 km. Both combination methods are applied to a set of case examples representing typical rainfall situations in the Alps with their inherent challenges at daily and hourly time resolution. The quality of precipitation estimates is assessed by several skill scores calculated from cross validation errors at gauge locations. These scores assess different characteristics such as bias, distinction between dry and wet areas (HK, SLEEPS), accuracy of values at wet locations (SCATTER) and overall performance (RMSE, MAD). Special attention is paid to the subject of appropriate case-dependent transformation of variables in order to fulfill model assumptions. Our analyses show that geostatistical merging techniques can provide significant added value compared to pure radar and pure rain gauge data - also in mountainous terrain. Yet, the high a-priori quality of the radar product may have been essential for the good performance of methods. The comparison between the two combination methods shows better results in general for KED, the more flexible of the two methods. However, there are features, such as the differentiation between wet and dry areas (HK), and situations, such as small isolated convective cells, where OKRE outperforms KED. Our discussion conveys interesting insights into the potential and limitations of the two analyzed methods and leads to suggestions for further improvements of combination techniques.
Zhang, Xiaowen; Wei, Shuai; Sun, Qianqian; Wadood, Syed Abdul; Guo, Boli
2018-09-15
Characterizing the distribution and defining potential sources of arsenic and heavy metals are the basic preconditions for reducing the contamination of heavy metals and metalloids. 71 topsoil samples and 61 subsoil samples were collected by grid method to measure the concentration of cadmium (Cd), arsenic (As), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni) and chromium (Cr). Principle components analysis (PCA), GIS-based geo-statistical methods and Positive Matrix Factorization (PMF) were applied. The results showed that the mean concentrations were 9.59 mg kg -1 , 51.28 mg kg -1 , 202.07 mg kg -1 , 81.32 mg kg -1 and 771.22 mg kg -1 for Cd, As, Pb, Cu and Zn, respectively, higher than the guideline values of Chinese Environmental Quality Standard for Soils; while the concentrations of Ni and Cr were very close to recommended value (50 mg kg -1 , 200 mg kg -1 ), and some site were higher than guideline values. The soil was polluted by As and heavy metals in different degree, which had harmful impact on human health. The results from principle components analysis methods extracted three components, namely industrial sources (Cd, Zn and Pb), agricultural sources (As and Cu) and nature sources (Cr and Ni). GIS-based geo-statistical combined with local conditions further apportioned the sources of these trace elements. To better identify pollution sources of As and heavy metals in soil, the PMF was applied. The results of PMF demonstrated that the enrichment of Zn, Cd and Pb were attributed to industrial activities and their contribution was 24.9%; As was closely related to agricultural activities and its contribution was 19.1%; Cr, a part of Cu and Ni were related to subsoil and their contribution was 30.1%; Cu and Pb came from industry and traffic emission and their contribution was 25.9%. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, M.; Hernandez Ramirez, G.; Quideau, S.
2016-12-01
Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.
Quantifying Groundwater Fluctuations in the Southern High Plains with GIS and Geostatistics
NASA Astrophysics Data System (ADS)
Whitehead, B.
2008-12-01
Groundwater as a dwindling non-renewable natural resource has been an important research theme in agricultural studies coupled with human-environment interaction. This research incorporated contemporary Geographic Information System (GIS) methodologies and a universal kriging interpolator (geostatistics) to develop depth to groundwater surfaces for the southern portion of the High Plains, or Ogallala, aquifer. The variations in the interpolated surfaces were used to calculate the volume of water mined from the aquifer from 1980 to 2005. The findings suggest a nearly inverse relationship to the water withdrawal scenarios derived by the United States Geological Survey (USGS) during the Regional Aquifer System Analysis (RASA) performed in the early 1980's. These results advocate further research into regional climate change, groundwater-surface water interaction, and recharge mechanisms in the region, and provide a substantial contribution to the continuing and contentious issue concerning the environmental sustainability of the High Plains.
Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo
2011-03-04
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes.
Karacan, C Özgen; Olea, Ricardo A
2013-04-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.
Principal Component Geostatistical Approach for large-dimensional inverse problems
Kitanidis, P K; Lee, J
2014-01-01
The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best. PMID:25558113
Medical Geography: a Promising Field of Application for Geostatistics.
Goovaerts, P
2009-01-01
The analysis of health data and putative covariates, such as environmental, socio-economic, behavioral or demographic factors, is a promising application for geostatistics. It presents, however, several methodological challenges that arise from the fact that data are typically aggregated over irregular spatial supports and consist of a numerator and a denominator (i.e. population size). This paper presents an overview of recent developments in the field of health geostatistics, with an emphasis on three main steps in the analysis of areal health data: estimation of the underlying disease risk, detection of areas with significantly higher risk, and analysis of relationships with putative risk factors. The analysis is illustrated using age-adjusted cervix cancer mortality rates recorded over the 1970-1994 period for 118 counties of four states in the Western USA. Poisson kriging allows the filtering of noisy mortality rates computed from small population sizes, enhancing the correlation with two putative explanatory variables: percentage of habitants living below the federally defined poverty line, and percentage of Hispanic females. Area-to-point kriging formulation creates continuous maps of mortality risk, reducing the visual bias associated with the interpretation of choropleth maps. Stochastic simulation is used to generate realizations of cancer mortality maps, which allows one to quantify numerically how the uncertainty about the spatial distribution of health outcomes translates into uncertainty about the location of clusters of high values or the correlation with covariates. Last, geographically-weighted regression highlights the non-stationarity in the explanatory power of covariates: the higher mortality values along the coast are better explained by the two covariates than the lower risk recorded in Utah.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.
NASA Astrophysics Data System (ADS)
Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.
2017-12-01
Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.
Principal Component Geostatistical Approach for large-dimensional inverse problems.
Kitanidis, P K; Lee, J
2014-07-01
The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m , and the number of observations, n , is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m 2 n , though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n . The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m 2 as in the textbook approach. For problems of very large m , this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best.
NASA Astrophysics Data System (ADS)
Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul
2018-06-01
Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes
Karacan, C. Özgen; Olea, Ricardo A.
2013-01-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes
Karacan, C.Özgen; Olea, Ricardo A.
2015-01-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests. PMID:26190930
Geostatistical enhancement of european hydrological predictions
NASA Astrophysics Data System (ADS)
Pugliese, Alessio; Castellarin, Attilio; Parajka, Juraj; Arheimer, Berit; Bagli, Stefano; Mazzoli, Paolo; Montanari, Alberto; Blöschl, Günter
2016-04-01
Geostatistical Enhancement of European Hydrological Prediction (GEEHP) is a research experiment developed within the EU funded SWITCH-ON project, which proposes to conduct comparative experiments in a virtual laboratory in order to share water-related information and tackle changes in the hydrosphere for operational needs (http://www.water-switch-on.eu). The main objective of GEEHP deals with the prediction of streamflow indices and signatures in ungauged basins at different spatial scales. In particular, among several possible hydrological signatures we focus in our experiment on the prediction of flow-duration curves (FDCs) along the stream-network, which has attracted an increasing scientific attention in the last decades due to the large number of practical and technical applications of the curves (e.g. hydropower potential estimation, riverine habitat suitability and ecological assessments, etc.). We apply a geostatistical procedure based on Top-kriging, which has been recently shown to be particularly reliable and easy-to-use regionalization approach, employing two different type of streamflow data: pan-European E-HYPE simulations (http://hypeweb.smhi.se/europehype) and observed daily streamflow series collected in two pilot study regions, i.e. Tyrol (merging data from Austrian and Italian stream gauging networks) and Sweden. The merger of the two study regions results in a rather large area (~450000 km2) and might be considered as a proxy for a pan-European application of the approach. In a first phase, we implement a bidirectional validation, i.e. E-HYPE catchments are set as training sites to predict FDCs at the same sites where observed data are available, and vice-versa. Such a validation procedure reveals (1) the usability of the proposed approach for predicting the FDCs over the entire river network of interest using alternatively observed data and E-HYPE simulations and (2) the accuracy of E-HYPE-based predictions of FDCs in ungauged sites. In a second phase, we develop a module, to be added to the flow-duration curve prediction framework, capable of enhancing E-HYPE-based predictions of FDCs by modelling the residuals obtained from the first phase. Among all possible methods, we apply geostatistical modelling of residuals and, alternatively, regional regression, so that residuals between empirical and E-HYPE-base predicted FDCs are described in terms of geomorphological and climatic catchment descriptors.
NASA Astrophysics Data System (ADS)
Caineta, Júlio; Ribeiro, Sara; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar
2014-05-01
Climate data homogenisation is of major importance in monitoring climate change, the validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. This happens because non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on geostatistical simulation (DSS - direct sequential simulation), where local probability density functions (pdf) are calculated at candidate monitoring stations, using spatial and temporal neighbouring observations, and then are used for detection of inhomogeneities. This approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). This study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneities detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall test, Wald-Wolfowitz runs test, Von Neumann ratio test, Standard normal homogeneity test (SNHT) for a single break, Pettit test, and Buishand range test). Moreover, a sensibility analysis is implemented to investigate the number of simulated realisations that should be used to accurately infer the local pdfs. Accordingly, the number of simulations per iteration is increased from 50 to 500, which resulted in a more representative local pdf. A set of default and recommended settings is provided, which will help other users to implement this method. The need of user intervention is reduced to a minimum through the usage of a cross-platform script. Finally, as in the previous study, the results are compared with those from the SNHT, Pettit and Buishand range tests, which were applied to composite (ratio) reference series. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").
Introduction to this Special Issue on Geostatistics and Scaling of Remote Sensing
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
1999-01-01
The germination of this special PE&RS issue began at the Royal Geographical Society (with the Institute of British Geographers)(RCS-IBC) annual meeting in January, 1997 held at the University of Exeter in Exeter, England. The cold and snow of an England winter were greatly tempered by the friendly and cordial discussions that ensued at the meeting on possible ways to foster both dialog and research across "the Big Pond" between geographers in the US and the UK on the use of geostatistics and geospatial techniques for remote sensing of land surface processes. It was decided that one way to stimulate and enhance cooperation on the application of geostatistics and geospatial methods in remote sensing was to hold parallel sessions on these topics at appropriate meeting venues in 1998 in both the US and the UK Selected papers given at these sessions would be published as a special issue of PE&RS on the US side, and as a special issue of Computers and Geosciences (C&G) on the UK side, to highlight the commonality in research on geostatistics and geospatial methods in remote sensing and spatial data analysis on both sides of the Atlantic Ocean. As a consequence, a session on "Ceostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March, 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). A similar session was held at the RGS-IBG annual meeting in Guildford, Surrey, England in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). The six papers that in part, comprise this issue of PE&RS, are the US complement to such a dual journal publication effort. Both of us are co-editors of each of the journal special issues, with the lead editor of each journal being from their respective side of the Atlantic where the journals are published. The special issue of C&G that constitutes the other half of this co-edited journal series will be published in early 1999, with 3 papers by US authors being published along with 6 papers authored by individuals from the UK and other places in Europe.
Goovaerts, Pierre; Jacquez, Geoffrey M
2004-01-01
Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271
Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.
High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less
Stochastic Inversion of 2D Magnetotelluric Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.
1991-01-01
This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.
NASA Astrophysics Data System (ADS)
Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.
2012-12-01
Based on rainfall intensity-duration-frequency (IDF) curves, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimisation can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short and a long term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. So, it is proposed to virtually augment it by 25, 50, 100 and 160% which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.
Acoustic Determination of Near-Surface Soil Properties
2008-12-01
requiring geostatistical analysis, while nearby others are spatially independent. In studies involving many different soil properties and chemistry ...Am 116(6), p. 3354-3369. Kravchenko, N., C.W. Boast, D.G. Bullock, 1991. Fractal analysis of soil spatial variability. Agronomy Journal 91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bujewski, G.E.; Johnson, R.L.
1996-04-01
Adaptive sampling programs provide real opportunities to save considerable time and money when characterizing hazardous waste sites. This Strategic Environmental Research and Development Program (SERDP) project demonstrated two decision-support technologies, SitePlanner{trademark} and Plume{trademark}, that can facilitate the design and deployment of an adaptive sampling program. A demonstration took place at Joliet Army Ammunition Plant (JAAP), and was unique in that it was tightly coupled with ongoing Army characterization work at the facility, with close scrutiny by both state and federal regulators. The demonstration was conducted in partnership with the Army Environmental Center`s (AEC) Installation Restoration Program and AEC`s Technology Developmentmore » Program. AEC supported researchers from Tufts University who demonstrated innovative field analytical techniques for the analysis of TNT and DNT. SitePlanner{trademark} is an object-oriented database specifically designed for site characterization that provides an effective way to compile, integrate, manage and display site characterization data as it is being generated. Plume{trademark} uses a combination of Bayesian analysis and geostatistics to provide technical staff with the ability to quantitatively merge soft and hard information for an estimate of the extent of contamination. Plume{trademark} provides an estimate of contamination extent, measures the uncertainty associated with the estimate, determines the value of additional sampling, and locates additional samples so that their value is maximized.« less
The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8
NASA Astrophysics Data System (ADS)
Bancheri, Marialaura; Serafin, Francesco; Bottazzi, Michele; Abera, Wuletawu; Formetta, Giuseppe; Rigon, Riccardo
2018-06-01
This work presents a software package for the interpolation of climatological variables, such as temperature and precipitation, using kriging techniques. The purposes of the paper are (1) to present a geostatistical software that is easy to use and easy to plug in to a hydrological model; (2) to provide a practical example of an accurately designed software from the perspective of reproducible research; and (3) to demonstrate the goodness of the results of the software and so have a reliable alternative to other, more traditional tools. A total of 11 types of theoretical semivariograms and four types of kriging were implemented and gathered into Object Modeling System-compliant components. The package provides real-time optimization for semivariogram and kriging parameters. The software was tested using a year's worth of hourly temperature readings and a rain storm event (11 h) recorded in 2008 and retrieved from 97 meteorological stations in the Isarco River basin, Italy. For both the variables, good interpolation results were obtained and then compared to the results from the R package gstat.
Increasing Confidence In Treatment Performance Assessment Using Geostatistical Methods
It is well established that the presence of dense non-aqueous phase liquids (DNAPLs) such as trichloroethylene (TCE) in aquifer systems represents a very long-term source of groundwater contamination. Significant effort in recent years has been focussed on developing effective me...
Rtop - an R package for interpolation along the stream network
NASA Astrophysics Data System (ADS)
Skøien, J. O.
2009-04-01
Rtop - an R package for interpolation along the stream network Geostatistical methods have been used to a limited extent for estimation along stream networks, with a few exceptions(Gottschalk, 1993; Gottschalk, et al., 2006; Sauquet, et al., 2000; Skøien, et al., 2006). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the statistical environment R (R Development Core Team, 2004). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. Gottschalk, L. 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., I. Krasovskaia, E. Leblois, and E. Sauquet. 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. R Development Core Team. 2004. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Sauquet, E., L. Gottschalk, and E. Leblois. 2000. Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45 (6), 799-815. Skøien, J. O., R. Merz, and G. Blöschl. 2006. Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277-287.
Medical Geography: a Promising Field of Application for Geostatistics
Goovaerts, P.
2008-01-01
The analysis of health data and putative covariates, such as environmental, socio-economic, behavioral or demographic factors, is a promising application for geostatistics. It presents, however, several methodological challenges that arise from the fact that data are typically aggregated over irregular spatial supports and consist of a numerator and a denominator (i.e. population size). This paper presents an overview of recent developments in the field of health geostatistics, with an emphasis on three main steps in the analysis of areal health data: estimation of the underlying disease risk, detection of areas with significantly higher risk, and analysis of relationships with putative risk factors. The analysis is illustrated using age-adjusted cervix cancer mortality rates recorded over the 1970–1994 period for 118 counties of four states in the Western USA. Poisson kriging allows the filtering of noisy mortality rates computed from small population sizes, enhancing the correlation with two putative explanatory variables: percentage of habitants living below the federally defined poverty line, and percentage of Hispanic females. Area-to-point kriging formulation creates continuous maps of mortality risk, reducing the visual bias associated with the interpretation of choropleth maps. Stochastic simulation is used to generate realizations of cancer mortality maps, which allows one to quantify numerically how the uncertainty about the spatial distribution of health outcomes translates into uncertainty about the location of clusters of high values or the correlation with covariates. Last, geographically-weighted regression highlights the non-stationarity in the explanatory power of covariates: the higher mortality values along the coast are better explained by the two covariates than the lower risk recorded in Utah. PMID:19412347
Performance prediction using geostatistics and window reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.
1995-11-01
This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite.more » Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.« less
Learning Kriging by an instructive program.
NASA Astrophysics Data System (ADS)
Cuador, José
2016-04-01
There are three types of problem classification: the deterministic, the approximated and the stochastic problems. First, in the deterministic problems the law of the phenomenon and the data are known in the entire domain and for each instant of time. In the approximated problems, the law of the phenomenon behavior is unknown but the data can be known in the entire domain and for each instant of time. In the stochastic problems much of the law and the data are unknown in the domain, so in this case the spatial behavior of the data can only be explained with probabilistic laws. This is the most important reason why the students of geo-sciences careers and others related careers need to take courses in advance estimation methods. A good example of this situation is the estimation grades in ore mineral deposit for which the Geostatistics was formalized by G. Matheron in 1962 [6]. Geostatistics is defined as the application of the theory of Random Function to the recognition and estimation of natural phenomenon [4]. Nowadays, Geostatistics is widely used in several fields of earth sciences, for example: Mining, Oil exploration, Environment, Agricultural, Forest and others [3]. It provides a wide variety of tools for spatial data analysis and allows analysing models which are subjected to degrees of uncertainty with the rigor of mathematics and formal statistical analysis [9]. Adequate models for the Kriging interpolator has been developed according to the data behavior; however there are two key steps in applying this interpolator properly: the semivariogram determination and the Kriging neighborhood selection. The main objective of this paper is to present these two elements using an instructive program.
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.
2012-01-01
This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
Qi, L.; Carr, T.R.; Goldstein, R.H.
2007-01-01
In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (<4 m; <13.1 ft) oolitic deposits within the St. Louis Limestone have produced more than 300 million bbl of oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification
Karacan, C. Özgen; Olea, Ricardo A.
2018-01-01
Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal seam reservoir simulation is one of the most effective ways to help with these two main objectives. As in all modeling and simulation studies, how the reservoir is defined and whether observed productions can be predicted are important considerations. Using geostatistical realizations as spatial maps of different coal reservoir properties is a more realistic approach than assuming uniform properties across the field. In fact, this approach can help with simultaneous history matching of multiple wellbores to enhance the confidence in spatial models of different coal properties that are pertinent to degasification. The problem that still remains is the uncertainty in geostatistical simulations originating from the partial sampling of the seam that does not properly reflect the stochastic nature of coal property realizations. Stochastic simulations and using individual realizations, rather than E-type, make evaluation of uncertainty possible. This work is an advancement over Karacan et al. (2014) in the sense of assessing uncertainty that stems from geostatistical maps. In this work, we batched 100 individual realizations of 10 coal properties that were randomly generated to create 100 bundles and used them in 100 separate coal seam reservoir simulations for simultaneous history matching. We then evaluated the history matching errors for each bundle and defined the single set of realizations that would minimize the error for all wells. We further compared the errors with those of E-type and the average realization of the best matches. Unlike in Karacan et al. (2014), which used E-type maps and average of quantile maps, using these 100 bundles created 100 different history match results from separate simulations, and distributions of results for in-place gas quantity, for example, from which uncertainty in coal property realizations could be evaluated. The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In addition, it was shown that both E-type and the average of realizations that gave the best match for invidual approximated the same properties resonably. Moreover, the determined realization bundle showed that the study field initially had 151.5 million m3 (cubic meter) of gas and 1.04 million m3 water in the coal, corresponding to Q90 of the entire range of probability for gas and close to Q75 for water. In 2013, in-place fluid amounts decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively. PMID:29563647
ORTHONORMAL RESIDUALS IN GEOSTATISTICS: MODEL CRITICISM AND PARAMETER ESTIMATION. (R825689C037)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
GEOSTATISTICAL INTERPOLATION OF CHEMICAL CONCENTRATION. (R825689C037)
Measurements of contaminant concentration at a hazardous waste site typically vary over many orders of magnitude and have highly skewed distributions. This work presents a practical methodology for the estimation of solute concentration contour maps and volume...
Detection of masses in mammogram images using CNN, geostatistic functions and SVM.
Sampaio, Wener Borges; Diniz, Edgar Moraes; Silva, Aristófanes Corrêa; de Paiva, Anselmo Cardoso; Gattass, Marcelo
2011-08-01
Breast cancer occurs with high frequency among the world's population and its effects impact the patients' perception of their own sexuality and their very personal image. This work presents a computational methodology that helps specialists detect breast masses in mammogram images. The first stage of the methodology aims to improve the mammogram image. This stage consists in removing objects outside the breast, reducing noise and highlighting the internal structures of the breast. Next, cellular neural networks are used to segment the regions that might contain masses. These regions have their shapes analyzed through shape descriptors (eccentricity, circularity, density, circular disproportion and circular density) and their textures analyzed through geostatistic functions (Ripley's K function and Moran's and Geary's indexes). Support vector machines are used to classify the candidate regions as masses or non-masses, with sensitivity of 80%, rates of 0.84 false positives per image and 0.2 false negatives per image, and an area under the ROC curve of 0.87. Copyright © 2011 Elsevier Ltd. All rights reserved.
Geostatistics as a validation tool for setting ozone standards for durum wheat.
De Marco, Alessandra; Screpanti, Augusto; Paoletti, Elena
2010-02-01
Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected > or =90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m(-2) was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Flipo, Nicolas; Jeannée, Nicolas; Poulin, Michel; Even, Stéphanie; Ledoux, Emmanuel
2007-03-01
The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km(2)), part of the Seine basin. cawaqs results from the coupling of the hydrogeological model newsam with the hydrodynamic and biogeochemical model of river ProSe. cawaqs is coupled with the agronomic model Stics in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate cawaqs results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then cawaqs is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L(-1)yr(-1), resulting from an average infiltration flux of 3500 kgN.km(-2)yr(-1).
Usage of multivariate geostatistics in interpolation processes for meteorological precipitation maps
NASA Astrophysics Data System (ADS)
Gundogdu, Ismail Bulent
2017-01-01
Long-term meteorological data are very important both for the evaluation of meteorological events and for the analysis of their effects on the environment. Prediction maps which are constructed by different interpolation techniques often provide explanatory information. Conventional techniques, such as surface spline fitting, global and local polynomial models, and inverse distance weighting may not be adequate. Multivariate geostatistical methods can be more significant, especially when studying secondary variables, because secondary variables might directly affect the precision of prediction. In this study, the mean annual and mean monthly precipitations from 1984 to 2014 for 268 meteorological stations in Turkey have been used to construct country-wide maps. Besides linear regression, the inverse square distance and ordinary co-Kriging (OCK) have been used and compared to each other. Also elevation, slope, and aspect data for each station have been taken into account as secondary variables, whose use has reduced errors by up to a factor of three. OCK gave the smallest errors (1.002 cm) when aspect was included.
Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang
2007-11-01
Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.
The Applications of Model-Based Geostatistics in Helminth Epidemiology and Control
Magalhães, Ricardo J. Soares; Clements, Archie C.A.; Patil, Anand P.; Gething, Peter W.; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. PMID:21295680
Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed
Balk, B.; Elder, K.; Baron, Jill S.
1998-01-01
Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff. In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances. Snow densities were spatially modeled through regression analysis. Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE. The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.
High Performance Geostatistical Modeling of Biospheric Resources
NASA Astrophysics Data System (ADS)
Pedelty, J. A.; Morisette, J. T.; Smith, J. A.; Schnase, J. L.; Crosier, C. S.; Stohlgren, T. J.
2004-12-01
We are using parallel geostatistical codes to study spatial relationships among biospheric resources in several study areas. For example, spatial statistical models based on large- and small-scale variability have been used to predict species richness of both native and exotic plants (hot spots of diversity) and patterns of exotic plant invasion. However, broader use of geostastics in natural resource modeling, especially at regional and national scales, has been limited due to the large computing requirements of these applications. To address this problem, we implemented parallel versions of the kriging spatial interpolation algorithm. The first uses the Message Passing Interface (MPI) in a master/slave paradigm on an open source Linux Beowulf cluster, while the second is implemented with the new proprietary Xgrid distributed processing system on an Xserve G5 cluster from Apple Computer, Inc. These techniques are proving effective and provide the basis for a national decision support capability for invasive species management that is being jointly developed by NASA and the US Geological Survey.
LSHSIM: A Locality Sensitive Hashing based method for multiple-point geostatistics
NASA Astrophysics Data System (ADS)
Moura, Pedro; Laber, Eduardo; Lopes, Hélio; Mesejo, Daniel; Pavanelli, Lucas; Jardim, João; Thiesen, Francisco; Pujol, Gabriel
2017-10-01
Reservoir modeling is a very important task that permits the representation of a geological region of interest, so as to generate a considerable number of possible scenarios. Since its inception, many methodologies have been proposed and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are called patterns. In this paper, we propose a new MPS method that combines the application of a technique called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming similarity. Experiments with both categorical and continuous images show that LSHSIM is computationally efficient and produce good quality realizations. In particular, for categorical data, the results suggest that LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.
Hedge, L H; Dafforn, K A; Simpson, S L; Johnston, E L
2017-06-30
Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rea, Jane; Knight, Rosemary
1998-03-01
We have investigated the use of ground-penetrating radar (GFR) as a means of characterizing the heterogeneity of the subsurface. Radar data were collected at several sites in southwestern British Columbia underlain by glaciodeltaic sediments. A cliff face study was conducted in which geostatistical analysis of a digitized photograph of the face and the radar image of the face showed excellent agreement in the maximum correlation direction and the correlation length determined from these two data sets. Other two-dimensional (2-D) sections of radar data were divided into sedimentary architectural elements on the basis of the distinct radar appearance of these sedimentary units. Examples of four sedimentary units were used to obtain semivariograms from the radar data and resulted in maximum correlation lengths between 0.5 and 4.8 m. A 3-D radar survey, collected over a package of gravel and sand foresets, was analyzed to determine the paleoflow direction; a correlation length of 4 m was found in that direction.
Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.
2015-01-01
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.
Ribeiro, Andreza Portella; Figueiredo, Ana Maria Graciano; dos Santos, José Osman; Dantas, Elizabeth; Cotrim, Marycel Elena Barboza; Figueira, Rubens Cesar Lopes; Silva Filho, Emmanoel V; Wasserman, Julio Cesar
2013-03-15
This study proposes a new methodology to study contamination, bioavailability and mobility of metals (Cd, Cu, Ni, Pb, and Zn) using chemical and geostatistics approaches in marine sediments of Sepetiba Bay (SE Brazil). The chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile sulfides) ratio uses a technique of cold acid extraction of metals to evaluate their bioavailability, and the geostatistical model of attenuation of concentrations estimates the mobility of metals. By coupling the two it was observed that Sepetiba Port, the urban area of Sepetiba and the riverine discharges may constitute potential sources of metals to Sepetiba Bay. The metals are concentrated in the NE area of the bay, where they tend to have their lowest mobility, as shown by the attenuation model, and are not bioavailable, as they tend to associate with sulfide and organic matter originated in the mangrove forests of nearby Guaratiba area. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pantazidou, Marina; Liu, Ke
2008-02-01
This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.
Is the permeability of naturally fractured rocks scale dependent?
NASA Astrophysics Data System (ADS)
Azizmohammadi, Siroos; Matthäi, Stephan K.
2017-09-01
The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.
Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling
Braun, Alexander; Auerswald, Karl; Geist, Juergen
2012-01-01
The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053
Extensive research has been conducted on effects resulting from exposure to ambient particulate matter. Particulate matter has been linked to cardiovascular diseases, respiratory problems, and reproductive effects. A large body of work on particulate matter focuses on atmospher...
Rtop - an R package for interpolation along the stream network
NASA Astrophysics Data System (ADS)
Skøien, J. O.; Laaha, G.; Koffler, D.; Blöschl, G.; Pebesma, E.; Parajka, J.; Viglione, A.
2012-04-01
Geostatistical methods have a long tradition within analysis of data that can be conceptualized as simple point data, such as soil properties, or for regular blocks, such as mining data. However, these methods have been used to a limited extent for estimation along stream networks. A few exceptions are given by (Gottschalk 1993, Sauquet et al. 2000, Gottschalk et al. 2006, Skøien et al. 2006), and an overview by Laaha and Blöschl (2011). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the open source statistical environment R (R Development Core Team 2011). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. In addition to user feedback, the package has also been tested by colleagues whose only responsibility has been to search for bugs, inconsistencies and shortcomings of the documentation. The last part is often the part that gets the least attention in small open source projects, and we have solved this by acknowledging their effects as co-authors. The model will soon be uploaded to CRAN, but is in the meantime also available from R-forge and can be installed by: > install.packages("rtop", repos="http://R-Forge.R-project.org") Gottschalk, L., 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., Krasovskaia, I., Leblois, E. & Sauquet, E., 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. Laaha, G. & Blöschl, G. 2011. Geostatistics on river networks - a reviewed. EGU General Assembly, Vienna, Austria. R Development Core Team, 2011. R: A language and environment for statistical computing. Vienna, Austria, ISBN 3-900051-07-0. Sauquet, E., Gottschalk, L. & Leblois, E., 2000. Mapping average annual runoff: A hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45 (6), 799-815. Skøien, J.O., Merz, R. & Blöschl, G., 2006. Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277-287.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.
2012-12-01
Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.
Sandwich mapping of schistosomiasis risk in Anhui Province, China.
Hu, Yi; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Sun, Liqian; Xia, Congcong; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu
2015-06-03
Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes) into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space.
A spatially constrained ecological classification: rationale, methodology and implementation
Franz Mora; Louis Iverson; Louis Iverson
2002-01-01
The theory, methodology and implementation for an ecological and spatially constrained classification are presented. Ecological and spatial relationships among several landscape variables are analyzed in order to define a new approach for a landscape classification. Using ecological and geostatistical analyses, several ecological and spatial weights are derived to...
NASA Astrophysics Data System (ADS)
Gomez, C.; Oguchi, T.; Evans, I. S.
2016-05-01
Based on the two sessions on spatial analysis, GIS and geostatistics convened by T. Oguchi, I. Evans and C. Gomez at the 2013 International Association of Geomorphology in Paris, the conveners have edited two special issues on the topic: volume 242 and the present one.
A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots
USDA-ARS?s Scientific Manuscript database
Anthropogenic emissions of nitrous oxide (N2O), a trace gas with severe environmental costs, are greatest from agricultural soils amended with nitrogen (N) fertilizer. However, accurate N2O emission estimates at fine spatial scales are made difficult by their high variability, which represents a cr...
Uses of GIS for Homeland Security and Emergency Management for Higher Education Institutions
ERIC Educational Resources Information Center
Murchison, Stuart B.
2010-01-01
Geographic information systems (GIS) are a major component of the geospatial sciences, which are also composed of geostatistical analysis, remote sensing, and global positional satellite systems. These systems can be integrated into GIS for georeferencing, pattern analysis, visualization, and understanding spatial concepts that transcend…
Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf
2016-02-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco
2017-11-15
The Natural Background Level (NBL), suggested by UE BRIDGE project, is suited for spatially distributed datasets providing a regional value that could be higher than the Threshold Value (TV) set by every country. In hydro-geochemically dis-homogeneous areas, the use of a unique regional NBL, higher than TV, could arise problems to distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of this study is to improve the NBL definition employing a geostatistical approach, which reconstructs the contaminant spatial structure accounting geochemical and hydrogeological relationships. This integrated mapping is fundamental to evaluate the contaminant's distribution impact on the NBL, giving indications to improve it. We decided to test this method on the Drainage Basin of Venice Lagoon (DBVL, NE Italy), where the existing NBL is seven times higher than the TV. This area is notoriously affected by naturally occurring arsenic contamination. An available geochemical dataset collected by 50 piezometers was used to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4+. The obtained spatial predictions of arsenic concentrations were divided into three different zones: i) areas with an As concentration lower than the TV, ii) areas with an As concentration between the TV and the median of the values higher than the TV, and iii) areas with an As concentration higher than the median. Following the BRIDGE suggestions, where enough samples were available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). Differently from the original NBL, this local value gives more detailed water quality information accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, the LNBL could give more indications about the distinction between natural occurrence and anthropogenic contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Speleogenesis, geometry, and topology of caves: A quantitative study of 3D karst conduits
NASA Astrophysics Data System (ADS)
Jouves, Johan; Viseur, Sophie; Arfib, Bruno; Baudement, Cécile; Camus, Hubert; Collon, Pauline; Guglielmi, Yves
2017-12-01
Karst systems are hierarchically spatially organized three-dimensional (3D) networks of conduits behaving as drains for groundwater flow. Recently, geostatistical approaches proposed to generate karst networks from data and parameters stemming from analogous observed karst features. Other studies have qualitatively highlighted relationships between speleogenetic processes and cave patterns. However, few studies have been performed to quantitatively define these relationships. This paper reports a quantitative study of cave geometries and topologies that takes the underlying speleogenetic processes into account. In order to study the spatial organization of caves, a 3D numerical database was built from 26 caves, corresponding to 621 km of cumulative cave passages representative of the variety of karst network patterns. The database includes 3D speleological surveys for which the speleogenetic context is known, allowing the polygenic karst networks to be divided into 48 monogenic cave samples and classified into four cave patterns: vadose branchwork (VB), water-table cave (WTC), looping cave (LC), and angular maze (AM). Eight morphometric cave descriptors were calculated, four geometrical parameters (width-height ratio, tortuosity, curvature, and vertical index) and four topological ones (degree of node connectivity, α and γ graph indices, and ramification index) respectively. The results were validated by statistical analyses (Kruskal-Wallis test and PCA). The VB patterns are clearly distinct from AM ones and from a third group including WTC and LC. A quantitative database of cave morphology characteristics is provided, depending on their speleogenetic processes. These characteristics can be used to constrain and/or validate 3D geostatistical simulations. This study shows how important it is to relate the geometry and connectivity of cave networks to recharge and flow processes. Conversely, the approach developed here provides proxies to estimate the evolution of the vadose zone to epiphreatic and phreatic zones in limestones from the quantitative analysis of existing cave patterns.
NASA Astrophysics Data System (ADS)
García-Lorenzo, M. L.; Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; Molina, J.; Tudela, M. L.; Hernández-Córdoba, M.
2009-04-01
This work seeks to establish the geochemical background for three potentially toxic trace elements (Zn, Cd and Hg) in a pilot zone included in the DesertNet project in the province of Murcia. The studied area, known as Campo de Cartagena, Murcia (SE Spain) is an area of intensive agriculture and has been much affected over the years by anthropic activity. The zone can be considered an experimental pilot zone for establishing background levels in agricultural soils. Sixty four samples were collected and corresponded to areas subjected to high and similar agricultural activity or soils with natural vegetation, which correspond to abandoned agricultural areas. The Zn content was determined by flame atomic absorption spectrometry. The Cd content was determined by electrothermal atomization atomic absorption spectrometry and mercury content was determined by atomic fluorescence spectrometry. Geostatistical analysis consisting of kriging and mapping was performed using the geostatistical analyst extension of ArcGIS 8.3. Zinc values ranged from 10 mg kg-1 to 151 mg kg-1, with an average value of 45 mg kg-1. Cadmium values ranged between 0.1 mg kg-1 and 0.9mg kg-1, with a mean value of 0.3 mg kg-1 and mercury values ranged from 0.1 mg kg-1 to 2.3 mg kg-1, with a mean value of 0.5 mg kg-1. At a national level, the Spanish Royal Decree 9/2005 proposes toxicological and statistical approaches to establish background values. According to the statistical approach, background values consist of the median value for the selected element. The background values for Zn, Cd and Hg in the studied area were 40 mg kg-1 for Zn, 0.3 mg kg-1 for Cd and 0.4 mg kg-1 for Hg.
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, Barbara; Wynalek, Janusz
2017-12-01
Geostatistical methods make the analysis of measurement data possible. This article presents the problems directed towards the use of geostatistics in spatial analysis of displacements based on geodetic monitoring. Using methods of applied (spatial) statistics, the research deals with interesting and current issues connected to space-time analysis, modeling displacements and deformations, as applied to any large-area objects on which geodetic monitoring is conducted (e.g., water dams, urban areas in the vicinity of deep excavations, areas at a macro-regional scale subject to anthropogenic influences caused by mining, etc.). These problems are very crucial, especially for safety assessment of important hydrotechnical constructions, as well as for modeling and estimating mining damage. Based on the geodetic monitoring data, a substantial basic empirical material was created, comprising many years of research results concerning displacements of controlled points situated on the crown and foreland of an exemplary earth dam, and used to assess the behaviour and safety of the object during its whole operating period. A research method at a macro-regional scale was applied to investigate some phenomena connected with the operation of the analysed big hydrotechnical construction. Applying a semivariogram function enabled the spatial variability analysis of displacements. Isotropic empirical semivariograms were calculated and then, theoretical parameters of analytical functions were determined, which approximated the courses of the mentioned empirical variability measure. Using ordinary (block) kriging at the grid nodes of an elementary spatial grid covering the analysed object, the values of the Z* estimated means of displacements were calculated together with the accompanying assessment of uncertainty estimation - a standard deviation of estimation σk. Raster maps of the distribution of estimated averages Z* and raster maps of deviations of estimation σk (in perspective) were obtained for selected years (1995 and 2007), taking the ground height 136 m a.s.l. into calculation. To calculate raster maps of Z* interpolated values, methods of quick interpolation were also used, such as the technique of the inverse distance squares, a linear model of kriging, a spline kriging, which made the recognition of the general background of displacements possible, without the accuracy assessment of Z* value estimation, i.e., the value of σk. These maps are also related to 1995 and 2007 and the elevation. As a result of applying these techniques, clear boundaries of subsiding areas, upthrusting and also horizontal displacements on the examined hydrotechnical object were marked out, which can be interpreted as areas of local deformations of the object, important for the safety of the construction. The effect of geostatistical research conducted, including the structural analysis, semivariograms modeling, estimating the displacements of the hydrotechnical object, are rich cartographic characteristic (semivariograms, raster maps, block diagrams), which present the spatial visualization of the conducted various analyses of the monitored displacements. The prepared geostatistical model (3D) of displacement variability (analysed within the area of the dam, during its operating period and including its height) will be useful not only in the correct assessment of displacements and deformations, but it will also make it possible to forecast these phenomena, which is crucial when the operating safety of such constructions is taken into account.
NASA Astrophysics Data System (ADS)
Oriani, F.; Stisen, S.
2016-12-01
Rainfall amount is one of the most sensitive inputs to distributed hydrological models. Its spatial representation is of primary importance to correctly study the uncertainty of basin recharge and its propagation to the surface and underground circulation. We consider here the 10-km-grid rainfall product provided by the Danish Meteorological Institute as input to the National Water Resources Model of Denmark. Due to a drastic reduction in the rain gauge network in recent years (from approximately 500 stations in the period 1996-2006, to 250 in the period 2007-2014), the grid rainfall product, based on the interpolation of these data, is much less reliable. Consequently, the related hydrological model shows a significantly lower prediction power. To give a better estimation of spatial rainfall at the grid points far from ground measurements, we use the direct sampling technique (DS) [1], belonging to the family of multiple-point geostatistics. DS, already applied to rainfall and spatial variable estimation [2, 3], simulates a grid value by sampling a training data set where a similar data neighborhood occurs. In this way, complex statistical relations are preserved by generating similar spatial patterns to the ones found in the training data set. Using the reliable grid product from the period 1996-2006 as training data set, we first test the technique by simulating part of this data set, then we apply the technique to the grid product of the period 2007-2014, and subsequently analyzing the uncertainty propagation to the hydrological model. We show that DS can improve the reliability of the rainfall product by generating more realistic rainfall patterns, with a significant repercussion on the hydrological model. The reduction of rain gauge networks is a global phenomenon which has huge implications for hydrological model performance and the uncertainty assessment of water resources. Therefore, the presented methodology can potentially be used in many regions where historical records can act as training data. [1] G.Mariethoz et al. (2010), Water Resour. Res., 10.1029/2008WR007621.[2] F. Oriani et al. (2014), Hydrol. Earth Syst. Sc., 10.5194/hessd-11-3213-2014. [3] G. Mariethoz et al. (2012), Water Resour. Res., 10.1029/2012WR012115.
Pierre-Olivier, Jean; Bradley, Robert L; Tremblay, Jean-Pierre; Côté, Steeve D
2015-09-01
An important asset for the management of wild ungulates is recognizing the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data, however, may be difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighboring DISTEX values to detect and map "hot spots" and "cold spots" of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Québec, Canada), where white-tailed deer (Odocoileus virginianus) populations over the landscape have ranged from 20 to 50 individuals/km2 for at least 80 years, resulting in a loss of most palatable and nutritious plant species. Our results suggest that hot spots of forage quality occur when old-growth balsam fir stands comprise >39.8% of 300 ha neighborhoods, whereas cold spots occur in laggs (i.e., transition zones from forest to peatland). In terms of ground-level indicator plant species, the presence of Canada bunchberry (Cornus canadensis) was highly correlated with hot spots, whereas tamarack (Larix laricina) was highly correlated with cold spots. Mean DISTEX values were positively and significantly correlated with the neutral detergent fiber and acid detergent lignin contents of feces. While our approach would need more independent field trials before it is fully validated, its low cost and ease of execution should make it a valuable tool for advancing both the basic and applied ecology of large herbivores.
Maximum a posteriori resampling of noisy, spatially correlated data
NASA Astrophysics Data System (ADS)
Goff, John A.; Jenkins, Chris; Calder, Brian
2006-08-01
In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application. We present here an alternative to filtering: a newly developed method for correcting noise in data by finding the "best" value given available information. The motivating rationale is that data points that are close to each other in space cannot differ by "too much," where "too much" is governed by the field covariance. Data with large uncertainties will frequently violate this condition and therefore ought to be corrected, or "resampled." Our solution for resampling is determined by the maximum of the a posteriori density function defined by the intersection of (1) the data error probability density function (pdf) and (2) the conditional pdf, determined by the geostatistical kriging algorithm applied to proximal data values. A maximum a posteriori solution can be computed sequentially going through all the data, but the solution depends on the order in which the data are examined. We approximate the global a posteriori solution by randomizing this order and taking the average. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum a posteriori resampling algorithm. The method is also applied to three marine geology/geophysics data examples, demonstrating the viability of the method for diverse applications: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is a combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) side-scan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckle noise. Compared to filtering, maximum a posteriori resampling provides an objective and optimal method for reducing noise, and better preservation of the statistical properties of the sampled field. The primary disadvantage is that maximum a posteriori resampling is a computationally expensive procedure.
Kriging: Understanding allays intimidation
Olea, R.A.
1996-01-01
In 1938 Daniel Gerhardus "Danie" Krige obtained an undergraduate degree in mining engineering and started a brilliant career centered on analyzing the gold and uranium mines in the Witwatersrand conglomerates of South Africa. He became interested in the disharmony between the poor reliability of reserve estimation reports and the magnitude of the economic decisions that were based on these studies. Back at the University of Witwatersrand, he wrote a master's thesis that began a revolution in mining evaluation methods. Krige was not alone in his research. Another mining engineer, Georges Matheron, a Frenchman, thought space data analysis belonged in a separate discipline, just as geophysics is a separate branch from physics. He named the new field geostatistics. Kriging is the name given in geostatistics to a collection of generalized linear regression techniques for the estimation of spatial phenomena. Pierre Carlier, another Frenchman, coined the term krigeage in the late 1950s to honor Krige's seminal work. Matheron anglicized the term to kriging when he published a paper for English-speaking readers. France dominated the development and application of geostatistics for several years. However, geostatistics in general, and kriging in particular, are employed by few and are regarded with apprehension by many. One of the possible applications of kriging is in computer mapping. Computer contouring methods can be grouped into two families: triangulation and gridding. The former is a direct procedure in which the contour lines are computed straight from the data by partitioning the sampling area into triangles with one observation per vertex. Kriging belongs in the gridding family. A grid is a regular arrangement of locations or nodes. In the gridding method the isolines are determined from interpolated values at the nodes. The difference between kriging and other weighting methods is in the calculation of the weights. Even for the simplest form of kriging, the calculations are more demanding. The kriging system of equations differs from classical regression in that the observations are allowed to be correlated and that neither the estimate nor the observations are necessarily points - they may have a volume, shape, and orientation. The mean square error is the average of the squares of the differences between the true and the estimated values. Simple kriging, the most basic form of kriging in that the system of equations has the fewest terms, requires the phenomena to have a constant and known mean. The next step up, ordinary kriging, does not require knowledge of the population mean. The external drift method, universal kriging, and intrinsic kriging go even further by allowing fluctuations in the mean. In practice, estimation by kriging is not as difficult to handle as it may look at first glance. In these days of high technology, all the details in the procedure are coded into computer programs. When properly used, kriging has several appealing attributes, the most important being that it does the work more accurately. By design, kriging provides the weights that result in the minimum mean square error. And yes, there have been people who have tested its superiority with real data. Practice has consistently confirmed theory. Kriging is also robust. Within reasonable limits, kriging tends to persist in yielding correct estimates even when the user selects the wrong model, misspecifies parameters, or both. This property should be an incentive for the novice to try the method. Gross misuse of kriging, though, can lead to poor results, worse even than those produced by alternative methods. Kriging has evolved and continues to expand to accommodate the estimation of increasingly demanding realities. Conclusions Theory and practice show that computer contour maps generated using kriging have the least mean square estimation error. In addition, the method provides information to assess the reliability of the maps.
USDA-ARS?s Scientific Manuscript database
Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...
Geostatistical Evaluation of Natural Tree Regeneration of a Disturbed Forest
José Germán Flores Garnica; David Arturo Moreno Gonzalez; Juan de Dios Benavides Solorio
2006-01-01
The implementation of silvicultural strategies in a forest management has to guaranty forest sustainability, which is supported by an adequate regeneration. Therefore, quality and intensity of silvicultural practices is based on an accurate knowledge of the current spatial distribution of regeneration. At the same time, this regeneration is determined by the spatial...
Periodicity in spatial data and geostatistical models: autocorrelation between patches
Volker C. Radeloff; Todd F. Miller; Hong S. He; David J. Mladenoff
2000-01-01
Several recent studies in landscape ecology have found periodicity in correlograms or semi-variograms calculated, for instance, from spatial data of soils, forests, or animal populations. Some of the studies interpreted this as an indication of regular or periodic landscape patterns. This interpretation is in disagreement with other studies that doubt whether such...
Application of spatial technology in malaria research & control: some new insights.
Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P
2009-08-01
Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
NASA Astrophysics Data System (ADS)
O'Malley, D.; Le, E. B.; Vesselinov, V. V.
2015-12-01
We present a fast, scalable, and highly-implementable stochastic inverse method for characterization of aquifer heterogeneity. The method utilizes recent advances in randomized matrix algebra and exploits the structure of the Quasi-Linear Geostatistical Approach (QLGA), without requiring a structured grid like Fast-Fourier Transform (FFT) methods. The QLGA framework is a more stable version of Gauss-Newton iterates for a large number of unknown model parameters, but provides unbiased estimates. The methods are matrix-free and do not require derivatives or adjoints, and are thus ideal for complex models and black-box implementation. We also incorporate randomized least-square solvers and data-reduction methods, which speed up computation and simulate missing data points. The new inverse methodology is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. Inversion results based on series of synthetic problems with steady-state and transient calibration data are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
Current trends in hydrogeology seek to enlist sedimentary concepts in the interpretation of permeability structures. However, existing conceptual models of alluvial deposition tend to inadequately account for the heterogeneity caused by complex sedimentological and external factors. This dissertation presents three analyses of alluvial hydrostratigraphy using indicator geostatistics. This approach empirically acknowledges both the random and structured qualities of alluvial structures at scales relevant to site investigations. The first analysis introduces the indicator approach, whereby binary values are assigned to borehole-log intervals on the basis of inferred relative permeability; it presents a case study of indicator variography at a well-documented ground-watermore » contamination site, and uses indicator kriging to interpolate an aquifer-aquitard sequence in three dimensions. The second analysis develops an alluvial-architecture context for interpreting semivariograms, and performs comparative variography for a suite of alluvial sites in Santa Clara Valley, California. The third analysis investigates the use of a water well perforation indicator for assessing large-scale hydrostratigraphic structures within relatively deep production zones.« less
The applications of model-based geostatistics in helminth epidemiology and control.
Magalhães, Ricardo J Soares; Clements, Archie C A; Patil, Anand P; Gething, Peter W; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.
2017-06-01
The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.
Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe
2014-10-01
The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.
NASA Astrophysics Data System (ADS)
Jalali, Mohammad; Ramazi, Hamidreza
2018-06-01
Earthquake catalogues are the main source of statistical seismology for the long term studies of earthquake occurrence. Therefore, studying the spatiotemporal problems is important to reduce the related uncertainties in statistical seismology studies. A statistical tool, time normalization method, has been determined to revise time-frequency relationship in one of the most active regions of Asia, Eastern Iran and West of Afghanistan, (a and b were calculated around 8.84 and 1.99 in the exponential scale, not logarithmic scale). Geostatistical simulation method has been further utilized to reduce the uncertainties in the spatial domain. A geostatistical simulation produces a representative, synthetic catalogue with 5361 events to reduce spatial uncertainties. The synthetic database is classified using a Geographical Information System, GIS, based on simulated magnitudes to reveal the underlying seismicity patterns. Although some regions with highly seismicity correspond to known faults, significantly, as far as seismic patterns are concerned, the new method highlights possible locations of interest that have not been previously identified. It also reveals some previously unrecognized lineation and clusters in likely future strain release.
Estimating the volume and age of water stored in global lakes using a geo-statistical approach
Messager, Mathis Loïc; Lehner, Bernhard; Grill, Günther; Nedeva, Irena; Schmitt, Oliver
2016-01-01
Lakes are key components of biogeochemical and ecological processes, thus knowledge about their distribution, volume and residence time is crucial in understanding their properties and interactions within the Earth system. However, global information is scarce and inconsistent across spatial scales and regions. Here we develop a geo-statistical model to estimate the volume of global lakes with a surface area of at least 10 ha based on the surrounding terrain information. Our spatially resolved database shows 1.42 million individual polygons of natural lakes with a total surface area of 2.67 × 106 km2 (1.8% of global land area), a total shoreline length of 7.2 × 106 km (about four times longer than the world's ocean coastline) and a total volume of 181.9 × 103 km3 (0.8% of total global non-frozen terrestrial water stocks). We also compute mean and median hydraulic residence times for all lakes to be 1,834 days and 456 days, respectively. PMID:27976671
Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing
NASA Technical Reports Server (NTRS)
Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.
1994-01-01
It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.
NASA Astrophysics Data System (ADS)
Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.
2018-03-01
Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.
Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field
Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528
NASA Astrophysics Data System (ADS)
Al-Omran, Abdulrasoul M.; Aly, Anwar A.; Al-Wabel, Mohammad I.; Al-Shayaa, Mohammad S.; Sallam, Abdulazeam S.; Nadeem, Mahmoud E.
2017-11-01
The analyses of 180 groundwater samples of Al-Kharj, Saudi Arabia, recorded that most groundwaters are unsuitable for drinking uses due to high salinity; however, they can be used for irrigation with some restriction. The electric conductivity of studied groundwater ranged between 1.05 and 10.15 dS m-1 with an average of 3.0 dS m-1. Nitrate was also found in high concentration in some groundwater. Piper diagrams revealed that the majority of water samples are magnesium-calcium/sulfate-chloride water type. The Gibbs's diagram revealed that the chemical weathering of rock-forming minerals and evaporation are influencing the groundwater chemistry. A kriging method was used for predicting spatial distribution of salinity (EC dS m-1) and NO3 - (mg L-1) in Al-Kharj's groundwater using data of 180 different locations. After normalization of data, variogram was drawn, for selecting suitable model for fitness on experimental variogram, less residual sum of squares value was used. Then cross-validation and root mean square error were used to select the best method for interpolation. The kriging method was found suitable methods for groundwater interpolation and management using either GS+ or ArcGIS.
State-Space Estimation of Soil Organic Carbon Stock
NASA Astrophysics Data System (ADS)
Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.
2014-04-01
Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.
Land management decisions in a carbonatic geo-environment
NASA Astrophysics Data System (ADS)
Siska, P.; Hung, I.-K.
2017-10-01
Land is the uppermost territorial unit of the earth’s surface that is quasi-homogeneous in its physical, natural, and also anthropogenic properties. The fundamental component of land is lithosphere. The focus of this work is on a carbonatic geo-environment that is dominantly characterized by Mesozoic rock complexes, significant chemical weathering, and a set of landforms that are unique to this type of a geological structures. In general, optimal land management is a composite of land sharing and land sparing practices; however, in order to answer the question: ‘What is a parcel of land best suited for?’ often requires well-organized spatial data. In this work, we have focused on developing a model that would evaluate the suitability of a carbonatic geo-environment for land management practices. Due to the potential hazards of some sinkhole infested areas, the risk of natural hazards must be first evaluated. In addition, the level of hazards depends on population pressure and the intensity of human impact on this particular environment. In this research, we have applied the principles of geostatistics to evaluate the probabilities for sinkhole hazards as well as fuzzy logic to evaluate the suitability of land sharing and land sparing management.
MoisturEC: a new R program for moisture content estimation from electrical conductivity data
Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.
2018-01-01
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.
NASA Astrophysics Data System (ADS)
Teles, V.; de Marsily, G.; Delay, F.; Perrier, E.
Alluvial floodplains are extremely heterogeneous aquifers, whose three-dimensional structures are quite difficult to model. In general, when representing such structures, the medium heterogeneity is modeled with classical geostatistical or Boolean meth- ods. Another approach, still in its infancy, is called the genetic method because it simulates the generation of the medium by reproducing sedimentary processes. We developed a new genetic model to obtain a realistic three-dimensional image of allu- vial media. It does not simulate the hydrodynamics of sedimentation but uses semi- empirical and statistical rules to roughly reproduce fluvial deposition and erosion. The main processes, either at the stream scale or at the plain scale, are modeled by simple rules applied to "sediment" entities or to conceptual "erosion" entities. The model was applied to a several kilometer long portion of the Aube River floodplain (France) and reproduced the deposition and erosion cycles that occurred during the inferred climate periods (15 000 BP to present). A three-dimensional image of the aquifer was gener- ated, by extrapolating the two-dimensional information collected on a cross-section of the floodplain. Unlike geostatistical methods, this extrapolation does not use a statis- tical spatial analysis of the data, but a genetic analysis, which leads to a more realistic structure. Groundwater flow and transport simulations in the alluvium were carried out with a three-dimensional flow code or simulator (MODFLOW), using different rep- resentations of the alluvial reservoir of the Aube River floodplain: first an equivalent homogeneous medium, and then different heterogeneous media built either with the traditional geostatistical approach simulating the permeability distribution, or with the new genetic model presented here simulating sediment facies. In the latter case, each deposited entity of a given lithology was assigned a constant hydraulic conductivity value. Results of these models have been compared to assess the value of the genetic approach and will be presented.
NASA Astrophysics Data System (ADS)
Ramjan, S.; Geldsetzer, T.; Yackel, J.
2016-12-01
A contemporary shift from primarily thicker, older multi-year sea ice (MYI) to thinner, smoother first-year sea ice (FYI) has been attributed to increased atmospheric and oceanic warming in the Arctic, with a steady diminishing of Arctic sea ice thickness due to a reduction of thick MYI compared to FYI. With an increase in FYI fraction, increased melting takes place during the summer months, exposing the sea ice to additional incoming solar radiation. With this change, an increase in melt pond fraction has been observed during the summer melt season. Prior research advocated that thin/thick snow leads to dominant surface flooding/snow patches during summer because of an enhanced ice-albedo feedback. For instance, thin snow cover areas form melt ponds first. Therefore, aerial measurements of melt pond fraction provide a proxy for relative snow thickness. RADARSAT-2 polarimetric SAR data can provide enhanced information about both surface scattering and volume scattering mechanisms, as well as recording the phase difference between polarizations. These polarimetric parameters can be computed that have a useful physical interpretation. The principle research focus is to establish a methodology to determine the relationship between selected geostatistics and image texture measures of pre-melt RADARSAT-2 parameters and aerially-measured melt pond fraction. Overall, the notion of this study is to develop an algorithm to estimate relative snow thickness variability in winter through an integrated approach utilizing SAR polarimetric parameters, geostatistical analysis and texture measures. Results are validated with test sets of melt pond fractions, and in situ snow thickness measurements. Preliminary findings show significant correlations with pond fraction for the standard deviation of HH and HV parameters at small incidence angles, and for the mean of the co-pol phase difference parameter at large incidence angles.
Guo, X; Fu, B; Ma, K; Chen, L
2000-08-01
Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.
NASA Astrophysics Data System (ADS)
Li, Y.; Gong, H.; Zhu, L.; Guo, L.; Gao, M.; Zhou, C.
2016-12-01
Continuous over-exploitation of groundwater causes dramatic drawdown, and leads to regional land subsidence in the Huairou Emergency Water Resources region, which is located in the up-middle part of the Chaobai river basin of Beijing. Owing to the spatial heterogeneity of strata's lithofacies of the alluvial fan, ground deformation has no significant positive correlation with groundwater drawdown, and one of the challenges ahead is to quantify the spatial distribution of strata's lithofacies. The transition probability geostatistics approach provides potential for characterizing the distribution of heterogeneous lithofacies in the subsurface. Combined the thickness of clay layer extracted from the simulation, with deformation field acquired from PS-InSAR technology, the influence of strata's lithofacies on land subsidence can be analyzed quantitatively. The strata's lithofacies derived from borehole data were generalized into four categories and their probability distribution in the observe space was mined by using the transition probability geostatistics, of which clay was the predominant compressible material. Geologically plausible realizations of lithofacies distribution were produced, accounting for complex heterogeneity in alluvial plain. At a particular probability level of more than 40 percent, the volume of clay defined was 55 percent of the total volume of strata's lithofacies. This level, equaling nearly the volume of compressible clay derived from the geostatistics, was thus chosen to represent the boundary between compressible and uncompressible material. The method incorporates statistical geological information, such as distribution proportions, average lengths and juxtaposition tendencies of geological types, mainly derived from borehole data and expert knowledge, into the Markov chain model of transition probability. Some similarities of patterns were indicated between the spatial distribution of deformation field and clay layer. In the area with roughly similar water table decline, locations in the subsurface having a higher probability for the existence of compressible material occur more than that in the location with a lower probability. Such estimate of spatial probability distribution is useful to analyze the uncertainty of land subsidence.
Outlier detection for groundwater data in France
NASA Astrophysics Data System (ADS)
Valmy, Larissa; de Fouquet, Chantal; Bourgine, Bernard
2014-05-01
Quality and quantity water in France are increasingly observed since the 70s. Moreover, in 2000, the EU Water Framework Directive established a framework for community action in the water policy field for the protection of inland surface waters (rivers and lakes), transitional waters (estuaries), coastal waters and groundwater. It will ensure that all aquatic ecosystems and, with regard to their water needs, terrestrial ecosystems and wetlands meet 'good status' by 2015. The Directive requires Member States to establish river basin districts and for each of these a river basin management plan. In France, monitoring programs for the water status were implemented in each basin since 2007. The data collected through these programs feed into an information system which contributes to check the compliance of water environmental legislation implementation, assess the status of water guide management actions (programs of measures) and evaluate their effectiveness, and inform the public. Our work consists in study quality and quantity groundwater data for some basins in France. We propose a specific mathematical approach in order to detect outliers and study trends in time series. In statistic, an outlier is an observation that lies outside the overall pattern of a distribution. Usually, the presence of an outlier indicates some sort of problem, thus, it is important to detect it in order to know the cause. In fact, techniques for temporal data analysis have been developed for several decades in parallel with geostatistical methods. However compared to standard statistical methods, geostatistical analysis allows incomplete or irregular time series analysis. Otherwise, tests carried out by the BRGM showed the potential contribution of geostatistical methods for characterization of environmental data time series. Our approach is to exploit this potential through the development of specific algorithms, tests and validation of methods. We will introduce and explain our method and approach by considering the Loire Bretagne basin case.
NASA Astrophysics Data System (ADS)
Goetz-Weiss, L. R.; Herzfeld, U. C.; Trantow, T.; Hunke, E. C.; Maslanik, J. A.; Crocker, R. I.
2016-12-01
An important problem in model-data comparison is the identification of parameters that can be extracted from observational data as well as used in numerical models, which are typically based on idealized physical processes. Here, we present a suite of approaches to characterization and classification of sea ice and land ice types, properties and provinces based on several types of remote-sensing data. Applications will be given to not only illustrate the approach, but employ it in model evaluation and understanding of physical processes. (1) In a geostatistical characterization, spatial sea-ice properties in the Chukchi and Beaufort Sea and in Elsoon Lagoon are derived from analysis of RADARSAT and ERS-2 SAR data. (2) The analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification, which facilitates classification of different sea-ice types. (3) Characteristic sea-ice parameters, as resultant from the classification, can then be applied in model evaluation, as demonstrated for the ridging scheme of the Los Alamos sea ice model, CICE, using high-resolution altimeter and image data collected from unmanned aircraft over Fram Strait during the Characterization of Arctic Sea Ice Experiment (CASIE). The characteristic parameters chosen in this application are directly related to deformation processes, which also underly the ridging scheme. (4) The method that is capable of the most complex classification tasks is the connectionist-geostatistical classification method. This approach has been developed to identify currently up to 18 different crevasse types in order to map progression of the surge through the complex Bering-Bagley Glacier System, Alaska, in 2011-2014. The analysis utilizes airborne altimeter data and video image data and satellite image data. Results of the crevasse classification are compare to fracture modeling and found to match.
NASA Astrophysics Data System (ADS)
Jalali, Mohammad; Ramazi, Hamidreza
2018-04-01
This article is devoted to application of a simulation algorithm based on geostatistical methods to compile and update seismotectonic provinces in which Iran has been chosen as a case study. Traditionally, tectonic maps together with seismological data and information (e.g., earthquake catalogues, earthquake mechanism, and microseismic data) have been used to update seismotectonic provinces. In many cases, incomplete earthquake catalogues are one of the important challenges in this procedure. To overcome this problem, a geostatistical simulation algorithm, turning band simulation, TBSIM, was applied to make a synthetic data to improve incomplete earthquake catalogues. Then, the synthetic data was added to the traditional information to study the seismicity homogeneity and classify the areas according to tectonic and seismic properties to update seismotectonic provinces. In this paper, (i) different magnitude types in the studied catalogues have been homogenized to moment magnitude (Mw), and earthquake declustering was then carried out to remove aftershocks and foreshocks; (ii) time normalization method was introduced to decrease the uncertainty in a temporal domain prior to start the simulation procedure; (iii) variography has been carried out in each subregion to study spatial regressions (e.g., west-southwestern area showed a spatial regression from 0.4 to 1.4 decimal degrees; the maximum range identified in the azimuth of 135 ± 10); (iv) TBSIM algorithm was then applied to make simulated events which gave rise to make 68,800 synthetic events according to the spatial regression found in several directions; (v) simulated events (i.e., magnitudes) were classified based on their intensity in ArcGIS packages and homogenous seismic zones have been determined. Finally, according to the synthetic data, tectonic features, and actual earthquake catalogues, 17 seismotectonic provinces were introduced in four major classes introduced as very high, high, moderate, and low seismic potential provinces. Seismotectonic properties of very high seismic potential provinces have been also presented.
NASA Astrophysics Data System (ADS)
Murakami, H.; Chen, X.; Hahn, M. S.; Over, M. W.; Rockhold, M. L.; Vermeul, V.; Hammond, G. E.; Zachara, J. M.; Rubin, Y.
2010-12-01
Subsurface characterization for predicting groundwater flow and contaminant transport requires us to integrate large and diverse datasets in a consistent manner, and quantify the associated uncertainty. In this study, we sequentially assimilated multiple types of datasets for characterizing a three-dimensional heterogeneous hydraulic conductivity field at the Hanford 300 Area. The datasets included constant-rate injection tests, electromagnetic borehole flowmeter tests, lithology profile and tracer tests. We used the method of anchored distributions (MAD), which is a modular-structured Bayesian geostatistical inversion method. MAD has two major advantages over the other inversion methods. First, it can directly infer a joint distribution of parameters, which can be used as an input in stochastic simulations for prediction. In MAD, in addition to typical geostatistical structural parameters, the parameter vector includes multiple point values of the heterogeneous field, called anchors, which capture local trends and reduce uncertainty in the prediction. Second, MAD allows us to integrate the datasets sequentially in a Bayesian framework such that it updates the posterior distribution, as a new dataset is included. The sequential assimilation can decrease computational burden significantly. We applied MAD to assimilate different combinations of the datasets, and then compared the inversion results. For the injection and tracer test assimilation, we calculated temporal moments of pressure build-up and breakthrough curves, respectively, to reduce the data dimension. A massive parallel flow and transport code PFLOTRAN is used for simulating the tracer test. For comparison, we used different metrics based on the breakthrough curves not used in the inversion, such as mean arrival time, peak concentration and early arrival time. This comparison intends to yield the combined data worth, i.e. which combination of the datasets is the most effective for a certain metric, which will be useful for guiding the further characterization effort at the site and also the future characterization projects at the other sites.
NASA Astrophysics Data System (ADS)
Szatmári, Gábor; Pásztor, László
2016-04-01
Uncertainty is a general term expressing our imperfect knowledge in describing an environmental process and we are aware of it (Bárdossy and Fodor, 2004). Sampling, laboratory measurements, models and so on are subject to uncertainty. Effective quantification and visualization of uncertainty would be indispensable to stakeholders (e.g. policy makers, society). Soil related features and their spatial models should be stressfully targeted to uncertainty assessment because their inferences are further used in modelling and decision making process. The aim of our present study was to assess and effectively visualize the local uncertainty of the countrywide soil organic matter (SOM) spatial distribution model of Hungary using geostatistical tools and concepts. The Hungarian Soil Information and Monitoring System's SOM data (approximately 1,200 observations) and environmental related, spatially exhaustive secondary information (i.e. digital elevation model, climatic maps, MODIS satellite images and geological map) were used to model the countrywide SOM spatial distribution by regression kriging. It would be common to use the calculated estimation (or kriging) variance as a measure of uncertainty, however the normality and homoscedasticity hypotheses have to be refused according to our preliminary analysis on the data. Therefore, a normal score transformation and a sequential stochastic simulation approach was introduced to be able to model and assess the local uncertainty. Five hundred equally probable realizations (i.e. stochastic images) were generated. The number of the stochastic images is fairly enough to provide a model of uncertainty at each location, which is a complete description of uncertainty in geostatistics (Deutsch and Journel, 1998). Furthermore, these models can be applied e.g. to contour the probability of any events, which can be regarded as goal oriented digital soil maps and are of interest for agricultural management and decision making as well. A standardized measure of the local entropy was used to visualize uncertainty, where entropy values close to 1 correspond to high uncertainty, whilst values close to 0 correspond low uncertainty. The advantage of the usage of local entropy in this context is that it combines probabilities from multiple members into a single number for each location of the model. In conclusion, it is straightforward to use a sequential stochastic simulation approach to the assessment of uncertainty, when normality and homoscedasticity are violated. The visualization of uncertainty using the local entropy is effective and communicative to stakeholders because it represents the uncertainty through a single number within a [0, 1] scale. References: Bárdossy, Gy. & Fodor, J., 2004. Evaluation of Uncertainties and Risks in Geology. Springer-Verlag, Berlin Heidelberg. Deutsch, C.V. & Journel, A.G., 1998. GSLIB: geostatistical software library and user's guide. Oxford University Press, New York. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kühn, Michael
2015-04-01
The 3D imaging of porous media through micro tomography allows the characterization of porous space and mineral abundances with unprecedented resolution. Such images can be used to perform computational determination of permeability and to obtain a realistic measure of the mineral surfaces exposed to fluid flow and thus to chemical interactions. However, the volume of the plugs that can be analysed with such detail is in the order of 1 cm3, so that their representativity at a larger scale, i.e. as needed for reactive transport modelling at Darcy scale, is questionable at best. In fact, the fine scale heterogeneity (from plug to plug at few cm distance within the same core) would originate substantially different readings of the investigated properties. Therefore, a comprehensive approach including the spatial variability and heterogeneity at the micro- and plug scale needs to be adopted to gain full advantage from the high resolution images in view of the upscaling to Darcy scale. In the framework of the collaborative project H2STORE, micro-CT imaging of different core samples from potential H2-storage sites has been performed by partners at TU Clausthal and Jena University before and after treatment with H2/CO2 mixtures in pressurized autoclaves. We present here the workflow which has been implemented to extract the relevant features from the available data concerning the heterogeneity of the medium at the microscopic and plug scale and to correlate the observed chemical reactions and changes in the porous structure with the geometrical features of the medium. First, a multivariate indicator-based geostatistical model for the microscopic structure of the plugs has been built and fitted to the available images. This involved the implementation of exploratory analysis algorithms such as experimental indicator variograms and cross-variograms. The implemented methods are able to efficiently deal with images in the order of 10003 voxels making use of parallelization. Sequential Indicator Simulations are then employed to generate equi-probable realizations of microscopic structures with varying mineral proportions and porosity but constrained to the spatial variability observed in the plugs. The statistics computed on the ensemble of realizations (essentially the distribution of mineral reactive surfaces exposed to porous space) is integrated at a larger, Darcy scale. In a further step, the analysis of the microscopic changes in the plugs after exposure to reactive solution establishes the correlations betweens amount of chemical reactions and changes in the spatial models, thus deriving some effective correlations which can be injected into the reactive transport modelling. In this contribution, we demonstrate the implemented workflow on a series of images obtained from plugs from a german depleted gas field exposed to H2 and CO2-charged brines. The geostatistical evaluation of microscale variability of the porous media contributes to the upscaling of relevant variables and helps estimating - if not reducing - the uncertainty due to the heterogeneity across scales of the natural systems.
NASA Astrophysics Data System (ADS)
Illés, Gábor; Kristijono, Agus; Pfeifer, Norbert; Pásztor, László; Shandhyavitri, Ari; Szatmári, Gábor; Sutikno, Sigit; Molnár, Gábor; László, Péter; Árvai, Mátyás; Mészáros, János; Koós, Sándor; Bakacsi, Zsófia; Takács, Katalin; Király, Géza; Székely, Balázs
2017-04-01
One of the world's most worrying environmental problems is the peat land CO2 emission problem of Indonesia: peat lands developed during the Quaternary are now under strong human influence; the artificial lowering of the natural water table leads to rapid drying and compaction of the peat layer, which then becomes vulnerable to subsurface fire. The emitted CO2 of this process is assessed to be 0.5 billion tonnes from Indonesia that is slightly higher than total emission of e.g. United Kingdom in 2014 (0.42 billion tonnes). To cope with the problem it is inevitable to assess the extents of peat lands and volumetric estimation of the potentially affected layers. Methods suitable for mapping of the peat lands (current situation and as far as possible retrospectively), thickness determination and partly thickness estimation of the peat layer are integrated in an advanced geostatistical approach building upon geomorphic, ecological, remote sensing, and geophysical methods to provide information on peat matrix attributes such as peat thickness of organo-mineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. In order to cope with the problem, our research group is developing a multidisciplinary methodology making use of our experience in soil science, GIS, remote sensing for forestry and ecology, geomorphometry, geophysics, LiDAR remote sensing, parameter estimation and geostatistical methods. The methodology is based largely on GIS data integration, but also applies technologies of 'big data' processing. Our integrative attitude ensures the holistic consideration of the problem, analyzing its origins, temporal development and varying spatial extent, its subprocesses in a multi-scale, inter- and transdisciplinary approach. At the same time practical problems, feasibility, costs, and human resource need consideration in order to design a viable solution. In the development of the solution, elements of gathered experience is integrated acquired in previous similar projects in Hungary, in the Pannonian Basin and in Indonesia, in southern Kalimantan and Indragiri Hilir, Sumatra. The pointwise and profilewise data acquisition of peat forms is converted to mapping methods augmented with a sophisticated sampling strategy. Besides the similarities - freshwater, ombrotrophic peatlands - we also have to focus on remarkable dissimilarities - e.g., herbaceous vs. woody peat material. In the case of the Pannonian Basin the peat occurrences have been developed as the filling up of the floodplains. In the Indonesian case, however, only the basin flanks are partly comparable to that generation mechanism, whereas see level changes play an important role in the development of the vast Indonesian peat occurrences. Geomorphometric approach helps in designing the sample strategy, remote sensing tools are responsible to deliver high-resolution topographic data as input. The varying thickness is assessed with geophysical measurements and shallow boreholes deployed at sampling points and profiles dictated by the sophisticated sampling strategy. During the measurement and sampling the experience gathered is fed back to the sampling strategy giving a dynamic plan for the continuation of the sampling. The advanced evaluation and visualization techniques applied result in a digital map system that also contains estimates on its quality and accuracy in the spatial context. This new approach brings us closer to the understanding of Indonesian peatland development that may also be used elsewhere in similar environmental contexts.
Schröder, Winfried
2006-05-01
By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be inquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence
The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ({sup 3}H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for themore » limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm{sup 2}) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m{sup 2}, at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling for further laboratory analyses and should be inserted in the range of common tools used in dismantling. (authors)« less
Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model
NASA Astrophysics Data System (ADS)
Mejer Hansen, Thomas
2017-04-01
Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.