Science.gov

Sample records for geotechnical engineering

  1. Geotechnical engineering in US elementary schools

    NASA Astrophysics Data System (ADS)

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-06-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data acquisition, the soil profile and foundations activity employed natural and transparent soils as well as LEGO-based foundation models, and the erosion activity utilised a 3D printer to assist with construction of building models. The activities seek to enhance students' academic achievement, excite them about geotechnical engineering, and motivate them to study science and math. Pre- and post-activity evaluations were conducted to assess both the suitability of the activities and the students' learning. Initial results show that students gain a reasonable understanding of engineering principles. Moreover, the geotechnical engineering activities provided students an opportunity to apply their math skills and science knowledge.

  2. Geotechnical Engineering in US Elementary Schools

    ERIC Educational Resources Information Center

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-01-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data…

  3. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  4. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    SciTech Connect

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.; Jang, J.W.; Jung, J.W.; Tsouris, Costas

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  5. Incorporating Learning Outcomes into an Introductory Geotechnical Engineering Course

    ERIC Educational Resources Information Center

    Fiegel, Gregg L.

    2013-01-01

    The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding…

  6. Incorporating learning outcomes into an introductory geotechnical engineering course

    NASA Astrophysics Data System (ADS)

    Fiegel, Gregg L.

    2013-06-01

    The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding to one of six levels of achievement in the cognitive domain (remember, understand, apply, analyse, evaluate, and create). The article includes a listing of outcomes articulated for several course topics. The article also summarises how the outcomes were linked to lesson plans and assignments. Example formative and summative assessment methods and results are presented with the results of teaching evaluations, which indicate that students value this approach to course design. The article concludes with a discussion of how the above approach has been implemented in upper-division courses. Outcomes are presented for a course on earth retention systems.

  7. Fiber-optic sensor applications in civil and geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  8. GEOTECHNICAL ENGINEERING AT THE SAVANNAH RIVER SITE AND BECHTEL

    SciTech Connect

    Lewis, M; I. Arango, I; Michael Mchood, M

    2007-07-17

    The authors describe two aspects of geotechnical engineering; site characterization utilizing the CPT and recognition of aging as a factor affecting soil properties. These methods were pioneered by Professor Schmertmann and are practiced by the Bechtel Corporation in general and at the Savannah River Site in South Carolina, in particular. This paper describes a general subsurface exploration approach that we have developed over the years. It consists of ''phasing'' the investigation, employing the principles of the observational method suggested by Peck (1969) and others. In doing so, we have found that the recommendations proposed by Sowers in terms of borehole spacing and exploration cost, are reasonable for developing an investigation program, recognizing that through continuous review the final investigation program will evolve. At the SRS shallow subsurface soils are of Eocene and Miocene age. It was recognized that the age of these deposits would have a marked effect on their cyclic resistance. A field investigation and laboratory testing program was devised to measure and account for aging as it relates to the cyclic resistance of the site soils. Recently, a panel of experts (Youd et al., 2001) has made recommendations regarding the liquefaction assessment of soils. This paper will address some of those recommendations in the context of re-assessing the liquefaction resistance of the soils at the SRS. It will be shown that, indeed, aging plays a major role in the cyclic resistance of the soils at the SRS, and that aging should be accounted for in liquefaction potential assessments for soils older than Holocene age.

  9. The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.

    ERIC Educational Resources Information Center

    Anderson, W. F.; And Others

    1985-01-01

    Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…

  10. Environments for Fostering Effective Critical Thinking in Geotechnical Engineering Education (Geo-EFFECTs)

    ERIC Educational Resources Information Center

    Pierce, Charles E.; Gassman, Sarah L.; Huffman, Jeffrey T.

    2013-01-01

    This paper describes the development, implementation, and assessment of instructional materials for geotechnical engineering concepts using the Environments for Fostering Effective Critical Thinking (EFFECTs) pedagogical framework. The central learning goals of engineering EFFECTs are to (i) improve the understanding and retention of a specific…

  11. Environments for fostering effective critical thinking in geotechnical engineering education (Geo-EFFECTs)

    NASA Astrophysics Data System (ADS)

    Pierce, Charles E.; Gassman, Sarah L.; Huffman, Jeffrey T.

    2013-06-01

    This paper describes the development, implementation, and assessment of instructional materials for geotechnical engineering concepts using the Environments for Fostering Effective Critical Thinking (EFFECTs) pedagogical framework. The central learning goals of engineering EFFECTs are to (i) improve the understanding and retention of a specific set of concepts that provide core knowledge and (ii) encourage students to recognise and develop critical thinking skills that lead to growth in engineering judgement. The practice of geotechnical engineering deals with complex and uncertain soil conditions, where critical thought and judgement are imperative. Three geo-EFFECTs were created in the context of levee reconstruction, levee permeability, and settlement of a tower structure. Students often provided inaccurate estimates to driving questions set in those contexts; when given opportunities for self-exploration and self-correction in the EFFECT structure, students often achieved more accurate final solutions. Overall, results suggest that EFFECTs have a measurable, positive impact on student learning.

  12. Accessibility of geotechnical earthquake Engineering data and the need for data storage and dissemination standards

    USGS Publications Warehouse

    Tarr, Arthur C.

    1993-01-01

    Ease of data access and data standards are two issues critical to the success of GIS technology when applied to earthquake hazards research problems that require geotechnical engineering and related data. Efforts to reduce data accession costs and to streamline the data exchange process will result in short-term cost and time saving and will add long-term value to the data sets themselves. Such efforts might include centralized data centers, standardized data base designs and formats, cooperative efforts to fill data gaps, and standardized distribution methods and media.

  13. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2014-12-01

    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  14. Use of the Boussinesq solution in geotechnical and road engineering: influence of plasticity

    NASA Astrophysics Data System (ADS)

    Sadek, Marwan; Shahrour, Isam

    2007-09-01

    The Boussinesq solution for the distribution of stresses in a half-space resulting from surface loads is largely used in geotechnical and road engineering. It is based on the assumption of a linear-elastic homogeneous isotropic half-space for the soil media. Since the soil exhibits nonlinear and irreversible behavior, it is of major interest to study the validity of this solution for elastoplastic soils. This paper includes an investigation of this issue using finite element modeling. The study is conducted by comparing the elastic stress distribution to that obtained using elastoplastic finite element analyses. Results show that the plasticity reduces the attenuation of the vertical stresses in the soil mass, which means that the Boussinesq solution underestimates the stresses in an area which contributes to the soil settlement. To cite this article: M. Sadek, I. Shahrour, C. R. Mecanique 335 (2007).

  15. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: Field examples

    USGS Publications Warehouse

    Green, R.A.; Obermeier, S.F.; Olson, S.M.

    2005-01-01

    The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B

  16. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    SciTech Connect

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  17. Use of surface waves for geotechnical engineering applications in Western Sydney

    NASA Astrophysics Data System (ADS)

    Tokeshi, K.; Harutoonian, P.; Leo, C. J.; Liyanapathirana, S.

    2013-06-01

    Current in situ methods used to geotechnically characterize the ground are predominantly based on invasive mechanical techniques (e.g. CPT, SPT, DMT). These techniques are localized to the tested area thus making it quite time consuming and costly to extensively cover large areas. Hence, a study has been initiated to investigate the use of the non-invasive Multichannel Analysis of Surface Waves (MASW) and Multichannel Simulation with One Receiver (MSOR) techniques to provide both an evaluation of compacted ground and a general geotechnical site characterization. The MASW technique relies on the measurement of active ambient vibrations generated by sledgehammer hits to the ground. Generated vibrations are gathered by interconnected electromagnetic geophones set up in the vertical direction and in a linear array at the ground surface with a constant spacing. The MSOR technique relies on one sensor, one single geophone used as the trigger, and multiple impacts are delivered on a steel plate at several distances in a linear array. The main attributes of these non-invasive techniques are the cost effectiveness and time efficiency when compared to current in situ mechanical invasive methods. They were applied to infer the stiffness of the ground layers by inversion of the phase velocity dispersion curves to derive the shear wave velocity (Vs) profile. The results produced by the MASW and the MSOR techniques were verified against independent mechanical Cone Penetration Test (CPT) and Standard Penetration Test (SPT) data. This paper identifies that the MASW and the MSOR techniques could be potentially useful and powerful tools in the evaluation of the ground compaction and general geotechnical site characterization.

  18. The Necessity of Combining Geologists and Engineers for Fieldwork in the Practice of Geotechnics

    NASA Astrophysics Data System (ADS)

    de Freitas, Michael H.

    This paper reviews the post-graduate training that can only be accomplished by having engineers and geologists working together in the field. It describes how meaningful communication and mutual appreciation of fundamental issues concerning a definition of ground and a prediction of how it will respond to engineering, and environmental, change may be established. Fieldwork suitable for achieving this and an awareness of fundamental misconceptions is also described.

  19. Plasticity and Geotechnics

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Sui

    Plasticity and Geotechnics is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design.

  20. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  1. Geotechnical Engineering, 1989

    NASA Astrophysics Data System (ADS)

    Fragaszy, R. J.; Argo, D.; Higgins, J. D.

    The 16 papers in the report deal with the following areas: Comparison of Formula Predictions with Pile Load Tests; Study of Dynamic Methods of Predicting Pile Axial Load Capacity by Louisiana Department of Transportation and Development; Analysis of Drilled Piers Used for Slope Stabilization; Analytical Study of Laterally Loaded Cast-in-Drilled-Hole Piles; Bolted Connections of Rib-Plate Structures; Validation of Correlations Between a Number of Penetration Tests and In Situ California Bearing Ratio Tests: Class C Fly Ash as a Full or Partial Replacement for Portland Cement or Lime; Accelerated Curing of Fly Ash-Lime Soil Mixtures; Frost Resistance of Lime-Stabilized Clay Soil; Stabilization of Expansive Clay Soils; Expansion of Cement-Stabilized Minestone due to the Oxidation of Pyrite; Field Measurement of Shrinkage Crack Depth in Expansive Soils; Evaluation of AGWA-II Thermal Conductivity Sensors for Soil Suction Measurement; Pore Fluid Effects on the Fabric and Hydraulic Conductivity of Laboratory-Compacted Clay; Organically Modified Clays; and Diffusion of Contaminants Through Waste Containment Barriers.

  2. IN SITU AND LABORATORY GEOTECHNICAL TESTS OF THE PIERRE SHALE NEAR HAYES, SOUTH DAKOTA - A CHARACTERIZATION OF ENGINEERING BEHAVIOR.

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.

    1986-01-01

    A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.

  3. Enabling Geotechnical Data for Broader Use by the Spatial Data Infrastructures

    ERIC Educational Resources Information Center

    Zand, Amir Ghasem

    2011-01-01

    Geotechnical data are one of the most prevalent data types in civil engineering projects. The majority of the civil engineering projects that are in use today are designed using site-specific geotechnical data. The usage of geotechnical data is not limited to construction projects. This data is used in a wide range of applications, including…

  4. Supporting active learning in an undergraduate geotechnical engineering course using group-based audience response systems quizzes

    NASA Astrophysics Data System (ADS)

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or 'clickers' in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS quizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, the ARS summary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.

  5. Development of a geotechnical and pile driving database, Adriatic Sea

    SciTech Connect

    Carpaneto, R.; Paoletti, L.; Guaita, P.; Pratico, A.

    1996-12-31

    The paper presents a geotechnical and pile driving data base relevant to offshore installations in the Adriatic Sea. The paper discusses sources of information, structure, content, and engineering applications of the data base. Data available from Agip`s platform installations in the Adriatic was reviewed, and 20 representative platforms were chosen. Two relational data bases were created, for geotechnical and installation data respectively. The data bases provide a comprehensive and organized source of information about past experience in the area. Such experience is now quickly available for geotechnical engineering activities. As a main application of the data bases, information was processed to make data sets for training Artificial Neural Networks (ANN) to predict pile driveability. It is envisioned that the data bases will also be used in ongoing installation program design.

  6. Geotechnical characterization of Rio Caribe soils

    SciTech Connect

    Sully, J.P.; Sgambatti, J.; Templeton, J.S.; Fugro-McClelland; Perez, F.; Laya, E.

    1995-12-01

    The results of a geotechnical study for the proposed Rio Caribe offshore development are presented. The profile essentially consists of firm to very hard clays, with a surface layer of calcareous sand. Back analyses of spudcan penetration at a site close to the site under study were used to evaluate engineering parameters for the carbonate sands. In addition, analyses of the resistance of the surface sand was also evaluated based on the results of several in situ and laboratory tests. A discussion of the problems of evaluating liquefaction susceptibility in calcareous sands is presented, principally in terms of shortcomings of the offshore SPT procedures employed.

  7. Risk Management in environmental geotechnical modelling

    NASA Astrophysics Data System (ADS)

    Tammemäe, Olavi; Torn, Hardi

    2008-01-01

    The objective of this article is to provide an overview of the basis of risk analysis, assessment and management, accompanying problems and principles of risk management when drafting an environmental geotechnical model, enabling the analysis of an entire territory or developed region as a whole. The environmental impact will remain within the limits of the criteria specified with the standards and will be acceptable for human health and environment. An essential part of the solution of the problem is the engineering-geological model based on risk analysis and the assessment and forecast of mutual effects of the processes.

  8. Bragg grating extensometer rods (BGX) for geotechnical strain measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, Cornelia; Borm, Gunter

    1998-06-01

    We report on a new type of optical extensometer for strain measurement in geotechnical and civil engineering applications. The system key elements are fiber Bragg gratings embedded in glass fiber reinforced polymer rockbolts. In order to monitor rock deformations in tunnels, a prototype sensor rockbolt was designed. First measurements have been made to demonstrate the characteristics of the sensor system.

  9. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect

    Lewis, M R

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  10. In-Tank Processing (ITP) Geotechnical Summary Report

    SciTech Connect

    Cumbust, R.J.; Salomone, L.A.

    1994-07-01

    A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241- 32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994. The purpose of the investigation is to obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankments under and around the ITP. The geotechnical engineering objectives of the investigation are to: (1) define the subsurface stratigraphy, (2) obtain representative engineering properties of the subsurface materials, (3) assess the competence of the subsurface materials under static and dynamic loads, (4) derive properties for seismic soil- structure interaction analysis, (5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and (6) determine settlement at the foundation level of the tanks.

  11. In-Tank Processing (ITP) Geotechnical Summary Report

    SciTech Connect

    Cumbest, R.J.

    1999-01-15

    A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is to obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.

  12. Evolution of porosity in geotechnical composites.

    PubMed

    Tyrologou, Pavlos; Dudeney, Alvan William L; Grattoni, Carlos A

    2005-07-01

    Nuclear magnetic resonance (NMR) (H1) transverse relaxation measurements were carried out on 37x70-mm cylindrical mineral/organic composites to determine and monitor the porosity evolution. Porosity is related, in principle, to the stability of such materials in geotechnical applications, for example, engineering foundations. The specimens represented novel formulations of mixed "wastes" containing coarse screened mineral, digested sewage sludge, quicklime, and pulverized fuel ash mixed and compacted together to form mechanically competent material. The measurements on a selected formulation indicated initially low porosity (<12%) that becomes lower over 6 months ( approximately 8%) due to pozzolanic reactions occurring. A relaxation time cutoff of 1.5 ms between "bound" and 'mobile' pore water much lower than sandstones (33 ms) was observed. The results confirmed that the NMR method allows a more reliable assessment of porosity and pore-size evolution.

  13. Geotechnical characterization of some Indian fly ashes

    SciTech Connect

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curing significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.

  14. Data dictionary and formatting standard for dissemination of geotechnical data

    USGS Publications Warehouse

    Benoit, J.; Bobbitt, J.I.; Ponti, D.J.; Shimel, S.A.; ,

    2004-01-01

    A pilot system for archiving and web dissemination of geotechnical data collected and stored by various agencies is currently under development. Part of the scope of this project, sponsored by the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) and by the Pacific Earthquake Engineering Research Center (PEER) Lifelines Program, is the development of a data dictionary and formatting standard. This paper presents the data model along with the basic structure of the data dictionary tables for this pilot system.

  15. Geotechnical risk analysis by flat dilatometer (DMT)

    NASA Astrophysics Data System (ADS)

    Amoroso, Sara; Monaco, Paola

    2015-04-01

    In the last decades we have assisted at a massive migration from laboratory testing to in situ testing, to the point that, today, in situ testing is often the major part of a geotechnical investigation. The State of the Art indicates that direct-push in situ tests, such as the Cone Penetration Test (CPT) and the Flat Dilatometer Test (DMT), are fast and convenient in situ tests for routine site investigation. In most cases the DMT estimated parameters, in particular the undrained shear strength su and the constrained modulus M, are used with the common design methods of Geotechnical Engineering for evaluating bearing capacity, settlements etc. The paper focuses on the prediction of settlements of shallow foundations, that is probably the No. 1 application of the DMT, especially in sands, where undisturbed samples cannot be retrieved, and on the risk associated with their design. A compilation of documented case histories that compare DMT-predicted vs observed settlements, was collected by Monaco et al. (2006), indicating that, in general, the constrained modulus M can be considered a reasonable "operative modulus" (relevant to foundations in "working conditions") for settlement predictions based on the traditional linear elastic approach. Indeed, the use of a site investigation method, such as DMT, that improve the accuracy of design parameters, reduces risk, and the design can then center on the site's true soil variability without parasitic test variability. In this respect, Failmezger et al. (1999, 2015) suggested to introduce Beta probability distribution, that provides a realistic and useful description of variability for geotechnical design problems. The paper estimates Beta probability distribution in research sites where DMT tests and observed settlements are available. References Failmezger, R.A., Rom, D., Ziegler, S.R. (1999). "SPT? A better approach of characterizing residual soils using other in-situ tests", Behavioral Characterics of Residual Soils, B

  16. Geotechnical Seismic Hazard Evaluation At Sellano (Umbria, Italy) Using The GIS Technique

    SciTech Connect

    Capilleri, P.; Maugeri, M.

    2008-07-08

    A tool that has been widely-used in civil engineering in recent years is the geographic information system (GIS). Geographic Information systems (GIS) are powerful tools for organizing, analyzing, and presenting spatial data. The GIS can be used by geotechnical engineers to aid preliminary assessment through to the final geotechnical design. The aim of this work is to provide some indications for the use of the GIS technique in the field of seismic geotechnical engineering, particularly as regards the problems of seismic hazard zonation maps. The study area is the village of Sellano located in the Umbrian Apennines in central Italy, about 45 km east of Perugia and 120 km north-east of Rome The increasing importance attributed to microzonation derives from the spatial variability of ground motion due to particular local conditions. The use of GIS tools can lead to an early identification of potential barriers to project completion during the design process that may help avoid later costly redesign.

  17. Geotechnical analysis report for July 1994--June 1995

    SciTech Connect

    1996-09-01

    The geotechnical data from the underground excavations at the WIPP are interpreted and presented in this Geotechnical Analysis Report. The data are used to characterize conditions, assess design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a regular monitoring program. They do not include data from tests performed by Sandia National Laboratories, the Scientific Advisor to the project in support of performance assessment studies. Geotechnical Analysis Reports have been prepared routinely and made available to the public since 1983. During the Site and Preliminary Design Validation Program, the Architect/Engineer for the project produced the reports on a quarterly basis to document the geomechanical performance during and immediately after construction of the underground. Upon completion of the constriction phase of the project in 1987, the reports have been prepared annually by the Management and Operating Contractor for the facility. This report describes the performance and conditions of selected areas from July 1, 1994, to June 30, 1995.

  18. Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems

    NASA Astrophysics Data System (ADS)

    Pieczyńska-Kozłowska, Joanna M.

    2015-12-01

    The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT). The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.

  19. Geotechnical instrumentation for repository shafts

    SciTech Connect

    Lentell, R.L.; Byrne, J.

    1993-09-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts.

  20. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E S; Thompson, Eric; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  1. Geotechnical analysis report, July 1992--June 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report provides an assessment of the geotechnical status of the Waste Isolation Pilot Plant (WIPP). During the construction of the principal underground access and experimental areas, reporting was on a quarterly basis. Since 1987, reporting has been carried out annually because additional excavations will take place gradually over an extended period. This report presents and analyzes data collected up to June 30, 1993. The format of the Geotechnical Analysis Report was selected to meet the needs of several audiences. This report focuses on the geotechnical performance of the various underground facilities including the shafts, shaft stations, access drifts, test rooms, and waste storage areas. The results of excavation effects investigations, stratigraphic mapping, and other geologic studies are also included. The report provides an evaluation of the geotechnical aspects of performance in the context of the relevant design criteria and also describes the techniques used to acquire the data and the performance history of the instruments. The depth and breadth of the evaluation for the different underground facilities varies according to the types and quantities of data that are available, and the complexity of the recorded geotechnical responses.

  2. Geotechnical Issues in Total System Performance Assessments of Yucca Mountain

    SciTech Connect

    HO,CLIFFORD K.; HOUSEWORTH,JIM; WILSON,MICHAEL L.

    1999-12-21

    A Total System Performance Assessment (TSPA) of Yucca Mountain consists of integrated sub-models and analyses of natural and engineered systems. Examples of subsystem models include unsaturated-zone flow and transport, seepage into drifts, coupled thermal hydrologic processes, transport through the engineered barrier system, and saturated-zone flow and transport. The TSPA evaluates the interaction of important processes among these subsystems, and it determines the impact of these processes on the overall performance measures (e.g., dose rate to humans). This paper summarizes the evaluation, abstraction, and combination of these subsystem models in a TSPA calculation, and it provides background on the individual TSPA subsystem components that are most directly impacted by geotechnical issues. The potential impact that geologic features, events, and processes have on the overall performance is presented, and an evaluation of the sensitivity of TSPA calculations to these issues is also provided.

  3. The influence of Stochastic perturbation of Geotechnical media On Electromagnetic tomography

    NASA Astrophysics Data System (ADS)

    Song, Lei; Yang, Weihao; Huangsonglei, Jiahui; Li, HaiPeng

    2015-04-01

    Electromagnetic tomography (CT) are commonly utilized in Civil engineering to detect the structure defects or geological anomalies. CT are generally recognized as a high precision geophysical method and the accuracy of CT are expected to be several centimeters and even to be several millimeters. Then, high frequency antenna with short wavelength are utilized commonly in Civil Engineering. As to the geotechnical media, stochastic perturbation of the EM parameters are inevitably exist in geological scales, in structure scales and in local scales, et al. In those cases, the geometric dimensionings of the target body, the EM wavelength and the accuracy expected might be of the same order. When the high frequency EM wave propagated in the stochastic geotechnical media, the GPR signal would be reflected not only from the target bodies but also from the stochastic perturbation of the background media. To detect the karst caves in dissolution fracture rock, one need to assess the influence of the stochastic distributed dissolution holes and fractures; to detect the void in a concrete structure, one should master the influence of the stochastic distributed stones, et al. In this paper, on the base of stochastic media discrete realizations, the authors try to evaluate quantificationally the influence of the stochastic perturbation of Geotechnical media by Radon/Iradon Transfer through full-combined Monte Carlo numerical simulation. It is found the stochastic noise is related with transfer angle, perturbing strength, angle interval, autocorrelation length, et al. And the quantitative formula of the accuracy of the electromagnetic tomography is also established, which could help on the precision estimation of GPR tomography in stochastic perturbation Geotechnical media. Key words: Stochastic Geotechnical Media; Electromagnetic Tomography; Radon/Iradon Transfer.

  4. Geotechnical considerations in surface mine reclamation

    SciTech Connect

    Kuhn, A.K.

    1999-07-01

    Most attention in surface mine reclamation is given to agronomic soils and revegetation, but reclamation success depends on the geotechnical characteristics of the underlying earth. If the soil and rock that underline the surface are not stable, surface treatments lack the dependable foundation needed for them to succeed. Reclamation practioners need to understand those geotechnical considerations--material properties, structure, and processes--that affect stability. properties of rock and soil are altered by mining, and those altered materials together with water and processing waste form often-complex mixtures of materials that must be stabilized in reclamation. Surface mining alters existing landforms and creates new ones such as pit walls, spoil and waste rock piles, tailings impoundments, and earthfills. those structures need to be constructed or stabilized so that they can endure and support successful reclamation. processes that affect material properties and landforms include mechanical breakage, accelerated weathering, erosion, and mass movements. Mechanical breakage and the resulting accelerated weathering combine to change material properties, usually expressed as degraded strength, that can lead to instability of landforms. Erosion, especially that related to extreme storm events, and mass movements in the form of slop failures are the most problematic processes that must be taken into account in reclaiming mined lands. These geotechnical considerations are essential in successful reclamation, and practioners who overlook them may find their work literally sliding down a slippery slope.

  5. Geotechnical characteristics of residual soils

    SciTech Connect

    Townsend, F.C.

    1985-01-01

    Residual soils are products of chemical weathering and thus their characteristics are dependent upon environmental factors of climate, parent material, topography and drainage, and age. These conditions are optimized in the tropics where well-drained regions produce reddish lateritic soils rich in iron and aluminum sesquioxides and kaolinitic clays. Conversely, poorly drained areas tend towards montmorillonitic expansive black clays. Andosols develop over volcanic ash and rock regions and are rich in allophane (amorphous silica) and metastable halloysite. The geological origins greatly affect the resulting engineering characteristics. Both lateritic soils and andosols are susceptible to property changes upon drying, and exhibit compaction and strength properties not indicative of their classification limits. Both soils have been used successfully in earth dam construction, but attention must be given to seepage control through the weathered rock. Conversely, black soils are unpopular for embankments. Lateritic soils respond to cement stabilization and, in some cases, lime stabilization. Andosols should also respond to lime treatment and cement treatments if proper mixing can be achieved. Black expansive residual soils respond to lime treatment by demonstrating strength gains and decreased expansiveness. Rainfall induced landslides are typical of residual soil deposits.

  6. Semi-automatic discontinuity extraction from rock faces with LIDAR and Photogrammetry. A comparison validated by geotechnical data.

    NASA Astrophysics Data System (ADS)

    Bews, C.; Hartmeyer, I.; Keuschnig, M.; Schrott, L.

    2012-04-01

    Detailed geotechnical analysis of discontinuities in rock walls is the basic foundation of many civil and mining engineering projects. It is important to measure and analyse the influence of fractures on rock constructions, such as tunnels, slopes, underground excavations, mines and nuclear waste repositories. The quality of this analysis depends on the detection of discontinuities at different scales and how well they are characterised. Traditional geotechnical surveys require direct access to the observed rock mass. Such surveys are therefore restricted to limited parts of rock masses, due to accessibility and safety reasons, impeding a comprehensive and quantitative analysis of the rock mass. Additionally traditional surveys can be biased by subjective judgment of the surveyor, due to experience, motivation and other personal factors. Remote sensing techniques such as TLS (terrestrial laser scanning) and CRP (close range photogrammetry) not only can deliver detailed and comprehensive geotechnical information of discontinuities in rock walls, but also guarantee higher objectivity. Costs and time can be cut down and comparability of geotechnical surveys will become easier. The International Society of Rock Mechanics (ISRM) defined 10 geotechnical parameters applicable for a quantitative rock wall analysis (Barton, 1978). The orientation (dip & dip direction) of discontinuities is one of them. In this study two rock walls - one located at the Kitzsteinhorn directly below the summit station and the second one at the Gutratberg belonging to the Leube quarry - were studied with the above mentioned non-contact methods to detect the orientation parameter (dip & dip direction). The geotechnical software Split-FX is used to extract this information from the high resolution point clouds. Validation of the gained orientation parameters with onsite geotechnical survey results showed good agreement. A comparison of both methods indicated, that TLS produces more accurate and

  7. CPT Profiling and Laboratory Data Correlations for Deriving of Selected Geotechnical Parameter

    NASA Astrophysics Data System (ADS)

    Bulko, Roman; Drusa, Marián; Vlček, Jozef; Mečár, Martin

    2015-12-01

    Currently, can be seen a new trend in engineering geological survey, where laboratory analysis are replaced by in situ testing methods, which are more efficient and cost effective, and time saving too. A regular engineering geological survey cannot be provided by simple core drillings, macroscopic description (sometimes very subjective), and then geotechnical parameters are established based on indicative standardized values or archive values from previous geotechnical standards. The engineering geological survey is trustworthy if is composed of laboratory and in-situ testing supplemented by indirect methods of testing, [1]. The prevalence of rotary core drilling for obtaining laboratory soil samples from various depths (every 1 to 3 m), cannot be a more enhanced as continues evaluation of strata and properties e.g. by CPT Piezocone (every 1 cm). Core drillings survey generally uses small amounts of soil samples, but this is resulting to a lower representation of the subsoil and underestimation of parameters. Higher amounts of soil samples make laboratory testing time-consuming and results from this testing can be influenced by the storage and processing of the soil samples. Preference for geotechnical surveys with in situ testing is therefore a more suitable option. In situ testing using static and dynamic penetration tests can be used as a supplement or as a replacement for the (traditional) methods of surveying.

  8. Development of geotechnical models for verification of in situ coal conversion impacts

    NASA Astrophysics Data System (ADS)

    Tian, H.; Kempka, T.; Schlüter, R.; Ziegler, M.; Azzam, R.

    2009-04-01

    In situ coal conversion combined with geological carbon dioxide storage in converted coal seams is currently discussed on an international level having led to different preparatory studies and world-wide political activities. During the power generation process from synthesis gas produced by in situ coal conversion, carbon dioxide can be removed prior or subsequent to synthesis gas conversion in a combined cycle plant by application of advanced carbon capture technologies. Exploited fields can serve as storage deposits for carbon dioxide produced during the processes of in situ coal conversion and power generation. Currently, different experimental studies are being carried out at the laboratories of the RWTH Aachen University and the DMT GmbH & Co. KG to investigate medium to low volatile bituminous coals and anthracites from German mining areas considering their applicability for in situ conversion and as subsequent carbon dioxide storage media. This involves the analysis of mineralogical, petrological and geotechnical properties of coals and surrounding rocks such as: CO2/N2 sorption experiments, permeability and porosity tests considering the roof pressure development as well as geotechnical tests (uniaxial compression tests, oedometer, shear tests, triaxial tests, etc.) with regard to in situ conversion parameters. These experimental results are used for parameterizing numerical geotechnical models and other models. The geotechnical models are based on geological information (stratigraphy and geologic structure from borehole data and seismic, engineering geological maps, GIS, etc.). They will be influenced by the designed gasification processes simulating geomechanic response to the combined process. Further studies using these models involve: calculating and estimating ground subsidence resulting from in situ coal conversion; investigating and predicting geotechnical impacts resulting from CO2 storage into converted coal seams; validating the simulation

  9. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  10. Geotechnical Analysis Report for July 2001 - June 2002

    SciTech Connect

    None, None

    2002-09-20

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports on a quarterly basis to document the geomechanical performance during and immediately after excavation of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2001, to June 30, 2002. It is divided into ten chapters. The remainder of Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation located in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5, 6, and 7 present the results of geomechanical monitoring in the three main portions of the WIPP underground facility (the access drifts, the Northern Experimental Area, and the Waste Disposal Area). Chapter 8 discusses the results of the Geoscience Program, which include fracture and stratigraphic mapping, borehole and core logging, and borehole observations. Chapter 9 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 10 lists the References and Bibliography.

  11. Geotechnical Analysis Report for July 2000-June 2001

    SciTech Connect

    Westinghouse TRU Solutions

    2002-09-26

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations during operations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports on a quarterly basis to document the geomechanical performance during and immediately after excavation of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2000, to June 30, 2001. It is divided into ten chapters. The remainder of Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation located in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5, 6, and 7 present the results of geomechanical monitoring in the three main portions of the WIPP underground facility (the access drifts, the Northern Experimental Area, and the Waste Disposal Area). Chapter 8 discusses the results of the Geoscience Program, which include fracture and stratigraphic mapping, borehole and core logging, and borehole observations. Chapter 9 provides an assessment of the hydrologic conditions near the Exhaust Shaft. Chapter 10 summarizes the results of the geomechanical monitoring and compares the

  12. Geotechnical Analysis Report for July 1999-June 2000

    SciTech Connect

    Westinghouse TRU Solutions

    2002-10-01

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations during operations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports on a quarterly basis to document the geomechanical performance during and immediately after excavation of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 1999, to June 30, 2000. It is divided into ten chapters. The remainder of Chapter 1 provides background information on the WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation located in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5, 6, and 7 present the results of geomechanical monitoring in the three main portions of the WIPP underground facility (the access drifts, the Northern Experimental Area, and the Waste Disposal Area). Chapter 8 discusses the results of the Geoscience Program, which includes fracture mapping, borehole logging, and borehole observations. Chapter 9 provides an assessment of the hydrologic conditions near the Exhaust Shaft. Chapter 10 summarizes the results of the geomechanical monitoring and compares the current excavation

  13. Geotechnical Analysis Report for July 1998-June 1999

    SciTech Connect

    Westinghouse

    2002-08-29

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations during operations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports on a quarterly basis to document the geomechanical performance during and immediately after excavation of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 1998, to June 30, 1999. It is divided into nine chapters. The remainder of Chapter 1.0 provides background information on the WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2.0 describes the local and regional geology of the WIPP site. Chapters 3.0 and 4.0 describe the geomechanical instrumentation located in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5.0, 6.0, and 7.0 present the results of geomechanical monitoring in the three main portions of the WIPP underground facility (the access drifts, the Northern Experimental Area, and the Waste Disposal Area). Chapter 8.0 discusses the results of the Geoscience Program, which includes fracture mapping, borehole logging, and borehole observations. Chapter 9.0 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements.

  14. Assessing subsurface strata using geophysical and geotechnical methods for designing structures near ground cracks

    NASA Astrophysics Data System (ADS)

    AlFouzan, F.; Dafalla, M.; Mutaz, E.

    2012-04-01

    This paper presents a combined approach using both geophysical and geotechnical approaches to study and evaluate the subsurface strata near ground for sites suffering from faults and cracks. It demonstrates how both techniques can be utilized to gather useful information for design geotechnical engineers. The safe distance for construction close to a ground crack is mainly dependant on the subsurface stratification and the engineering properties of underlying soils or rocks. Other factors include the area geology and concepts of safety margins. This study is carried out for a site in Al-Qassim region, Saudi Arabia. This type of faults and cracks can normally occur due to a geological or physical event or due to the nature and properties of the subsurface material. The geotechnical works included advancing rotary boreholes to depths of 25m to 31m with sampling and testing. The geophysical method used included performing 2D electrical resistivity profiles. The results of geophysical and geotechnical works showed good and close agreement. The use of 2D electrical resistivity was found useful to establish the layer thicknesses of shale and highly plastic clay. This cannot be determined without deep and expensive direct boring investigation. The results showed that a thick layer of expansive soil, which is considered a high-risk soil type containing large percentage of highly plastic clay materials, underlies the site. The volume changes due to humidity variations can result in either swelling or shrinking. These changes can have significant impact on engineering structures such as light buildings and roads. The logic of placing structures in close vicinity of the cracks is based on lateral stresses exerted on the crack face. The layer thickness is a detrimental factor to establish a safe design distance. Stress distribution analysis procedure is explained.

  15. Cross validation of geotechnical and geophysical site characterization methods: near surface data from selected accelerometric stations in Crete (Greece)

    NASA Astrophysics Data System (ADS)

    Loupasakis, C.; Tsangaratos, P.; Rozos, D.; Rondoyianni, Th.; Vafidis, A.; Kritikakis, G.; Steiakakis, M.; Agioutantis, Z.; Savvaidis, A.; Soupios, P.; Papadopoulos, I.; Papadopoulos, N.; Sarris, A.; Mangriotis, M.-D.; Dikmen, U.

    2015-06-01

    The specification of the near surface ground conditions is highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding settlements, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined, through the Thalis ″Geo-Characterization″ project, for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of site characterization data is going to be presented by providing characteristic examples from a total number of thirteen sites. Selected examples present sufficiently the ability, the limitations and the right order of the investigation methods.

  16. Geotechnical Centrifuge Studies of Unsaturated Transport

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Mattson, E. D.; Palmer, C. D.

    2007-12-01

    Improved understanding of contaminant migration in heterogeneous, variably saturated porous media is required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. A geotechnical centrifuge provides an experimental approach to explore vadose zone transport over a wide range of relevant conditions in time frames not possible for conventional bench-top experiments. Our research to date resulted in the design, construction, and testing of in-flight experimental apparatus allowing the replication of traditional bench top unsaturated transport experiments using the 2-meter radius geotechnical centrifuge capabilities at the Idaho National Laboratory. Additionally we conducted a series of unsaturated 1-dimenstional column experiments using conservative tracers to evaluate the effects of increased centrifugal acceleration on derived transport properties and assessing the scaling relationships for these properties. Our experimental results indicated that breakthrough times for a conservative tracer decreased significantly and systematically as a function of increased centrifugal acceleration. Differences between these experimental results and estimates based on predictive scaling rules are due to slight moisture content differences between experiments at different centrifugal accelerations. In contrast, dispersion coefficients varied systemically with centrifugal acceleration in accordance with predictive scaling rules. The results we obtained in this study indicate that the centrifuge technique is a viable experimental method for the study of subsurface processes where gravitational acceleration is important. The geotechnical centrifuge allows experiments to be completed more quickly than tests conducted at 1-gravity and can be used to experimentally address important scaling issues, and permits experiments under a range of conditions that

  17. Proceedings of the 22nd symposium on engineering geology and soils engineering

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a symposium on soil mechanics and engineering geology. Topics considered at the symposium included geotechnical testing and site exploration, design, soil dynamics, geotextiles, earthquake and volcanic hazard studies, slope stability and landslides, seismic considerations in geotechnical engineering, hazardous substances disposal, ground water, environmental and urban geology, and the response of the Boise geothermal aquifer to earth tides.

  18. Filling the gap between geophysics and geotechnics in landslide process understanding: a data fusion methodology to integrate multi-source information in hydro-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Bernadie, S.; Gance, J.; Grandjean, G.; Malet, J.

    2013-12-01

    The population increase and the rising issue of climate change impact the long term stability of mountain slopes. So far, it is not yet possible to assess in all cases conditions for failure, reactivation or rapid surges of slopes. The main reason identified by Van Asch et al. (2007) is the excessive conceptualization of the slope in the models. Therefore to improve our forecasting capability, considering local information such as the local slope geometry, the soil material variability, hydrological processes and the presence of fissures are of first importance. Geophysical imaging, combined with geotechnical tests, is an adapted tool to obtain such detailed information. The development of near-surface geophysics in the last three decades encourages the use of multiple geophysical methods for slope investigations. However, fusion of real data is little used in this domain and a gap still exists between the data processed by the geophysicists and the slope hydro-mechanical models developed by the geotechnical engineers. Starting from this statement, we propose a methodological flowchart of multi-source geophysical and geotechnical data integration to construct a slope hydro-mechanical model of a selected profile at the Super-Sauze landslide. Based on data fusion concepts, the methodology aims at integrating various data in order to create a geological and a geotechnical model of the slope profile. The input data consist in seismic and geoelectrical tomographies (that give access to a spatially distributed information on the soil physical state) supplemented by punctual geotechnical tests (dynamic penetration tests). The tomograms and the geotechnical tests are combined into a unique interpreted model characterized by different geotechnical domains. We use the fuzzy logic clustering method in order to take into account the uncertainty coming from each input data. Then an unstructured finite element mesh, adapted to the resolution of the different input data and

  19. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: An experimental study

    NASA Astrophysics Data System (ADS)

    Ghasabkolaei, N.; Janalizadeh, A.; Jahanshahi, M.; Roshan, N.; Ghasemi, Seiyed E.

    2016-05-01

    This study investigates the use of nanosilica to improve geotechnical characteristics of cement-treated clayey soil from the coastal area of the eastern Caspian Sea in the Golestan province, Iran. Atterberg limits, unconfined compressive strength, and California bearing ratio (CBR) tests were performed to investigate the soil plastic and strength parameters. The specimens were prepared by mixing soil with 9% cement and various contents of nanosilica. An ultrasonic bath device was used to disperse nanosilica in water. The addition of nanosilica enhanced the strength parameters of the clayey soil. Moreover, a nanosilica percentage of 1.5% by weight of cement improved the compressive strength of the cement-treated clay up to 38%, at age of 28 days. A scanning electron microscope (SEM) and an atomic force microscope (AFM) were used to evaluate specimen morphology. SEM and AFM results confirm the experimental ones. Therefore, nanosilica can be employed for soil improvement in geotechnical engineering.

  20. Geotechnical properties of sediments from North Pacific and Northern Bermuda Rise

    SciTech Connect

    Silva, A J; Laine, E P; Lipkin, J; Heath, G R; Akers, S A

    1980-01-01

    Studies of geotechnical properties for the Sub-seabed Disposal Program have been oriented toward sediment characterization related to effectiveness as a containment media and determination of detailed engineering behavior. Consolidation tests of the deeper samples in the North Pacific clays indicate that the sediment column is normally consolidated. The in-situ coefficient of permeability (k) within the cored depth of 25 meters is relatively constant at 10/sup -7/ cm/sec. Consolidated undrained (CIU) triaxial tests indicate stress-strain properties characteristic of saturated clays with effective angles of friction of 35/sup 0/ for smectite and 31/sup 0/ for illite. These results are being used in computer modeling efforts. Some general geotechnical property data from the Bermuda Rise are also discussed.

  1. Geotechnical Analysis Report for July 2002 - June 2003

    SciTech Connect

    Washington TRU Solutions LLC

    2004-03-03

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations.

  2. People Interview: Engineering beats Pisa's problem

    NASA Astrophysics Data System (ADS)

    2009-05-01

    INTERVIEW Engineering beats Pisa's problem John Burland has been professor of soil mechanics at Imperial College London for 20 years and is recognized as a distinguished figure in geotechnical engineering. David Smith talks to him about his work.

  3. Filtration and drainage in geotechnical/geoenvironmental engineering. Geotechnical special publication No. 78

    SciTech Connect

    Reddi, L.N.; Bonala, M.V.S.

    1998-07-01

    Existing criteria for soil filter selection were developed primarily in the earth dam industry, and were based largely on retention principles involving comparison of the particle sizes of base soil and filter material. Stability of base soils has been the primary concern of this industry. The evolving industries of waste containment and soil remediation should use filters designed with a broader perspective. The papers in this volume represent the state-of-the-art in laboratory, field, and theoretical investigations on all aspects of filtration and drainage. Topics include granular vs. geotextile filters, leachate collection systems, soil clogging, filter cakes, analytical modeling, strain effects, pipe box testing to stimulate toe drain performance, agricultural drain envelope design and lab testing, and lessons from the failure of the LS Hydroelectric Power Project Dam.

  4. Quality assurance aspects of geotechnical practices for underground radioactive waste repositories

    SciTech Connect

    Not Available

    1989-01-01

    In August 1988, the National Research Council, through the Geotechnical Board and the Board on Radioactive Waste Management, held a colloquium to discuss the practice of quality assurance that is being implemented in the high-level radioactive waste storage program. The intent of the colloquium was to bring together program managers of the Department of Energy and Nuclear Regulatory Commission, to discuss with the technical community both the advantages and problems associated with applying current quality assurance practices to underground science and engineering. The colloquium program included talks from 14 individuals that provided a variety of perspectives on both programmatic and technical issues. The talks initiated extended discussions from the 71 participants representing 7 government agencies, 8 academic institutions, and 22 private companies. The competencies of the participants were many and varied including, among others, geochemistry, hydrology, geotechnical engineering, computer programming, engineering and structural geology, underground design and construction, rock mechanics, laboratory testing, systems engineering, nuclear engineering, law, and environmental science. Based on a transcript of the meeting, this report summarizes the talks and discussions which took place. 2 figs.

  5. Geotechnical properties of the Cassino Beach mud

    NASA Astrophysics Data System (ADS)

    Dias, Cláudio R. R.; Alves, Antonio M. L.

    2009-03-01

    Knowledge of the marine soils properties, together with hydrodynamic and climatic data, plays an important role for a better understanding of the dynamic behavior of sandy and muddy coasts. This paper deals with reporting and basic interpretation of two campaigns of exploration and characterization of the mud of Cassino Beach, southern Brazil, carried out during the years of 2004 and 2005. Samples were obtained by means of cores collected at some locations offshore, and were submitted to various laboratory geotechnical tests, including determination of the physical index, grain size distribution, Atterberg limits, and shear resistance by both triaxial and shear vane tests. Results confirm the existence of a very soft soil deposit offshore Cassino Beach, highly plastic, compressible, and viscous, forming an important database for further studies.

  6. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  7. Geotechnical analysis report for July 1993--June 1994

    SciTech Connect

    1995-08-01

    The geotechnical data from the underground excavations at the WIPP are interpreted and presented in this Geotechnical Analysis Report. The data are used to characterize conditions, assess design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a regular monitoring program. The format of the Geotechnical Analysis Report was selected to meet the needs of several audiences. This report focuses on the geotechnical performance of the various underground facilities including the shafts, shaft stations, access drifts, experimental rooms, and waste storage areas. The results of excavation effects, investigations, stratigraphic mapping, and other geologic studies are also included. The report provides an evaluation of the geotechnical aspects of performance in the context of the relevant design criteria and also describes the techniques used to acquire the data and the performance history of the instruments. The depth and breadth of the evaluation for the different underground facilities varies according to the types and quantities of data that are available, and the complexity of the recorded geotechnical responses.

  8. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect

    Not Available

    1990-12-01

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  9. Geotechnical properties of Kentucky`s AML landslides and slope failure evaluation

    SciTech Connect

    Iannacchione, A.T.; Bhatt, S.K.; Sefton, J.

    1995-12-31

    A large body of geotechnical data, obtained from the U.S. Office of Surface Mining Reclamation and Enforcement (OSM) and the Kentucky Division of Abandoned Lands, is analyzed in this paper. The analysis includes causes of subsurface failures, phreatic levels, soil profiles, and soil composition data. Soil properties calculated from laboratory procedures and stability analysis techniques were also reviewed. Employing prudent engineering practices and parameters, seven failed slopes were subjected to back analysis for estimating realistic factors of safety. Important factors affecting landslides in eastern Kentucky are presented with appropriate examples.

  10. Relocation and repair of the National Geotechnical Centrifuge. Final report

    SciTech Connect

    Cheney, J.A.

    1994-10-01

    In January of 1984, the large geotechnical centrifuge located at NASA Ames Research Center, was in the first stages of operational checkout when the main thrust bearing of the large D.C. drive motor failed. After many months of investigation and proposals for repair of the facility, it became evident that it would be far more advantageous to the engineering community to remove those components of the centrifuge that were undamaged to the Davis campus and replace the drive system completely. The large centrifuge had cost over 2 million dollars to build, and it would have been irresponsible to simply scrap it. Recognizing this fact, funds were solicited and received from various sources, and Beam Engineering Inc. was contracted to design and construct the centrifuge at its new location. The University of California contributed a quarter of a million dollars and Tyndall Air Force Base, through Los Alamos National Laboratory, contributed $140,000. There were funds also contributed by LANL, LLNL, US Navy and NSF. The first stage in the phased development of the newly located centrifuge is nearing completion, which prompts the writing of this report. By the time that this report reaches the reader the first runs of the centrifuge will have been completed. The present report describes the present capability of the centrifuge and the plans for upgrading as time goes on. Several pilot studies were carried out. The experiments involved (1) the effects of nearby explosions on buried thin walled containers and (2) the advection and dispersion of toxic waste water through soils.

  11. Geotechnical investigation report for proposed array of six 40-meter diameter antennas, Pioneer site, DSS 11, Goldstone, California tracking complex

    NASA Technical Reports Server (NTRS)

    Sweitzer, J. S.

    1979-01-01

    The geotechnical investigation was conducted in three disciplines: (1) geological field reconnaissance of the general area of proposed construction; (2) geophysical seismic refraction survey of the localized area surrounding the six proposed antenna sites, including shear wave velocity determination; and (3) detailed foundation engineering investigation of each of the six sites. The investigations indicate that the six sites selected are relatively free from geologic hazards which would inhibit the proposed construction or future antenna operations.

  12. Evaluation of P- and S- Wave Velocities at CGS Geotechnical Arrays Using Wave Propagation Analysis of Strong Ground-Motion Records

    NASA Astrophysics Data System (ADS)

    Haddadi, H. R.; Shakal, A. F.; Hagos, L. Z.

    2014-12-01

    The average compressional and shear wave velocities of ground layers at the California Geological Survey's instrumented geotechnical arrays are evaluated by analyzing the strong ground-motion records of the earthquakes. The Normalized Input-Output Minimization Method (NIOM) has been employed to correlate the ground motion waveforms recorded at various depths of the geotechnical arrays, and to calculate the P- and S- wave travel times and velocities between the depths at which the seismic sensors have been installed. As of August 2014, the California Geological Survey's Strong-Motion Instrumentation Program (CGS CSMIP) operates 35 geotechnical arrays, a large number of them with cooperation of the California Department of Transportation (Caltrans). As of this date, 140 records from 68 earthquakes with magnitude 3.5 and larger have been recorded at 28 geotechnical arrays. The records are available for download through the Center for Engineering Strong Motion Data (CESMD), the joint center of the U.S. Geological Survey and the California Geological Survey. The velocities obtained in this study for the cases of weak and strong shaking are compared with the measured velocities at the geotechnical array sites obtained using geophysical methods such as SASW, PS suspension logging and downhole methods. The average shear wave velocities in the upper 30 m of the geotechnical arrays from this study are compared with the Vs30 values from geophysical investigations. Application of wave propagation analysis is especially important in studying the dynamic characteristics of ground layers during high stress ground shaking and yields average values for a larger area under a site as opposed to the area in the very close vicinity of the geotechnical array.

  13. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    SciTech Connect

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis of surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.

  14. Executive committee report: geotechnical instrumentation working group meeting

    SciTech Connect

    Wilder, D.G.; Rogue, F.; Beloff, W.R.; Binnall, E.; Gregory, E.C.

    1982-04-26

    Responding to the widespread need for the geotechnical community to discuss instrumentation for nuclear waste repositories, a meeting was held December 2 and 3, 1981, in Denver, Colorado. This report gives the group's consensus recommendations to aid in making decisions for development of instrumentation for future repository work. The main conclusions of the working group meeting were as follows: (1) monitoring of geotechnical parameters in nuclear waste repositories will be necessary to meet licensing requirements; (2) currently available instruments are underdeveloped for this monitoring; (3) research and development to provide adequate instrumentation will need to be performed under federal sponsorship by national laboratories, universities, contractors, and consultants; and (4) a NASA-type reliability program is needed to meet the quality assurance, durability, calibration, and time schedule demands of geotechnical instrumentation development. This will require significant financial commitments from the federal sector.

  15. Geotechnical Analysis Report for July 2004 - June 2005, Volume 2, Supporting Data

    SciTech Connect

    Washington TRU Solutions LLC

    2006-03-20

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2005. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  16. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    SciTech Connect

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  17. A case study of GIS-based geotechnical database in urban environment (Oviedo, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pando, Luis; María Díaz-Díaz, Luis; Arias, Daniel; Flor-Blanco, Germán

    2014-05-01

    permeability values for all the rocky units and unconsolidated deposits were estimated, as well as the chemical aggressiveness of groundwater for the structural concrete. The pointed contributions allowed improving noticeably the knowledge about the city subsoil, illustrated by means of two new 1:15,000 scale maps: i) surface geological map; ii) geo-engineering map based on lithological, geotechnical and constructive criteria.

  18. Project-Based Learning in Geotechnics: Cooperative versus Collaborative Teamwork

    ERIC Educational Resources Information Center

    Pinho-Lopes, Margarida; Macedo, Joaquim

    2016-01-01

    Since 2007/2008 project-based learning models have been used to deliver two fundamental courses on Geotechnics in University of Aveiro, Portugal. These models have evolved and have encompassed either cooperative or collaborative teamwork. Using data collected in five editions of each course (Soil Mechanics I and Soil Mechanics II), the different…

  19. Geotechnical Analysis Report for July 2003 - June 2004

    SciTech Connect

    Washington TRU Solutions LLC

    2005-03-20

    This report contains an assessment of the geotechnical status of the Waste Isolation Pilot Plant (WIPP). During the excavation of the principal underground access and experimental areas, the status was reported quarterly. Since 1987, when the initial construction phase was completed, reports have been published annually. This report presents and analyzes data collected from July 1, 2003, to June 30, 2004.

  20. Overview of geotechnical methods to characterize rock masses

    SciTech Connect

    Heuze, F.E.

    1981-12-01

    The methods that are used to characterize discontinuous rock masses from a geotechnical point of view are summarized. Emphasis is put on providing key references on each subject. The topics of exploration, in-situ stresses, mechanical properties, thermal properties, and hydraulic properties are addressed.

  1. Interrelationships of organic carbon and submarine sediment geotechnical properties

    SciTech Connect

    Bennett, R.H.; Lehman, L.; Hulbert, M.H.; Harvey, G.R.; Bush, S.A.; Forde, E.B.; Crews, P.; Sawyer, W.B.

    1985-01-01

    Total organic carbon content (TOC) and selected geotechnical properties we measured in submarine sediments of the US central east coast and the Mississippi Delta. TOC values in the near-surface Delta sediments were approximately 1% (dry weight). TOC in surficial sediments from the US east coast outer continental shelf, upper slope, and upper rise was generally less than 1%, but between the upper slope and the upper rise, values ranged from 1 to 3% and exceeded 3% in patches associated with Norfolk and Washington Canyons. TOC displayed positive linear correlations with water content, liquid limit, plastic limit, plasticity index, and the amount (percent) of fine-grained material. Nevertheless, there appeared to be no strong dependence of geotechnical properties on TOC in these sediments. This was in accord with previously reported studies on terrestrial soils with TOC values of less than 5%. Carbohydrate content was strongly correlated with water content and plasticity index, suggesting that measurement of individual components of the organic material may provide more sensitive indications of the effects of organics on geotechnical properties than measurement of bulk TOC. Selected geotechnical properties and TOC content of US continental margin surficial sediments displayed regional trends related to water depth and morphological setting. These trends are probably related to recent biological, sedimentological, and oceanographic processes active on the outer shelf, slope, and rise.

  2. Analysis of Prognosis of Lowland River Bed Erosion Based on Geotechnical Parameters

    NASA Astrophysics Data System (ADS)

    Smaga, Agnieszka

    2015-12-01

    The river erosion is a complex process, the dynamics of which is very difficult to predict. Its intensity largely depends on hydraulic conditions of the river channel. However, it is also thought that natural resistance of the subsoil has a great influence on the scale of the erosion process. Predicting the effects of this process is extremely important in the case of constructing a piling structure (for example, artificial reservoirs). The partition of the river channel causes significant lowering of the river channel bed downstream the dam which threatens the stability of hydro technical and engineering (bridges) buildings. To stop this unwanted phenomenon, stabilizing thresholds are built. However, random location of thresholds significantly reduces their effectiveness. Therefore, taking under consideration natural geotechnical conditions of the subsoil appears to be extremely important. In the light of the current development of in-situ tests in geotechnics, an attempt to use results from these tests to predict the bed erosion rate was made. The analysis includes results from CPTU and DPL tests, which were carried out in the Warta River valley downstream the Jeziorsko reservoir. In the paper, the general diagrams for the procedure of obtaining and processing the data are shown. As a result, the author presents two multidimensional bed erosion rate models built based on hydraulic data and results from CPTU or DPL tests. These models allow taking more effective actions, leading to the neutralization of the effects of the intensive bed erosion process.

  3. Geophysical and Geotechnical Investigations for Proposed Dominica Airport

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Derek, G.; Vichabian, Y.; Reppert, P.; Wharton, A.; Sogade, J.

    2005-05-01

    The results of geophysical and geotechnical investigations carried out at the site of the proposed International Airport at Melville Hall, Commonwealth of Dominica, West Indies, are presented. The geotechnical investigation confirms the findings of the previous geophysical investigation, which concludes that bedrock is not likely to be encountered within the proposed depths of excavation. The stratigraphic models of both geophysical and geotechnical investigations are compatible and suggest that the soil profile is one of deeply weathered pyroclastic tuff and ash deposits transitioning to a boulder conglomerate ash horizon. The main geophysical method used was seismic refraction, additionally ground penetrating radar, resistivity sounding and resistivity tomographic imaging were also performed at some of the sites. Analysis of the seismic data shows a gradual increase in velocity with depth for which a model has been determined. Ancillary models or predictions of porosity, density, and (natural) compaction with depth are given, based on the basic seismic model. The main geotechnical investigative methods comprised of boreholes to 30 m depth with Standard Penetrating Testing (SPT) and undisturbed Shelby tube, and disturbed Split Spoon soil sampling. Water content, plasiticity, and grainsize distribution characteristics are obtained from laboratory testing leading to a classification of elastic silts and elastic silts with sand using the Unified Classification System. Geophysical and geotechnical data correlations are presented. Seismic velocity and SPT-N blow counts appear to be well correlated by a linear model. A model relationship between SPT and seismic dynamic elastic modulus is developed derived from seismic velocity. SPT-N is better correlated with the dynamic elastic modulus than with seismic velocity. The results show that seismically derived dynamic elastic modulus can accurately predict soil strength as measured by SPT blow counts.

  4. Near-surface characterization of a geotechnical site in north-east Missouri using shear-wave velocity measurements

    USGS Publications Warehouse

    Ismail, A.; Anderson, N.

    2007-01-01

    Shear-wave velocity (Vs) as a function of soil stiffness is an essential parameter in geotechnical characterization of the subsurface. In this study, multichannel analysis of surface wave (MASW) and downhole methods were used to map the shear-wave velocity-structure and depth to the bed-rock surface at a 125m ?? 125m geotechnical site in Missouri. The main objective was to assess the suitability of the site for constructing a large, heavy building. The acquired multichannel surface wave data were inverted to provide 1D shear-wave velocity profile corresponding to each shot gather. These 1D velocity profiles were interpolated and contoured to generate a suite of 2D shear-wave velocity sections. Integrating the shear-wave velocity data from the MASW method with the downhole velocity data and the available borehole lithologic information enabled us to map shear-wave velocity-structure to a depth on the order of 20m. The bedrock surface, which is dissected by a significant cut-and-fill valley, was imaged. The results suggest that the study site will require special consideration prior to construction. The results also demonstrate the successful use of MASW methods, when integrated with downhole velocity measurements and borehole lithologic information, in the characterization of the near surface at the geotechnical sites. ?? 2007 European Association of Geoscientists & Engineers.

  5. [Geotechnical Board activities and funding]. [Annual] activites report, July 1, 1992--June 30, 1993

    SciTech Connect

    Smeallie, P.H.

    1993-07-23

    The Geotechnical Board, a part of the US National Research Council, which is the operating arm of the National Academy of Sciences and the National Academy of Engineering, serves to advise the federal government and others on issues where geotechnology can have an impact, such as environmental remediation and infrastructure development. The board met three times during the reporting period to review current projects and to initiate activities that move the knowledge base of geotechnology forward. The board operates with two long-standing national committees, the US National Committee for Rock Mechanics and the US National Committee on Tunneling Technology. It also conducts special studies at the request of the government. A list of attachments is given.

  6. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    USGS Publications Warehouse

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  7. Summary of geotechnical information in the Rattlesnake Mountain area

    SciTech Connect

    Fecht, K.R.; Gephart, R.E.; Graham, D.L.; Reidel, S.P.; Rohay, A.C.

    1984-08-01

    This document summarizes the available geotechnical information from the Rattlesnake Mountain area, located along the southwestern boundary of the Hanford Site. The discussion emphasizes the geohydrologic environment of the anticlinal ridges in the vicinity of Rattlesnake Mountain. Included in the document is information concerning the stratigraphy, structure, geomorphology, seismology, climatology, and hydrology, as well as the resource potential of the Rattlesnake Mountain area. 77 refs., 23 figs., 11 tabs.

  8. Geotechnical techniques for the construction of reactive barriers

    PubMed

    Day; O'Hannesin; Marsden

    1999-06-30

    One of the newest and most promising remediation techniques for the treatment of contaminated groundwater and soil is the reactive barrier wall (commonly known as PRB for permeable reactive barrier or reactive barrier). Although a variety of treatment media and strategies are available, the most common technique is to bury granular iron in a trench so that contaminated groundwater passes through the reactive materials, the contaminants are removed and the water becomes 'clean'. The principal advantages of the technique are the elimination of pumping, mass excavation, off-site disposal, and a very significant reduction in costs. The use of this technology is now becoming better known and implemented. Special construction considerations need to be made when planning the installation of reactive barriers or PRBs to ensure the design life of the installation and to be cost-effective. Geotechnical techniques such as slurry trenching, deep soil mixing, and grouting can be used to simplify and improve the installation of reactive materials relative to conventional trench and fill methods. These techniques make it possible to reduce the hazards to workers during installation, reduce waste and reduce costs for most installations. To date, most PRBs have been installed to shallow depths using construction methods such as open trenching and/or shored excavations. While these methods are usable, they are limited to shallow depths and more disruptive to the site's normal use. Geotechnical techniques are more quickly installed and less disruptive to site activities and thus more effective. Recently, laboratory studies and pilot projects have demonstrated that geotechnical techniques can be used successfully to install reactive barriers. This paper describes the factors that are important in designing a reactive barrier or PRB installation and discusses some of the potential problems and pitfalls that can be avoided with careful planning and the use of geotechnical techniques

  9. Soil characterization using electrical resistivity tomography and geotechnical investigations

    NASA Astrophysics Data System (ADS)

    Sudha, Kumari; Israil, M.; Mittal, S.; Rai, J.

    2009-01-01

    Electrical Resistivity Tomography (ERT) has been used in association with Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) for Geotechnical investigations at two sites, proposed for thermal power plants, in Uttar Pradesh (UP), India. SPT and DCPT tests were conducted at 28 points and two ERT profiles, each measuring 355 m long, were recorded using 72 electrodes deployed at 5 m spacing. Electrical characterization of subsurface soil was done using borehole data and grain size analysis of the soil samples collected from boreholes. The concept of electrical resistivity variation with soil strength related to the grain size distribution, cementation, porosity and saturation has been used to correlate the transverse resistance of soil with the number of blow counts ( N-values) obtained from SPT and DCPT data. It was thus observed that the transverse resistance of soil column is linearly related with the number of blow counts ( N-values) at these sites. The linear relationships are site-specific and the coefficients of linear relation are sensitive to the lithology of subsurface formation, which was verified by borehole data. The study demonstrates the usefulness of the ERT method in geotechnical investigations, which is economic, efficient and less time consuming in comparison to the other geotechnical methods, such as SPT and DCPT, used for the purpose.

  10. In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 4

    SciTech Connect

    1995-11-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 4) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.

  11. In-tank precipitation facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 5

    SciTech Connect

    1995-11-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.

  12. Waste Isolation PIlot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 1

    SciTech Connect

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2005, to June 30, 2006. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists references.

  13. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2004 - June 2005, Volume 1

    SciTech Connect

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2004, to June 30, 2005. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the Geomechanical Monitoring Program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists the references and bibliography.

  14. GPR applications for geotechnical stability of transportation infrastructures

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Benedetto, F.; Tosti, F.

    2012-09-01

    Nowadays, severe meteorological events are always more frequent all over the world. This causes a strong impact on the environment such as numerous landslides, especially in rural areas. Rural roads are exposed to an increased risk for geotechnical instability. In the meantime, financial resources for maintenance are certainly decreased due to the international crisis and other different domestic factors. In this context, the best allocation of funds becomes a priority: efficiency and effectiveness of plans and actions are crucially requested. For this purpose, the correct localisation of geotechnically instable domains is strategic. In this paper, the use of Ground-Penetrating Radar (GPR) for geotechnical inspection of pavement and sub-pavement layers is proposed. A three-step protocol has been calibrated and validated to allocate efficiently and effectively the maintenance funds. In the first step, the instability is localised through an inspection at traffic speed using a 1-GHz GPR horn launched antenna. The productivity is generally about or over 300 Km/day. Data are processed offline by automatic procedures. In the second step, a GPR inspection restricted to the critical road sections is carried out using two coupled antennas. One antenna is used for top pavement inspection (1.6 GHz central frequency) and a second antenna (600 MHz central frequency) is used for sub-pavement structure diagnosis. Finally, GPR data are post-processed in the time and frequency domains to identify accurately the geometry of the instability. The case study shows the potentiality of this protocol applied to the rural roads exposed to a landslide.

  15. Geotechnical characterization and construction methods for SSC tunnel excavation

    SciTech Connect

    Nelson, P.P.; Lundin, T.K. Superconducting Super Collider Lab., Dallas, TX )

    1990-06-01

    The site for the Superconducting Super Collider (SSC) facility was selected in 1988 after a nationwide proposal competition. The selected site is located in Ellis County, Texas, surrounding the town of Waxahachie which is about 30 miles (48 km) south of the City of Dallas central business district. This paper will describe the geotechnical conditions anticipated for excavation at the SSC site. A general geologic and geomechanical description of the rock present will be followed by a summary of the site-specific conceptual design for the tunneled components of the SSC machine. The Supercollider project will include about 70 miles (113) km of tunnel excavation.

  16. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-08-05

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose.

  17. Geotechnical and geologic design considerations for a shelf mounted OTEC (Ocean Thermal Energy Conversion) facility

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Smith, R. E.

    1984-04-01

    Topics relating to the siting of an ocean thermal energy conversion facility off the coast of Oahu, Hawaii are discussed. Anticipated site conditions which would affect information requirements; potential foundation schemes used to identify key geotechnical parameters; techniques available for exploration and site characterization; and geologic and geotechnical factors and uncertainties that may be associated with site exploration and design information are discussed.

  18. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and design parameters to be measured or observed, including any interactions between natural and... 10 Energy 2 2014-01-01 2014-01-01 false Confirmation of geotechnical and design parameters. 63.132... Confirmation of geotechnical and design parameters. (a) During repository construction and operation,...

  19. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and design parameters to be measured or observed, including any interactions between natural and... 10 Energy 2 2013-01-01 2013-01-01 false Confirmation of geotechnical and design parameters. 63.132... Confirmation of geotechnical and design parameters. (a) During repository construction and operation,...

  20. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Confirmation of geotechnical and design parameters. 60.141 Section 60.141 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical...

  1. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  2. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  3. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    NASA Astrophysics Data System (ADS)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  4. Geotechnical properties of cemented sands in steep slopes

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2009-01-01

    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  5. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    PubMed

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  6. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    PubMed

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  7. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  8. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  9. Integrated Geophysical and Geotechnical Investigation of the Failed Portion of a Road in Basement Complex Terrain, Southwest Nigeria.

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2008-05-01

    plastic limit index gave values in the range of 24.0 - 48.5%, 2.1 - 12.9%, 7.5 - 27.4% respectively. The plot of the elevation values from Global Positioning System (GPS) readings gave a 3D topographical model of the area and shows the failed portion to be topographically depressed, lower in elevation than the surrounding stable portion. This study implies that integrated geophysical and geotechnical investigation offer very useful approach for characterizing near surface earth and thus can help in preparation before engineering structures are found on same.

  10. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, Baohua; Han, Tongcheng; Kan, Guangming; Li, Guanbao

    2013-11-01

    Knowledge about the marine sediment acoustic properties is a key to understanding wave propagation in sediments and is very important for military oceanography and ocean engineering. We developed a hydraulic-drived self-contained in situ sediment acoustic measurement system, and measured for the first time the in situ acoustic properties of sediments on 78 stations in the Yellow Sea, China, by employing this system. The relationships between the in situ measured acoustic properties and the onboard or laboratory determined geotechnical parameters were analyzed. Porosity was found to be the dominant factor in reducing velocity in a quadratic fashion; velocity showed an increment with bulk density and a decrement with mean grain size and clay content both with a nonlinear dependence; acoustic attenuation showed a bell-shaped correlation with porosity and mean grain size but reduced with clay content of the sediments. The attenuation results indicate that intergrain friction rather than viscous interactions between pore fluid and solid grains is the dominant loss mechanism in our marine sediments. The relationships established would be used to predict the geotechnical parameters from in situ measured acoustic properties and vice versa, as well as being an indicator of the seafloor processes, potential gas bubbles hazard and gas hydrates resources or other suitable targets of acoustic surveys.

  11. Engineering Geocryological Mapping for Construction in the Permafrost Regions

    NASA Astrophysics Data System (ADS)

    Rivkin, Felix; Kuznetsova, Irina; Ivanova, Nadezhda; Suhodolsky, Sergey

    Results of compiling a digital engineering geological and engineering geocryological maps at all stages of a geotechnical survey for construction are presented. The technique has been used for the engineering survey along the main pipelines in the northern regions of European Russia and Western Siberia and in the mountain regions of Transbaikalia, Eastern Siberia, and the Far East.

  12. Project-based learning in Geotechnics: cooperative versus collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Pinho-Lopes, Margarida; Macedo, Joaquim

    2016-01-01

    Since 2007/2008 project-based learning models have been used to deliver two fundamental courses on Geotechnics in University of Aveiro, Portugal. These models have evolved and have encompassed either cooperative or collaborative teamwork. Using data collected in five editions of each course (Soil Mechanics I and Soil Mechanics II), the different characteristics of the models using cooperative or collaborative teamwork are pointed out and analysed, namely in terms of the students' perceptions. The data collected include informal feedback from students, monitoring of their marks and academic performance, and answers to two sets of questionnaires: developed for these courses, and institutional. The data indicate students have good opinion of the project-based learning model, though collaborative teamwork is the best rated. The overall efficacy of the models was analysed (sum of their effectiveness, efficiency and attractiveness). The collaborative model was found more adequate.

  13. Geotechnical support and topical studies for nuclear waste geologic repositories

    SciTech Connect

    Not Available

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technical and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''

  14. Geotechnical properties of oil-contaminated Kuwaiti sand

    SciTech Connect

    Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F.

    1995-05-01

    Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

  15. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jędrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  16. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  17. Geotechnical characteristics and slope stability in the Gulf of Cadiz

    USGS Publications Warehouse

    Lee, H.; Baraza, J.

    1999-01-01

    Sedimentological and geotechnical analyses of thirty-seven core samples from the Gulf of Cadiz continental margin were used to define the regional variability of sediment properties and to assess slope stability. Considering the sediment property data set as a whole, there is an association between grain size, plasticity and water content. Any one of these properties can be mapped regionally to provide an indication of the dominant surface sediment lithology. Based on static sediment strength, a simplified slope stability analysis showed that only steep slopes (> 16??for even the most vulnerable sediment) can fail under static loading conditions. Accordingly, transient loads, such as earthquakes or storms, are needed to cause failure on more moderate slopes. A regional seismic slope stability analysis of the Cadiz margin was performed based on detailed geotechnical testing of four gravity core samples. The results showed that the stability of these slopes under seismic loading conditions depends upon sediment density, the cyclic loading shear strength, the slope steepness, and the regional seismicity. Sediment density and cyclic loading shear strength are dependent upon water content, which can act as a proxy for plasticity and texture effects. Specifically, Sediment in the water content range of 50-56% is most vulnerable to failure under cyclic loading within the Cadiz margin. As a result, for a uniform seismicity over the region, susceptibility to failure during seismic loading conditions increases with increasing slope steepness and is higher if the sediment water content is in the 50-56% range than if it is not. The only sampled zone of failure on the continental slope contains sediment with water content in this critical range. Storm-wave-induced instability was evaluated for the continental shelf. The evaluation showed that a storm having hundreds of waves with a height in the range of 16 m might be capable of causing failure on the shelf. However, no

  18. Remote sensing techniques of geospatial geotechnical site characterization applied to competence studies of mine tailings impoundments and slope stability investigations

    NASA Astrophysics Data System (ADS)

    Greuer, Wilhelm Max-Otto

    2006-04-01

    The research presented in this dissertation suggests methods of deriving critical engineering properties of soils from appropriate high altitude spectral data, or imagery. Soil interaction with ambient or applied electromagnetic radiation results in spatially varying degrees of reflection and absorption of electromagnetic radiation. Soil properties govern the band-specific interaction of the soil with the applied electromagnetic radiation, visually resulting in a soil's colour and brightness. The visual appearance, or cumulative interaction of the soil with each applied band of electromagnetic radiation, is recorded by cameras mounted on a remote sensing platform. From the resulting imagery, representing the soil's reflection/absorption intensity, key dielectric soil properties are calculated. Dielectric properties govern the soil's reflection and absorption intensities. In turn, dielectric properties are governed by the soil's structure and composition and are indicative of the soil's principal geotechnical properties. Dielectric properties of soil are the tie connection between the engineering properties of soil and geospatial data provided as imagery. This provides a fast, simple, inexpensive, and comprehensive geotechnical site assessment, performed by a single user in a GIS system, with soil spectral data as the principal input. Included with the image-extracted soil properties are principal slope engineering parameters. Using GIS and the prescribed series of computations, image-extracted geospatial data sets representing these key properties are applied to an area-wide modification of a common slope stability analysis method, resulting in a map illustrating the risk of slope failures throughout the area encompassed by imagery. This method is the skeleton of a possible automated satellite-based forecasting and warning system against landslides. In addition to the presented slope stability investigation, ground moisture surveys are also applied to competence

  19. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  20. Geotechnical support and topical studies for nuclear waste geologic repositories: Annual report, fiscal year 1987

    SciTech Connect

    Not Available

    1988-01-01

    This multidisciplinary project was initiated in fiscal year 1986. It comprises 11 reports in two major interrelated tasks: The technical assistance part of the project includes reviewing the progress of the major projects in the DOE Office of Civilian Radioactive waste Management (OCRWM) Program and advising the Engineering and Geotechnology Division on significant technical issues facing each project; analyzing geotechnical data, reports, tests, surveys and plans for the different projects; reviewing and commenting on major technical reports and other program documents such as Site Characterization Plans (SCP) and Study Plans; and providing scientific and technical input at technical meetings. The topical studies activity comprises studies on scientific and technical ions and issues of significance to in-situ testing, test analysis methods, and site characterization of nuclear waste geologic repositories. The subjects of study were selected based on discussions with DOE staff. One minor topic is a preliminary consideration and planning exercise for postclosure monitoring studies. The major task, with subtasks involving various geoscience disciplines, is a study of the mechanical, hydraulic, geophysical and geochemical properties of fractures in geologic rock masses.

  1. Geotechnical characterization for the Main Drift of the Exploratory Studies Facility

    SciTech Connect

    Kicker, D.C.; Martin, E.R.; Brechtel, C.E.; Stone, C.A.; Kessel, D.S.

    1997-07-01

    Geotechnical characterization of the Main Drift of the Exploratory Studies Facility was based on borehole data collected in site characterization drilling and on scanline rock mass quality data collected during the excavation of the North Ramp. The Main Drift is the planned 3,131-m near-horizontal tunnel to be excavated at the potential repository horizon for the Yucca Mountain Site Characterization Project. Main Drift borehole data consisted of three holes--USW SD-7, SD-9, and SD-12--drilled along the tunnel alignment. In addition, boreholes USW UZ-14, NRG-6, and NRG-7/7A were used to supplement the database on subsurface rock conditions. Specific data summarized and presented included lithologic and rock structure core logs, rock mechanics laboratory testing, and rock mass quality indices. Cross sections with stratigraphic and thermal-mechanical units were also presented. Topics discussed in the report include geologic setting, geologic features of engineering and construction significance, anticipated ground conditions, and the range of required ground support. Rock structural and rock mass quality data have been developed for each 3-m interval of core in the middle nonlithophysal stratigraphic zone of the Topopah Spring Tuff Formation. The distribution of the rock mass quality data in all boreholes used to characterize the Main Drift was assumed to be representative of the variability of the rock mass conditions to be encountered in the Main Drift. Observations in the North Ramp tunnel have been used to project conditions in the lower lithophysal zone and in fault zones.

  2. Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill

    SciTech Connect

    Reynolds, R.; Nowacki, P.

    1991-04-01

    This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

  3. Aquabeads to model the geotechnical behavior of natural soils

    NASA Astrophysics Data System (ADS)

    Tabe, Kazunori

    Use of transparent synthetic soils to visualize flow and deformation problems has been recently developed. This study proposes a new water-based transparent aquabeads suitable for modeling the geotechnical properties of natural soils. A comprehensive study of the geotechnical properties of several types of Aquabeads, including permeability, compressibility, and yield stress were performed in order to understand the feasibility of deformation and flow modeling using transparent Aquabeads. The geotechnical properties of Aquabeads were similar to those of sands & silts in permeability, with hydraulic conductivity in the 10-2 to 10-5 cm/sec range, and very soft clay in compressibility and yield stress. Soil-structure interaction beneath a reinforced soil foundation was studied to illustrate the beneficial use of Aquabeads in research studies. The bearing capacity of a foundation on a model made of Aquabeads was observed to increases with the presence of geogrid. The results are similar to behavior observed for natural soils. There is an optimum number of the geogrid layers which is 3 for the bearing capacity improvement of Aquabeads. The optimal geogrid layer length for bearing capacity improvement was found to be form the width of the footing. The maximum benefit of geogrid-reinforcement was achievd when the geogrid depth is 0.75 of the footing width. The maximum benefit of geogrid-reinforcement was achieved when the geogrid vertical spacing is set to 0.7B. It is conducted that Aquabeads is suitable for simulating deformation problem in very weak soils. The feasibility of using Aquabeads to visualize geoenvironmental contamination problems was also investigated in this study. Surfactant flushing tests were conducted using a layered soil system and two contaminants, mineral oil and motor oil. Several surfactants were investigated using phase behavior tests, and Triton X-100 was selected. For Mineral oil, the optimal surfactant solution consisted of 0.025% Triton X-100

  4. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  5. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  6. Some Basic Considerations about the Necessities and Possibilities of Cooperation between Civil Engineers and Engineering Geologists

    NASA Astrophysics Data System (ADS)

    Katzenbach, Rolf; Bachmann, Gregor

    The education of civil engineers and engineering geologists is different. While civil engineers are commonly educated and trained in mathematical and mechanical based sciences as statics, geotechnics, structural engineering etc. the education of engineering geologists is mainly based on natural science, added with some engineering courses. Nevertheless, the careers of both have in spite of their different priorities and capabilities - which all are necessary in complex building projects - several points of contact. Especially during the construction of tunnels, the cooperation of civil engineers and engineering geologists is important. For example the inhomogeneous rock and groundwater conditions have decisive importance for the bearing and deformation behaviour of those constructions. Therefore a detailed investigation program and a qualified geotechnical and geological interpretation and modelling is necessary. The typical field of a civil engineer is the examination of the structural stability (Ultimate Limit State - ULS) and the serviceability (Serviceability Limit State - SLS) of the construction due to Euro-Code (especially EC 1 and EC 7) and the corresponding national technical standards (codes, recommendations, guidelines etc.). A main activity of an engineering geologist is the assessment of the natural circumstances. The cooperation of both professions is settled in the valuation of the subsoil conditions before and during the construction process. The cooperation of engineering geologists and geotechnical engineers lies in the assessment of the subsoil conditions before and during the construction process of ambitious projects with special regard to the bearing and deformation behaviour which is highly influenced by the inhomogeneity and the variance of the subsoil conditions.

  7. Effects of leachate on geotechnical characteristics of sandy clay soil

    NASA Astrophysics Data System (ADS)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  8. Impact of Geotechnical Factors on the Safety of Low Embankment Dams From the Perspective of Technical and Safety Supervision

    NASA Astrophysics Data System (ADS)

    Kasana, Andrej; Minárik, Marian; Nikolaj, Maroš

    2015-03-01

    Our research deals with a broad spectrum of problems concerning the variability of geotechnical factors and their influence on the safety of the biggest group of dam constructions in Slovakia, i.e., low earthfill dams. Its specific aim is the observation of their risk factors by using our experience and knowledge gained while working in the sector of technical and safety supervision. To achieve the aims of a research thesis, we analyzed 39 low earthfill dams. We performed observations and documented their conditions with the aim of clarifying the risk factors. After an analysis of the information materials that characterize dams and after a statistical analysis of the measurement results in situ, including measurements from technical and safety supervision databases, we performed an analysis by using mathematical modeling to evaluate the safety of the dam constructions. Out of the total number of 39 dam constructions, an analysis of the stability of the dam slopes was performed on 37 dams, and deformation problems were analyzed on 28 of the dams. Filtration problems were analyzed at 26 dams, and a complete evaluation of the intensity of filtration movements was performed on 19 of the constructions. On the basis of a detailed analysis of the 39 dam constructions, we specified their problems and the concomitant consequences of the problems. Geotechnical risk factors and specific risks that determine the safety of water constructions were characterized. The analysis confirmed the importance of an engineer-geological and geotechnical checkup in the process of preparation and building (alternatively, during reconstructions and sanitation work) of such water constructions and also the importance of monitoring in the process of dam usage. Technical and safety checkups were also shown to be important when analyzing risk factors. The conclusions of the knowledge gained and the recommendations for the practice deal with recommendations to change the flow policy, develop a

  9. In Situ Sensing Guided Geotechnical Modelling of Subglacial Deformation

    NASA Astrophysics Data System (ADS)

    Clayton, A.; Brain, M.; Hart, J. K.; Roberts, D.; Martinez, K.; Rosser, N. J.

    2014-12-01

    Data collected by in situ subglacial probes has been used to guide a series of geotechnical tests on till. The testing provides an opportunity to develop a process-based understanding of movement patterns observed in the subglacial environment. The probes were deployed by the Glacsweb project at Skalafellsjökull, Iceland, in 2008 and 2012. They were emplaced in till below 80 m of ice and recorded a number of variables including pore pressure, case stress, movement and conductivity. During the winter of 2008-2009 cyclic pressure changes were recorded in the till. Repeated pore pressure increases of up to 20% occurred over a variable period of one to eight weeks. Each rise was followed by a sharp drop in pore pressure lasting up to a few days. A back pressure shear box was used to replicate the pore pressure changes whilst maintaining a constant horizontal shear stress and normal total stress to examine effects on deformation and strain rate. Till was collected for testing from the ice margin close to the probes in 2012 and remoulded for use in the back pressure shear box. General characterisation of the till was performed to benchmark it against previous work and then a series of pore pressure re-inflation tests were undertaken. These approximated the pore pressure variations observed in the field by linearly increasing pore pressure and so decreasing normal effective stress. The till displayed dilatancy-induced episodic increases in strain rate. These were regulated by consolidation that increased shear strength and so reduced strain rate. Strain rate variations were similar to ice velocity variations recorded by differential GPS deployed on the ice surface above the probes.

  10. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    USGS Publications Warehouse

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  11. Near surface geotechnical and geophysical data cross validated for site characterization applications. The cases of selected accelerometric stations in Crete island (Greece)

    NASA Astrophysics Data System (ADS)

    Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal

    2015-04-01

    The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected

  12. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  13. WIPP supplementary roof support system Room 1, Panel 1: Geotechnical field data analysis report

    SciTech Connect

    Not Available

    1993-03-01

    The design of the Room 1, Panel 1, supplementary roof support system was finalized in September 1991, and the system successfully installed in the test bin area between the bulkheads by December 1991. Simultaneously with the support system installation, existing monitoring system was upgraded to meet the needs of the installed roof support. This included extensometers, closure stations, rockbolt load cells as well as survey measurements of roof sag and floor lift. A Project Control Group (PCG) was established in order to monitor room and support system performance. Weekly meetings of the PCG were held to review all monitored data against criteria set in the initial design, and to modify these where necessary. Records of these meetings have been kept, with copies of all data summaries and action notes. These data records are maintained in the Engineering data files. After more than ten months of monitoring and reviewing experience, several modifications have been made both to the way data has been reported as well as to the load adjustment criteria. The support system has performed as expected in the design, with no signs of instability developing considering the rates of roof deformation, the rock bolt loads and the observed fracture behavior in the roof. This is particularly true of the horizon in which the rockbolt anchors are located, the most critical part of the design. The distribution of load build-up, throughout the 286 rockbolt load cells installed, in the Room 1 has been found satisfactory, and the load increases as evaluated by the PCG on a weekly basis have been within the acceptable range. The minimum life of the installed support system is estimated at 15 years based on the highest roof expansion rate experienced to date. This report provides analysis of geotechnical field data collected up to December 1992.

  14. Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers

    NASA Astrophysics Data System (ADS)

    Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; Wawrzaszek, R.

    2014-09-01

    Measurements of mechanical and thermophysical properties of planetary surface allow determining many important parameters useful for planetologists. For example, effective heat conductivity or thermal inertia of the regolith can help to better understand the processes occurring in the bodies interior. Chemical and mineralogical composition gives us a chance to determine the origin and evolution of moons and satellites. Mechanical properties of the surface are one of the key factors needed by civil engineers for developing future bases on space bodies. Space missions to planetary bodies highly restrict the payload concerning its mass and power consumption. Therefore, it is quite impossible to use a standard terrestrial technique like the Load Plate Test or Direct Shear Tests to determine the geotechnical parameters of the planetary regolith. Even the Dynamic Cone Penetration (DCP) method, which is frequently used for field testing, does not fit well with the constraints imposed by a space mission. Nevertheless, its operation principle is very similar to that of at the Low Velocity Penetrators (LVP), several of them being currently on their way to planetary bodies (e.g. the MUPUS instrument) or which were developed in the last couple of years (e.g. the CHOMIK instrument or the KRET device). In this paper we present a comparison between DCP method and LVP operation which was observed during several tests campaigns during mole KRET and CHOMIK instrument development. The tests were performed in different planetary analogues: JSC-1A, Chenobi and AGK-2010, Phobos analogue, cometary analogues F1, F2 and F3 (SRC) and dry quartz sand. In the last part of the paper the concept of results' interpretation is presented.

  15. Geotechnical field data and analysis report, July 1991--June 1992. Volume 2

    SciTech Connect

    Not Available

    1992-12-31

    The Geotechnical Field Data and Analysis Report presents the data for the assessments of the geotechnical status of the Waste Isolation Pilot Plant (WIPP). During the period of shaft sinking and construction of the principal underground access and experimental areas, reporting was on a quarterly basis. Since 1987, reporting has been carried out annually because excavation of the waste storage panels will take place more slowly and over an extended period. This report presents the data collected up to June 30, 1992. This report focuses on the presentation of geotechnical data from the various underground facilities including the shafts, shaft stations, access drifts, test rooms, and waste storage areas. It also describes the techniques used to acquire the data and the performance history of the instruments.

  16. Distributed fiber optic sensor development, testing, and evaluation for geotechnical monitoring applications

    NASA Astrophysics Data System (ADS)

    Iten, Michael; Hauswirth, Dominik; Puzrin, Alexander M.

    2011-04-01

    In this paper, an overview of optical sensor development, testing and evaluation for several geotechnical monitoring applications is presented. Additionally, sensor integration and data interpretation are addressed as key influences to the overall success of the monitoring project. They should be taken into consideration already in the design stage. Particular focus is given on strain sensor development to minimize the slippage of the fiber inside the protection. For the first time, slippage progression monitoring by high spatially resolved Brillouin measurements is presented as a new tool for sensor testing and evaluation for geotechnical projects. The main findings of the study are that in a geotechnical monitoring project, special care has to be taken by choosing the sensor slippage properties, longitudinal stiffness and robustness, as well as in the design of the sensor system itself (fixation, gauge length and bond strength). With appropriate alignment of these factors, reasonable monitoring data can be obtained, as shown in the applications proposed in this manuscript.

  17. TBV-322/TBD-325 RESOLUTION ANALYSIS: GEOTECHNICAL ROCK PROPERTIES

    SciTech Connect

    M.J. Mrugala

    1999-09-13

    The process of underground excavation design is being performed in several phases to satisfy the requirements of Yucca Mountain Site Characterization Project (YMP). These phases were conceptualized to satisfy increasingly focused requirements as the YMP progresses and more detailed site characterization data are acquired. At the time that initial design analyses were prepared, the rock mass parameters were derived from the exploratory core drillings, and as such their values were considered preliminary. Field evidence was needed to verify the magnitudes of these parameters. According to the respective YMP procedures, incomplete data that require further verification are flagged by the TBV (To Be Verified) designation and data that are not available are flagged by the TBD (To Be Determined) designation. Field mapping activities performed during the Exploratory Studies Facility (ESF) Main Loop (i.e., the North Ramp, Main Drift, and South Ramp) tunnel excavation resulted in accumulation of the field data that enlarge and complement the initial, core-derived rock property database. To date, a number of the ESF design confirmation analyses have been completed in a form of topical reports. These reports were prepared to satisfy the requirements of 10 CFR 60.141, ''Confirmation of Geotechnical and Design Parameters''. The design confirmation analyses are documentary in nature and provide a detailed account of the origin and derivation of rock mass parameters. The successive enlargement of the initial, core-derived rock property database created the need for development of meaningful procedures for data interpretation. In effect, each rock parameter has been represented by several values ranging in magnitudes. In a subsequent analysis (CRWMS M&O 1998a) the data were evaluated for consistency. The values of rock property data included in the topical analyses summarize both the initial core-derived and the field-obtained rock property data. Evaluation and verification of the

  18. Gas hydrates - new source of energy and new Geotechnical hazards

    NASA Astrophysics Data System (ADS)

    Chistyakov, V.

    2012-04-01

    regional and even global. Obviously, in the future, much greater dangers should be taken into consideration in many territories and a strong respect for them has to become a new priority in many activities including Geoetics. Key words: Gas hydrates, Geoethical, geotechnical, hazard, methane.

  19. Geotechnical Trainspotting: Early Observations From the New Seattle Liquefaction Array

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Yelin, T.; Weaver, C. S.; Steidl, J. H.; Steller, R. A.; Gomberg, J. S.

    2012-12-01

    The Seattle Liquefaction Array (SLA) is a geotechnical monitoring array established by the US Geological Survey earlier this year in industrialized Seattle, Washington. Funding for the array was provided by the Advanced National Seismic System, at the behest of the Pacific Northwest Seismic Network's regional advisory committee. The SLA aims to further the understanding of earthquake-induced liquefaction, particularly the processes associated with repeatedly liquefied soils and the liquefaction of deeply buried deposits. The SLA occupies a site at which shaking-induced liquefaction was observed during earthquakes in 1949, 1965, and 2001. The SLA site is seismically noisy but important as it is similar to sites that host many structures in Seattle. The site is comprised chiefly by loose-to-dense interbedded coastal and river outwash sands. Instrumentation at the site includes four 3-component accelerometers at the surface and at depths of 5.4, 44.9, and 56.4 meters, a surface barometer, and six piezometers at depths of 6.9, 22.9, 28.9, 43.1, 46.9, and 51.9 meters. Emplacement depths were selected to sample a variety of liquefaction susceptibilities. Continuous data from all sensors are sampled at 200 samples per second, and are available from the IRIS DMC archive, with a buffer of data stored on site in the event of telemetry failure. To date, only a handful of earthquakes have produced shaking strong enough at the SLA to be observed within the high levels of background noise. However, the noise itself provides data useful to constrain the low-strain seismic and pressure response of the site. Notably, the array is within a few meters of a set of busy railroad tracks. Passing and parked trains expose the site to a broad bandwidth of deformations, including seismic frequencies, albeit with a source at the surface. Many times each day the site experiences both high levels of shaking, and step changes in the pressure field of a variety of amplitudes that may last from

  20. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  1. Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification

    NASA Astrophysics Data System (ADS)

    Lato, Matthew J.

    respect to numerous engineering projects that are affected by geomechanical stability issues. The ability to efficiently and accurately map discontinuities, detect changes, and standardize roadside geomechanical stability analyses from remote locations will fundamentally change the state-of-practice of geotechnical investigation workflows and repeatable monitoring. This, in turn, will lead to earlier detection and definition of potential zones of instability, will allow for progressive monitoring and risk analysis, and will indicate the need for pro-active slope improvement and stabilization.

  2. In-situ Measurements of Geotechnical and Geo-Acoustic Seabed Properties Using a Free Fall Cone Penetrometer

    NASA Astrophysics Data System (ADS)

    Osler, J.; Trevorrow, M.; Furlong, A.; Christian, H.

    2001-12-01

    The FFCPT is a free fall probe that has been developed to measure acceleration and dynamic sediment porewater pressure as a function of depth of penetration into the seafloor. It also records hydrostatic pressure and optical backscatter in the water column, for mudline detection capability. This combination of sensors permits the direct application of geotechnical analysis methods and parametric-based correlations already long established in engineering practice. The FFCPT provides two independent means of calculating the undrained shear strength, as well as other engineering variables that are used in sediment textural classification. Specifically, there are accepted empirical relationships between the dynamic pore pressure parameter, the normalized dynamic penetration resistance and sediment grain size characteristics. The probe has a modular design allowing additional sensor payloads to be integrated. The first module to be developed measures resistivity, as a means to determine sediment bulk density. Experimental results from the New Jersey Strataform area and the Scotian Shelf will be presented and compared with measurements using a Seabed Terminal Impact Newton Gradiometer (STING) and an eXpendable Bottom Penetrometer (XBP).

  3. In-tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 1

    SciTech Connect

    1995-01-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies.

  4. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  5. Atlantic Margin Coring Project 1976: preliminary report on shipboard and some laboratory geotechnical data

    USGS Publications Warehouse

    Richards, Adrian F.

    1977-01-01

    This report presents reduced shipboard geotechnical data collected during the 1976 Atlantic Margin Coring Project; results of laboratory tests of specific gravity, water content, bulk density, and Atterberg limits; and sedimentation-compression e log p curves showing consolidation. A description of the procedures used at sea and in the laboratory and a short preliminary summary of the shipboard results also is included.

  6. Geotechnical and leaching properties of flowable fill incorporating waste foundry sand.

    PubMed

    Deng, An; Tikalsky, Paul J

    2008-11-01

    Waste foundry sand (WFS) can be converted into flowable fill for geotechnical applications. In this study, WFS samples were obtained from 17 independent metal casting facilities with different casting processes, thus representing a good range of WFS properties. The laboratory studies include physical, geotechnical and leaching properties of flowable fills consisting of WFS, cement, and fly ash mixed to different water contents. The main properties measured include WFS physical properties (density, particle gradation, grain shape, and fine content), WFS flowable fill geotechnical properties (unconfined compressive strength, hydraulic conductivity, setting time, and bleeding), and the fill's leaching properties (heavy metals and organics in the bleed water and the leachate extracted from hardened WFS flowable fills). The test results indicate that in terms of the physical properties, most of the data fall within narrow ranges, although data from the copper/aluminum-based WFS samples might fall beyond the ranges. Geotechnical properties of WFS flowable fills in both fresh and hardened phases were verified conforming to the features of specified flowable fills. Material leaching analyses indicate that the toxicity of WFS flowable fills is below regulated criteria. A mix formulation range originated from this study is proposed for the design of WFS made flowable fill. PMID:18082390

  7. Geotechnical and leaching properties of flowable fill incorporating waste foundry sand.

    PubMed

    Deng, An; Tikalsky, Paul J

    2008-11-01

    Waste foundry sand (WFS) can be converted into flowable fill for geotechnical applications. In this study, WFS samples were obtained from 17 independent metal casting facilities with different casting processes, thus representing a good range of WFS properties. The laboratory studies include physical, geotechnical and leaching properties of flowable fills consisting of WFS, cement, and fly ash mixed to different water contents. The main properties measured include WFS physical properties (density, particle gradation, grain shape, and fine content), WFS flowable fill geotechnical properties (unconfined compressive strength, hydraulic conductivity, setting time, and bleeding), and the fill's leaching properties (heavy metals and organics in the bleed water and the leachate extracted from hardened WFS flowable fills). The test results indicate that in terms of the physical properties, most of the data fall within narrow ranges, although data from the copper/aluminum-based WFS samples might fall beyond the ranges. Geotechnical properties of WFS flowable fills in both fresh and hardened phases were verified conforming to the features of specified flowable fills. Material leaching analyses indicate that the toxicity of WFS flowable fills is below regulated criteria. A mix formulation range originated from this study is proposed for the design of WFS made flowable fill.

  8. Underground geotechnical and geological investigations at Ekati Mine-Koala North: case study

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav; Long, Larry; Nowicki, Tom; Dyck, Darren

    2004-09-01

    Since 1998, BHP Billiton has mined diamonds at the Ekati Diamond Mine™ near Lac de Gras in the Northwest Territories of Canada. Current operations are based on mining multiple pipes by the open-pit method, but as some pits deepen, converting to underground mining is being considered. As a test of underground mining methods and to provide access to the lower elevations of the Panda and Koala pipes, the Koala North pipe is being developed for underground mining. Initially, the top 40 m of the pipe were mined as an open pit to provide grade information and a prepared surface for the transition to underground mining. Currently, Koala North is being developed as an open-benching, mechanized, trackless operation. Although the method was successfully used at several De Beers diamond operations in South Africa, it has never been tested in an Arctic environment. This case study describes basic geology, mining method layout and ongoing geological and geotechnical investigation. From the beginning of underground development, geotechnical daily routines have been fully integrated within the technical services department, which supports the operation. Geotechnical, geological and structural information obtained from underground mapping and core logging is compiled, processed, reviewed and analyzed on site by the geotechnical staff. Conclusions and recommendations are implemented as part of the operations in a timely manner. This ongoing "live" process enables the operators to make the most efficient use of resources both for ground support and excavations as well as to address safety issues, which are the top priority.

  9. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Confirmation of geotechnical and design parameters. 63.132 Section 63.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program §...

  10. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Confirmation of geotechnical and design parameters. 63.132 Section 63.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program §...

  11. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Confirmation of geotechnical and design parameters. 63.132 Section 63.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program §...

  12. Correlations between geotechnical and electrical data: A case study at Garchy in France

    NASA Astrophysics Data System (ADS)

    Cosenza, Philippe; Marmet, Eric; Rejiba, Faycal; Jun Cui, Yu; Tabbagh, Alain; Charlery, Yvelle

    2006-12-01

    Geophysical (Electrical Resistivity Tomography, Ground Penetrating Radar profiles and seismic refraction) and geotechnical (dynamic penetrometer, in situ vane test) surveys were carried out at Garchy (Nièvre, France). The main objective of this study was to establish qualitative and quantitative correlations between electrical and geotechnical data from this site in a simple geological context. Concerning qualitative correlations, geotechnical tests and Electrical Resistivity Tomography sections are consistent with a three-layers model: a fine soil with a significant clay fraction sandwiched between a low moisture sandy soil and oolitic limestones. Despite the usual difficulty to locate clearly interfaces in inverted ERT sections, both methods provide consistent depths of the substratum top. Moreover, this study confirms that correlations between reflectors of GPR profiles and vertical geotechnical property variations are mainly explained by vertical water content changes. As far as quantitative correlations are concerned, no clear relationship between cone resistance and inverted resistivity extracted from ERT sections has been observed. Nevertheless, if we do not consider the upper sandy soil composed with gravels, the couple inverted resistivity-cone resistance would be a lithological discriminator. This lithological discrimination is enhanced when inverted resistivity values obtained from extracted 1D soundings are considered. This original result should be validated in other sites. Moreover, a satisfactory quantitative correlation between inverted resistivity values and measured water content values has been obtained; this correlation demonstrates once more that resistivity is a good indirect predictor of water content.

  13. Geotechnical evaluation of the alluvial soils for urban land management zonation in Gharbiya governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa A.

    2015-01-01

    Geological and geotechnical information from 534 borehole in-situ- and lab-based measured soil water conditions (Cl- and SO4-2 ion concentrations and depth to water), plasticity, unconfined compression, and consolidation parameters for alluvial clays have been analyzed. Multivariate factorial and clustering along with the geostatistical ordinary kriging techniques were used and evaluated in a Geographic Information systems (GIS) environment. The prime objective was to spatially model the geotechnical variability and to derive the loading factors along with recognition of the distinctive spatial geotechnical zones in terms of their likelihood of occurrence. Results have been, for the first time, presented for the alluvial soils of the Gharbiya governorate, Egypt with the principal management zones and their associated geotechnical risks in the main eight districts were characterized and evaluated for their favorability for construction. Plasticity charts indicated that the soils are inorganic cohesive highly plastic clays. Geotechnical parameters showed wide ranges evidenced by their large standard deviations. Principal five factors dominated with good correlations to the swelling potential (0.90), compression index (0.74), depth to water (-0.41), soil water salinity contents of Cl- (-0.64) and SO4-2 (-0.60), and the clay layer thickness (0.59), arranged respectively in their decreasing contribution to more than 70% of the total spatial variability. Three distinctive management zones were delineated with reference to construction favorability. The first zone showed the highest favorability for construction being characterized by lowest potentials to swelling and the Cl- and SO4-2 contents and hence corrosion. Characterized by a water level approaching the ground surface, largest Cl- and SO4-2 contents violating the severity limits, and largest swelling potential, the second zone attained the lowest construction favorability and therefore safety measures should be

  14. A Machine Learning Approach to Estimate Riverbank Geotechnical Parameters from Sediment Particle Size Data

    NASA Astrophysics Data System (ADS)

    Iwashita, Fabio; Brooks, Andrew; Spencer, John; Borombovits, Daniel; Curwen, Graeme; Olley, Jon

    2015-04-01

    Assessing bank stability using geotechnical models traditionally involves the laborious collection of data on the bank and floodplain stratigraphy, as well as in-situ geotechnical data for each sedimentary unit within a river bank. The application of geotechnical bank stability models are limited to those sites where extensive field data has been collected, where their ability to provide predictions of bank erosion at the reach scale are limited without a very extensive and expensive field data collection program. Some challenges in the construction and application of riverbank erosion and hydraulic numerical models are their one-dimensionality, steady-state requirements, lack of calibration data, and nonuniqueness. Also, numerical models commonly can be too rigid with respect to detecting unexpected features like the onset of trends, non-linear relations, or patterns restricted to sub-samples of a data set. These shortcomings create the need for an alternate modelling approach capable of using available data. The application of the Self-Organizing Maps (SOM) approach is well-suited to the analysis of noisy, sparse, nonlinear, multidimensional, and scale-dependent data. It is a type of unsupervised artificial neural network with hybrid competitive-cooperative learning. In this work we present a method that uses a database of geotechnical data collected at over 100 sites throughout Queensland State, Australia, to develop a modelling approach that enables geotechnical parameters (soil effective cohesion, friction angle, soil erodibility and critical stress) to be derived from sediment particle size data (PSD). The model framework and predicted values were evaluated using two methods, splitting the dataset into training and validation set, and through a Bootstrap approach. The basis of Bootstrap cross-validation is a leave-one-out strategy. This requires leaving one data value out of the training set while creating a new SOM to estimate that missing value based on the

  15. The Contribution of Robert F. Corwin to Self-Potential and Geotechnical Geophysics

    NASA Astrophysics Data System (ADS)

    Fitterman, D. V.

    2007-12-01

    Throughout his career, Robert F. Corwin developed innovative geophysical methods to solve geotechnical problems. Most notable is his work on self-potential (SP) where his focus was a blend of electricity and water, a potentially lethal brew, to solve very practical problems. Corwin's work in SP started with the idea of applying the technique to marine mineral exploration; this early work is characterized by a theme that ran through his career: understanding the effects that can influence measurements, developing methodologies to obtain consistent and reliable data, and interpreting those data in a conservative and believable manner supported by the facts. He expanded the electricity-water connection to geothermal fluids and the SP signals produced by them. He was involved in geothermal exploration throughout the western U.S. including Alaska and Mexico. In addition to developing reliable field techniques he worked on interpretational methods that made SP interpretation quantitative. Corwin's most significant contribution was the study of leaky dams using SP. Water leakage produces an SP anomaly because of the electrokinetic properties of geologic materials. Through a series of SP studies for the U.S. Bureau of Reclamation and the U.S. Army Corps of Engineers he developed a methodology for making and interpreting SP measurements that helped locate, assess, and remediate leakage. This success led to numerous surveys throughout Canada for regional power authorities. Corwin returned to marine geophysical studies throughout his career including SP measurements to locate moveable concrete mats placed in the Mississippi River to control bank erosion. Because of changes in river flow, these large articulated mats were often undercut, moved, and reburied causing hazardous bank conditions. SP and electrical resistivity measurements were found to accurately locate the mats. Corwin also worked on electrical resistivity measurements of the ocean floor. Starting with stationary

  16. Integration of Centrifuge Testing in Undergraduate Geotechnical Engineering Education at Remote Campuses

    ERIC Educational Resources Information Center

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-01-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…

  17. Geographic information system planning for geotechnical and earthquake engineering applications at the Savannah River Site, SC

    SciTech Connect

    Lee, R.

    1993-02-01

    The Savannah River Technology Center (SRTC) of the Savannah River Site is in the planning stages of compiling a geological, geophysical, and seismological data base on an industry standard Geographic Information System (GIS). The system will serve as a tool for management and integration of already collected site data,planning for additional investigations, and for special studies such as seismic hazard and risk analyses for the Savannah River Site (SRS).

  18. Geographic information system planning for geotechnical and earthquake engineering applications at the Savannah River Site, SC

    SciTech Connect

    Lee, R.

    1993-01-01

    The Savannah River Technology Center (SRTC) of the Savannah River Site is in the planning stages of compiling a geological, geophysical, and seismological data base on an industry standard Geographic Information System (GIS). The system will serve as a tool for management and integration of already collected site data,planning for additional investigations, and for special studies such as seismic hazard and risk analyses for the Savannah River Site (SRS).

  19. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  20. Stereographic Projection Techniques for Geologists and Civil Engineers

    NASA Astrophysics Data System (ADS)

    Lisle, Richard J.; Leyshon, Peter R.

    2004-05-01

    An essential tool in the fields of structural geology and geotechnics, stereographic projection allows three-dimensional orientation data to be represented and manipulated. This revised edition presents a basic introduction to the subject with examples, illustrations and exercises that encourage the student to visualize the problems in three dimensions. It will provide students of geology, rock mechanics, and geotechnical and civil engineering with an indispensable guide to the analysis and interpretation of field orientation data. Links to useful web resources and software programs are also provided. First Edition published by Butterworth-Heinemann (1996): 0-750-62450-7

  1. Assessing dry density and gravimetric water content of soils in geotechnics with complex conductivity measurements : preliminary investigations

    NASA Astrophysics Data System (ADS)

    Kaouane, C.; Beck, Y.; Fauchard, C.; Chouteau, M.

    2012-12-01

    Quality controls of geotechnical works need gravimetric water content (w) and dry density (γd) measurements. Afterwards, results are compared to Proctor tests and referred to soil classification. Depending on the class of soils, different objectives must be achieved. Those measurements are usually carried out with neutron and gamma probes. Combined use of theses probes directly access (w, γd). Theses probes show great disadvantages as: nuclear hazard, heavy on-site, transporation and storage restrictions and low sampling volumes. Last decades showed a strong development of electrical and electromagnetic methods for mapping water content in soils. Still, their use in Geotechnics is limited due to interfacial effects neglected in common models but strong in compacted soils. We first showed that (w, γd) is equivalent to (φ, Sr) assuming density of particles γs=2.7 (g.cm-3). This assumption is true for common soils used in civil engineering. That first relationship allows us to work with meaningful parameters for geophysicists. Revil&Florsh recently adapted Vinegar&Waxman model for Spectal Induced Polarization (SIP) measurements at low frequencies (<50 kHz). This model relates quantitatively the electrical double layer polarization at the surface of grains. It takes into account saturation, porosity and granulometry. Standard granulometry and mineralogy are generally available in geotechnical campaigns. In-phase conductivity would be mostly related to saturation as quadrature conductivity would be related to porosity and surface conductivity. Although this model was developed for oil-bearing sands, we investigated its potential for compacted soils. Former DC-resistivity (ρ) measurements were carried out on a silty fined-grained soil (A1 in GTR classification or ML-CL in USCS) in a cylindrical cell (radius ~4 cm, heigth 7 cm). Median diameter of grain was 50 μm. For each measurement, samples were compacted at Proctor energy. We assessed (w, γd) by weighting and

  2. The Geotechnical Board National Research Council. [Annual] activities report, March 1, 1991--June 30, 1992

    SciTech Connect

    Smeallie, P.H.

    1993-08-11

    This report covers the activities of the Geotechnical Board and its two national committees, the US National Committee for Rock Mechanics (USNC/RM) and the US National Committee on Tunneling Technology (USNC/TT), for the period from March 1, 1991 to June 30, 1992. The report covers a 16-month period, through June of this year, to bring the reporting period in line with the National Research Council`s (NRC) fiscal year. Subsequent reports will cover the 12-month period July 1--June 30, unless individual contracts require otherwise. A description of the Geotechnical Board and its committees within the context of the National Academy of Sciences/National Research Council, as well as lists of current members of the board and national committees can be found in Attachment A.

  3. Baseline practices and user needs for Web dissemination of geotechnical data

    USGS Publications Warehouse

    Turner, L.L.; Brown, M.P.; Chambers, D.; Davis, C.A.; Diehl, J.; Hitchcock, C.S.; Holzer, T.L.; Nigbor, R.L.; Plumb, C.; Real, C.; Reimer, M.; Steidl, J.H.; Sun, J.I.; Tinsley, J.C.; Vaughn, D.; ,

    2004-01-01

    This paper presents the findings and recommendations of the User Scenario Work Group (USWG) in identifying a baseline of current practices within the geo-professional community and prioritizing desired functional requirements in the development of a comprehensive geotechnical information management system. This work was conducted as an initial phase of a larger project to demonstrate the effectiveness of a web based virtual data center for the dissemination of geotechnical data from multiple linked databases of various government and private sector organizations. An online survey was administered over the course of several months to practitioners across the nation. The results from the survey were compiled and examined to provide direction to the other project teams in the development of user-driven prototype data system.

  4. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  5. Geotechnical Analysis of Five Shelby Tube Samples from H-Area Retention Basin

    SciTech Connect

    Langton, C.A.

    1999-06-02

    Geotechnical and geochemical analyses were performed on five Shelby tube samples collected in the H-Area Retention Basin (HRB) during July and August of 1998. The samples were collected as part of the HRB characterization study. The test results, which are documented in this report, will be used to support the HRB contaminant fate and transport modeling/analysis and to evaluate remedial options. The results will also be used as a base line for future treatability studies.

  6. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. PMID:25898984

  7. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials.

  8. On the geotechnical characterisation of the polluted submarine sediments from Taranto.

    PubMed

    Vitone, Claudia; Federico, Antonio; Puzrin, Alexander M; Ploetze, Michael; Carrassi, Elettra; Todaro, Francesco

    2016-07-01

    This paper reports the results of the first geomechanical laboratory experiments carried out on the polluted submarine clayey sediments of the Mar Piccolo in Taranto (South of Italy). The study had to face with extreme difficulties for the very soft consistency of the sediments and the contaminants. The mineralogy, composition and physical properties of the sediments were analysed, along with their compression and shearing behaviour. The investigation involved sediments up to about 20 m below the seafloor, along three vertical profiles in the most polluted area of the Mar Piccolo, facing the Italian Navy Arsenal. The experimental results were used to derive a preliminary geotechnical model of the site, necessary for the selection and design of the most sustainable in situ mitigation solutions. Moreover, the experimental data reveal that the clayey sediments of the most polluted top layer do not follow the classical geotechnical correlations for normally consolidated deposits. This seems to open interesting perspectives about the effects of pollutants on the geotechnical behaviour of the investigated sediments. PMID:26906004

  9. Geotechnical Field Data and Analysis Report, July 1991--June 1992. Volume 1

    SciTech Connect

    Not Available

    1993-09-01

    The Geotechnical Field Data and Analysis Report documents the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The data are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a routine monitoring program and do not include data from tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in support of performance assessment studies. The purpose of the geomechanical monitoring program is to provide in situ data to support continuing assessments of the design for the underground facilities. Specifically, the program provides: Early detection of conditions that could compromise operational safety; evaluation of room closure to ensure retrievability of waste; guidance for design modifications and remedial actions; and data for interpreting the actual behavior of underground openings, in comparison with established design criteria. This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30, 1992. Volume 1 provides an interpretation of the field data while Volume 2 describes and presents the data itself.

  10. Geotechnical hazards associated with closed municipal solid waste landfill sites

    NASA Astrophysics Data System (ADS)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  11. New Insights From Geotechnical and Geophysical Data From the 1996 Finneidfjord Landslide, Northern Norway

    NASA Astrophysics Data System (ADS)

    Forsberg, C. F.; Vanneste, M. W.; L'Heureux, J.; Longva, O.; Vardy, M. E.; Haflidason, H.; Brendryen, J.; Steiner, A.; Kreiter, S.; Mörz, T.; Kvalstad, T.

    2011-12-01

    Acquisition of an extensive and multi-disciplinary data set, consisting of high-resolution swath bathymetry, 2D/3D seismic data, multiple short (up to 6 m) and two long (12 m and 14 m, respectively) sediment cores, and in situ FF-CPTu/CPTu (free fall, FF, and traditional cone penetration tests with pore pressure measurements) profiles complemented with geotechnical laboratory data, allows for a detailed analysis of the landslide morphology and stratigraphic controls on the 1996 Finneidfjord landslide. High-resolution geotechnical data from the in situ FF-CPTu/CPTu and boreholes, complemented with geological imaging (CT and X-ray scans) and analyses (e.g., XRF) reveal that the shallow slip plane lies within a thin, seismically-stratified unit, with clay layers sandwiching a sandy layer, identified from the peak in tip resistance (CPTu). This slip plane is currently being analyzed geotechnically (e.g., direct simple shear testing, grain size analyses and plasticity measurements). Of particular importance is the correlation of the slip plane with regional 2D Topas profiles and a targeted decimetre-resolution 3D Chirp seismic volume (1000 m x 150 m), on which it corresponds with a regionally extensive, high-amplitude, composite reflection. The top part of this composite reflection has been eroded underneath the mass-transport deposit. The latter is extensively deformed. Within the body of the landslide, several different flow facies are identified, along with translated blocks, ramps and flats, and pressure ridges. The geophysical data connect the landslide area with an adjacent zone characterized by the presence of a distinct, shallow-gas front. However, the gas does not appear to have played a role in the landslide development. This integrated assessment of the landslide morphology and internal architecture from combined geological, geotechnical and geophysical data supports previous work indicating a complex, multi-phase failure, with the later stages possibly

  12. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments. PMID:10936538

  13. Experimental monitoring of geotechnical response of railway track systems

    NASA Astrophysics Data System (ADS)

    Alsabhan, Abdullah H.

    An important issue that compromises rail track operations and safety is ballast fouling. Ballast fouling may lead to track deformation, reduction of track load capacity and train speed, and ultimately train derailment. This problem is quite costly for the railway industry thus, assessing and controlling ballast fouling and then preventing train derailment while optimizing maintenance operation is very important for reducing the overall cost of freight and passenger transportation. This study presents a proposed holistic methodology that extends assessing fouling while monitoring rail track deformation. The techniques uses deformation monitoring instruments (e.g., fiber optic (FO) sensors and LVDTs) coupled with Electromagnetic (EM) surveying: Ground penetrating radar (GPR) and a time domain reflectometry (TDR). The methodology aims at gathering data to create an early warning system that would allow railway engineers to develop a symptomatic approach to ballast maintenance procedures. This proposed methodology was tested on a full scale track model (FSTM). This model comprises 2.45 m rail supported by five ties embedded in ballast layer that was fouled under controlled conditions. The testing program considered three common types of fouling: mineral fouling, clay fouling, and silica sand fouling. A comparison between rail settlement measurements measured by LVDTs and rail bending strain measurement measured by FO sensors showed that FO sensors do not provide an indication of track deterioration due to cyclic loading, moisture content, and fouling depth. In addition, results showed a high correlation between rate of plastic settlement and amount of fouling detected by EM survey. Experimental results also showed that EM survey results can be used to determine depth and type of fouling.

  14. Cone penetration and bevameter geotechnical tests in lunar regolith simulants: discrete element method analysis and experimentation

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A. V.; Johnson, J.; Duvoy, P.; Wilkinson, A.; Creager, C. M.

    2012-12-01

    For in situ resource utilization on the Moon, asteroids, Mars, or other space body it is necessary to be able to simulate the interaction of mobile platforms and excavation machines with the regolith for engineering design, planning, and operations. For accurate simulations, tools designed to measure regolith properties will need to be deployed and interpreted. Two such tools are the penetrometer, used to measure a soil strength index as a function of depth, and the bevameter, used to characterize regolith surface properties of strength, friction and sinkage. The penetrometer interrogates regolith properties from the surface to a depth limited only by the capabilities of the instrument to penetrate the regolith while a bevameter interrogates only the upper few centimeters needed to describe a mobility platform's traction and sinkage. Interpretation of penetrometer and bevameter data can be difficult, especially on low gravity objects. We use the discrete element method (DEM) model to simulate the large regolith deformations and failures associated with the tests to determine regolith properties. The DEM simulates granular material behavior using large aggregates of distinct particles. Realistic physics of particle-particle interaction introduces many granular specific phenomena such as interlocking and force chain formation that cannot be represented using continuum methods. In this work, experiments using a cone penetrometer test (CPT) and bevameter on lunar simulants JSC-1A and GRC-1 were performed at NASA Glenn Research Center. These tests were used to validate the physics in the COUPi DEM model. COUPi is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. The experimental results were used in this work to build an accurate model to simulate the lunar regolith. The CPT consists of driving an instrumented cone with opening angle of 60

  15. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  16. A marine dynamic penetrometer for the determination of sea floor geotechnical properties

    NASA Astrophysics Data System (ADS)

    Stephan, S.; Kaul, N. E.; Villinger, H. W.

    2013-12-01

    We present a seafloor lance penetration monitoring system: the Lance Insertion Retardation Meter (LIRmeter). The device can be used to infer geotechnical seafloor properties, such as bearing capacity by monitoring the deceleration of a free-fall penetrating lance. The deceleration record can be furthermore used to estimate mean grain size and mud content of the sea floor as well as total penetration depth. The LIRmeter is contained in a pressure vessel (440 x 110 mm) and equipped with accelerometers of different sensitivities to (i) determine sea floor resistance during penetration and (ii) to generate a depth axis. Typically, measurements are carried out in a pogo style fashion to allow a rapid measurement progress during field campaigns. The LIRmeter is intended to determine sea floor properties on the sole basis of deceleration measurements in order to achieve a mechanically and electronically robust system. Data is sampled at a resolution of 16 bit and at a rate of typically 500 Hz for each channel. The device can either be installed in any type of lance i.e. marine heat flow probes, gravity corers, piston corers or can be used in combination with a purpose built lance as a standalone instrument. It has a usable length of four meters, a total weight of 280 kg in air and can be operated up to full ocean depth (6000m). The bearing capacity of the sea floor is a critical factor for marine engineering projects such as burial of marine cables, pipeline laying and foundations. Knowledge of the mud content can provide constraints for the estimation of hydraulic conductivity. The identification of weak zones along a slope can moreover provide vital information for risk assessment studies. Traditionally, frame based, quasi static Cone Penetration Tests (CPT) or sampling methods like gravity coring are used to conduct these types of investigation. In comparison to established but time consuming and rather costly methods, the LIRmeter is intended (i) for near surface

  17. Application of computational intelligence tools for the analysis of marine geotechnical properties in the head of Zakynthos canyon, Greece

    NASA Astrophysics Data System (ADS)

    Ferentinou, Maria; Hasiotis, Thomas; Sakellariou, Michael

    2012-03-01

    This paper uses a computational approach to provide insight into the relationships among marine geotechnical properties that characterize the recent sedimentary cover at the head of Zakynthos Canyon in western Greece. Self-organizing maps (SOM) and generic interaction matrix (GIM) theory were used to investigate the tendency of the data to cluster and to examine the sediment property relationships. This analysis has also focused on the assessment of the dominance and interaction intensity between the related parameters following GIM theory definition. The principal results refer to the identification of clusters in the original multivariate data set. SOM-based analysis distinguished five clusters, with similar geotechnical characteristics, which led to the separation of the surficial (˜80 cm) unconsolidated sediments from the deeper normally consolidated sediments and depicted better relations between the geotechnical properties within each cluster. The combination of SOM with GIM theory also demonstrates the dominance of fine-grained sediments (especially silts) and their associated Atterberg limits. The strongest interaction intensity is observed between silt and water content, whereas the undrained shear strength of the surficial deposits appears to be least interactive. The application of computational intelligence methods in the study of marine geotechnical properties allows insight into the relationships between the various geotechnical parameters and provides a promising tool for knowledge extraction in marine geo-environments.

  18. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  19. Results of instrument reliability study for high-level nuclear-waste repositories. [Geotechnical parameters

    SciTech Connect

    Rogue, F.; Binnall, E.P.

    1982-10-01

    Reliable instrumentation will be needed to monitor the performance of future high-level waste repository sites. A study has been made to assess instrument reliability at Department of Energy (DOE) waste repository related experiments. Though the study covers a wide variety of instrumentation, this paper concentrates on experiences with geotechnical instrumentation in hostile repository-type environments. Manufacturers have made some changes to improve the reliability of instruments for repositories. This paper reviews the failure modes, rates, and mechanisms, along with manufacturer modifications and recommendations for additional improvements to enhance instrument performance. 4 tables.

  20. Geologic logs of geotechnical cores from the subsurface Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Maier, Katherine L.; Ponti, Daniel J.; Tinsley, John C.; Gatti, Emma; Pagenkopp, Mark

    2014-01-01

    This report presents and summarizes descriptive geologic logs of geotechnical cores collected from 2009–12 in the Sacramento–San Joaquin Delta, California, by the California Department of Water Resources. Graphic logs are presented for 1,785.7 ft of retained cores from 56 borehole sites throughout the Sacramento-San Joaquin Delta. Most core sections are from a depth of ~100–200 feet. Cores primarily contain mud, silt, and sand lithologies. Tephra (volcanic ash and pumice), paleosols, and gravels are also documented in some core sections. Geologic observations contained in the core logs in this report provide stratigraphic context for subsequent sampling and data for future chronostratigraphic subsurface correlations.

  1. Geotechnical Analysis of Paleoseismic Shaking Using Liquefaction Features: Part I. Major Updating of Analysis Techniques

    USGS Publications Warehouse

    Olson, Scott M.; Green, Russell A.; Obermeier, Stephen F.

    2003-01-01

    A new methodology is proposed for the geotechnical analysis of strength of paleoseismic shaking using liquefaction effects. The proposed method provides recommendations for selection of both individual and regionally located test sites, techniques for validation of field data for use in back-analysis, and use of a recently developed energy-based solution to back-calculate paleoearthquake magnitude and strength of shaking. The proposed method allows investigators to assess the influence of post-earthquake density change and aging. The proposed method also describes how the back-calculations from individual sites should be integrated into a regional assessment of paleoseismic parameters.

  2. Update of assessment of geotechnical risks, strategic petroleum reserve, Weeks Island site

    SciTech Connect

    Bauer, S.J.

    1994-12-01

    This report is a critical reassessment of the geotechnical risks of continuing oil storage at the Weeks Island Strategic Petroleum Reserve site. It reviews all previous risk abatement recommendations, subsequent mitigative actions, and new information. Of increased concern, due to the discovery of a surface levels, is the long term maintainability of the mine as an oil storage repository. Mine operational changes are supported in order to facilitate monitoring of water entry diagnostics. These changes are also intended to minimize the volume in the mine available for water entry. Specific recommendations are made to implement the mine changes.

  3. Geotechnical properties of municipal solid waste at different phases of biodegradation

    SciTech Connect

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-11-15

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters

  4. The BIG'95 debris flow and adjacent unfailed sediments in the NW Mediterranean Sea: geotechnical-sedimentological properties, and dating

    NASA Astrophysics Data System (ADS)

    Urgeles, R.; Lastras, G.; Canals, M.; Willmott, V.; Moreno, A.; Casas, D.; Baraza, J.; Berné, S.

    2003-04-01

    In this study sedimentological, geotechnical, and age data from 7 piston cores of the continental slope and rise off the Ebro margin, North-western Mediterranean, are presented. The cores were obtained within and nearby an area that has undergone a major instability event occurred about 10 ka, known as the BIG'95. They show, at least, three distinct units, which are identified in relation to such event, namely a post-landslide, landslide and pre-landslide unit. Each one of these units shows distinct sedimentological and geotechnical characteristics interpreted in terms of depositional processes and consolidation history. The sedimentological and geotechnical data allows to infer that the BIG'95 is the result of a retrogressive slide and that the location of the channel levee complexes probably had a fundamental role in triggering the landslide, as well as controlling the location of the failure surface.

  5. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  6. Preliminary Geophysical Survey for Assessing the Geotechnical Conditions and Geohazards at Huaca de La Luna, Peru

    NASA Astrophysics Data System (ADS)

    Zavala, G. J.; Lopez, S.; Ebinger, C. J.; Pando, M. A.; Lambert, C.; Morales, R.; Uceda, S.; Perucchio, R.; Castaneda, B.; Aguilar, R.

    2014-12-01

    This paper presents results of near surface geophysical tests to help assess the geotechnical conditions of the archaeological complex of Huaca de la Luna located near the coastal city of Trujillo, Peru. This area of Peru has experienced damaging earthquakes and tsunamis in historic time. The huaca complex is a massive adobe temple progressively built by the Moche civilization from 100 AD to 650 AD. The geophysical tests carried out included Ground Penetrating Radar (GPR), magnetic gradiometer, and Multichannel Analysis of Surface Waves (MASW) to help assess geotechnical conditions such as buried cavities and hallways, thickness and elastic properties of sand sediments, and the depth to the underlying granitic bedrock. The tests were performed to help with the investigation of structural damage observed along a massive adobe wall (north façade) which has shown signs of distress including fissures, settlements, and other damage. The geophysical results together with detailed Lidar surveying are being used as part of this investigation and highlight the usefulness of these non-destructive techniques for archaeological and historical sites.

  7. An experimental methodology for monitoring contaminant transport through geotechnical centrifuge models.

    PubMed

    Kumar, P R

    2006-06-01

    In this paper, an attempt has been made to highlight an experimental methodology for monitoring contaminant transport through locally available silty soil and commercially available clay in geotechnical centrifuge models, for different compaction states. Use of multiple depth sensors to determine depth distribution of sodium chloride in the soil column has been detailed. The obtained results have been compared with argentometric method. To validate the centrifuge modelling, modelling of models has been used. The test setup developed can simulate contaminant transport mechanisms through the soil mass, which is approximately 10 m deep, over a period of 600 days. R (e) and P (e) are found to be N times higher in the centrifuge models. These numbers are found to be several orders less than unity. This indicates that laminar flow prevails and the dominating Cl(-) transport mechanism in centrifuge is diffusion. The study also highlights the fact that the geotechnical centrifuge modelling can be used as a viable alternative to field scale experimentation. PMID:16917708

  8. Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea

    NASA Astrophysics Data System (ADS)

    Rowden, A. A.; Jago, C. F.; Jones, S. E.

    1998-09-01

    Spatial and temporal variations in the structure of an Amphiura-Echinocardium macrobenthic community were studied in relation to geotechnical and geophysical properties of the seabed at a muddy-sand site in the seasonally stratified region of the southern North Sea. Vertical profiles of geotechnical properties were recorded in sediments collected by box corer. Maxima in water, organic matter, and fine particle contents coincided with the presence of the burrowing brittle star Amphiura filiformis and the mud shrimp Callianassa subterranea in the upper and lower parts, respectively, of the cores. A significant relationship existed between the abundance of A. filiformis and the water content of the upper 0.05 m of the bed. There were important temporal variations in rigidity modulus, derived from acoustic shear wave propagation in freshly recovered cores, of the upper 0.06 m of the sediment. The rigidity modulus was 45% greater in January than in May and this has been related to the burrowing/feeding activity of the macrobenthic community; there was an inverse relationship between A. filiformis abundance and bed rigidity. Thus the bed had a lower bulk density and lower rigidity in summer due to biological modification of the sediment fabric. This implies that the bed was less resistant to erosion in the summer. Such an effect may be important during summer storms in the shallowest parts of the seasonally stratified zone (ie close to shelf fronts).

  9. JSC-1: Lunar Simulant of Choice for Geotechnical Applications and Oxygen Production

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Hill, Eddy; Liu, Yang; Day, James M. D.

    2005-01-01

    Lunar simulant JSC-1 was produced as the result of a workshop held in 1991 to evaluate the status of simulated lunar material and to make recommendations on future requirements and production of such material (McKay et al., 1991). JSC-1 was prepared from a welded tuff that was mined, crushed, and sized from the Pleistocene San Francisco volcanic field, northern Arizona. As the initial production of approxiamtely 12,300kgs is nearly depleted, new production has commenced. The mineralogy and chemical properties of JSC-1 are described in McKay et al. (1994) and Hill et al. (this volume); description of its geotechnical properties appears in Klosky et al. (1996). Although other lunar-soil simulants have been produced (e.g., MLS-1: Weiblen et al., 1990; Desai et al., 1992; Chua et al., 1994), they have not been as well standardized as JSC-I; this makes it difficult to standardize results from tests performed on these simulants. Here, we provide an overview of the composition, mineralogy, strength and deformation properties, and potential uses of JSC-1 and outline why it is presently the 'lunar simulant of choice' for geotechnical applications and as a proxy for lunar-oxygen production.

  10. Quantifying the Effects of Riparian Vegetation on Geotechnical Strength, and Resistance to Hydraulic Erosion: Alluvial Streambanks

    NASA Astrophysics Data System (ADS)

    Bankhead, Natasha; Simon, Andrew; Thomas, Robert

    2010-05-01

    Streambank erosion by mass failure is actually a combination of hydraulic processes operating with a tendency to steepen the bank, and geotechnical (slope stability) processes operating on the bank mass. Riparian vegetation has a number of effects on the mechanics of these processes through direct root reinforcement, modification of shear strength through effects on pore-water pressure, increased resistance of the bank surface to hydraulic shear and reduced effective, hydraulic stress through increases in roughness. These effects can be classified as those that affect geotechnical stability, and those that affect hydraulic processes acting at the bank face and toe. Both aspects were investigated using a combination of modeling, field work and laboratory studies. Previous research has shown that the effect of mechanical root-reinforcement on geotechnical stability can be considerable, particularly on banks less than 3 m-high. Calculation and modeling of estimates of root-reinforcement were initially conducted using simple perpendicular root models, but recent work has made use of a fiber-bundle method so that progressive root breaking can be accounted for. Combining field and laboratory testing, the RipRoot fiber-bundle model was shown to provide more accurate estimates of root-reinforcement by allowing for progressive root breaking. Root-reinforcement is a function of a number of variables including root density, rooting depth and root orientations relative to the failure surface. For example, different distributions of root orientations relative to the failure plane can dramatically affect the shape and peak of the loading curves attained for a given bundle of roots; for 500 sycamore roots median reinforcement varied from 4.86 to 15.08 kPa on a slope and from 9.49 to 14.82 kPa when growing on the top of a streambank. To test the effect of common North American riparian-plant species on pore-water pressure within a streambank, young riparian trees and grasses were

  11. Geotechnical instrumentation

    NASA Astrophysics Data System (ADS)

    Green, G. E.; Mikkelsen, P. E.; Mayne, P. W.; Frost, D. D.; Dowding, C. H.

    1988-12-01

    The 11 papers in the report deal with the following areas: deformation measurements with inclinometers; dilatometer experience in Washington, D.C., and vicinity; ground vibration monitoring instrumentation and computerized surveillance; instrumentation for tests of piles subjected to axial loading; use of the wave equation by the North Carolina Department of Transportation; NYSDOT's construction control of pile foundations with dynamic pile testing; discussion of procedures for the determination of pile capacity; modern specification of driven pile work; analysis of laterally loaded piles with nonlinear bending behavior; unified design of piles and pile groups, and LTBASE, a computer program for the analysis of laterally loaded piers including base and slope effects.

  12. Geotechnical Risk Classification for Underground Mines / Klasyfikacja Poziomu Zagrożenia Geotechnicznego W Kopalniach Podziemnych

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Rinne, Mikael

    2015-03-01

    Underground mining activities are prone to major hazards largely owing to geotechnical reasons. Mining combined with the confined working space and uncertain geotechnical data leads to hazards having the potential of catastrophic consequences. These incidents have the potential of causing multiple fatalities and large financial damages. Use of formal risk assessment in the past has demonstrated an important role in the prediction and prevention of accidents in risk prone industries such as petroleum, nuclear and aviation. This paper proposes a classification system for underground mining operations based on their geotechnical risk levels. The classification is done based on the type of mining method employed and the rock mass in which it is carried out. Mining methods have been classified in groups which offer similar geotechnical risk. The rock mass classification has been proposed based on bulk rock mass properties which are collected as part of the routine mine planning. This classification has been subdivided for various stages of mine planning to suit the extent of available data. Alpha-numeric coding has been proposed to identify a mining operation based on the competency of rock and risk of geotechnical failures. This alpha numeric coding has been further extended to identify mining activity under `Geotechnical Hazard Potential (GHP)'. GHP has been proposed to be used as a preliminary tool of risk assessment and risk ranking for a mining activity. The aim of such classification is to be used as a guideline for the justification of a formal geotechnical risk assessment. Górnictwo podziemne pociąga za sobą różnorakie zagrożenia spowodowane przez uwarunkowania geotechniczne. Urabianie złoża w połączeniu z pracą w zamkniętej przestrzeni oraz z niepewnymi danymi geotechnicznymi powodować może zagrożenia, które w konsekwencji prowadzić mogą do wypadków, a te potencjalnie powodować mogą skutki śmiertelne dla osób oraz

  13. Geotechnical characteristics and slope stability on the Ebro margin, western Mediterranean

    USGS Publications Warehouse

    Baraza, J.; Lee, H.J.; Kayen, R.E.; Hampton, M.A.

    1990-01-01

    Sedimentological and geotechnical analyses of core samples from the Ebro continental slope define two distinct areas on the basis of sediment type, physical properties and geotechnical behavior. The first area is the upper slope area (water depths of 200-500 m), which consists of upper Pleistocene prodeltaic silty clay with a low water content (34% dry weight average), low plasticity, and high overconsolidation near the seafloor. The second area, the middle and lower slope (water depths greater than 500 m), contains clay- and silt-size hemipelagic deposits with a high water content (90% average), high plasticity, and a low to moderate degree of overconsolidation near the sediment surface. Results from geotechnical tests show that the upper slope has a relatively high degree of stability under relatively rapid (undrained) static loading conditions, compared with the middle and lower slopes, which have a higher degree of stability under long-term (drained) static loading conditions. Under cyclic loading, which occurs during earthquakes, the upper slope has a higher degree of stability than the middle and lower slopes. For the surface of the seafloor, calculated critical earthquake accelerations that can trigger slope failures range from 0.73 g on the upper slope to 0.23 g on the lower slope. Sediment buried well below the seafloor may have a critical acceleration as low as 0.09 g on the upper slope and 0.17 g on the lower slope. Seismically induced instability of most of the Ebro slope seems unlikely given that an earthquake shaking of at least intensity VI would be needed, and such strong intensities have never been recorded in the last 70 years. Other cyclic loading events, such as storms or internal waves, do not appear to be direct causes of instability at present. Infrequent, particularly strong earthquakes could cause landslides on the Ebro margin slope. The Columbretes slide on the southwestern Ebro margin may have been caused by intense earthquake shaking

  14. Geotechnical evaluation of slope and ground failures during the 8 October 2005 Muzaffarabad earthquake, Pakistan

    NASA Astrophysics Data System (ADS)

    Aydan, Ömer; Ohta, Yoshimi; Hamada, Masanori

    2009-07-01

    A large devastating earthquake with a magnitude of 7.6 struck in Kashmir on Oct. 8, 2005. The largest city influenced by the earthquake was Muzaffarabad. Balakot town was the nearest settlement to the epicenter, and it was the most heavily damaged. The earthquake caused extensive damage to housing and structures founded on loose deposits or weathered/sheared rock masses. Furthermore, extensive slope failures occurred along Neelum and Jhelum valleys, which obstructed both river flow and roadways. In this article, failures of natural and cut slopes as well as other ground failures induced by the earthquake and their geotechnical evaluation are presented, and their implications on civil infrastructures and site selection for reconstruction and rehabilitation are discussed. It is suggested that if housing and constructions on soil slopes containing boulders as observed in Balakot and Muzaffarabad are allowed, there should be a safety zone between the slope crest and allowable construction boundary.

  15. Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit

    NASA Astrophysics Data System (ADS)

    Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.

    2014-12-01

    This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.

  16. Sludge ash/hydrated lime on the geotechnical properties of soft soil.

    PubMed

    Lin, Deng-Fong; Lin, Kae-Long; Hung, Min-Jui; Luo, Huan-Lin

    2007-06-25

    In this study, an effort to improve the properties and strength of soil, sewage sludge ash (SSA) and hydrated lime are applied to stabilize soft cohesive subgrade soil. Five different ratios (in weight percentage), 0%, 2%, 4%, 8%, and 16%, of sludge ash/hydrated lime are proposed for mixture with cohesive soil. Then, the effects of the different proportions of SSA/hydrated lime on soft cohesive soil are studied. Test results indicate that the unconfined compressive strength of specimens with additives was raised from three to seven times better than that of the untreated soil, and swelling behaviors were also effectively reduced for those specimens. Results of triaxial compression test indicate that the shear strength parameter, c, rose with an increased amount of additives and improved from 30 to 50-70kPa. On the whole, SSA/hydrated lime could particularly improve the geotechnical properties of cohesive subgrade soil. PMID:17141407

  17. Site geotechnical considerations for expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels

    SciTech Connect

    Neal, J.T. ); Whittington, D.W. ); Magorian, T.R. , Amherst, NY )

    1991-01-01

    Eight Gulf Coast salt domes have emerged as candidate sites for possible expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels. Two existing SPR sites, Big Hill, TX, and Weeks Island, LA, are among the eight that are being considered. To achieve the billion barrel capacity, some 25 new leached caverns would be constructed, and would probably be established in two separate sites in Louisiana and Texas because of distribution requirements. Geotechnical factors involved in siting studies have centered first and foremost on cavern integrity and environmental acceptability, once logistical suitability is realized. Other factors have involved subsidence and flooding potential, loss of coastal marshlands, seismicity, brine injection well utility, and co-use by multiple operators. 5 refs., 11 figs., 2 tabs.

  18. Nondestructive laboratory measurement of geotechnical and geoacoustic properties through intact core-liner

    USGS Publications Warehouse

    Kayen, R.E.; Edwards, B.D.; Lee, H.J.

    1999-01-01

    High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.

  19. Recent advances in the characterization of transportation geo-materials. Geotechnical special publication No. 89

    SciTech Connect

    Tutumluer, E.; Papagiannakis, A.T.

    1999-07-01

    This special publication, sponsored by the Pavements Committee of the Geo-Institute, contains five papers from sessions of the Third National Conference of the Geo-Institute. The goal of the project was to encourage the application of geotechnical fundamentals in pavement design, and help the transfer of new developments in dealing with other earth-supported structures subjected to static, dynamic, and cyclic loads. Papers focus on recent advances in field and laboratory characterization of transportation geo-materials, including the use of various nondestructive testing techniques (falling weight deflecometer, spectral analysis of surface waves, ground penetrating radar, seismic pavement analyzer, Humbold stiffness gauge) and cone penetration testing for field characterization, application of a new Tube Suction test method for characterizing durability of pavement foundation core samples, and laboratory stress path testing of granular materials under dynamic confinement conditions using a new advanced triaxial test device.

  20. Interrogation of fibre Bragg gratings through a fibre optic rotary joint on a geotechnical centrifuge

    NASA Astrophysics Data System (ADS)

    Correia, Ricardo; James, Stephen W.; Marshall, Alec; Heron, Charles; Korposh, Sergiy

    2016-05-01

    The monitoring of an array of fibre Bragg gratings (FBGs) strain sensors was performed through a single channel, single mode fibre optic rotary joint (FORJ) mounted on a geotechnical centrifuge. The array of three FBGs was attached to an aluminum plate that was anchored at the ends and placed on the model platform of the centrifuge. Acceleration forces of up to 50g were applied and the reflection signal of the monitored FBGs recorded dynamically using a 2.5kHz FBG interrogator placed outside the centrifuge. The use of a FORJ allowed the monitoring of the FBGs without submitting the FBG interrogator to the high g-forces experienced in the centrifuge.

  1. IHG: an Integrated Hydrological-Geotechnical model for large landslides' susceptibility assessments

    NASA Astrophysics Data System (ADS)

    Passalacqua, R.; Bovolenta, R.

    2012-04-01

    A large area (~ 5 km2) in the north-east sector of the Genoa-Province (Liguria - Italy) is subjected to a diffused, continuous kinematic phenomenon. It is shaped into a top-valley gentle slope (circa 11° ), which downgrades directly from the south-side faces of the Northern Apennines summits (1800 meters a.s.l.). On this endangered site are situated a small town and six of its surrounding hamlets. In consequence of the widespread and differential movements at ground level, many buildings and structures are continuously damaged. Institutions, Land-Authorities, as well as the Citizens, are applying their economical efforts in the rehabilitations and the assessment/control of the active phenomena. From the geological and morphological points of view, the topmost sediment is formed by a pliocenic glacial till and its body of widely assorted sediments had been reckoned as a large relict landslide. The loose-soils' thickness spans from few meters up to 90, before of reaching the local bedrock formations (argillites, sandstones, mudstones, ophiolites and diabases in pillows). Former studies have underlined that the main trigger actions are represented by the seasonal rain/snow falls on the watershed and that the kinematic phenomenon is heavily influenced by the subsoil features. The Authors have recently dealt with the characterization and study of this complex landslide [ref. @: the International Association for Mathematical Geosciences (IAMG) Conference, Salzburg (A), September 5-9, 2011 and the 2nd World Landslide Forum, Rome (I), October 3-9, 2011], giving particular attention to both the geotechnical and the hydrological aspects of the site. Since the buried bedrock spatial morphology, depth and steepness have a key role, geophysical and seismic array techniques were used toinvestigate the micro-tremor characteristics and to correlate the emerging data to the geotechnical and geophysical properties of the shallowsediments. Noise measurements were made at more than

  2. Geotechnical and rheological characteristics of waste materials taken from abandoned mine deposit

    NASA Astrophysics Data System (ADS)

    Jeong, Sueng-Won; Ji, Sang Woo; Fukuoka, Hiroshi

    2014-05-01

    According to the Ministry of Trade, Industry & Energy in Korean (MOTIE), approximately 5,000 metal mines are spread in the Republic of Korea, but almost 80% mines are still left without any proper remediation and cleanup. The physic-chemical properties of waste materials in the mountainous area are strongly affected by heavy rainfall. Failed sediments pose the largest threat to the mountain communities and environments. In particular, a significant amount of heavy metals, such as arsenic, cadmium, copper, zinc, lead etc., is introduced to soil systems. This study examined the geotechnical and rheological characteristics of waste rock materials collected from mine deposits, located in Imgi-ri, Busan Metropolitan City, Korea. We used a ring shear apparatus for geotechnical properties and a rheometer for rheological properties. The materials collected from mines are classified as gravelly sand soils. A series of drained and undrained ring shear tests were performed to examine the stress characteristics with regard to (i) shearing time dependency, (ii) shear speed dependency, and (iii) normal stress dependency. In addition, the grain crushing in the shear zone was examined to explain a high mobile failed masses. This work is also concerned with post-failure characteristics of rainfall-induced debris flows. From the rheological tests, the materials examined exhibited the shear-thinning behavior, which is the viscosity decreases with increasing shear rates. In the relationship between shear stress and shear rate, one of simplest rheological models, i.e., the ideal Bingham fluid model, is selected to examine the debris flow potential. There are positive relationships between the volumetric concentration of sediment ranging from 50% to 65% and rheological values (i.e., yield stress and viscosities). However, the difference in rheological parameters is of significance for given shear rates. The effect of wall-slip in different geometries between ball and vane

  3. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  4. Stability of spoil piles at two coal mines in Turkey: Geotechnical characterization and design considerations

    SciTech Connect

    Kasmer, O.; Ulusay, R.

    2006-11-15

    One of the major problems in surface mining of coal is the stability of disposed overburden materials. Geotechnical considerations are thus very important in rational planning for disposal, reclamation, treatment, and utilization of mine waste material. The subject of this study is the stability of spoil piles at open pit coal mines located in the Central Anatolia, Turkey. The coal is produced from two adjacent open pits. While a large portion of the spoil piles dumped at the Central Pit has experienced slope failure, no spoil pile instability has been experienced at the South Pit. This article outlines the results of field and laboratory investigations to describe the mechanism of the spoil pile failure in the Central Pit and the geotechnical design considerations for the spoil piles at the South Pit based on the experience gained from the previous spoil failures. Limit equilibrium analysis carried out for the large-scale spoil failure indicated that deep-seated sliding along the interface between underclay and dragline spoil piles and rotational slip through the overburden spoil material may be all occurring simultaneously as water migrates through these areas. Sensitivity analyses revealed that spoil pile instability is not expected at the South Pit when the current spoil placement method is used as long as the generation of high water pressures in the spoil piles is not permitted. Comparisons between the results of finite element analysis and long-term monitoring data also confirmed the results of sensitivity analyses and indicated a vertical deformation associated with compaction of the spoil material.

  5. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    NASA Astrophysics Data System (ADS)

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration

  6. Geotechnical soil characterization of intact Quaternary deposits forming the March 22, 2014 SR-530 (Oso) landslide, Snohomish County, Washington

    USGS Publications Warehouse

    Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun

    2015-01-01

    This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.

  7. Geotechnical Investigations on Sediments from Alluvial Fans in the Upper Sava River Valley, NW Slovenia

    NASA Astrophysics Data System (ADS)

    Petkovšek, A.; Maček, M.; Mikoš, M.

    2009-04-01

    In order to estimate whether any alluvial (torrential) fan should be rather classified as a debris cone (mainly formed by debris flows; at least occasionally threatened by debris flows) we performed a combined field and laboratory investigation on selected alluvial fans in the Upper Sava River valley between Rateče (border to Italy) and Jesenice in NW Slovenia. This work was done as a part of three year targeted research project "Debris flow risk assessment in Slovenia". This region was chosen due to its high potential for debris flow generation. In the distal or/and in the proximal part of each of the selected alluvial fans (Trebiža, Suhelj, Presušnik, Koroška Bela, Javorniški Rovt), one or two sedimentological trenches reaching over 5 m in depth were excavated. For each trench we assured qualitative geological (sedimentological) inventory and description of lithological structure, and in some trenches we tried to assess age of the sediments. From selected layers in different depths in the majority of trenches sediment samples have been taken for further geotechnical laboratory investigations. The main aim of the study was to assess transport properties of sediment material to flow in the form of a debris flow. We compared elaborated values of the main geotechnical parameters (grain size distribution, USCS classification, natural water content, Atterberg limits, plasticity index, density, dry density, shear strength as a function of sample water content) of these sediment samples with known corresponding values for samples taken in the past from other active landslides (Macesnik, Slano Blato) and debris flows (Stože, Strug) in Slovenia. The comparison of the samples' shear strengths as a function of sample water content has shown that samples from selected alluvial fans don't contain enough fines and are less sensitive to water content as the samples taken from the Stože debris flow, that was in November 2000 with the magnitude of over 1 million m3 the

  8. Geomorphological and geotechnical issues affecting the seismic slope stability of the Duwamish River Delta, Port of Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Palmer, Stephen P.

    1999-01-01

    Young Holocene deposits of the Duwamish River valley underlie a highly developed transportation-industrial corridor, extending from the City of Kent to the Elliott Bay-Harbor Island marine terminal facilities. The deposits have been shaped by relative sea-level rise, but also by episodic volcanism and seismicity. A geologic and geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  9. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking

    NASA Astrophysics Data System (ADS)

    Christensen, Craig William; Pfaffhuber, Andreas Aspmo; Anschütz, Helgard; Smaavik, Tone Fallan

    2015-08-01

    Airborne electromagnetic (AEM) survey data was used to supplement geotechnical investigations for a highway construction project in Norway. Heterogeneous geology throughout the survey and consequent variable bedrock threshold resistivity hindered efforts to directly track depth to bedrock, motivating us to develop an automated algorithm to extract depth to bedrock by combining both boreholes and AEM data. We developed two variations of this algorithm: one using simple Gaussian or inverse distance weighting interpolators, and another using ordinary kriging and combined probability distribution functions of input parameters. Evaluation shows that for preliminary surveys, significant savings in boreholes required can be made without sacrificing bedrock model accuracy. In the case study presented, we estimate data collection savings of 1000 to 10,000 NOK/km (c. 160 to 1600 USD/km) would have been possible for early phases of the investigation. However, issues with anthropogenic noise, low signal, and uncertainties in the inversion model likely reduced the comparative advantage that including AEM provided. AEM cannot supersede direct sampling where the model accuracy required exceed the resolution possible with the geophysical measurements. Nevertheless, with the algorithm we can identify high probability zones for shallow bedrock, identify steep or anomalous bedrock topography, and estimate the spatial variability of depth at earlier phases of investigation. Thus, we assert that our method is still useful where detailed mapping is the goal because it allows for more efficient planning of secondary phases of drilling.

  10. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    PubMed

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-01-01

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized. PMID:27447630

  11. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review.

    PubMed

    Cardoso, Rafaela; Silva, Rui Vasco; de Brito, Jorge; Dhir, Ravindra

    2016-03-01

    The use of recycled aggregates (RA) in construction constitutes a significant step towards a more sustainable society and also creates a new market opportunity to be exploited. In recent years, several case-studies have emerged in which RA were used in Geotechnical applications, such as filling materials and in unbound pavement layers. This paper presents a review of the most important physical properties of different types of RA and their comparison with natural aggregates (NA), and how these properties affect their hydraulic and mechanical behaviour when compacted. Specifically, the effects of compaction on grading size distribution curves and density are analysed, as well as the consequences of particle crushing on the resilient modulus, CBR and permeability. The paper also contains an analysis of the influence of incorporating different RA types on the performance of unbound road pavement layers as compared with those built with NA by means of the International Roughness Index and deflection values. The results collected from the literature indicate that the performance of most RA is comparable to that of NA and can be used in unbound pavement layers or in other applications requiring compaction. PMID:26748436

  12. Geotechnical aspects in the epicentral region of the 2011, Mw5.8 Mineral, Virginia earthquake

    USGS Publications Warehouse

    Green, Russell A.; Lasley, Samuel; Carter, Mark W.; Munsey, Jeffrey W.; Maurer, Brett W.; Tuttle, Martitia P.

    2015-01-01

    A reconnaissance team documented the geotechnical and geological aspects in the epicentral region of the Mw (moment magnitude) 5.8 Mineral, Virginia (USA), earthquake of 23 August 2011. Tectonically and seismically induced ground deformations, evidence of liquefaction, rock slides, river bank slumps, ground subsidence, performance of earthen dams, damage to public infrastructure and lifelines, and other effects of the earthquake were documented. This moderate earthquake provided the rare opportunity to collect data to help assess current geoengineering practices in the region, as well as to assess seismic performance of the aging infrastructure in the region. Ground failures included two marginal liquefaction sites, a river bank slump, four minor rockfalls, and a ~4-m-wide, ~12-m-long, ~0.3-m-deep subsidence on a residential property. Damage to lifelines included subsidence of the approaches for a bridge and a water main break to a heavily corroded, 5-cm-diameter valve in Mineral, Virginia. Observed damage to dams, landfills, and public-use properties included a small, shallow slide in the temporary (“working”) clay cap of the county landfill, damage to two earthen dams (one in the epicentral region and one further away near Bedford, Virginia), and substantial structural damage to two public school buildings.

  13. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    PubMed Central

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M.

    2016-01-01

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized. PMID:27447630

  14. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review

    NASA Astrophysics Data System (ADS)

    Murray, John M. H.; Meadows, Azra; Meadows, Peter S.

    2002-09-01

    At the foundations of biogeomorphological processes in the sea lie interactions between the activities of marine benthic animals and the geotechnical properties of their sedimentary environments. The potential significance of these interactions, which take place at a microscale level of millimetres to metres, for the large-scale geomorphology of the seabed has rarely been appreciated. In the context of this review, large-scale is defined as greater than 50 m to hundreds of kilometres. The present review addresses this link, drawing examples from a wide range of marine environments, including estuaries, the intertidal zone, continental shelves and slopes, and the deep sea. It firstly considers sediment stabilisation, slope failure, sediment mixing, biodeposition, sediment compaction, and hydrodynamic effects. This is followed by a consideration of two extremes of the ecological pyramid—the effects of marine meiofauna and marine vertebrates. The final section draws attention to the central role of faunal mucus and extracellular polymeric material (ECPM) in many of the microscale interactions that we describe. The implications of these microscale biological processes and features are discussed in terms of their influence on and control of the large-scale geomorphology of the seabed.

  15. Piezometer-probe technology for geotechnical investigations in coastal and deep-ocean environments

    SciTech Connect

    Bennett, R.H.; Burns, J.T.; Lipkin, J.; Percival, C.M.

    1983-01-01

    Three multisensor piezometer probes were developed and field tested for use in coastal (shallow water) fine-grained Marine soils. Offshore sites were investigated in the Mississippi Delta. Pore water pressure measurements were determined at several depths below the sea floor using both absolute and differential pressure sensors placed in a four inch diameter probe. Pressure sensors were hard-wired to nearby platforms where signals were conditioned and analog recording devices monitored pore water pressure changes in the marine soils. Pore water pressures were monitored for several months. Two single sensor piezometer probes, eight millimeters in diameter, were developed for deep-ocean investigations. These probes use differential pressure sensors and were tested in a hyperbaric chamber pressurized to 55 MPa (8000 psi). Testing was performed for a period of five weeks under high hydrostatic pressure with the probes inserted in reconstituted illitic marine soil. Small differential pore water pressures responded to both mechanically and thermally generated forcing functions. During shallow water investigations and simulated deep-ocean pressure tests, the sensors exhibited excellent sensitivity and stability. These developments in piezometer probe technology provide a means of assessing important geotechnical parameters of fine-grained seabed deposits.

  16. Application of geotechnical and geophysical field measurements in an active alpine environment

    NASA Astrophysics Data System (ADS)

    Lucas, D. R.; Fankhauser, K.; Springman, S. M.

    2015-09-01

    Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.

  17. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review.

    PubMed

    Cardoso, Rafaela; Silva, Rui Vasco; de Brito, Jorge; Dhir, Ravindra

    2016-03-01

    The use of recycled aggregates (RA) in construction constitutes a significant step towards a more sustainable society and also creates a new market opportunity to be exploited. In recent years, several case-studies have emerged in which RA were used in Geotechnical applications, such as filling materials and in unbound pavement layers. This paper presents a review of the most important physical properties of different types of RA and their comparison with natural aggregates (NA), and how these properties affect their hydraulic and mechanical behaviour when compacted. Specifically, the effects of compaction on grading size distribution curves and density are analysed, as well as the consequences of particle crushing on the resilient modulus, CBR and permeability. The paper also contains an analysis of the influence of incorporating different RA types on the performance of unbound road pavement layers as compared with those built with NA by means of the International Roughness Index and deflection values. The results collected from the literature indicate that the performance of most RA is comparable to that of NA and can be used in unbound pavement layers or in other applications requiring compaction.

  18. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    PubMed

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-07-19

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  19. Supporting Active Learning in an Undergraduate Geotechnical Engineering Course Using Group-Based Audience Response Systems Quizzes

    ERIC Educational Resources Information Center

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or "clickers" in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS…

  20. Finite-element formulation for the analysis of interfaces, nonlinear and large displacement problems in geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Zeevaert, A. E.

    1980-03-01

    A mathematical formulation to model the behavior under load of a reinforced soil system, where a fabric is placed over a soft soil and covered with stone for use as a temporary haul road is discussed. This approach is used to improve the behavior of temporary roadways, particularly where very soft soils are encountered. The stress distribution and the load-deformation characteristics of the soil-fabric system for varying geometries and material properties are defined. Included in the mathematical formulation are such features as: nonlinear behavior of the soil and fabric materials, friction parameters of the interface, tension characteristics of the fabric materials, large displacements in finite deformation, "no tension" conditions of the cohesionless materials, and yielding of plastic materials. The mathematical model is a more complete approximation of the actual fabric-soil system than is presently available.

  1. Geotechnical studies for evaluation and limitations of environmental and engineering hazards that affect the economic infrastructure in Abha, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Shaaban, Fathy; Al-Salami, Ali E.

    2014-12-01

    Abha is the capital of Asir province in Saudi Arabia. It is situated 2200 meters (7200 ft) above the sea level in the fertile mountains of the south-western Saudi Arabia. One of the most important structures of this region is Abha dam that acts as a barrier that impounds water or underground streams thereby retaining the ground water of the region. With the passage of time, various environmental factors such as ground movement, wind and changes in temperature may have significant effect on these various structure factors and may lead to invisible cracks and other structural defects. Because the dams and tunnels are prone to sudden collapse, there is potential great risk to lives of the people and significant economic loss in this area. The use of the ground penetrating radar (GPR) and electric resistivity techniques is a non-invasive scan and could assess the conditions of various built structures as well as the earth beneath or surrounding it. So the GPR system with appropriate types of antennas (1.5 GH, 1 GH, 400 MH and 100 MH) and electrical resistivity in one dimension (VES) and two dimensions (electrical profiling and imaging) is used in this work. This work aims to investigate the dam structure, developing cracks or areas of increased moisture. Also to study the surrounding areas to detect seepage from pond that may affect nearby buildings and the dam itself. It reveals that, the depth of water bearing layer ranges from 2 m to 10 m, where the three geoelectric layers are present. The first layer has resistivity values ranging from 44 Ω m-1200 Ω m with thickness ranging from 3 m to 18 m that is interpreted as the wadi deposits. The second layer having resistivity values from 11 Ω m to 137 Ω m is interpreted as the water saturated in the fractured basements. The third layer of resistivity values ranging from 2200 Ω m to 90,000 Ω m is interpreted as dry, massive basements. The GPR results provided internal images of the slab, showing its morphology, areas of possible damage and changes to the structure, and the situation of the steel reinforcements. It showed the presence of different shapes of fractures and voids with the growing of moisture zones.

  2. Submarine landslides in contourite drifts along the Pianosa Ridge (Northern Tyrrhenian Sea): A geotechnical approach.

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Sultan, Nabil; Garziglia, Sebastien; Jouet, Gwenael; Cauquil, Eric; Cattaneo, Antonio

    2016-04-01

    softening behaviour. The aim of this study is to understand the mechanical processes that control slope instability in a context of a contourite system by focusing on a plastered drift and by applying slope stability modelling, using the geotechnical data from cores and in situ measurements. 1D consolidation modelling with the SeCo software shows that the sedimentation rates found in the plastered drift during the last 150 kyr are not enough to generate significant overpressure. We propose that two factors probably favoured the instability of the plastered drift: 1) the geotechnical properties of the sediment layer containing zeolites, and 2) the presence of an incision (moat) created by bottom currents in the lower part of the plastered drift, generating locally a slope gradient up to 15°.

  3. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (< 1m sampling) surface wave data in the context of infrastructure monitoring over significant spatial domains (10s of km). Infrastructure monitoring is particularly crucial in the context of high-latitude installations where a changing global climate can trigger reductions in soil strength due to permafrost thaw. DAS surface wave monitoring systems, particularly those installed in/near transport corridors and coupled to ambient noise inversion algorithms, could be a critical "early warning" system to detect zones of decreased shear strength before failure. We present preliminary ambient noise tomography results from a 1.3 km continuously recording subsurface DAS array used to record traffic noise next to an active road in Fairbanks, AK. The array, depolyed at the Farmer's Loop Permafrost Test Station, was designed as a narrow 2D array and installed via trenching at ~30 cm. We develop a pre-processing and QC approach to analyze the large resulting volume of data, equivalent to a 1300 geophone array sampled at 1 khz. We utilize automated dispersion analysis and a quasi-2D MC inversion to generate a shear wave velocity profile underneath the road in a region of discontinuous permafrost. The results are validated against a high-resolution ERT survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  4. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Rosli, S.; Mokhtar, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.

    2015-03-01

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  5. Fluidization process in landslides from failure to post-failure: geotechnical and rheological characteristics

    NASA Astrophysics Data System (ADS)

    Jeong, Sueng-Won; Chambon, Guillaume; Naaim, Mohamed

    2010-05-01

    Previous studies of landslide mechanisms in the literatures (e.g., measurements of shear strength under fully saturated water condition, Cat-scanning or MRI imaging techniques during shearing, normalized rheological strength parameters for fluid, thixotropy model for describing the landslide motion, etc) may help to understand the phenomena of structural change, causing major damaging landslides with a large travelling distance. However, the phase ‘transition' from slide to flow, which is treated as a landslide from failure to post-failure associated with a sudden reduction of shear strength, is still poorly understood. To improve our understanding of landslide mechanisms, a fluidization process is thus important related to the strength loss from intact shear strength, through remoulded shear strength, to the yield stress in a mud/debris flow. This process can result from increasing pore water pressure and thereby decreasing effective stress in sliding body, but instead of these factors we would take into account the structural variation due to strength loss during the flow after pre-failure and onset of failure stage. This is one of on-going ‘Mountain-Risks' research projects: mechanical analysis of fluidization process in landslides. For this purpose, we first set up the laboratory test method with regard to geotechnical and rheological properties of clayey soils in terms of the strength evolution. The remoulded shear strength/yield stress for clayey soils related to the landslides can be estimated, when linking soil consistency and strength measured from fall cone apparatus and rheology obtained from viscometer. It is due to the fact that, for the mobility analysis of landslides to debris flows, index and rheological properties are one of important correlations. We then concern the thixotropy model for describing a fluidization process from failure to post-failure.

  6. Geomorphological mapping and geotechnical testing of the March 22, 2014, SR530 landslide near Oso, Washington

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Reid, M. E.; Vallance, J. W.; Iverson, R. M.; Schmidt, K. M.

    2014-12-01

    The March 22, 2014 landslide near Oso, Washington devastated a community, killing 43 people, destroying dozens of homes, and temporarily closing a section of State Route (SR) 530. The landslide, characterized as a debris avalanche - debris flow - rotational slide, was triggered by heavy precipitation in the region and initiated from a 200 m tall section of Pleistocene glacial deposits. The entire landslide encompassed an area of 1.2 km2. To understand the mobility of this landslide, we performed geological and geomorphological mapping throughout the initiation, transport, and deposition zones. In addition, we mapped a 450-m-long cross-section through the western distal lobe created by the excavation to reopen the SR530 roadbed to temporary traffic. Samples collected during mapping were used for geotechnical testing to evaluate the mobility of the landslide materials. Our detailed (1:300) geological mapping of the excavation revealed the juxtaposition of sand (glacial outwash) and clay (glaciolacustrine) debris avalanche hummocks towards the distal end of the landslide. Further, we found that two sections of the roadbed, having a combined length of at least 150 m, were entrained in the landslide. Throughout the debris avalanche deposit, 1:1200-scale geomorphological mapping identified a preponderance of sand boils located within thinner deposits between hummocks, suggesting that liquefaction played a role in the landslides mobility. In the central distal end of the landslide, we mapped on-lap deposits, wherein distal debris flow material overrode smaller hummocks of the larger debris avalanche deposit. Discovery of these deposits indicates that the run out of the landslide might have been even longer in places had topographic barriers (i.e., the other side of the valley) not reflected the flow back towards itself.

  7. Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis

    USGS Publications Warehouse

    Kayen, R.E.; Schwab, W.C.; Lee, H.J.; Torresan, M.E.; Hein, J.R.; Quinterno, P.J.; Levin, L.A.

    1989-01-01

    Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6?? to 2.0?? slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6-15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth < 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations. ?? 1990.

  8. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    SciTech Connect

    Azwin, I. N. Rosli, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.; Mokhtar, S.

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  9. Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the northwestern Alboran Sea

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Lee, H.J.

    1992-01-01

    Laboratory analysis of core samples from the western Alboran Sea slope reveal a large variability in texture and geotechnical properties. Stability analysis suggests that the sediment is stable under static gravitational loading but potentially unstable under seismic loading. Slope failures may occur if horizontal ground accelerations greater than 0.16 g are seismically induced. The, Alboran Sea is an active region, on which earthquakes inducing accelerations big enough to exceed the shear strength of the soft soil may occur. Test results contrast with the apparent stability deduced from seismic profiles. ?? 1992 Springer-Verlag New York Inc.

  10. Time-lapse Monitoring of Geotechnical Properties of Heritage Earthworks by Means of Near-Surface Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Bergamo, P.; Donohue, S.; Gunn, D.; Dashwood, B.

    2014-12-01

    Surface wave (SW) method and P-wave refraction tomography are widely spread methods for the characterization of the near-surface. We applied these techniques to a 1-year time-lapse monitoring of the geotechnical properties of a heritage earthwork at risk of failure, a stretch of the embankment of the Gloucestershire-Warwickshire railway in Laverton, UK. Like a significant part of UK railway network, this line was built in the early 20th century without modern construction standards. Poor maintenance and the increase in extreme weather events due to recent climate change have further compromised its stability. The aim of this monitoring campaign is to assess the capability of non-invasive and repeatable geophysical methods to measure temporal changes of mechanical parameters of earthworks. MASW (multichannel analysis of SW) and P-wave refraction data were repeatedly acquired along a 100 m line on the crest of the embankment, every other month from July 2013 to July 2014. Smaller scale seismic data were also recorded on the flanks of the embankment. Sensors measuring climate -temperature, precipitation, solar radiation - and geotechnical parameters - water content, suction - were installed at various locations and depths within the embankment. Moreover, penetrometric data were acquired, soil samples were analysed. SW data were analysed in terms of phase velocity and attenuation. Hodocrones, dispersion and attenuation curves show a limited but continuous seasonal change. SW dispersion curves and P-wave travel times were separately inverted for VS and VP models with a laterally constrained and a tomographic approach, respectively. The VS and VP sections describe the temporal variation of seismic properties of the embankment, consistent with the climate trend. Such results were jointly interpreted with data from field sensors and cone penetration testing. This calibration stage provides a geotechnical model that explains the temporal variations of seismic velocities

  11. Simultaneous seismic and geotechnical monitoring for the characterization of superficial deformations of the mudslide in Super-Sauze, French Alps

    NASA Astrophysics Data System (ADS)

    Walter, Marco; Joswig, Manfred; Arnhardt, Christian; Malet, Jean-Philippe

    2010-05-01

    To characterize superficial deformations of the mudslide in Super-Sauze, southern French Alps, seismic and geotechnical monitoring techniques have been applied simultaneously during a field campaign in July 2009. Based on the method nanoseismic monitoring (Joswig, 2008), we installed three seismic mini-arrays with an aperture of 25-30m, each one consisting of one three-component central-station and three outer vertical-component stations. We identified two different deformation processes caused by the movement of the mudslide: fracture processes within the slope material and superficial fissure development (Walter & Joswig, 2009). The spatiotemporal occurrence of deformation processes identified by nanoseismic monitoring has been verified with geotechnical monitoring systems. GPS devices as well as a small wireless ad-hoc, multi hop sensor network (WSN) have been installed in the slope area. The network consist of 7 connection points, called nodes, that transfer data from different sensors via radio signal directly or over other nodes (Multi Hop) in real-time to a data collection point (gateway). To determine the varying deformation processes, like toppling, spreading, falling and sliding, 6 nodes were equipped with micro-sensors (each with 3-axis acceleration sensor, 2-axis tilt sensor and barometric pressure sensor). In order to monitor the deformation of a recent fissure, one node was equipped with a position-sensor (draw wire displacement transducer). Laboratory tests for the different sensors showed that tilt movements can be detected with an accuracy of +/- 0,06° and a resolution of >0,1°, accelerations with +/- 0,008g and >0,02g and displacements with +/- 0,1mm and >0,1mm. The analysis of data recorded by barometric pressure sensors is quite difficult due to the high natural pressure fluctuations in mountain areas, anyway, the detection of fluctuations of >0,5m was possible. Except the displacement transducers, the geotechnical sensors didn't detect any

  12. Socuy coal mine. Phase 1. Engineering services. Final report. Volume 1. Export trade information

    SciTech Connect

    1997-06-01

    The report presents a five-year mine plan, conceptual life-of-mine sequence, and a detailed cost estimate for the Socuy Coal Mine in Venezuela. Volume 1 contains the Phase I - Engineering Services Final Report and is divided into: Executive Summary; (1) Introduction; (2) Data Review; (3) Mining Criteria; (4) Geology; (5) Geotechnical; (6) Groundwater Hydrology; (7) Surface Water Hydrology; (8) Socuy Mine Plan; (9) Socuy Cost Estimate; (10) References; and Appendix A: Quality Summary Report.

  13. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  14. A multidisciplinary geophysical, geotechnical and hydrogeological investigation of quick-clay landslides in Sweden

    NASA Astrophysics Data System (ADS)

    Malehmir, A.; Krawczyk, C.; Polom, U.; Lundberg, E.; Adamczyk, A.; Malinowski, M.; Bastani, M.; Gurk, M.; Juhlin, C.; Persson, L.; Ismail, N.

    2012-04-01

    In Spring 2011, the Society of Exploration Geophysicists (SEG) through its Geoscientists Without Borders (GWB) program sponsored our project to study clay-related landslides in the Nordic countries. This project will study quick clay or rapid earth flow landslides in Sweden. Undisturbed quick clay resembles a water-saturated gel. When a mass of quick clay undergoes sufficient stress, it instantly turns into a flowing ooze, a process known as liquefaction. A small block of quick clay can liquefy from a stress change due to as little as a modest blow from a human hand, while a larger deposit is mainly vulnerable to greater stress changes, such as increased saturation by excess rainwater. Despite their abundance, our geophysical understanding of clay behavior in terms of both changes in the geometrical shape (clay formations) and changes in the physical properties are limited and require a better understanding. Quick clay landslides are not particularly constrained to steep slopes and have been known to slide even in low-to-moderate angle slopes. Geophysical investigations began in September 2011 over a known landslide scar near the Göta river in southwest Sweden, an area known to contain quick clays in parts of it. The investigations involved 2D and 3D P- and S-wave source and receiver surveys, geoelectrics, controlled-source and radio-magnetotellurics, ground gravity and magnetic surveys. These data in combination with existing geotechnical information and hydrogeological investigations should allow better insight into the mechanism(s) governing clay-related landslides in the Nordic countries and to provide high-resolution images of subsurface structures down to the bedrock. We will present preliminary results from the seismic investigations, including the 2D and 3D reflection and refraction surveys. The reflection seismic data show excellent quality and image the bedrock topography and internal layering above it down to about 100 m. Tomography results suggest the

  15. GIS-based topographic reconstruction and geotechnical modelling of the Köfels Rockslide (Austria)

    NASA Astrophysics Data System (ADS)

    Körfgen, Annemarie; Mergili, Martin; Zangerl, Christian

    2014-05-01

    Investigating fossil landslides may help to predict possible future events. The larger than 3 km2 Köfels rockslide, located in the Ötztal Valley (Tyrol, Austria) represents one of the largest landslides in metamorphic rock masses in the Alps. It occurred in the early Holocene approx. 8700 years BP and has been subject of numerous studies. So far no reconstruction of the pre-failure topography and volume determination based on high resolution airborne laser scanning digital elevation models (DEM) and up-to-date GIS methods was done. In addition, only a few numerical studies using numerical modelling techniques focusing on the failure as well as deformation process and the rock mass strength properties were performed. The present work will attempt to close this gap. The Köfels rockslide is reanalyzed with regard to its actual and initial topography as well as the involved failure and deposition volumes based on a recent DEM. The complex topographic situation of the study site requires four different models of the terrain in order to calculate the volume of the failure and deposition mass. Therefore the following topographies are reconstructed: (i) the pre-failure topography representing the situation before the event, (ii) the topography of the failure surface without the deposition mass in the valley, (iii) the topography after the event but before valley incision and deposition of the alluvium north and south of the rock slide deposit, and (iv) the up-to-date DEM, which represents the present topographic situations in the area. The volumes of the failure and deposition masses of the Köfels rock slide are estimated by comparing the four terrain models. Besides geomorphological considerations based on the DEM, published data from boreholes and an investigation adit are used to reconstruct the pre-failure valley topography. For the geotechnical analysis the 2-D discrete element code UDEC by Itasca is applied to a geological cross section of the Köfels rock slide

  16. Paleoliquefaction studies in continental setting; geologic and geotechnical factors in interpretations and back-analysis

    USGS Publications Warehouse

    Obermeier, Stephen F.; Pond, Eric C.; Olson, Scott M.; Green, Russell A.; Stark, Timothy D.; Mitchell, James K.

    2001-01-01

    Paleoliquefaction research in the last 15 years has greatly improved our ability to interpret the paleoseismic record throughout some large geographic areas, especially in regions of infrequent large earthquakes. Paleoliquefaction studies have been used extensively in the central and eastern U.S. to assess seismic hazards, and could be used elsewhere to good purpose because paleoliquefaction studies in some field settings can reveal more than other methods, such as fault studies, about the prehistoric strength of shaking and earthquake magnitude. We present guidelines for the conduct of a paleoliquefaction study in continental deposits, mainly in terms of the geologic/seismologic setting and geotechnical properties, because a successful interpretation requires factors from all these disciplines. No single discipline suffices alone. Their interactions must be appreciated in order to understand why seismically induced liquefaction features are found in some locales and not in others. The guidelines that we present also relate to three primary issues for which liquefaction features are especially useful for interpretations: Where was the tectonic source? What was the strength of shaking? And what was the magnitude? In discussing these issues we focus on the following aspects of level-ground liquefaction: (1) mechanisms that form seismic liquefaction features in the field; (2) field settings where liquefaction features should be present if strong seismic shaking has occurred; (3) field settings where an absence of liquefaction features indicates an absence of strong seismic shaking; (4) how liquefaction features should be used to interpret the tectonic source locale of a paleo-earthquake; and (5) how effects of liquefaction can be used to back-calculate the strength of shaking as well as earthquake magnitude. Several methods are available to back-calculate the strength of shaking and earthquake magnitude, and the most commonly used methods are presented and critiqued

  17. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  18. Elevated lateral stress in unlithified sediment, Midcontinent, United States—geotechnical and geophysical indicators for a tectonic origin

    NASA Astrophysics Data System (ADS)

    Woolery, Edward W.; Schaefer, Jeffrey A.; Wang, Zhenming

    2003-06-01

    Indirect and direct geotechnical measurements revealed the presence of high lateral earth pressure ( Ko) in shallow, unlithified sediment at a site in the northernmost Mississippi embayment region of the central United States. Results from pile-load and pressuremeter tests showed maximum Ko values greater than 10; however, the complex geologic environment of the Midcontinent made defining an origin for the anomalous Ko based solely on these measurements equivocal. Although in situ sediment characteristics indicated that indirect tectonic or nontectonic geologic mechanisms that include transient overburden loads (e.g., fluvial deposition/erosion, glacial advance/retreat) and dynamic shear loads (e.g., earthquakes) were not the dominant cause, they were unable to provide indicators for a direct tectonic generation. Localized stresses induced anthropogenically by the geotechnical field tests were also considered, but ruled out as the primary origin. A high-resolution shear-wave (SH) reflection image of geologic structure in the immediate vicinity of the test site revealed compression-style neotectonism, and suggested that the elevated stress was a tectonic manifestation. Post-Paleozoic reflectors exhibit a Tertiary (?) structural inversion, as evidenced by post-Cretaceous fault displacement and pronounced positive folds in the hanging wall of the interpreted faults. The latest stratigraphic extent of the stress effects (i.e., all measurements were in the Late Cretaceous to Tertiary McNairy Formation), as well as the relationship of stress orientation with the orientation of local structure and regional stress, remain unknown. These are the subjects of ongoing studies.

  19. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Dabycharun, Bhoopendra; Kuwano, Takeshi; Ichikawa, Kensuke; Fukuoka, Hiroshi

    2016-04-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in densely-populated zone. Although the long-term annual precipitation show slightly decreasing trend, number of tropical cyclone over Mauritius is clearly increasing at least in the past 3 decades. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contributes to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the above-mentioned two basaltic landslide areas in Mauritius. Recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works. In the field investigation, aerial photo interpretation was used to investigate the zone of cracks and scarps for both sites. The landslide areas for Chitrakoot and Vallee Pitot were estimated to 1.8 km2 and 5,000 m2 respectively. Both sites are located in the highly populated area in the capital city of Mauritius. The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of

  20. Engineering uses of physics-based ground motion simulations

    USGS Publications Warehouse

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  1. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  2. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests. PMID:25427774

  3. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  4. Summary of geotechnical services for the proposed Route 24/580/980 interchange improvement in Oakland, California

    SciTech Connect

    Tabatabaie, A.; Majchrzak, M.

    1996-02-01

    This report presents a summary of the geotechnical services in connection with the proposed Route 24/580/980 Interchange Improvement in Oakland, California. The purpose of the work was to provide drilling equipment and personnel to log test borings, collect soils samples, testing of excess soil cutting for environmental concerns and disposal of excess soils cutting. A field investigation was conducted from September 7 through September 26, 1995. The field work consisted of drilling 7 borings (B-1 through B-7) at the approximate locations shown on the Boring Location Map provided by CALTRANS. These borings extended to approximately 200 feet below the ground surface. This project is part of a CALTRANS earthquake retrofit project.

  5. Application of an integrated geotechnical and topographic monitoring system in the Lorano marble quarry (Apuan Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Salvini, Riccardo; Vanneschi, Claudio; Riccucci, Silvia; Francioni, Mirko; Gullì, Domenico

    2015-07-01

    Accurate slope stability analysis is essential for human activity in high-risk geological contexts. This may, however, not be enough in the case of quarrying where the dynamic and evolving environment also requires effective monitoring. A well-designed monitoring system requires the acquisition of a huge dataset over time, improving knowledge of the study area and helping to refine prediction from stability analysis. This paper reports the implementation of an integrated monitoring system in a marble quarry in the Apuan Alps (Italy) and some of the results obtained. The equipment consists of a traditional geotechnical monitoring system (extensometers, crackmeters and clinometers) and two modern topographic monitoring systems (a terrestrial interferometer and a robotic total station). This work aims to provide in-depth knowledge of the large scale rock mass behaviour as a result of marble exploitation, thereby allowing continuous excavation. The results highlight the importance of integrating different monitoring systems.

  6. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  7. Stress history and geotechnical properties of sediment from the Cape Fear Diapir, Blake Ridge Diapir, and Blake Ridge

    USGS Publications Warehouse

    Winters, W.J.

    2000-01-01

    Geotechnical properties of sediment from Ocean Drilling Program Leg 164 are presented as: (1) normalized shipboard strength ratios from the Cape Fear Diapir, the Blake Ridge Diapir, and the Blake Ridge; and (2) Atterberg limit, vane shear strength, pocket-penetrometer strength, and constant-rate-of-strain consolidation results from Hole 995A, located on the Blake Ridge. This study was conducted to understand the stress history in a region characterized by high sedimentation rates and the presence of gas hydrates. Collectively, the results indicate that sediment from the Blake Ridge exhibits significant underconsolidated behavior, except near the seafloor. At least 10 m of additional overburden was removed by erosion or mass wasting at Hole 993A on the Cape Fear Diapir, compared to nearby sites.

  8. A select bibliography with abstracts of reports related to Waste Isolation Pilot Plant geotechnical studies (1972--1990)

    SciTech Connect

    Powers, D.W.; Martin, M.L.

    1993-08-01

    This select bibliography contains 941 entries. Each bibliographic entry contains the citation of a report, conference paper, or journal article containing geotechnical information about the Waste Isolation Pilot Plant (WIPP). The entries cover the period from 1972, when investigation began for a WIPP Site in southeastern New Mexico, through December 1990. Each entry is followed by an abstract. If an abstract or suitable summary existed, it has been included; 316 abstracts were written for other documents. For some entries, an annotation has been provided to clarify the abstract, comment on the setting and significance of the document, or guide the reader to related reports. An index of key words/phrases is included for all entries.

  9. New constraints on oceanographic vs. seismic control on submarine landslide initiation: a geotechnical approach off Uruguay and northern Argentina

    NASA Astrophysics Data System (ADS)

    Ai, Fei; Strasser, Michael; Preu, Benedict; Hanebuth, Till J. J.; Krastel, Sebastian; Kopf, Achim

    2014-10-01

    Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.

  10. Testing the SH1D Assumption for Geotechnical Site and Basin Response Using 3D Finite Difference Modeling

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.

    2015-12-01

    Current state-of-practice of geotechnical site response and soil-structure analyses generally assume a vertically propagating horizontally polarized plane wave is incident on a plane-layered (one-dimensional) soil column. Ground motions representing the wavefield incident to the bedrock base of the soil column are developed from observed and sometimes scaled time-histories or synthesized by various methods. The site-specific ground motion at the surface is then computed from the response of the soil column to the bedrock incident wavefield, possibly including non-linear response of the geotechnical near-surface. This is the so-called SH1D assumption. While this approach is widely used, it ignores important complexities of the incident wavefield. Specifically, the standard approach assumes: 1) the incident wavefield is only composed of vertically propagating body waves; 2) ignores oblique incidence; and 3) neglects the three-component nature of the wavefield that includes surface waves and rotational motions. Surface waves often carry much of the seismic energy and can excite all three components of motion. Therefore, it seems most appropriate to include the most representative characterization of the incident wavefield in site-specific analyses. We are performing parametric studies with three-dimensional (3D) elastic finite difference simulations to compare the near-surface response of sedimentary basins to horizontally polarized planes (arbitrary incident) and point source (double couple) earthquakes. Simulations involve simple, parametric representations of basin geometries and layered material properties of the sedimentary basin and surrounding hard rock. We compare the frequency-dependent site response for different excitations and attempt to quantify the differences between the plane-wave and fully 3D basin response.

  11. Elevated lateral stress in unlithified sediment, Midcontinent, United States - geotechnical and geophysical indicators for a tectonic origin

    USGS Publications Warehouse

    Woolery, E.W.; Schaefer, J.A.; Wang, Z.

    2003-01-01

    Indirect and direct geotechnical measurements revealed the presence of high lateral earth pressure (Ko) in shallow, unlithified sediment at a site in the northernmost Mississippi embayment region of the central United States. Results from pile-load and pressuremeter tests showed maximum Ko values greater than 10; however, the complex geologic environment of the Midcontinent made defining an origin for the anomalous Ko based solely on these measurements equivocal. Although in situ sediment characteristics indicated that indirect tectonic or nontectonic geologic mechanisms that include transient overburden loads (e.g., fluvial deposition/erosion, glacial advance/retreat) and dynamic shear loads (e.g., earthquakes) were not the dominant cause, they were unable to provide indicators for a direct tectonic generation. Localized stresses induced anthropogenically by the geotechnical field tests were also considered, but ruled out as the primary origin. A high-resolution shear-wave (SH) reflection image of geologic structure in the immediate vicinity of the test site revealed compression-style neotectonism, and suggested that the elevated stress was a tectonic manifestation. Post-Paleozoic reflectors exhibit a Tertiary (?) structural inversion, as evidenced by post-Cretaceous fault displacement and pronounced positive folds in the hanging wall of the interpreted faults. The latest stratigraphic extent of the stress effects (i.e., all measurements were in the Late Cretaceous to Tertiary McNairy Formation), as well as the relationship of stress orientation with the orientation of local structure and regional stress, remain unknown. These are the subjects of ongoing studies. ?? 2003 Elsevier Science B.V. All rights reserved.

  12. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random

  13. Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data

    NASA Astrophysics Data System (ADS)

    Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.

    2009-04-01

    dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for slope stability numerical modelling. In the SSR finite element technique, elasto-plastic strength is assumed for dam's materials and shear strengths are progressively reduced until collapse occurs. Numerical modelling was performed on the most critical profile choosed through analysis of geophysical and geotechnical informational volume achieved by insitu or in laboratory tests. Finite element analysis were considered in two situations: first, before geophysical investigations and second considering the whole informational of data achieved. Both situations were analysed in static and pseudo-static conditions. The factor of safety before geophysical investigations is high enough to describe a stable state of stability even for the seismic load. The total displacement distributions were modified by the presence of internal erosional element giving a high state of instability, especially for the pseudo-static case. These analysis using the finite element method prove the importance of structural disturbance elements that may occure inside the dam body produced by internal erosional processes.

  14. Management, visualization, and analysis of environmental and geotechnical data. Topical report

    SciTech Connect

    1994-09-01

    This document is a topical report evaluating current technology on the management, visualization, and analysis of engineering and environmental data. This report gives an overview and assessment of the Integrated Computer Assisted Site Evaluation /Graphical Remedial Assessment and Cost Evaluation (ISACE/GRACE) system and includes brief descriptions of the Environmental Technology `94: Computing and Information Conference and the National Conference on Environmental Problem Solving with GIS.

  15. Lunar Excavation Experiments in Simulant Soil Test Beds-Revisiting the Surveyor Geotechnical Data

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Wilkinson, R. Allen

    2012-01-01

    (1) Establishing ISRU technologies on planetary bodies is an important long-term goal of NASA; (2) Excavation is a key component of these ISRU processes; (3) Lack of flight data relevant to lunar excavation; (4) Existing models of the excavation-cutting phenomenon give varying results; (5) The lack of predictive models of the dynamic behavior of soils in excavation implements is a major driver for these studies; and (6) Objective: Need to develop robust models of excavation cutting phenomena that generate predictive capabilities to aid the designer and engineer.

  16. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and

  17. Investigation of geotechnical parameters from CSEM mapping and monitoring data at the oases Kharga and Baris of Sahara desert, Egypt

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg; Attia, Magdy; Khalil, Ahmed; Mekkawi, Mahmoud; Soliman, Mamdouh

    2016-04-01

    The site of investigation, oasis Kharga, is located at about 600 km south of Cairo, Egypt; Baris is about 90 km from Kharga also to south and towards more inside the desert. The work was aimed to investigate the rock mass stability at Baris and to estimate the water intake in the Oasis Kharga. A controlled source electromagnetic (CSEM) approach developed earlier by IGF UB RAS (Geophysical Federal Institute, Ural Branch of Russian Academy of Science) is applied to image the ranked deformation levels in the massive structure of the Baris. The wide profile system of observation has been used to monitor the three components of the alternating magnetic field along predefined measuring lines in the study area. Here we can show the first results that we shall continue during some cycles of monitoring. The second part of our work was linked with mapping the massif structure inside the oasis City, where only using our device we could construct the geoelectrical sections for 5 profiles and show the real structure of the water volume and its complicated structure up to 200 meters depth recording the values of real not apparent resistivity. The analytical treatments provided good information about the structure of the rock massive and its rank of degradation, the lateral distribution of the geotechnical heterogeneity, and finally a conclusive outcome about foundation stability. We can conclude that the general dynamic state close to the destruction level within the investigation areas is getting worse over the time; this is reflected in the crack's densities and positions, also on the changes in the lateral distribution of geoelectrical heterogeneity as an indicator of the saturation of the surface rock in the study area with water [1,2]. References 1. Magdy A. Atya, Olga A. Hachay, Mamdouh M. Soliman, Oleg Y. Khachay, Ahmed B. Khalill, Mahmoud Gaballah, Fathy F.Shaaban and Ibrahim A.El. Hemali. CSEM imaging of the near surface dynamics and its impact for foundation stability

  18. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE

  19. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  20. iCRESLIDE: Integration of Coupled Routing and Excess Storage and SLope-Infiltration-Distributed Equilibrium for the Cascading Hydrologic-Geotechnical Modeling

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Zhang, K.; Gourley, J. J.

    2015-12-01

    Floods and landslides account for the large number of natural hazards and affect more people than many other types of natural disasters around the world. This study proposed a coupled hydrological-geotechnical model iCRESLIDE (Integration of Coupled Routing and Excess Storage and SLope-Infiltration-Distributed Equilibrium). The iCRESLIDE is designed to remedy the discrepancy of the original landslide model (SLIDE) by coupling with a hydrological model (CREST) and building an integrated system for predicting cascading storm-flood-landslides using remote sensing and geospatial datasets. This coupled system is implemented and evaluated in Macon County, North Carolina, where Hurricane Ivan triggered widespread landslides in September 2004 during the hurricane season. Model simulations from iCRESLIDE show its reliability to predict landslides occurrence (location and time). Receiver Operating Characteristic (ROC) analysis demonstrate that the iCRESLIDE has higher global accuracy (0.750) and higher sensitivity (11.36%) compared to the original SLIDE model. Such improved predictive performance demonstrates the advantage of coupling hydrological-geotechnical models, which calls more attentions and deserves further investigations in order to develop a not only geotechnical sound but also hydrological sensitive system for landslides early warning at regional scale. This talk will also present early results of the NFL (National-Flash-Landslide) Monitoring and Prediction system under development at the NOAA/OU National Weather Center.

  1. Tunnelling in Urbanised Areas - Geotechnical Case Studies at Different Project Stages

    NASA Astrophysics Data System (ADS)

    Eder, Stefan; Poscher, Gerhard; Kohl, Bernhard

    Tunnelling in urbanised areas is always a challenge for the client and the contractor as well as for the designers, the engineers, and the geologists. The high demand for space and the disturbance of existing infrastructures by construction measures increasingly forces future infrastructure projects to be carried out underground. At the same time, interferences with human, natural or water resources shall be reduced and noise, dust, as well as site traffic shall be minimised. Quite frequently, politics also come into play. All these factors may lead to pre-determined routes, with ground conditions which may not always be very favourable. This article presents examples of different projects at different stages and emphasizes the importance of engineering geology in the route selection process. The most promising options are routes located in ground, which is not sensitive to settlement and/or water ingress. A longer route in favourable ground conditions is to be given preference over a shorter route in adverse ground conditions. In case of no alternative, the risk of surface settlements and exploding construction costs have to be taken into account. The first project presented is the railway line in the Inn valley / Tyrol, comprising four sections in urbanised areas, which - due to environmental and political reasons - have to cross infrastructure facilities and traffic lines, often in unfavourable ground conditions. There is a variety of construction methods in the tender design to be applied in urbanised tunnelling ranging from NATM tunnels with local groundwater draw-down and jet grouting enclosure against water pressure, to TBM-driven tunnels with hydro-shield. The second project is a planned by-pass for the city of Linz, which is at the environmental impact assessment stage. The alignment is dominated by geological considerations, avoiding unfavourable ground conditions to the greatest possible extent.

  2. Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking

    USGS Publications Warehouse

    Obermeier, S.F.; Olson, S.M.; Green, R.A.

    2005-01-01

    Discussed in this paper are the factors that control the typical manifestations of liquefaction that are found in continental field settings. The factors are given mainly in terms of the local geologic field situation and the geotechnical properties there. A meaningful interpretation of liquefaction-based data for quantitative analysis of paleoseismic shaking requires understanding of both geologic and geotechnical roles in the mode of ground failure at a specific site. Recommendations are made for the size of the field area that must be searched for liquefaction effects, in order to develop adequate data for engineering geologic/geotechnical analyses of paleoseismicity. The areal extent must be based on an appreciation that the tectonic situation can cause seismically induced liquefaction effects to form in some locales, but not in others nearby, even for a strong earthquake in the region. Our guidelines for the conduct of the field search and preliminary analysis of the data relate to three issues for which liquefaction features are especially useful in answering: Has there been strong Holocene/latest Pleistocene shaking in the region? Where was the tectonic source? And what was the strength of shaking? Understanding of the various factors that control the manifestations of liquefaction effects, which we present in this paper, is essential for developing credible answers to these questions. ?? 2004 Elsvier B.V. All rights reserved.

  3. Hydraulic, geotechnical, geomorphic, and biologic data for the Cache River/Heron Pond area in southern Illinois

    USGS Publications Warehouse

    Holmes, Jr., Robert R.

    1996-01-01

    Heron Pond, located in extreme southern Illinois, lies immediately adjacent to the upper Cache River. The upper Cache River is encroaching on Heron Pond, which has raised the issue of the possibility of a failure of the Heron Pond wall, the area between Heron Pond and the upper Cache River. Hydraulic, geotechnical, geomorphic, and biologic data were collected by the U.S. Geological Survey (USGS) in cooperation with the Illinois Department of Natural Resources, Office of Water Resources (IDNR/OWR) for use in designing a mitigation plan by the IDNR/OWR to prevent the failure of the Heron Pond wall. The river is sluggish during floods with velocities generally 1-2 feet per second. Biologic activity in the area have increased bank instability, which already is a problem because of saturated soils in the Heron Pond wall. In the area adjacent to the Heron Pond, the right descending bank of the upper Cache River receded 0.5 foot between September 21, 1995 and June 25, 1996. Comparisons between two surveys, 1958 and 1995, indicate that the channel near the discontinued USGS streamflow-gaging station near the Burlington Northern Railroad crossing has widened by more than 10 feet with less than 0.5 foot of incision.

  4. Testing the ability of a proposed geotechnical based method to evaluate the liquefaction potential analysis subjected to earthquake vibrations

    NASA Astrophysics Data System (ADS)

    Abbaszadeh Shahri, A.; Behzadafshar, K.; Esfandiyari, B.; Rajablou, R.

    2010-12-01

    During the earthquakes a number of earth dams have had severe damages or suffered major displacements as a result of liquefaction, thus modeling by computer codes can provide a reliable tool to predict the response of the dam foundation against earthquakes. These modeling can be used in the design of new dams or safety assessments of existing ones. In this paper, on base of the field and laboratory tests and by combination of several software packages a seismic geotechnical based analysis procedure is proposed and verified by comparison with computer model tests, field and laboratory experiences. Verification or validation of the analyses relies to ability of the applied computer codes. By use of Silakhor earthquake (2006, Ms 6.1) and in order to check the efficiency of the proposed framework, the procedure is applied to the Korzan earth dam of Iran which is located in Hamedan Province to analyze and estimate the liquefaction and safety factor. Design and development of a computer code by authors which named as “Abbas Converter” with graphical user interface which operates as logic connecter function that can computes and models the soil profiles is the critical point of this study and the results are confirm and proved the ability of the generated computer code on evaluation of soil behavior under the earthquake excitations. Also this code can make and render facilitate this study more than previous have done, and take over the encountered problem.

  5. Determination of the Geotechnical Characteristics of Hornfelsic Rocks with a Particular Emphasis on the Correlation Between Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Fereidooni, Davood

    2016-07-01

    Geotechnical characteristics and relationships between various physical and mechanical properties were assessed for eight types of hornfelsic rock collected from southern and southwestern parts of the city of Hamedan in western Iran. Rock samples were subjected to mineralogical, physical, index, and mechanical laboratory tests and found to contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite, and other fine-grained cryptocrystalline matrix materials. Samples had a porphyroblastic texture, and the mineral contents and physical properties influenced various rock characteristics. Some rock characteristics were affected by mineral content, while others were affected by porosity. Dry unit weight, primary and secondary wave velocities, and slake-durability index were noteworthy characteristics affected by mineral content, while porosity had the greatest influence on water absorption, Schmidt hardness, point load index, Brazilian tensile strength, and uniaxial compressive strength. Empirical equations describing the relationships between different rock parameters are proposed for determining the essential characteristics of rock, such as secondary wave velocity, slake-durability index, point load index, Brazilian tensile strength, and uniaxial compressive strength. On the basis of these properties, the studied rocks were classified as being strong or very strong.

  6. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    SciTech Connect

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-07-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  7. Geotechnical aspects of development over reclaimed former alluvial mining land and ponds in Malaysia

    NASA Astrophysics Data System (ADS)

    Yeap, E. B.; Tan, B. K.; Chow, W. S.

    Mining of tin placers in Quaternary alluvium is the main type of mining activity in Peninsular Malaysia over the past hundred years. Worked out mines have left behind a landscape consisting of highly inhomogeneous tailing fill and numerous large and medium size ponds often underlain by thick slurries of fine clay and silt on limestone bedrock. Rapid urbanization around the two main tin mining areas in Malaysia, Kuala Lumpur and Ipoh, has led to the use of this previously mined land for residential, commercial and industrial purposes. Highly irregular karstic limestone bedrock poses major problems for the construction of high-rise buildings requiring piling to bedrock. Soft slime trapped during tailing deposition or during reclamation has caused numerous and often irreparable damage to houses built on former mining land. Characterization studies were undertaken on two ponds for their chemical, physical, mineralogical and engineering properties with the aim of finding a solution to the reclamation of slime filled mine ponds. Environmental considerations favour the slime material to be used as foundation material or as raw material for ceramic or bricks. Increase of the solid content by dewatering constitutes the best option to increase the strength of the slime material so as to make it acceptable as foundation material after further treatment. Studies indicate that a few reagents can be used to successfully dewater the slime. Development of a reclamation technique along this line is being carried out.

  8. Geotechnical investigation of the potential use of shredded scrap tires in soil stabilization. Final report

    SciTech Connect

    Shakoor, A.; Chu, C.J.

    1998-11-01

    Silt-tire and clay-tire mixtures, containing 0% to 100% shredded tire material by weight, with tire chips ranging in size from 7mm--13mm, 13mm--25mm, and 25mm--38mm, were tested for a series of engineering properties including compaction characteristics, permeability, unconfined compressive strength, friction angle, cohesion, and compression index. In addition, the leachate samples from shredded tire material, soil-tire mixtures, and a test embankment, containing 70% clay and 30% shredded tire material by weight, were analyzed for chemical composition. The results show that density and unconfined compressive strength decrease, and permeability increases, with increasing shredded tire content for both soil types and all three tire sizes used in the study. In general, the addition of shredded tire material improves the friction angle for both silt and clay by a few degrees but also increases their compression index values. The results of leachate analyses show that concentrations of trace elements from soil-tire mixtures are less than the maximum allowed contaminant levels specified in United States Environmental Protection Agency`s regulations.

  9. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    SciTech Connect

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  10. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    SciTech Connect

    Wang, H.F.; Myer, L.R.

    1994-10-31

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself.

  11. Engineering solutions for the long-term stabilization and isolation of uranium mill tailings in the United States

    SciTech Connect

    Lommler, J.C.; Cormier, C.; Sanders, D.R.

    1995-12-31

    Engineering solutions for the safe and environmentally protective disposal and isolation of uranium mill tailings in the United States include many factors. Among the factors discussed in this paper are cover design, materials selection, civil engineering, erosive forces, and cost effectiveness. Stabilization and isolation of tailings from humans and the environment are the primary goals of United States uranium mill tailings control standards. The performance of cover designs is addressed with respect to water infiltration, radon exhalation, geotechnical stability, erosion protection, human and animal intrusion prevention, and longevity. The need for and frequency of surveillance efforts to ensure continued disposal system performance are also assessed.

  12. Seismic Waveform Parameters and the Engineering Properties of Unconsolidated Sediments: Laboratory Measurements and Models

    NASA Astrophysics Data System (ADS)

    Boadu, F.; Owusu-Nimo, F.

    2009-05-01

    The ability to locate and monitor weaker soil/rock units in the subsurface non-invasively using geophysical measurements would be very useful for geotechnical engineers involved in geo-hazard mitigation. Velocity and attenuation studies indicate that velocity and attenuation of transmitted P-waves are affected by the microstructure and mechanical state of the sediments. This investigative work explores the use of direct information from the spectra of waveforms propagating though the unconsolidated medium, hypothesized here to provide us with useful information about the engineering and petrophysical properties of the medium. Numerical investigations using a reformulation of Biot's theory by indicate that the spectral signature, shape and frequency content as well as the distribution of spectral energy are sensitive to the porosity, degree of saturation and the skeletal frame modulus of the medium, which are important in determining its mechanical stability. It will be shown from laboratory investigations that the spectral signature, spectral energy distribution and frequency content of seismic waveforms propagating through unconsolidated geomaterials provide valuable information that can be used to characterize their engineering and petrophysical properties. Such investigations are desirable and will be of great interest to geotechnical engineers involved in monitoring and assessment of the strength and stability conditions of subsurface geo-materials and a geo-hazard mitigation and assessment.

  13. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  14. Engineering Practice and Engineering Ethics.

    ERIC Educational Resources Information Center

    Lynch, William T.; Kline, Ronald

    2000-01-01

    Offers ways of applying science and technology studies to the teaching of engineering ethics. Suggests modifications of both detailed case studies on engineering disasters and hypothetical, ethical dilemmas employed in engineering ethics classes. (Author/CCM)

  15. A Review of Attitudes towards Sharing Geotechnical Data and the use of Geospatial Data Portals in Hong Kong and the U.K.: Lessons for Europe.

    NASA Astrophysics Data System (ADS)

    Patton, Ashley M.

    2016-04-01

    Reusing existing subsurface data can greatly cut the time and financial costs of site investigations, and reduce uncertainty regarding ground conditions that can result in delays and overspend. In Hong Kong SAR it is common practice for consultancies to deposit records in the form of factual and interpretive reports, borehole logs and laboratory test data with the Geotechnical Engineering Office (GEO) who make this information openly available to access for future investigative works. In addition to these deposits, other datasets available at GEO include, amongst others, landslide records, aerial photographs and as-built records. These archives are the first source of information about development sites in Hong Kong and no investigation takes place without a thorough desk study. Increasingly these data are digital, and can be accessed through a GIS-based online portal. In the U.K. the British Geological Survey (BGS) acts as a custodian for geoscience data deposited by the public and private sectors on a voluntary basis, and encourages organisations to make their data publicly available through the BGS online data portals. The facility to deposit digital data via the BGS website has recently been launched and should increase uptake of data sharing in the U.K. as it becomes easier for users to batch upload records digitally. Issues regarding data ownership and confidentiality are being overcome by the establishment, in some cities, of knowledge exchange networks where members who sign up to view data are expected under the terms of membership to deposit data. This has received backing from local government in some areas. The U.K. may not have the density of existing data that Hong Kong has but as knowledge exchange gathers momentum the BGS datasets are expected to grow rapidly. In Europe there appears to be a reluctance to share data. However, escalating demand for land, greater redevelopment of brownfield sites and an ever-growing need to ensure future construction

  16. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  17. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  18. New Hybridized Surface Wave Approach for Geotechnical Modeling of Shear Wave Velocity at Strong Motion Recording Stations

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Carkin, B.; Minasian, D.

    2006-12-01

    reveal the natural and resonance characteristics of the ground by capturing persistent natural vibrations. These microtremors are the result of the interaction of surface waves arriving from distant sources and the stiffness structure of the site under investigation. As such, these resonance effects are effective in constraining the layer thicknesses of the SASW shear wave velocity structure and aid in determining the depth of the deepest layer. Together, the hybridized SASW and H/V procedure provides a complete data set for modeling the geotechnical aspects of ground amplification of earthquake motions. Data from these investigations are available at http://walrus.wr.usgs.gov/geotech.

  19. Ground subsidence phenomena in the Delta municipality region (Northern Greece): Geotechnical modeling and validation with Persistent Scatterer Interferometry

    NASA Astrophysics Data System (ADS)

    Raspini, Federico; Loupasakis, Constantinos; Rozos, Dimitrios; Adam, Nico; Moretti, Sandro

    2014-05-01

    Land subsidence is a common phenomenon occurring in several regions worldwide. Persistent subsidence causes strong consequences on the affected areas and related problems include environmental, economic and social aspects. A set of forty-two Synthetic Aperture Radar (SAR) images, acquired in 1995-2001 by the European Space Agency (ESA) satellites ERS1 and ERS2, were processed with Persistent Scatterer Interferometry (PSI) technique to investigate spatial and temporal patterns of deformation in the Delta municipality (Thessaloniki plain, Northern Greece), a deltaic area with a long history of land subsidence related to aquifer system compaction. Exploitation of output products of a PSI analysis, both average LOS (Line of Sight) deformation rates and displacement time series, revealed a large subsidence area due to intense groundwater withdrawal. Higher displacement velocities have been observed south-west of Kalochori and south of Sindos, from both sides of the Gallikos River. In those areas deformation rates of roughly 4.5 cm/yr have been recorded, during the period from 1995 to 2001. Increasing subsidence rates are measured moving toward the mouth of the Gallikos River, where the thickest sequence of compressible Quaternary sediments is observed. Displacement time series retrieved by PSI technique has been compared with the temporal evolution of the deformation as measured by pre-existing leveling surveys, showing a great agreement. A 2-D finite element model has been run along two representative cross sections in the Kalochori area, in order to simulate the observed temporal evolution of subsidence, coupling the geotechnical behavior of the formations and the piezometric surface level. Finally, results obtained by the subsidence model have been positively compared with the PSI-based information on displacement, providing accurate and perfectly verified results. Outcomes of this work demonstrated the potential of repeat-pass satellite SAR interferometry (InSAR) as

  20. Comparing geotechnical to geologic estimates for past overburden in the Pierre-Hayes, South Dakota area: an argument for in-situ pressuremeter determination ( USA).

    USGS Publications Warehouse

    Collins, D.S.; Nichols, T.C., Jr.

    1987-01-01

    A knowledge of past overburden thickness is useful for designing underground structures such as waste repositories. This study attempts to determine if a correlation can be made between a geologic estimate and two types of geotechnical calculations of past overburden thickness. In the Pierre-Hayes area, Late Cretaceous Pierre Shales is the only bedrock present, but clasts of the Miocene Ogallala Formation were found in the Pleistocene deposits, suggesting that rocks of the Ogallala Formation once covered this area. Based on the geologic estimate, the Ogallala surface was 1100 ft higher than the present surface. Of the two types of geotechnical data acquired for the Hayes site, the laboratory overconsolidation ratios indicate a past overburden thickness value of 2300 ft, whereas the in situ pressuremeter overconsolidation ratios indicate 1318 ft. We, therefore, believe that in situ determination is a better indicator of past overburden that the laboratory results. However, why the two test results differ to this degree is unknown at present.-from Authors

  1. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  2. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    Apuani, T.; Giani, G. P.; d'Attoli, M.; Fischanger, F.; Morelli, G.; Ranieri, G.; Santarato, G.

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  3. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography.

    PubMed

    Apuani, T; Giani, G P; d'Attoli, M; Fischanger, F; Morelli, G; Ranieri, G; Santarato, G

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  4. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  5. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  6. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  7. Select chemical and engineering properties of wastewater biosolids.

    PubMed

    Arulrajah, A; Disfani, M M; Suthagaran, V; Imteaz, M

    2011-12-01

    The select chemical and engineering characteristics of biosolids produced at a wastewater treatment plant in Eastern Australia were investigated to assess its suitability as structural fill material in road embankments. Results of comprehensive set of geotechnical experimentation including compaction, consolidation, creep, hydraulic conductivity and shear strength tests implied that biosolids demonstrate behavior similar to highly organic clays with a higher potential for consolidation and settlement. Results of chemical study including heavy metals, dichloro diphenyl trichloroethane (and derivatives) and organochlorine pesticides, indicate that biosolids samples are within the acceptable limits which allows their usage under certain guidelines. Results of tests on pathogens (bacteria, viruses or parasites) also indicated that biosolids were within the safe acceptable limits. Technical and management suggestions have been provided to minimize the possible environmental risks of using biosolids in road embankment fills.

  8. Shockwave Engine: Wave Disk Engine

    SciTech Connect

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  9. Geotechnical reconnaissance of the Mississippi River Delta flood-protection system after Hurricane Katrina: Chapter 3C in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Luna, Ronaldo; Summers, David; Hoffman, David; Rogers, J. David; Sevi, Adam; Witt, Emitt C.

    2007-01-01

    This article presents the post-Hurricane Katrina conditions of the flood-protection system of levees and floodwalls that failed in the environs of the Mississippi River Delta and New Orleans, La. Damage conditions and suggested mechanisms of failure are presented from the geotechnical point of view.

  10. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  11. Information engineering

    SciTech Connect

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  12. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  13. Sea floor engineering geomorphology: recent achievements and future directions

    NASA Astrophysics Data System (ADS)

    Prior, David B.; Hooper, James R.

    1999-12-01

    New mapping technology is providing perspectives of the sea floor "as if there were no ocean", revealing that ocean floors exhibit a wide variety of relief, sediment properties, and active geologic processes such as erosion, faulting, fluid expulsion, and landslides. The development of coastal and offshore resources, such as oil and gas and minerals, involves sea floor engineering in remote, complex, and sometimes hazardous environments. Optimum engineering design and construction practice require detailed surveys of sea floor geomorphology, geologic conditions on the sea bed and to various depths beneath it, combined with geotechnical properties of the sediments and oceanographic information. Integrated site survey models attempt to predict conditions and process frequencies and magnitudes relevant to the engineering design lifetimes of sea floor installations, such as cables, pipelines, production platforms, as well as supporting coastal infrastructure such as jetties, wharves, bridges and harbors. Recent use of deep water areas for oil and gas production, pipelines, and cable routes are also showing that the "world's greatest slopes", beyond the continental shelves contain exciting, exotic, and enigmatic geomorphological features and processes. Safe and cost-effective engineering use of these regions depends upon exciting new technical and conceptual advances for understanding sea floor geomorphology — a task which has barely begun.

  14. Estimating the geotechnical Parameters from CSEM monitoring Data for the Buildings and the Environment at the City of 15th May, Egypt

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Atya, Magdy; Khachay, Oleg

    2015-04-01

    The site of investigation, 15th May city, is a new suburb of Helwan, at about 35 km south of Cairo, Egypt. The work is aimed to investigate the rock mass stability at "Quarter 27" in 15th May City, which is linked with cracks formation into the buildings. A controlled source electromagnetic (CSEM) approach developed earlier by IGF UB RAS (Geophysical Federal Institute, Ural Branch of Russian Academy of Science) is applied to image the ranked deformation levels in the massive structure. The wide profile system of observation has been used to monitor the three components of the alternating magnetic field along predefined measuring lines in the study area. Four cycles of observation have been carried out in 2008, 2010, 2011, and 2012. The acquired data sets have been subjected to analytical processing procedure to estimate the changes in the geotechnical parameters during the time of these four cycles of observation. The analytical treatments provided good information about the structure of the rock massive and its rank of degradation, the lateral distribution of the geotechnical heterogeneity, and finally a conclusive outcome about foundation stability. We conclude that the general dynamic state close to the destruction level within the investigation area is getting worse over the time; this is reflected in the crack's densities and positions, also on the changes in the lateral distribution of geoelectric heterogeneity as an indicator of the saturation of the surface rock in the study area with water [1]. Reference 1. Magdy A. Atya, Olga A. Hachay, Mamdouh M. Soliman, Oleg Y. Khachay, Ahmed B. Khalill, Mahmoud Gaballah, Fathy F.Shaaban and Ibrahim A.El. Hemali. CSEM imaging of the near surface dynamics and its impact for foundation stability at quarter 27,15-th of May City, Helwan, Egypt. // Earth sciences research journal, 2010,Vol.14, N1, p.76-87.

  15. Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Meadows, Azra; Meadows, Peter S.; West, Fraser J. C.; Murray, John M. H.

    2000-01-01

    We investigate the way the oxygen minimum zone (OMZ) alters interactions between bioturbation and sediment geochemistry, and geotechnical properties. Sediments are compared within and below the OMZ on the Oman continental slope and adjacent abyssal plain during the post monsoonal autumn season. Quantitative measurements were made of Eh and pH, of total organic matter (TOM) and carbonate, of water content and shear strength, and of bioturbation structures in vertical profiles of subcores taken from spade-box core samples. The OMZ stations had distinctively low redox conditions and high carbonate content, and different geotechnical properties and different bioturbation structures than stations below the OMZ on the abyssal plain. These differences are related to the degree of anoxia and to water depth. Within the OMZ, Eh, pH and carbonate increased with water depth, and TOM and water content decreased. We also noted the presence of subsurface sediment heterogeneity on the continental slope within the OMZ. In the OMZ, Eh, water content and bioturbation decreased with increasing sediment depth. There was a slight decrease in pH in the top 5 cm at all stations. Shear strength nearly always increased with increasing sediment depth. At each water depth correlations show down-core trends in these parameters, while across all water depths correlations were significant at deeper sediment depths (20-30 cm). An Eh-pH diagram identified two water-depth groupings: 391-1008 and 1265-3396 m. Cluster analysis showed the upper and lower sediment depths form separate clusters, the break occurring at 4-7.5 cm; while there are also distinct clusters related to water depth. We relate our results to bottom-water oxygen concentrations reported by other investigators, and to regional-scale geochemical processes.

  16. Holistic Engineering

    ERIC Educational Resources Information Center

    Grasso, Domenico; Martinelli, David

    2007-01-01

    In this article, the authors discuss how to prepare high-quality engineers who are better equipped to serve in the changing global marketplace, and suggest educators in pursuing the holistic concept of the "unity of knowledge" that will yield a definition of engineering more fitting for the times ahead. The unity of knowledge is fundamentally…

  17. Systems Engineering

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  18. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  19. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  20. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  1. Women Engineer.

    ERIC Educational Resources Information Center

    Neustadtl, Sara Jane

    This booklet is designed to provide information to girls about the nature of and possible career opportunities in engineering. Following a brief introduction in which the characteristics of engineers are outlined (such as ability to solve problems, interest in science/mathematics, and urge to make creative use of their intelligence), answers to…

  2. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  3. Electrochemical Engineering

    ERIC Educational Resources Information Center

    Alkire, Richard

    1976-01-01

    Discusses an electrochemical engineering course that combines transport phenomena and basic physical chemistry. Lecture notes and homework problems are used instead of a textbook; an outline of lecture topics is presented. (MLH)

  4. Harmonic engine

    DOEpatents

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  5. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  6. Engineering solutions to the long-term stabilization and isolation of uranium mill tailings in the United States

    SciTech Connect

    Sanders, D.R.; Lommler, J.C.

    1995-03-01

    Engineering solutions to the safe and environmentally protective disposal and isolation of uranium mill tailings in the US include many factors. Cover design, materials selection, civil engineering, erosive forces, and cost effectiveness are only a few of those factors described in this paper. The systems approach to the engineering solutions employed in the US is described, with emphasis on the standards prescribed for the Uranium Mill Tailings Remedial Action Project. Stabilization and isolation of the tailings from humans and the environment are the primary goals of the US uranium mill tailings control standards. The performance of cover designs with respect to water infiltration, radon exhalation, geotechnical stability, erosion protection, human and animal intrusion prevention, and longevity are addressed. The need for and frequency of surveillance efforts to ensure continued disposal system performance are also assessed.

  7. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  8. Photoreceptor engineering

    PubMed Central

    Ziegler, Thea; Möglich, Andreas

    2015-01-01

    Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators. PMID:26137467

  9. Engineering seismology

    USGS Publications Warehouse

    N.N, Ambraseys

    1991-01-01

    Twenty years have elasped since the first issue of Earthquakes & Volcanoes. Apart from the remarkable increases in the number of scientists actively enagaged in earth sciences, what are the outstanding achievements during the past 20 years in the field of engineering seismology, which is my own speciality?

  10. Harmonic engine

    SciTech Connect

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  11. Concurrent engineering

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Leger, L.; Hunter, D.; Jones, C.; Sprague, R.; Berke, L.; Newell, J.; Singhal, S.

    1991-01-01

    The following subject areas are covered: issues (liquid rocket propulsion - current development approach, current certification process, and costs of engineering changes); state of the art (DICE information management system, key government participants, project development strategy, quality management, and numerical propulsion system simulation); needs identified; and proposed program.

  12. Development of a surface-wave imaging system for geotechnical applications based on distributed acoustic sensing (DAS) and ambient noise interferometry

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Freifeld, B. M.; Tang, D. G.; Zhang, R.; Wagner, A. M.; Dou, S.; Lindsey, N.; Bjella, K.; Pevzner, R.

    2014-12-01

    Distributed fiber-optic sensing methods have been used since the 1980's for continuous monitoring of near-surface soil properties, typically exploiting Raman scattering to measure temperature (DTS) or stimulated Brillouin scattering to measure strain (DSS). Recent advances in high speed measurement of Rayleigh scattering has enabled distributed recording of seismic waves over long sections of fiber; this approach, referred to as distributed acoustic sensing (DAS) has the potential to allow nearly continuous monitoring of near-surface mechanical properties, a crucial target for geotechnical management of infrastructure dependent on soil strength. We present initial results from our effort to build a real-time soil property monitoring system based on DAS; our approach employs seismic interferometry and dispersion analysis of ambient noise generated by infrastructure to provide a continuously updated model of shear modulus. Our preliminary results include an in-depth investigation of DAS fiber response in the context of active sources; this component of our study verifies classical models for the azimuthal response of straight fibers to propagating surface waves. We also explore the "noisescape" of linear infrastructure and show a usable seismic signal band of 8-40 hz at a series of sites, primarily consisting of Rayleigh waves. Finally, we present preliminary results from a DAS monitoring array installed at the Richmond Field Station near a heavily used road and compare interferometric processing of the acquired data to that generated by surface deployment of geophones.

  13. GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques

    NASA Astrophysics Data System (ADS)

    Rezaie, F.; Panahi, M.

    2015-03-01

    The main issue in determining seismic vulnerability is having a comprehensive view of all probable damages related to earthquake occurrence. Therefore, taking into account factors such as peak ground acceleration at the time of earthquake occurrence, the type of structures, population distribution among different age groups, level of education and the physical distance to hospitals (or medical care centers) and categorizing them into four indicators of geotechnical, structural, social and physical distance to needed facilities and from dangerous ones will provide us with a better and more exact outcome. To this end, this paper uses the analytic hierarchy process to study the importance of criteria or alternatives and uses the geographical information system to study the vulnerability of Tehran to an earthquake. This study focuses on the fact that Tehran is surrounded by three active and major faults: Mosha, North Tehran and Rey. In order to comprehensively determine the vulnerability, three scenarios are developed. In each scenario, seismic vulnerability of different areas in Tehran is analyzed and classified into four levels: high, medium, low and safe. The results show that, regarding seismic vulnerability, the faults of Mosha, North Tehran and Rey make, respectively, 6, 16 and 10% of Tehran highly vulnerable, while 34, 14 and 27% is safe.

  14. GIS modelling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran city using multi-criteria decision-making (MCDM) techniques

    NASA Astrophysics Data System (ADS)

    Rezaie, F.; Panahi, M.

    2014-09-01

    The main issue in determining the seismic vulnerability is having a comprehensive view to all probable damages related to earthquake occurrence. Therefore, taking factors such as peak ground acceleration (PGA) in the time of earthquake occurrence, the type of structures, population distribution among different age groups, level of education, the physical distance to a hospitals (or medical care centers), etc. into account and categorized under four indicators of geotechnical, structural, social and physical distance to needed facilities and distance from dangerous ones will provide us with a better and more exact outcome. To this end in this paper using analytic hierarchy process (AHP), the amount of importance of criteria or alternatives are determined and using geographical information system (GIS), the vulnerability of Tehran metropolitan as a result of an earthquake, is studied. This study focuses on the fact that Tehran is surrounded by three active and major faults of the Mosha, North Tehran and Rey. In order to comprehensively determine the vulnerability, three scenarios are developed. In each scenario, seismic vulnerability of different areas in Tehran city is analysed and classified into four levels including high, medium, low and safe. The results show that regarding seismic vulnerability, the faults of Mosha, North Tehran and Rey respectively make 6, 16 and 10% of Tehran area highly vulnerable and also 34, 14 and 27% are safe.

  15. A network of field test sites as a platform for research on engineering and management of the highway transportation infrastructure

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin; Frangopol, Dan M.; Ghasemi, Hamid; Shenton, Harry W.; Shinozuka, Masanobu; Madanat, Samar

    2004-07-01

    An effort is currently underway to create an Engineering Research Consortium Initiative (ERCI) focused on engineering and management of the highway transportation infrastructure. The goal of the ERCI will be to provide administrative and logistical support for a coordinated, problem-focused research program on the highway transportation infrastructure system. The cornerstone of the initiative will be field test-sites. Example sites might include major long span bridges, sample populations of operating bridges, decommissioned bridges, a regional network of highways and bridges, various types of pavement and geotechnical structures, or a major transportation hub serving a metropolitan area. Sites would be instrumented to collect a broad range of engineering (structural, geotechnical, hydraulic), human (traffic) and natural (climatological, seismological) response data. The field sites would be networked to provide real-time access to test facilities across the country; a secure central repository would be established for collecting data from the sites. The data and information gathered from these sites would be used by engineers and scientists to study the complex interactions and cause-and-effect relations of the various engineered, human and natural components of the highway hyper-system. A major research thrust of the ERCI will be security of the highway infrastructure system, with particular emphasis on bridges. The National Science Foundation and the Federal Highway Administration are expected to provide funding for the program through a joint agency initiative. Two workshops were recently held with experts from around the world to discuss the plans for the ERCI. The paper provides more details on the ERCI and the status of the effort to date.

  16. Biocommodity Engineering.

    PubMed

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  17. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  18. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  19. Engineering Review Information System

    NASA Technical Reports Server (NTRS)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  20. Re-engineering Engineering Education

    ERIC Educational Resources Information Center

    Gordon, Bernard M.; Silevitch, Michael B.

    2009-01-01

    In 2005, leaders gathered by the National Association of Manufacturers declared yet another "STEM" emergency. In the face of global competition, they argued, the number of bachelor's degrees awarded annually to U.S. students in science, math and engineering must double by 2015. In fact, the need for STEM talent is even more critical today as the…

  1. Exoskeletal Engine

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C. (Inventor); Blankson, Isaiah M. (Inventor); Richter, William A. (Inventor)

    2002-01-01

    A turbojet engine is made from a drum-like portion having a circular blade section extending inwardly therefrom, a support member, and a bearing arranged around a circle having a diameter substantially equal to or greater than the diameter of the blade section. The drum-like portion is rotatably mounted within the support member on the bearing. Instead of a turbine spinning on a shaft, a turbine spinning within a drum is employed.

  2. Engineering Tribology

    NASA Astrophysics Data System (ADS)

    Williams, John

    An ideal textbook for a first tribology course, this book provides an interdisciplinary understanding of the field. It includes materials constraints, real design problems and solutions (such as those for journal and rolling element bearing), cams and followers and heavily loaded gear teeth. Including physics, materials science, and surface and lubricant chemistry, the volume integrates quantitative material from a wide variety of disciplines with traditional engineering approaches.

  3. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  4. Planetary engineering

    NASA Astrophysics Data System (ADS)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  5. Web Engineering

    SciTech Connect

    White, Bebo

    2003-06-23

    Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.

  6. Engineering Liver

    PubMed Central

    Griffith, Linda G.; Wells, Alan; Stolz, Donna Beer

    2014-01-01

    Interest in “engineering liver” arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nano-fabrication, biomaterials, microfluidic, and other technologies potentially afford unprecedented opportunity to create microphysiological models of human liver, but engineering design principles for how to deploy these tools effectively towards specific applications, including how to define the essential constraints of any given application (including available sources of cells, acceptable cost, and user-friendliness) are still emerging. Arguably less appreciated is the parallel growth in computational systems biology approaches towards these same problems – particularly, in parsing complex disease processes from clinical material, building models of response networks, and in how to interpret the growing compendium of data on drug efficacy and toxicology in patient populations. Here, we provide insight into how the complementary paths of “engineering liver” – experimental and computational – are beginning to interplay towards greater illumination of human disease states and technologies for drug development. PMID:24668880

  7. Biocommodity Engineering.

    PubMed

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  8. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  9. Geotechnical Feasibility Analysis of Compressed Air Energy Storage (CAES) in Bedded Salt Formations: a Case Study in Huai'an City, China

    NASA Astrophysics Data System (ADS)

    Zhang, Guimin; Li, Yinping; Daemen, Jaak J. K.; Yang, Chunhe; Wu, Yu; Zhang, Kai; Chen, Yanlong

    2015-09-01

    The lower reaches of the Yangtze River is one of the most developed regions in China. It is desirable to build compressed air energy storage (CAES) power plants in this area to ensure the safety, stability, and economic operation of the power network. Geotechnical feasibility analysis was carried out for CAES in impure bedded salt formations in Huai'an City, China, located in this region. First, geological investigation revealed that the salt groups in the Zhangxing Block meet the basic geological conditions for CAES storage, even though the possible unfavorable characteristics of the salt formations include bedding and different percentages of impurities. Second, mechanical tests were carried out to determine the mechanical characteristics of the bedded salt formations. It is encouraging that the samples did not fail even when they had undergone large creep deformation. Finally, numerical simulation was performed to evaluate the stability and volume shrinkage of the CAES under the following conditions: the shape of a single cavern is that of a pear; the width of the pillar is adopted as two times the largest diameter; three regular operating patterns were adopted for two operating caverns (internal pressure 9-10.5 MPa, 10-11.5 MPa, and 11-12.5 MPa), while the other two were kept at high pressure (internal pressure 10.5, 11.5, and 12.5 MPa) as backups; an emergency operating pattern in which two operating caverns were kept at atmospheric pressure (0.1 MPa) for emergency while the backups were under operation (9-10.5 MPa), simulated for 12 months at the beginning of the 5th year. The results of the analysis for the plastic zone, displacement, and volume shrinkage support the feasibility of the construction of an underground CAES power station.

  10. Loesses Near KRAKÓW in Light of Geological-Engineering Research

    NASA Astrophysics Data System (ADS)

    Borecka, Aleksandra; Olek, Bartłomiej

    2013-03-01

    This work is only a preliminary study on the evaluation of geological engineering properties of loess area of Kraków. It has been expanded to include field tests (CPTU, DMT), which is an alternative to expensive and time-consuming laboratory tests. The field tests allow enough detail to track the variability of physical and mechanical properties of soils, but in many cases, provide too much information, because their interpretation is often based only on a qualitative analysis. Laboratory and field tests are complementary and should be continued in order to determine best the correlation between the measured values of the resistance probes (CPTU, DMT) and the results obtained from laboratory tests. This will provide new calculation formulas for the evaluation of geotechnical parameters of loess in situ.

  11. Geoscience techniques for engineering assessment of Oman to India pipeline route

    SciTech Connect

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbid flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.

  12. Engineering rheology

    SciTech Connect

    Tanner, R.I.

    1985-01-01

    This book is a guide, with some illustrations, to the behavior or non-Newtonian fluids in engineering. The book is centered around kinematics: that there is a great interplay of the microscopic variables relevant to a non-Newtonian fluid and the stresses developed in a given large-scale kinematic field. The text starts with surveys of some typical non-Newtonian behavior and of classical continuum mechanics and this is followed by a description of the two main kinematic fields - shearing and extensional flows. Recommendations are made for the choice of constitutive relation for various problems - kinematics is the main factor in the choice of equation.

  13. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  14. Turbine engine

    SciTech Connect

    Greer, D.

    1988-02-16

    In a turbine propulsion engine, an elongated motor is described including a power means and having a drive shaft projecting therefrom. A first compressor includes an elongated rotatable first casing coaxially mounted upon the motor having a fuel inlet for pressure feeding of fuel lengthwise of the first compressor. A second compressor includes a casing coaxially mounted upon and along the first compressor casing secured to the motor having an air inlet at its forward end for feeding high velocity compressed air lengthwise of the second compressor casing. An intermediate diverging casing at one end is peripherally connected to the second compressor casing having inner and outer diffusor chambers communicating respectively with the compressor for receiving high velocity vaporized fuel and compressed air. A turbine casing at one end is peripherally connected to the intermediate casing and at its other end having a converging exhaust outlet. An elongated combustion chamber of circular cross-section rotatably mounted and spaced within and journaled upon the turbine casing; an engine shaft extending axially through the combustion chamber, journaled upon the turbine casing and axially connected to the drive shaft.

  15. From the rupture to the buildings: reconciling engineering evidences of the April 6 2009 L’Aquila earthquake (Mw 6.3)

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Iervolino, I.; Calcaterra, D.; de Luca Tupputi, F.; Santo, A.; di Crescenzo, G.; Festa, G.; Zollo, A.; Silvestri, F.; D'Onofrio, A.; Simonelli, A.; Manfredi, G.; Verderame, G.; Ricci, P.; James, V.; Penna, A.; Sica, S.; Monaco, P.; Totani, G.

    2009-12-01

    The April 6 2009 L’Aquila earthquake (Mw 6.3) was the first case, in Italy, of a well recorded seismic event the near-source region of which is densely populated of engineering structures. In fact, because of the short distance from the fault (0km Joyner and Boore distance), the strong motion parameters relevant for the damage description may not be obtained by 1D attenuation relationships, which do not account for fault extension and fail in the fault vicinity. On the other hand, the large amount of data coming from strong-motion, regional and teleseismic records, GPS, SAR, surface geology, geotechnical profiles and detailed damage surveys provide an unique opportunity to investigate the effects of the rupture and propagation on the seismic response of buildings. Because in Italy the current state of earthquake engineering research and its interaction with bordering Earth Sciences may be considered advanced, also because it recently benefitted of large research programs funded by the governmental department for civil protection, a research group (AQ-FII) has been set up to apply an integrated approach to reconcile earthquake engineering evidences from the event. State-of-the art models are employed to simulate source, path, site effects and engineering systems’ response. This ambitious project has a threefold scope: (1) to confirm and/or explore seismologic near-fault effects and their modelling issues; (2) to deepen structural and geotechnical engineering understanding of near-source seismic response and observed variability at small scale (i.e., individual structure level); (3) to validate the comprehensive and multi-disciplinary approach to earthquake science invoked in the last decades. The AQ-FII group includes: a seismological component for the modelling of the source and radiation; a geological component characterizing the propagation features at large scale in the region (the Aterno valley); a geotechnical competency for the characterization of

  16. Urban shear-wave reflection seismics: Reconstruction support by combined shallow seismic and engineering geology investigations

    NASA Astrophysics Data System (ADS)

    Polom, U.; Guenther, A.; Arsyad, I.; Wiyono, P.; Krawczyk, C. M.

    2009-12-01

    After the big 2004 Sumatra-Andaman earthquake, the massive reconstruction activities in the Aceh province (Northern Sumatra) were promoted by the Republic of Indonesia and the Federal Ministry of Economic Cooperation and Development. The aims of the project MANGEONAD (Management of Georisk Nanggroe Aceh Darussalam). are to establish geoscientific on the ground support for a sustainable development and management of save building constructions, lifelines, infrastructure and also natural resources. Therefore, shallow shear-wave reflection seismics was applied in close combination to engineering geology investigations in the period between 2005-2009 since depth and internal structure of the Krueng Aceh River delta (mainly young alluvial sediments) were widely unknown. Due to the requirements in the densely populated Banda Aceh region, lacking also traffic infrastructure, a small and lightweight engineering seismic setup of high mobility and high subsurface resolution capability was chosen. The S-wave land streamer system with 48 channels was applied successfully together with the ELVIS vibratory source using S- and P-waves on paved roads within the city of Banda Aceh. The performance of the S-wave system enabled the detailed seismic investigation of the shallow subsurface down to 50-150 m depth generating shaking frequencies between 20 Hz to 200 Hz. This also provides depth information extending the maximum depths of boreholes and Standard Penetrometer Testings (SPT), which could only be applied to max. 20 m depth. To integrate the results gained from all three methods, and further to provide a fast statistical analysis tool for engineering use, the Information System Engineering Geology (ISEG, BGR) was developed. This geospatial information tool includes the seismic data, all borehole information, geotechnical SPT and laboratory results from samples available in the investigation area. Thereby, the geotechnical 3D analysis of the subsurface units is enabled. The

  17. Radial engine

    SciTech Connect

    Kmicikiewicz, M.A.

    1988-03-01

    A radial engine is described comprising: a housing; equally spaced openings disposed in ring-like arrangement on the periphery of the housing; a piston and cylinder arrangement in each of the opening, a piston rod for each arrangement fixed to and extending radially inwardly from its respective piston and through its respective opening; shoe means pivotally attached at the other end of each of the piston rod; radial guide means extending in the housing in line with each of the piston rods, and the shoe means provided with guide means followers to ensure radial reciprocal movement of the piston rods and shoe means; and a connecting ring journaled on a crankshaft for circular translation motion in the housing, the ring including a circular rim. Each shoe means includes an arcuate follower member being slidably connected to the rim of the connecting ring.

  18. How Engineers Engineer: Lessons from My First Big Engineering Project

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Little did the author realize how much his first engineering project would change his career path, but when it came, he was hooked forever on doing R&D-type engineering. In this article, the author takes the reader back to his first really important electrical engineering project. While the technology he worked on back then is antiquated by…

  19. The responsibilities of engineers.

    PubMed

    Smith, Justin; Gardoni, Paolo; Murphy, Colleen

    2014-06-01

    Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.

  20. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  1. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  2. Engineering Allostery

    PubMed Central

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M.

    2014-01-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most critical for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G-protein coupled receptors and protein kinases. PMID:25306102

  3. Rotary engine

    SciTech Connect

    Wilson, Z.

    1990-08-28

    This paper discusses an engine. It comprises a cylinder block; cylinders contained in the cylinder block; matching pistons, each piston reciprocatingly received in one of the cylinders; matching piston rods, each rod connected to one of the pistons and extending outwardly from the block; sheave gears, each sheave gear having a sheave gear axis and a circumference disposed about the sheave gear axis bearing a set of gear teeth thereon; means connecting a respective one of the sheave gears to a respective one of the pistons rods such that reciprocation of the pistons in the cylinders causes rotation of the sheave gears about the sheave gears axes; a combination flywheel/ring gear having a ring gear axis and an outer circumference disposed about the axis bearing a set of ring gear teeth thereon; and means positioning the flywheel/ring gear such that the gear teeth on the flywheel/ring gear engaged the gear teeth on the sheave gears. The flywheel/ring gear is rotated about by its axis by rotation of the sheave gears upon reciprocation of the pistons in the cylinders.

  4. Ingenieur Better than Engineer.

    ERIC Educational Resources Information Center

    Aracil, Jose-L. Juan

    1988-01-01

    Describes reforms of university engineering education in Spain and suggests these reforms as guidelines for the training of European Engineers. Discusses the cyclic approach whereby an engineer acquires generalized "formation" via specialization. States that cultural differences should be respected. (CW)

  5. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  6. Re-Engineering the Engineering Degree Course.

    ERIC Educational Resources Information Center

    Marsh, Rodney

    Students enrolled to degree programs in 1997 will become the first graduates of the 21st century. Engineering courses in the School of Engineering at Leeds Metropolitan University have changed immensely in the last two years, so as to support new markets. Disciplines such as industrial engineering, electronics and computing have enjoyed their…

  7. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  8. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  9. Using Collaborative Engineering to Inform Collaboration Engineering

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  10. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.

  11. Active learning in forensic science using Brownfield Action in a traditional or hybrid course in earth, environmental, or engineering sciences

    NASA Astrophysics Data System (ADS)

    Bower, P.; Liddicoat (2), J.

    2009-04-01

    Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.

  12. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    SciTech Connect

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-07-08

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V{sub s30}, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  13. Alternative Automobile Engines

    ERIC Educational Resources Information Center

    Wilson, David Gordon

    1978-01-01

    Requirements for cleaner and more efficient engines have stimulated a search for alternatives to the conventional spark-ignition engine. So far, the defects of the alternative engines are clearer than the virtues. The following engines are compared: spark ignition, diesel, vapor-cycle, Stirling, and gas turbine. (Author/MA)

  14. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  15. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  16. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  17. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  18. Two treatment methods for stormwater sediments--pilot plant and landfarming--and reuse of the treated sediments in civil engineering.

    PubMed

    Petavy, F; Ruban, V; Conil, P; Viau, J Y; Auriol, J C

    2009-07-01

    The aim of this research was to present a pilot plant for the treatment of stormwater sediments and to compare the decontamination rate to that obtained by landfarming. The possibilities for reuse of the treated sediments in civil engineering are also studied. Four sediments from retention/infiltration ponds or from street sweeping were studied. In each case organic matter (OM), total hydrocarbons (TH) and polycyclic aromatic hydrocarbons (PAH) were measured. Geotechnical tests were carried out to evaluate the reuse possibilities of the treated sediments. Treatment by means of the pilot plant was efficient at reducing TH and PAH concentrations: THs were reduced by 53-97% and PAHs were decreased by 60-95%. By comparison, a reduction of 45-75% in TH concentration is obtained with landfarming, whereas there is no significant decrease in PAHs. Furthermore, geotechnical tests showed that the treated fractions from the pilot plant can be reused as road embankments and as a capping layer. These results are most encouraging and show that stormwater sediments can valuably be reused after treatment in a pilot plant. Landfarming is less efficient but this technique could be used as a pretreatment in the case of high TH pollution.

  19. Strengthening Environmental Engineering Education in Afghanistan through Cooperating Military Academies

    NASA Astrophysics Data System (ADS)

    Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.

    2007-12-01

    Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this

  20. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  1. Site systems engineering: Systems engineering management plan

    SciTech Connect

    Grygiel, M.L.

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  2. Teaching Engineering Practices

    NASA Astrophysics Data System (ADS)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  3. Humanitarian engineering in the engineering curriculum

    NASA Astrophysics Data System (ADS)

    Vandersteen, Jonathan Daniel James

    There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development

  4. The Phillips Stirling engine

    SciTech Connect

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  5. Service Cart For Engines

    NASA Technical Reports Server (NTRS)

    Ng, Gim Shek

    1995-01-01

    Cart supports rear-mounted air-cooled engine from Volkswagen or Porsche automobile. One person removes, repairs, tests, and reinstalls engine of car, van, or home-built airplane. Consists of framework of wood, steel, and aluminum components supported by four wheels. Engine lifted from vehicle by hydraulic jack and gently lowered onto waiting cart. Jack removed from under engine. Rear of vehicle raised just enough that engine can be rolled out from under it. Cart easily supports 200-lb engine. Also used to hold transmission. With removable sheet-metal top, cart used as portable seat.

  6. Engineering and Engineering Technology Degrees, 1990.

    ERIC Educational Resources Information Center

    Ellis, R. A.

    1991-01-01

    The number of B.S., M.S./P.E., and Ph.D. degrees in engineering and engineering technology awarded by U.S. colleges and universities is tabulated according to the following criteria: by state, by school, curriculum, type of recipient, and by school and degree level. (KR)

  7. Engineering Ethics in the Subject of Engineering History

    NASA Astrophysics Data System (ADS)

    Isohata, Hiroshi

    Engineering ethics has been focused in the field of engineering education since the introduction of accreditation system of engineering education. In this paper, contents of the subject of engineering history are examined and discussed from the viewpoints of education of engineering ethics through a practical case of civil engineering history in a college. For the first step, codes of engineering ethics regulated in various engineering organizations are analyzed and the common contents are extracted to set the requirements for the education of engineering ethics. Then contents of the subject of engineering history are examined according to the requirements. Finally, conditions of engineering history for engineering ethics are discussed.

  8. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  9. Carburetion in aviation engines

    NASA Technical Reports Server (NTRS)

    POINCARE

    1923-01-01

    This report tries to solve the problem of supplying the engine cylinders with a mixture of fuel and air in the right ratio to obtain the greatest power from the engine with the least consumption of fuel.

  10. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  11. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  12. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  13. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  14. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  15. Structural Engineering: Overview

    NASA Technical Reports Server (NTRS)

    Castro, Edgar

    2011-01-01

    This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.

  16. Siege engine dynamics

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2005-07-01

    The medieval siege engine is a historically important machine that has latterly been adopted for the purpose of physics instruction. Here we analyse the historical developments and show why these engines ultimately evolved into the highly efficient trebuchet.

  17. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  18. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  19. COBRA Main Engine Project

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim; Sides, Steve; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    The COBRA (CO-Optimized Booster for Reusable Applications) project include the following: 1. COBRA main engine project team. 2. COBRA and RLX cycles selected. 3. COBRA proto-type engine approach enables mission success. 4. COBRA provides quick, low cost demo of cycle and technologies. 5. COBRA cycle I risk reduction supports. 6. Achieving engine safety. 6. RLX cycle I risk reduction supports. 7. Flight qualification. 9. Life extension engine testing.

  20. Data management in engineering

    NASA Technical Reports Server (NTRS)

    Browne, J. C.

    1976-01-01

    An introduction to computer based data management is presented with an orientation toward the needs of engineering application. The characteristics and structure of data management systems are discussed. A link to familiar engineering applications of computing is established through a discussion of data structure and data access procedures. An example data management system for a hypothetical engineering application is presented.

  1. Engineering for All

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela S.; Lovelidge, Sarah; Bowling, Erin

    2010-01-01

    As calls for science, technology, engineering, and mathematics (STEM) education at the elementary level become more vociferous, elementary teachers may be wondering whether engineering is meant for "all" students. However, the authors assert that engineering can be taught in inclusive environments. It may be especially empowering for those who…

  2. Personality Characteristics of Engineers

    ERIC Educational Resources Information Center

    van der Molen, Henk T.; Schmidt, Henk G.; Kruisman, Gerard

    2007-01-01

    The objective of the current study was to investigate the personality characteristics of a group of engineers with a variety of years of experience. It was executed to remedy shortcomings of the literature concerning this issue and to produce suggestions for a postgraduate training programme for engineers. A total of 103 engineers were tested with…

  3. Graduate Engineering Education Today

    ERIC Educational Resources Information Center

    Pettit, Joseph M.; Gere, James M.

    1969-01-01

    Describes rapid growth of graduate education in engineering between 1900 and 1969. Points out need for graduate curricula in engineering that are both practical and research-oriented. Adapted from paper presented at International Conference on the Trends in the Teaching and Training of Engineers, Paris, France, December 9-13, 1968, and at Second…

  4. Principles of Naval Engineering.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of shipboard machinery, equipment, and engineering plants are presented in this text prepared for engineering officers. A general description is included of the development of naval ships, ship design and construction, stability and buoyancy, and damage and casualty control. Engineering theories are explained on the background of ship…

  5. Humanities in Engineering Education.

    ERIC Educational Resources Information Center

    Ruprecht, Robert

    1997-01-01

    States that engineers contribute tremendously to the changing face of the earth, and the ever more urgent call for languages, management, and law competencies for engineers is an expression of the need for a grounding in humanities. Discusses the role of humanities in engineering education in the context of world economics and the role of…

  6. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  7. 21. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Engine identified as a 'single cylinder vacuum assist engine for Tod tandem compound engine' showing compressor. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  8. 20. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Engine identified as a 'single cylinder vacuum assist engine for the Tod tandem compound engine' showing crank end. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  9. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  10. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  11. CF 6 engine diagnostics

    NASA Technical Reports Server (NTRS)

    Stricklin, R.

    1981-01-01

    A summary of the activities which led to defining deterioration rates of the CF6 family of engines, a description of what was learned, and an identification of means of conserving fuel based upon the program findings are presented. The program to define the deterioration levels and modes for the CF6 family of engines involved four distinct phases: analysis of inbound engine test results, analysis of airline cruise data, analysis of airline test cell data resulting from testing of refurbished engines, and inspection of engine hardware.

  12. Diesel engine combustion processes

    SciTech Connect

    1995-12-31

    Diesel Engine Combustion Processes guides the engineer and research technician toward engine designs which will give the ``best payoff`` in terms of emissions and fuel economy. Contents include: Three-dimensional modeling of soot and NO in a direct-injection diesel engine; Prechamber for lean burn for low NOx; Modeling and identification of a diesel combustion process with the downhill gradient search method; The droplet group micro-explosions in W/O diesel fuel emulsion sprays; Combustion process of diesel spray in high temperature air; Combustion process of diesel engines at regions with different altitude; and more.

  13. Diagnosing diesel engines

    SciTech Connect

    O'Connor, L.

    1992-03-01

    This paper reports that problems with diesel engines that have reciprocating parts have long defied a systematic approach to analysis. Engine phenomena such as combustion pressures, valve seating impacts, and piston vibrations reflect directly on how an engine is performing and would be useful to measure. However, these occur inside an engine block and for the most part are not possible to measure directly with sensors. Diesel engine manufacturers are finding new ways to troubleshoot machinery by using sophisticated signal-processing techniques that detect combustion anomalies and high-speed data-acquisition units that sample multiple measurement parameters.

  14. Armored Geomembrane Cover Engineering

    PubMed Central

    Foye, Kevin

    2011-01-01

    Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers. PMID:21776229

  15. Engineering salaries up

    NASA Astrophysics Data System (ADS)

    Earnings of engineers in the United States kept pace with inflation, according to a recent salary survey by the Engineering Manpower Commission of the American Association of Engineering Societies (AAES). Salaries and the consumer price index each rose 7.7% for the 12-month period ending February 1 of this year. The national average salary for engineers is now $34,400, the survey results show. The highest percentage increases in salaries were in the mechanical and chemical engineering industries, with jumps of 10.0 and 9.5%, respectively.

  16. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  17. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  18. Stirling engine application study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  19. Perceptions regarding biomedical engineering

    NASA Astrophysics Data System (ADS)

    Pearson, James E.

    1995-10-01

    Perceptions of biomedical engineering are important because they can influence private and public decisions on R&D funding and public policy. A survey was conducted of a group of persons active in biomedical engineering research in an attempt to determine the perceptions of the general public and of the biomedical community regarding biomedical engineering. The public is believed to have 'a little' knowledge of biomedical engineering, and to have a wide range of opinions on what biomedical engineers do. The survey respondents believe they are in general agreement with the public on several questions regarding biomedical engineering. However, the public is believed to be more inclined than workers in the field to think that biomedical engineering increases the cost of health care, and to be less supportive of increased R&D funding for health care technology.

  20. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  1. Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering has the objectives of supporting in Canada the following activities: improvement of vehicles, propulsion systems, and transportation-related facilities and services; improvements in the design and operation of maritime engineering works; protection of the environment; enhancement of energy flexibility; advancement of firms engaged in manufacturing and resource extraction; and related programs of other government departments and agencies. In 1990-91 the Institute, which had changed its name that year from the Division of Mechanical Engineering, consolidated its research activities from nine laboratories to six programs. Activities in these six programs are described: Advanced Manufacturing Technology, Coastal Zone Engineering, Cold Regions Engineering, Combustion and Fluids Engineering, Ground Transportation Technology, and Machinery and Engine Technology.

  2. Senior Engineer - Head of Paranal Engineering Department

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Purpose and scope of the position: The role of the Paranal Engineering Department is to carry out the assembly, integration and troubleshooting of the VLT (Very Large Telescope), the instrumentation of the VLT and of the VLTI (VLT Interferometry), of the VST (VLT Survey Telescope), VISTA (Visible and Infrared Survey Telescope), of all the facilities required on the Observatory (Power Station, Air Compressors, Chillers, etc), and to provide general engineering support of maintenance, troubleshooting and fault repair to nightly operations.

  3. Mechanical Engineering Department technical review

    SciTech Connect

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  4. The engineering and geological constraints of the intraslope basins and submarine canyons of the northwestern Gulf of Mexico

    SciTech Connect

    Bryant, W.R.; Yuh Liu, J.; Ponthier, J.

    1995-10-01

    It is well realized that future hydrocarbon discoveries on the upper and lower continental slope and rise off Texas and Louisiana necessitate innovative methods for the construction of platforms and pipelines in a very difficult engineering and complex geological environment. There are 105 intraslope basins and 5 major submarine canyons on the continental slope of the northwestern Gulf of Mexico, many of which may be prime targets for hydrocarbon production. Examination of the physiographic, geophysical and geotechnical characteristics of the intraslope basins of Pigmy and Vaca basins and the Alaminos submarine canyon are used as examples to typify the various engineering and geological constraints that are most likely to be encountered on the continental slope and rise and along the Sigsbee Escarpment in the northwestern Gulf of Mexico. High-resolution bathymetry identifies such constraints as high-angle intraslope basin walls, walls that exceed 40 degrees are not uncommon. Sediment slumps and other instabilities, such as long-term sediment creep and other affects of halokenesis and contemporaneous faulting, are illustrated and evaluated from high-resolution geophysics. The small canyons and large gullies that dissect the parameter flanks of Alaminos Canyon, that may be the results of both recent and old turbidity currents and debris flows, are structures that require engineering consideration in the implement of seafloor structures in, near or down slope of these features.

  5. A Powerful New Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.

  6. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  7. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  8. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  9. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  10. Piston engine configuration alternatives

    SciTech Connect

    Wyczalek, F.A.

    1989-01-01

    This paper provides a technological assessment of alternate engine component configuration and material alternatives. It includes a comparative analysis of key characteristics of Gasoline, Diesel and Gas Turbine engines built by Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan, Suburu, Suzuki and Toyota. The piston engines range from two to ten cylinders with inline, vee and opposed configurations. Furthermore, additional special features and alternative choices include variable compression ratio, ceramic structural components, supercharger, turbocharger, twin turbocharger, supercharger-turbocharger combined and the regenerative gas turbine.

  11. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  12. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  13. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  14. Diesel Engine Alternatives

    SciTech Connect

    Ryan, T

    2003-08-24

    There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

  15. SOFIA Engineer Thomas Keilig

    NASA Video Gallery

    Thomas Keilig, the German Aerospace Agency's (DLR) chief telescope engineer for the Stratospheric Observatory for Infrared Astronomy (SOFIA), comments on technical details of the high-tech primary ...

  16. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  17. Engineering of Secondary Metabolism.

    PubMed

    O'Connor, Sarah E

    2015-01-01

    Secondary (specialized) metabolites, produced by bacteria, fungi, plants, and other organisms, exhibit enormous structural variation, and consequently display a wide range of biological activities. Secondary metabolism improves and modulates the phenotype of the host producer. Furthermore, these biological activities have resulted in the use of secondary metabolites in a variety of industrial and pharmaceutical applications. Metabolic engineering presents a powerful strategy to improve access to these valuable molecules. A critical overview of engineering approaches in secondary metabolism is presented, both in heterologous and native hosts. The recognition of the increasing role of compartmentalization in metabolic engineering is highlighted. Engineering approaches to modify the structure of key secondary metabolite classes are also critically evaluated.

  18. Product engineering guide

    SciTech Connect

    McCarty, C.E.

    1989-12-01

    The semiconductor product engineers job requires knowledge and expertise related to many different subjects. This report provides guidance for newcomers to product engineering and is a consise reference for all others involved in product engineering. Subjects addressed are Customer/Supplier interactions, component development sequence, production schedule support, component characterization, product specifications, test equipment requirements, product qualification, characterization and development reports, preferred parts list, standard packaging, and finally, classification and security considerations. This guide is intended to help standardize and simplify the component development sequence presently used in the semiconductor product engineering department. 3 figs., 2 tabs.

  19. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  20. Perturbing engine performance measurements to determine optimal engine control settings

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. Students' Changing Images of Engineering and Engineers. Research Brief

    ERIC Educational Resources Information Center

    Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel

    2008-01-01

    This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…

  2. NASA Engineering Network (NEN)

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Trevarthen, Ellie; Yew, Manson

    2008-01-01

    This slide presentation reviews the NASA Engineering Network (NEN). NEN is designed to search documents over multiple repositories, submit and browse NASA Lessons Learned, collaborate and share ideas with other engineers via communities of practice, access resources from one portal, and find subject matter experts via the People, Organizations, Projects, Skills (POPS) locator.

  3. The Engineering Technician.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Occupational and educational information concerning 12 categories of engineering technicians and engineering technology is presented. This information covers the role of the technicians, student qualifications, typical job titles, and typical educational programs. The categories presented are (1) air conditioning, heating, and refrigeration, (2)…

  4. Science & Engineering Indicators--1987.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This volume was written to reflect an increased awareness of the complementary roles played by science and engineering research and engineering in creating both new knowledge and new technological products and processes. It was designed to provide a broad base of quantitative information about the structure and function of science and technology…

  5. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  6. Make Room for Engineering

    ERIC Educational Resources Information Center

    Boesdorfer, Sarah; Greenhalgh, Scott

    2014-01-01

    The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…

  7. Knowledge Engineering and Education.

    ERIC Educational Resources Information Center

    Lopez, Antonio M., Jr.; Donlon, James

    2001-01-01

    Discusses knowledge engineering, computer software, and possible applications in the field of education. Highlights include the distinctions between data, information, and knowledge; knowledge engineering as a subfield of artificial intelligence; knowledge acquisition; data mining; ontology development for subject terms; cognitive apprentices; and…

  8. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  9. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  10. Concurrent Software Engineering Project

    ERIC Educational Resources Information Center

    Stankovic, Nenad; Tillo, Tammam

    2009-01-01

    Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…

  11. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  12. Think Engineer, Think Male?

    ERIC Educational Resources Information Center

    Male, Sally A.; Bush, Mark B.; Murray, Kevin

    2009-01-01

    Engineering education needs to develop the competencies required for engineering work, and attract and retain students from diverse backgrounds. This study investigated the possibility that the perceived importance of competencies is subconsciously influenced by gendered assumptions, and as a consequence, this lowers the status given to…

  13. Free piston stirling engines

    SciTech Connect

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  14. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  15. First-Grade Engineers

    ERIC Educational Resources Information Center

    Bautista, Nazan Uludag; Peters, Kari Nichole

    2010-01-01

    Can students build a house that is cost effective and strong enough to survive strong winds, heavy rains, and earthquakes? First graders in Ms. Peter's classroom worked like engineers to answer this question. They participated in a design challenge that required them to plan like engineers and build strong and cost-effective houses that would fit…

  16. Family Style Engineering

    ERIC Educational Resources Information Center

    Smetana, Lara K.; Schumaker, Joan Chadde; Goldfien, Wendy Severin; Nelson, Cheryl

    2012-01-01

    Cunningham and Lachapelle (2011) found that most students have a naive understanding of the field of engineering, mistaking it for the work of technicians or artisans and neglecting to see the contributions engineers make to people's daily lives. In general, public (and teacher) understanding is not much more refined. These misconceptions about…

  17. Diesel Engine Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  18. Stirling engine design manual

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  19. Engineering Technology Curriculum Guidelines

    ERIC Educational Resources Information Center

    Gershon, J. J.

    1977-01-01

    Summarizes curriculum guidelines for the following engineering technologies: chemical, industrial, mining, petroleum, nuclear, civil, mechanical, electrical, automotive, and manufacturing. In a few years, these Engineering Council for Professional Development committee guidelines are intended to become the criteria by which programs will be judged…

  20. Teaching Engineering Practices

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Carlsen, William S.

    2014-01-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be…

  1. Courseware Engineering Methodology.

    ERIC Educational Resources Information Center

    Uden, Lorna

    2002-01-01

    Describes development of the Courseware Engineering Methodology (CEM), created to guide novices in designing effective courseware. Discusses CEM's four models: pedagogical (concerned with the courseware's pedagogical aspects), conceptual (dealing with software engineering), interface (relating to human-computer interaction), and hypermedia…

  2. SCSE organic Rankine engine

    SciTech Connect

    Boda, F.P.

    1981-01-01

    The Organic Rankine Cycle (ORC) engine is described which has been developed by FACC for the Small Community Solar Thermal Power Experiment (SCSE). This engine is part of a Power Conversion Subsystem (PCS) located at the focal plant of a sun-tracking parabolic dish concentrator.

  3. Ann Wagner, Mechanical Engineer.

    ERIC Educational Resources Information Center

    Bennett, Betsy K.

    1996-01-01

    Presents a profile of Ann Wagner, a mechanical engineer at the Goddard Space Flight Center in Maryland, and her job responsibilities there. Also includes a brief history of mechanical engineering as well as a sample graph and data activity sheet with answers. (AIM)

  4. Biological handbook for engineers

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Microbiological background information is compiled in handbook for engineers and scientists working on bio-related projects. It is intended as aid in - /1/ evaluating effects of engineering procedures on microbial life, /2/ determining effects of decontamination and sterilization on performance of overall systems, and /3/ understanding language of microbiologists.

  5. Mechanical Engineering Technology Curriculum.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train mechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of mechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard mechanical engineering…

  6. Development of bioreaction engineering.

    PubMed

    Schügerl, K

    2000-01-01

    In addition to summarizing the early investigations in bioreaction engineering, the present short review covers the development of the field in the last 50 years. A brief overview of the progress of the fundamentals is presented in the first part of this article and the key issues of bioreaction engineering are advanced in its second part.

  7. Searches Conducted for Engineers.

    ERIC Educational Resources Information Center

    Lorenz, Patricia

    This paper reports an industrial information specialist's experience in performing online searches for engineers and surveys the databases used. Engineers seeking assistance fall into three categories: (1) those who recognize the value of online retrieval; (2) referrals by colleagues; and (3) those who do not seek help. As more successful searches…

  8. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  9. International Cooperation in Engineering.

    ERIC Educational Resources Information Center

    Willenbrock, F. Karl

    1987-01-01

    Reports on a study by the National Academy of Engineering (NAE) into various relationships in engineering that the United States has with countries that have comparable or superior levels of technology. Discusses competition, cooperation, information flow, symmetry, language and cultural barriers, research opportunities, and professional…

  10. Computers in Engineering Teaching.

    ERIC Educational Resources Information Center

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  11. Engineering for Everyone

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Higgins, Melissa

    2015-01-01

    The new Next Generation Science Standards make it a priority for schools to focus more on the E in STEM, to help students learn the skills and practices of engineering. Schools that are doing so face a challenge, however: How to design educational experiences in engineering that engage all students--including girls and minorities, who are…

  12. Engineering Sustainable Engineers through the Undergraduate Experience

    ERIC Educational Resources Information Center

    Weatherton, Yvette Pearson; Sattler, Melanie; Mattingly, Stephen; Chen, Victoria; Rogers, Jamie; Dennis, Brian

    2012-01-01

    In order to meet the challenges of sustainable development, our approach to education must be modified to equip students to evaluate alternatives and devise solutions that meet multi-faceted requirements. In 2009, faculty in the Departments of Civil, Industrial and Mechanical Engineering at the University of Texas at Arlington began implementation…

  13. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  14. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  15. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  16. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  17. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  18. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment. PMID:27472104

  19. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  20. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  1. Adaptive Heat Engine

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Babajanyan, S. G.; Martirosyan, N. H.; Melkikh, A. V.

    2016-07-01

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where—due to feedback from the functional part—the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  2. Engineering hydro's future

    SciTech Connect

    Anderson, J.L.

    1992-04-01

    In this challenging hydropower market, hydropower engineering services are in high demand. The number of new hydropower projects entering the pipeline may have slowed in recent years but that does not mean work is not being done. Independent developers, utilities and municipalities are carrying out a considerable amount of hydropower activity. Whatever the work involves - preliminary planning, licensing and relicensing, environmental mitigation, plant rehabilitation or new-plant startup - engineering firms are finding a brisk market for their services. The complexity of the regulatory framework makes hydropower facility and other water resource work more important then ever. Executives of three engineering firms - Acres International, Harza Engineering and Black and Veatch - active in these areas discuss their views on the future of the hydropower engineering market.

  3. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  4. Elements of Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer

    2012-01-01

    The inspiration for this Contract Report (CR) originated in discussions with the director of Marshall Space Flight Center (MSFC) Engineering who asked that we investigate the question: "How do you achieve excellence in aerospace engineering?" Engineering a space system is a complex activity. Avoiding its inherent potential pitfalls and achieving a successful product is a challenge. This CR presents one approach to answering the question of how to achieve Engineering Excellence. We first investigated the root causes of NASA major failures as a basis for developing a proposed answer to the question of Excellence. The following discussions integrate a triad of Technical Understanding and Execution, Partnership with the Project, and Individual and Organizational Culture. The thesis is that you must focus on the whole process and its underlying culture, not just on the technical aspects. In addition to the engineering process, emphasis is given to the need and characteristics of a Learning Organization as a mechanism for changing the culture.

  5. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  6. Systems engineering management plans.

    SciTech Connect

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  7. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  8. 19. Engine identified as a single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Engine identified as a single cylinder vacuum assist engine for the Filer and Stowell 15-inch continuous mill. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  9. 5. Engine room, general view looking east, engine #2 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Engine room, general view looking east, engine #2 in foreground (1895, now cannibalized for parts), engine #3 is in the background - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  10. 1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITEDTOD TWINTANDEM ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITED-TOD TWIN-TANDEM ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  11. 2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  12. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  13. Determining Engineering Properties of the Shallow Lunar Subsurface using Seismic Surface Wave Techniques

    NASA Astrophysics Data System (ADS)

    Yeluru, P. M.; Baker, G. S.

    2008-12-01

    The geology of Earth's moon has previously been examined via telescopic observations, orbiting spacecraft readings, lunar sample analysis, and also from some geophysical data. Previous researchers have examined layering of the moon and models exist explaining the velocity variations in the mantle and core. However, no studies (or datasets) currently exist regarding the engineering properties of the shallow (<30 m) lunar subsurface. Engineering properties--like shear modulus and Poisson's ratio--are key parameters for civil engineering works, as they characterize the mechanical behavior of geotechnical materials under various types of loading. Therefore, understanding the physical and engineering properties within the upper 30 m of the lunar subsurface will be critical for lunar exploration if deployment of large structures, large-scale excavation, and/or landing of large spacecraft on the surface is desired. Advances in near-surface geophysical techniques, such as Multi-channel Analysis of Surface Wave (MASW), has greatly increased our ability to map subsurface variations in physical properties. The MASW method involves deployment of multiple seismometers to acquire 1-D or 2-D shear wave velocity profiles that can be directly related to various engineering properties. The advantage of this technique over drilling boreholes or any other geophysical technique is that it is less intensive, non-invasive, more cost- effective, and more robust because strong surface-wave records are almost guaranteed. In addition, data processing and analysis is fairly straightforward, and the MASW method allows for analysis of a large area of interest as compared to drilling boreholes. A new scheme using randomly distributed geophones (likely deployed from a mortar-type device) instead of a conventional linear array will be presented. A random array is necessary for lunar exploration because of the logistical constraints involved in deploying a linear or circular array robotically or by

  14. E85 Optimized Engine

    SciTech Connect

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  15. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  16. Heavy Truck Engine Program

    SciTech Connect

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  17. Dictionary of lighting engineering

    SciTech Connect

    Zimmermann, R.

    1989-01-01

    Distributors in the socialist countries, FRG, Switzerland and Austria: VEB Verlag Technik, Berlin, FRG Lighting engineering has developed progressively in all industrialized countries during the past few years. This development has been accompanied by a growing number of publications offering a flood of information and documentation in various languages, mainly in English, German, Russian, French and Japanese, and involving a more and more extensive and specific vocabulary. In this book, following fields are covered: fundamentals of lighting engineering; generation of light; measurement of light, radiation and color; lighting engineering and radiation detectors.

  18. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  19. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  20. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  1. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  2. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  3. Turbo compound engine

    SciTech Connect

    Okada, M.; Sekiyama, S.

    1988-06-07

    A turbo compound engine is described comprising: an engine having an exhaust gas passage and a crankshaft; a power turbine disposed in the exhaust gas passage so as to recover the exhaust gas energy; driving power transmission means for drivingly connecting the power turbine and the crankshaft so as to transmit the driving power; a fluid passage connected to a portion of the exhaust passage which lies between the power turbine and the engine; and fluid passage switching means for closing the exhaust passage upstream of the fluid passage while opening the fluid passage during exhaust braking.

  4. Test pilot and engineer

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Goggles at the ready, this Langley test pilot and engineer conducted research business high above the ground. Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz (page 24). This photograph is also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 163). In the early years the flight research team was usually made up of a test pilot (Thomas Carroll, front cockpit) and an engineer (John W. Gus Crowley,Jr.).

  5. Improving Search Engine Reliability

    NASA Astrophysics Data System (ADS)

    Pruthi, Jyoti; Kumar, Ela

    2010-11-01

    Search engines on the Internet are used daily to access and find information. While these services are providing an easy way to find information globally, they are also suffering from artificially created false results. This paper describes two techniques that are being used to manipulate the search engines: spam pages (used to achieve higher rankings on the result page) and cloaking (used to feed falsified data into search engines). This paper also describes two proposed methods to fight this kind of misuse, algorithms for both of the formerly mentioned cases of spamdexing.

  6. Tomorrow's engines and fuels

    SciTech Connect

    Douaud, A. )

    1995-02-01

    The paper discusses global views and trends in vehicles and fuels. This includes important progress in Europe in vehicle fuel consumption; lower consumption being stimulated by CO[sub 2] emission limits; reduced vehicle emission; and new air quality strategy on ozone and toxic gas controls. The paper then discusses new engine and fuel technologies for low consumption and emissions. These include three-way catalyst engines; advanced after-treatments; clean and efficient fuels; reformulated gasoline in the US and Europe; diesel fuel reformulation; new fuels and dedicated engines for specialized markets; and gaseous fuels (LPG, CNG, biofuels, and hydrogen).

  7. Principles of models based engineering

    SciTech Connect

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  8. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  9. Ethyl alcohol use in engines

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    This article evaluates the use of ethanol as a fuel for internal combustion engines. The basic properties of ethanol are examined together with how it performs in an engine. Both spark ignition engines and diesel engines were tested with ethanol. The physical and chemical characteristics of ethanol provided a better match with the gasoline engines, although ethanol could be used to supplement diesel fuel in diesel engines.

  10. Efficiency analysis of diesel engines

    SciTech Connect

    de Souza, E.G. ); Milanez, L.F. )

    1990-01-01

    Internal combustion engines are equipment that play an important role in the world's energy consumption. The choice of an appropriate engine for a given application depends on the adequate identification of the working conditions and the characteristics of the engines available. In this work correlation for the efficiency of an internal combustion engine as a function of the engine speed and torque is proposed. The correlation is used for comparing engine performance results obtained in dynamometer tests.

  11. Stennis certifies final shuttle engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

  12. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  13. PROFESSIONAL REGISTRATION OF GOVERNMENT ENGINEERS.

    USGS Publications Warehouse

    Buchanan, Thomas J.

    1985-01-01

    The American Society of Civil Engineers views professional registration as an appropriate requirement for engineers, including those in government. The National Society of Professional Engineers makes registration a requirement for the grade of member and full privileges in the society. Some Federal agencies require engineering registration for certain positions in their agencies. Engineers in government service should consider the value of engineering registration to themselves and to their agencies and take pride in their professions and in their own capabilities by becoming registered engineers. They should also take steps to encourage their agencies to give more attention to engineering registration.

  14. Determination and Assessment of Parameters Influencing Rock Mass Cavability in Block Caving Mines Using the Probabilistic Rock Engineering System

    NASA Astrophysics Data System (ADS)

    Rafiee, Ramin; Ataei, Mohammad; Khalokakaie, Reza; Jalali, Seyed Mohammad Esmaeil; Sereshki, Farhang

    2015-05-01

    Mining methods such as block caving or sublevel caving rely on the characteristics of the rock mass to cave efficiently to fulfill an economical production. The identification of influencing parameters and cavability assessment are, thus, a prime geotechnical focus for all potential caving projects. In the caving operation, many factors, such as natural and induced factors, affect the caving performance. In this study, after discussing the caving process and identifying all effective parameters, the interaction matrix based on the rock engineering system (RES) is introduced to study the influencing parameters in rock mass cavability. The interaction matrix analyzes the interrelationship between the parameters affecting rock engineering activities. As the interaction matrix codes are not unique, probabilistic coding can be performed non-deterministically, allowing consideration of uncertainties in the RES analysis. As a result, the parameters with the highest probability of being dominant or subordinate, and also the parameters with the highest probability of being interactive, are introduced. The proposed approach could be a simple but efficient tool in the evaluation of the parameters affecting the cavability of rock mass in block caving mines and, hence, useful in decision-making under uncertainties.

  15. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  16. J-2 Engine Test

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.

  17. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  18. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  19. A sublimation heat engine

    NASA Astrophysics Data System (ADS)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  20. To Teach Chemists Engineering.

    ERIC Educational Resources Information Center

    Grinbaum, Baruch; Semiat, Raphael

    1998-01-01

    Cites the shortcomings of the traditional educational experiences of chemists. Focuses on their training in engineering and concludes that training is lacking in the areas of mass balances in flow processes, heat balances, reactors, separation processes, and scaleup. (DDR)