Sample records for geotechnical engineering

  1. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  2. Geotechnical engineering in US elementary schools

    NASA Astrophysics Data System (ADS)

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-06-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data acquisition, the soil profile and foundations activity employed natural and transparent soils as well as LEGO-based foundation models, and the erosion activity utilised a 3D printer to assist with construction of building models. The activities seek to enhance students' academic achievement, excite them about geotechnical engineering, and motivate them to study science and math. Pre- and post-activity evaluations were conducted to assess both the suitability of the activities and the students' learning. Initial results show that students gain a reasonable understanding of engineering principles. Moreover, the geotechnical engineering activities provided students an opportunity to apply their math skills and science knowledge.

  3. Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Buege, L. L.

    1983-09-01

    Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.

  4. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwidemore » problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.« less

  5. Geotechnical Engineering in US Elementary Schools

    ERIC Educational Resources Information Center

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-01-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data…

  6. 6th international conference on case histories in geotechnical engineering August 2008conference report.

    DOT National Transportation Integrated Search

    2009-01-01

    Due to uncertainty in the nature of soils, a systematic study of the performance of geotechnical structures and its match with predictions is extremely important. Therefore, considerable research effort is being devoted to geotechnical engineering th...

  7. Training Course in Geotechnical and Foundation Engineering. Geotechnical Earthquake Engineering: Reference Manual. Chapters 4, Ground Motion Characterization, and 8, Liquefaction and Seismic Settlement.

    DOT National Transportation Integrated Search

    1998-12-01

    This manual was written to provide training on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Reproduced here are two chapters 4 and 8 in the settlement, respectively. These cha...

  8. Incorporating Learning Outcomes into an Introductory Geotechnical Engineering Course

    ERIC Educational Resources Information Center

    Fiegel, Gregg L.

    2013-01-01

    The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding…

  9. Environments for Fostering Effective Critical Thinking in Geotechnical Engineering Education (Geo-EFFECTs)

    ERIC Educational Resources Information Center

    Pierce, Charles E.; Gassman, Sarah L.; Huffman, Jeffrey T.

    2013-01-01

    This paper describes the development, implementation, and assessment of instructional materials for geotechnical engineering concepts using the Environments for Fostering Effective Critical Thinking (EFFECTs) pedagogical framework. The central learning goals of engineering EFFECTs are to (i) improve the understanding and retention of a specific…

  10. The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.

    ERIC Educational Resources Information Center

    Anderson, W. F.; And Others

    1985-01-01

    Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…

  11. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  12. Enabling Geotechnical Data for Broader Use by the Spatial Data Infrastructures

    ERIC Educational Resources Information Center

    Zand, Amir Ghasem

    2011-01-01

    Geotechnical data are one of the most prevalent data types in civil engineering projects. The majority of the civil engineering projects that are in use today are designed using site-specific geotechnical data. The usage of geotechnical data is not limited to construction projects. This data is used in a wide range of applications, including…

  13. Fiber-optic sensor applications in civil and geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  14. Austrian Guideline for Geomechanical Design of Tunnels - Necessity for Cooperation between Geologists, Geotechnical and Civil Engineers

    NASA Astrophysics Data System (ADS)

    Schwarz, Ludwig; Eder, Stefan; Mattle, Bruno; Hammer, Helmut

    Rising competitive pressure in the construction business, ever tighter schedules being set up by the clients and ongoing disputes between engineering geologists and civil engineers about the role of geotechnical engineers have - in the last few years - led to increasing discussions between engineers and geologists about the allocation of competences during the design process of underground structures. In the course of this debate, which is often polemic and anything but objective, important information is quite frequently lost - a development which may not only be to the disadvantage of the client but which may also do damage to the reputation of the professions involved. The design procedure of the new Austrian guideline for the geomechanical design of underground structures requires a close collaboration of geologists, geotechnical and civil engineers, yet without allocating competences. While preparing the tender documents for the first construction lot of the Northern feeder line of the Brenner base tunnel, the necessity of a close cooperation of the involved professions became apparent due to the complex geological situation encountered in the project area and the enormous amount of data available. Despite these difficult boundary conditions, the successful application of the guideline was last but not least the result of the joint efforts of the multidisciplinary design team.

  15. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  16. In-Tank Processing (ITP) Geotechnical Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumbest, R.J.

    A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is tomore » obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.« less

  17. WisDOT geotechnical manual development.

    DOT National Transportation Integrated Search

    2015-02-01

    The Wisconsin Department of Transportation currently has a Soils Manual and a Geotechnical Bulletin that provides some guidance : to Regional staff and consulting engineering firms on departmental policy and procedures. However, these two publication...

  18. Incorporating the site variability and laboratory/in-situ testing variability of soil properties in geotechnical engineering design : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-04-01

    While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...

  19. Role to Be Played by Independent Geotechnical Supervision in the Foundation for Bridge Construction

    NASA Astrophysics Data System (ADS)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    Some remarks concerning the necessity of employing an independent and over all ethical geotechnical survey were presented in the paper. Starting from the design phase, through the whole construction process, the importance of geotechnical engineer is stated in legal acts. Numerous testing technologies serve for the calibration of geotechnical technologies and allow for confirming the quality and capacity of piles. Special emphasis was payed to the involvement of scientifical and research institutions which can not only serve services but also can postprocess and methodize collected data. Such databases enable for new codes, methods and recommendations. Selection of deep foundations for bridge-type structures is most often dependent on complex geotechnical conditions, concentrated loads and constraints for pier displacements. Besides the last ones, prior to more common introduction of the design-construct system, could be a convenient justification for design engineer, who imposed deep foundation because he did not want or was not able to estimate the effect of pier settlement on civil engineering structure. The paper provides some notes about the need to engage a geotechnical supervising service of high competency and ethical quality during engineering and construction stages of foundations for bridge-type structures where legal requirements are of special consideration. Successive stages of projects are reviewed and research methods used for current calibration of geotechnical technologies and verification of geotechnical work quality are analysed. Special attention is given to potential involvement of independent R&D institutions which, apart from rendering specific services, also collect and systemize the research results thus enabling, in the long term, to revise engineering standards, instructions and guidelines.

  20. Analysis of change orders in geotechnical engineering work at INDOT : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    There was a perception at INDOT that the number of change orders connected with geotechnical work was excessive, and that, as a consequence, geotechnical projects were not completed on time or within budget. It was reported that INDOT construction pr...

  1. Progress in Geotechnical Dynamic Centrifuge Modeling.

    DTIC Science & Technology

    1985-06-01

    Engineer, 1932. 4. Pokrovsky, G.I., Centrifugal Model Testing, ONII Publishing House, 1935. 5. Arulanandan, K., Canclini , J., and Anandarajah, A...Philosophy. 21. Arulananaan, K., Canclini , J., and Anandarajah, A., "Simulation of Earthquate Motions in the Centrituge,"ASCE J. of the Geotechnical

  2. Compendium of abstracts on statistical applications in geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Deer, G. W.

    1983-09-01

    The results of a literature search of geotechnical and statistical abstracts are presented in tables listing specific topics, title of the abstract, main author and the file number under which the abstract can be found.

  3. Kentucky geotechnical database.

    DOT National Transportation Integrated Search

    2005-03-01

    Development of a comprehensive dynamic, geotechnical database is described. Computer software selected to program the client/server application in windows environment, components and structure of the geotechnical database, and primary factors cons...

  4. Application of Crushed Concrete in Geotechnical Engineering - Selected Issues

    NASA Astrophysics Data System (ADS)

    Kawalec, Jacek; Kwiecien, Slawomir; Pilipenko, Anton; Rybak, Jarosław

    2017-12-01

    The reuse of building materials becomes an important issue in sustainable engineering. As the technical requirements for civil engineering structures changes with time and the life time is limited, the need of building new objects meets the necessity of recycling of the existing ones. In the case of steel structures, the possibility of recycling is obvious, also in the case of wooden constructions, the possibility of “burning” solves the problem. The concrete waste is generated mainly as a result of the demolition and reconstruction of residential and industrial buildings. These types of waste are basically made from crushed rocks and cement minerals and contain non-hydrated cement particles in its composition. Concrete poses a lot of problems mainly for two reasons. It is difficult to crush, heavy and hard to transport and demanding in reuse. Different fractions (particle sizes) may be used for different purposes. Starting from very fine particles which can be used in concrete production, through regular 16-300 mm fractions used to form new fills and fill the mats, up to very irregular mixtures used to form stone columns by means of Impulse Compaction or in Dynamic Replacement. The presented study juxtaposes authors experience with crushed concrete used in civil engineering, mainly in geotechnical projects. Authors’ experiences comprise the application of crushed concrete in the new concrete production in Russia, changing pulverized bridge into the fill of mesh sacks, or mattresses used as an effective way to protect the shoreline and the New Orleans East land bridge after Katrina storm (forming a new shoreline better able to withstand wave actions), and finally the use of very irregular concrete fractions to form stone columns in week soils on the example of railway and road projects in Poland. Selected case studies are presented and summarized with regard to social, technical and economic issues including energy consumption needed for proposed technologies

  5. The influence of Stochastic perturbation of Geotechnical media On Electromagnetic tomography

    NASA Astrophysics Data System (ADS)

    Song, Lei; Yang, Weihao; Huangsonglei, Jiahui; Li, HaiPeng

    2015-04-01

    Electromagnetic tomography (CT) are commonly utilized in Civil engineering to detect the structure defects or geological anomalies. CT are generally recognized as a high precision geophysical method and the accuracy of CT are expected to be several centimeters and even to be several millimeters. Then, high frequency antenna with short wavelength are utilized commonly in Civil Engineering. As to the geotechnical media, stochastic perturbation of the EM parameters are inevitably exist in geological scales, in structure scales and in local scales, et al. In those cases, the geometric dimensionings of the target body, the EM wavelength and the accuracy expected might be of the same order. When the high frequency EM wave propagated in the stochastic geotechnical media, the GPR signal would be reflected not only from the target bodies but also from the stochastic perturbation of the background media. To detect the karst caves in dissolution fracture rock, one need to assess the influence of the stochastic distributed dissolution holes and fractures; to detect the void in a concrete structure, one should master the influence of the stochastic distributed stones, et al. In this paper, on the base of stochastic media discrete realizations, the authors try to evaluate quantificationally the influence of the stochastic perturbation of Geotechnical media by Radon/Iradon Transfer through full-combined Monte Carlo numerical simulation. It is found the stochastic noise is related with transfer angle, perturbing strength, angle interval, autocorrelation length, et al. And the quantitative formula of the accuracy of the electromagnetic tomography is also established, which could help on the precision estimation of GPR tomography in stochastic perturbation Geotechnical media. Key words: Stochastic Geotechnical Media; Electromagnetic Tomography; Radon/Iradon Transfer.

  6. Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems

    NASA Astrophysics Data System (ADS)

    Pieczyńska-Kozłowska, Joanna M.

    2015-12-01

    The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT). The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.

  7. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E. S.; Thompson, Eric M.; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  8. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: Field examples

    USGS Publications Warehouse

    Green, R.A.; Obermeier, S.F.; Olson, S.M.

    2005-01-01

    The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B

  9. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management

    DOE PAGES

    McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid

    2016-02-17

    Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.

  10. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid

    Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.

  11. “Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Demin

    2017-10-01

    In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.

  12. Geotechnical properties of sediments from North Pacific and Northern Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, A J; Laine, E P; Lipkin, J

    1980-01-01

    Studies of geotechnical properties for the Sub-seabed Disposal Program have been oriented toward sediment characterization related to effectiveness as a containment media and determination of detailed engineering behavior. Consolidation tests of the deeper samples in the North Pacific clays indicate that the sediment column is normally consolidated. The in-situ coefficient of permeability (k) within the cored depth of 25 meters is relatively constant at 10/sup -7/ cm/sec. Consolidated undrained (CIU) triaxial tests indicate stress-strain properties characteristic of saturated clays with effective angles of friction of 35/sup 0/ for smectite and 31/sup 0/ for illite. These results are being used inmore » computer modeling efforts. Some general geotechnical property data from the Bermuda Rise are also discussed.« less

  13. Civil engineering reference guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, F.S.

    1986-01-01

    The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.

  14. Development of a geotechnical information database.

    DOT National Transportation Integrated Search

    2009-06-01

    The purpose of this project was to create a database for existing, current, and future geotechnical records and data. : The project originated from the Geotechnical Design Section at the Louisiana Department of Transportation and : Development (LADOT...

  15. Development of a geotechnical information database.

    DOT National Transportation Integrated Search

    2009-08-01

    The purpose of this project was to create a user-friendly geotechnical Web site, so the LADOTD Headquarters Geotechnical Design Section and other LADOTD sections will have access to the appropriate and necessary resources to make the best design d...

  16. Geotechnical publications

    DOT National Transportation Integrated Search

    2000-12-01

    The publications listed in this document report the results of research conducted by the Geotechnical Team, a part of the Federal Highway Administration (FHWA) Office of Infrastructure R&D in McLean, Virginia. This document also collates, categorizes...

  17. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  18. Empirical relationship between electrical resistivity and geotechnical parameters: A case study of Federal University of Technology campus, Akure SW, Nigeria

    NASA Astrophysics Data System (ADS)

    Akintorinwa, O. J.; Oluwole, S. T.

    2018-06-01

    For several decades, geophysical prospecting method coupled with geotechnical analysis has become increasingly useful in evaluating the subsurface for both pre and post engineering investigations. Shallow geophysical tool is often used alongside geotechnical method to evaluate subsurface soil for engineering study to obtain information which may include the subsurface lithology and their thicknesses, competence of the bedrock and depths to its upper interface, and competence of the material that make up the overburden, especially the shallow section which serves as host for foundations of engineering structures (Aina et al., 1996; Adewumi and Olorunfemi, 2005; and Idornigie et al., 2006). This information helps the engineers to correctly locate and design the foundation of engineering structures. The information also serves as guide to the choice of design and suitable materials needed for road construction (Akinlabi and Adeyemi, 2014). Lack of knowledge of the properties of subsurface may leads to the failure of most engineering structures. Therefore, it is of great importance to carry out a pre-construction investigation of a proposed site in order to ascertain the fitness of the host earth material.

  19. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less

  20. Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.

    2017-06-01

    The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high

  1. Development of novel optical fiber sensors for measuring tilts and displacements of geotechnical structures

    NASA Astrophysics Data System (ADS)

    Pei, Hua-Fu; Yin, Jian-Hua; Jin, Wei

    2013-09-01

    Two kinds of innovative sensors based on optical fiber sensing technologies have been proposed and developed for measuring tilts and displacements in geotechnical structures. The newly developed tilt sensors are based on classical beam theory and were successfully used to measure the inclinations in a physical model test. The conventional inclinometers including in-place and portable types, as a key instrument, are very commonly used in geotechnical engineering. In this paper, fiber Bragg grating sensing technology is used to measure strains along a standard inclinometer casing and these strains are used to calculate the lateral and/or horizontal deflections of the casing using the beam theory and a finite difference method. Finally, the monitoring results are verified by laboratory tests.

  2. Data dictionary and formatting standard for dissemination of geotechnical data

    USGS Publications Warehouse

    Benoit, J.; Bobbitt, J.I.; Ponti, D.J.; Shimel, S.A.; ,

    2004-01-01

    A pilot system for archiving and web dissemination of geotechnical data collected and stored by various agencies is currently under development. Part of the scope of this project, sponsored by the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) and by the Pacific Earthquake Engineering Research Center (PEER) Lifelines Program, is the development of a data dictionary and formatting standard. This paper presents the data model along with the basic structure of the data dictionary tables for this pilot system.

  3. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  4. Geotechnical zoning of urban foundations: Avilés case study (N Spain)

    NASA Astrophysics Data System (ADS)

    María Díaz-Díaz, Luis; Arias, Daniel; López-Fernández, Carlos; Pando, Luis

    2014-05-01

    The purpose of this paper is to carry out a geotechnical evaluation of the underground within an urban setting in relation to types of foundations, and particularly at expansion zones. The ultimate aim is to produce a foundation zonation map at the scale 1:10,000. Furthermore, a general methodology that way be extrapolated to other cities is proposed. This work focused on the city of Aviles like a case study; a medium-sized city which has significant industrial and port areas and singular equipment in its surroundings. This city is located in the Spanish north coast and spread out on both flanks of the Avilés stuary. This means that there are an important development of recent deposits that implies different geotechnical units with a highly variable behavior, generally poor. In contrast, the bedrock is more homogenous, formed by Permo-Triassic red clay and marl. Locally there are also outcrops of carbonates and conglomeratic Jurassic levels. Also, on the whole area is important to note the presence of heterogeneous anthropic deposits along the whole area as a consequence, mainly, of an intense industrial activity. Permo-Triassic clayey and marly materials imply special engineering issues in foundations as a consequence of their composition (likely weathering, presence of gypsum, low bearing capacity). Moreover, recent deposits (marine and alluvial origin) show different geotechnical behaviors depending on their geometry and grain size. Hence, many areas of the city are especially problematic when designing and implementing foundations. The methodology followed in this study consisted in elaborating a geological-geotechnical exhaustive survey of the urban underground on a scale of 1/10.000. Based on this, a multi criteria analysis of the identified geotechnical units was carried out taking into consideration all the lithological, geomorphological, hidrogeological and geotechnical aspects. Taken into account all of these criteria, a number of areas are defined based

  5. Development of geotechnical data schema in transportation : final report.

    DOT National Transportation Integrated Search

    2012-12-01

    The objective of "Development of Geotechnical Data Schema in Transportation" is to develop an : international standard interchange format for geotechnical data. This standard will include a data : dictionary and XML schema which are GML compliant. Th...

  6. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  7. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    PubMed

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  8. Development of geotechnical analysis and design modules for the Virginia Department of Transportation's geotechnical database.

    DOT National Transportation Integrated Search

    2005-01-01

    In 2003, an Internet-based Geotechnical Database Management System (GDBMS) was developed for the Virginia Department of Transportation (VDOT) using distributed Geographic Information System (GIS) methodology for data management, archival, retrieval, ...

  9. Geotechnical risk analysis user's guide

    DOT National Transportation Integrated Search

    1987-03-01

    All geotechnical predictions involve uncertainties. These are accounted for additionally by conservative factors of safety. Risk based design, on the other hand, attempts to quantify uncertainties and to adjust design conservatism accordingly. Such m...

  10. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  11. In-tank precipitation facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less

  12. Geotechnical information database - phase II.

    DOT National Transportation Integrated Search

    2013-05-01

    The Louisiana Department of Transportation (LADOTD) has been collecting geotechnical data for : many years in a variety of different formats. Accessing this data and combining it with new data for : the purpose of design, analysis, visualization, and...

  13. Geotechnical risk analysis by flat dilatometer (DMT)

    NASA Astrophysics Data System (ADS)

    Amoroso, Sara; Monaco, Paola

    2015-04-01

    In the last decades we have assisted at a massive migration from laboratory testing to in situ testing, to the point that, today, in situ testing is often the major part of a geotechnical investigation. The State of the Art indicates that direct-push in situ tests, such as the Cone Penetration Test (CPT) and the Flat Dilatometer Test (DMT), are fast and convenient in situ tests for routine site investigation. In most cases the DMT estimated parameters, in particular the undrained shear strength su and the constrained modulus M, are used with the common design methods of Geotechnical Engineering for evaluating bearing capacity, settlements etc. The paper focuses on the prediction of settlements of shallow foundations, that is probably the No. 1 application of the DMT, especially in sands, where undisturbed samples cannot be retrieved, and on the risk associated with their design. A compilation of documented case histories that compare DMT-predicted vs observed settlements, was collected by Monaco et al. (2006), indicating that, in general, the constrained modulus M can be considered a reasonable "operative modulus" (relevant to foundations in "working conditions") for settlement predictions based on the traditional linear elastic approach. Indeed, the use of a site investigation method, such as DMT, that improve the accuracy of design parameters, reduces risk, and the design can then center on the site's true soil variability without parasitic test variability. In this respect, Failmezger et al. (1999, 2015) suggested to introduce Beta probability distribution, that provides a realistic and useful description of variability for geotechnical design problems. The paper estimates Beta probability distribution in research sites where DMT tests and observed settlements are available. References Failmezger, R.A., Rom, D., Ziegler, S.R. (1999). "SPT? A better approach of characterizing residual soils using other in-situ tests", Behavioral Characterics of Residual Soils, B

  14. Geotechnical design manual : research project capsule.

    DOT National Transportation Integrated Search

    2016-11-01

    The Louisiana Department of Transportation and Development (DOTD), through its Pavement : and Geotechnical Design section, has developed policies and procedures over the years utilizing its own methods and those incorporated from others (AASHTO, FHWA...

  15. Probabilistic Rock Slope Engineering.

    DTIC Science & Technology

    1984-06-01

    4 U rmy Corps PROBABILISTIC ROCK SLOPE ENGINEERING by Stanley M. Miller jGeotechnical Engineer 509 E. Calle Avenue Tucson, Arizona 85705 Co N 00 IFI...NUMBERS Geological Engineer CW71 1ork Unit 31755 509 E. Calle Avenue, Tucson, Arizona 85705 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE...communication, J. P. Sa,.-1Iy, Inspiration Consolidated Copper Co., Inspiration, Ariz., 1980. Personal communication, R. D. Call, Pincock, Allen, and

  16. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  17. Development of a prototype geotechnical report.

    DOT National Transportation Integrated Search

    2014-12-01

    Archive geotechnical reports in the department contain valuable information such as site maps, : photographs, borehole data, laboratory and field test data, and design analyses. A proper use of the : information may bring significant cost saving for ...

  18. Seismic impact of the railway on the geotechnical constructions

    NASA Astrophysics Data System (ADS)

    Stolárik, Martin; Pinka, Miroslav

    2017-09-01

    Nowadays, the focus on more ecological means of material and persons transport is still higher. Big loads can be transported on railways more effectively and with lower environment impact than on roads. The geotechnical structures are inherent parts of railway infrastructure, such as embankments, sides of notches and, of course, tunnels, foundation constructions of buildings or pillars of bridges and the others geotechnical constructions (e.g. retaining walls, culverts, transition area of bridges). By train pass, vibrations are caused and these vibrations are relayed to the soil. These vibrations can make adverse impact to surrounding objects and to technologies placed in. This so far uncared-for influence gets into the foreground by current trend of everyday life technical equipment increasing. The article introduces different kinds of geotechnical structures and the influence of by-passing railway transport on their constructions and surroundings. The data are evaluated in the amplitude and frequency domain.

  19. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  20. Geotechnical Asset Management Plan : Technical Report

    DOT National Transportation Integrated Search

    2017-06-30

    Geotechnical assets which include rock and soil slopes, retaining walls, and material sites support and protect the Department's pavements and bridges, and provide the material from which these assets are built. They are the front line of the...

  1. Hydro-dynamic and geotechnical effects in bridge scour processes

    NASA Astrophysics Data System (ADS)

    Radice, Alessio; Ballio, Francesco; Tran, Chau

    2010-05-01

    Local pier and abutment scour is a crucial topic in hydraulic engineering, due to the significant social and economical impact of bridge failure. Therefore, reliable tools for scour prediction are necessary for both design and vulnerability evaluation of the structures. In recent years, phenomenological studies of the local scour dynamics have been undertaken, to yield insight over the small scale mechanisms of the process. Experimental measurement and numerical modelling of the scouring flow field have shown the horseshoe vortex and the principal vortex as the most evident features of the flow pattern at piers and abutments, respectively. The vortex structure near the obstacles typically presents a high turbulence level compared to that of the incoming flow, and the temporal fluctuations in water velocity make the coherent vortical structures unstable in time. Furthermore, the statistical distributions of velocity values in junction flows often present a bimodal shape. The kinematics of the bottom grains reflects the unsteadiness of the flow pattern. Indeed, recent detailed measurements of particle motion in an abutment scour hole proved that a succession of opposite motion events takes place at several locations within the hole. Events of sediment motion directed away from the obstacles can be attributed to sediment pickup and transport by the turbulent flow field, whilst those with motion towards the abutment can be associated to sediment sliding along the slopes of the hole due to geotechnical instability. On a qualitative basis the presence of geotechnical effects is indeed relatively acknowledged. Despite the general agreement on the qualitative features of the scour process, a quantitative definition of the relevance of sliding for the sediment kinematics in a local scour process is still lacking. Therefore, the purpose of the present work has been to make a specific analysis of the different types of sediment motion events, aimed to a quantification of the

  2. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  3. Use of laboratory geophysical and geotechnical investigation methods to characterize gypsum rich soils

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Raghava A.

    Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.

  4. Geotechnical centrifuge use at University of Cambridge Geotechnical Centre, August-September 1991

    NASA Astrophysics Data System (ADS)

    Gilbert, Paul A.

    1992-01-01

    A geotechnical centrifuge applies elevated acceleration to small-scale soil models to simulate body forces and stress levels characteristic of full-size soil structures. Since the constitutive behavior of soil is stress level development, the centrifuge offers considerable advantage in studying soil structures using models. Several experiments were observed and described in relative detail, including experiments in soil dynamics and liquefaction study, an experiment investigation leaning towers on soft foundations, and an experiment investigating migration of hot pollutants through soils.

  5. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Stokoe, K. H.

    2017-12-01

    The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the

  6. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  7. 24th geotechnical laboratory testing short course

    DOT National Transportation Integrated Search

    2008-02-01

    This is a 3-day workshop/short course to teach practicing professionals techniques and procedures for conducting high quality geotechnical laboratory tests. Transportation facility design and construction begins with an investigation of the type, ext...

  8. Risk Based Framework for Geotechnical Asset Management

    DOT National Transportation Integrated Search

    2017-12-28

    This report presents the outcome from a multi-year research study to incorporate a risk management framework for the Alaska Department of Transportation & Public Facilities Geotechnical Asset Management (GAM) Plan. The GAM Plan was developed by Paul ...

  9. Geotechnical information database - phase II : [technical summary].

    DOT National Transportation Integrated Search

    2013-05-01

    The Louisiana Department of Transportation (LADOTD) has collected geotechnical data for many years in a variety of diff erent formats. : Accessing this data and combining it with new data for the purpose of design, analysis, visualization, and report...

  10. Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.

    DTIC Science & Technology

    1983-09-01

    research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis

  11. Evaluation of road failure vulnerability section through integrated geophysical and geotechnical studies

    NASA Astrophysics Data System (ADS)

    Adiat, K. A. N.; Akinlalu, A. A.; Adegoroye, A. A.

    2017-06-01

    In order to investigate the competence of the proposed road for pavement stability, geotechnical and geophysical investigations involving Land Magnetic, Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity methods were carried out along Akure-Ipinsa road Southwestern Nigeria. The magnetic profile was qualitatively and quantitatively interpreted to produce geomagnetic section that provides information on the basement topography and structural disposition beneath the proposed road. Similarly, the VLF-EM profile was equally interpreted to provide information on the possible occurrence of linear features beneath the study area. These linear features pose a potential risk to the proposed road as they are capable of undermining the stability of the pavement structure. The geoelectric parameters obtained from the quantitative interpretation of the VES data were used to generate geoelectric section. The geoelectric section generated shows that the study area was underlain by four geoelectric layers namely the topsoil, the weathered layer, the partly weathered/fractured basement and the fresh basement. The major part of the topsoil, which constitutes the subgrade, is characterized by relatively low resistivity values (<100 Ωm) suggestive of weak zones that are capable of undermining the stability of the proposed road. This therefore suggests that the layer is composed of incompetent materials that are unsuitable for engineering structures. Furthermore, fractured basement was also delineated beneath some portion of the proposed road. Since fracture is a weak zone, its presence can facilitate failure of the proposed road especially when it is occurring at shallow depth. The geotechnical results reveal that most of the investigated soil samples are clayey in nature. Integration of the results demonstrates that there is a good correlation between geophysical results and the geotechnical results. Furthermore, a vulnerability section that divided the road

  12. Welcome to Pacific Earthquake Engineering Research Center - PEER

    Science.gov Websites

    Triggering and Effects at Silty Soil Sites" - PEER Research Project Highlight: "Dissipative Base ; Upcoming Events More June 10-13, 2018 Geotechnical Earthquake Engineering and Soil Dynamics V 2018 - Call

  13. Random vectors and spatial analysis by geostatistics for geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less

  14. Making KYTC geotechnical reports available on the web.

    DOT National Transportation Integrated Search

    2006-06-01

    The Geotechnical Branch of the Kentucky Transportation Cabinet (KYTC) prepares technical reports that contain drawings, explanations, and recommendations for road and structure construction projects in Kentucky. These design reports, once complete, a...

  15. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  16. Geotechnical investigation report for proposed array of six 40-meter diameter antennas, Pioneer site, DSS 11, Goldstone, California tracking complex

    NASA Technical Reports Server (NTRS)

    Sweitzer, J. S.

    1979-01-01

    The geotechnical investigation was conducted in three disciplines: (1) geological field reconnaissance of the general area of proposed construction; (2) geophysical seismic refraction survey of the localized area surrounding the six proposed antenna sites, including shear wave velocity determination; and (3) detailed foundation engineering investigation of each of the six sites. The investigations indicate that the six sites selected are relatively free from geologic hazards which would inhibit the proposed construction or future antenna operations.

  17. 78 FR 70042 - Proposed Issuance of the NPDES General Permit for Oil and Gas Geotechnical Surveying and Related...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Permit for Oil and Gas Geotechnical Surveying and Related Activities in Federal Waters of the Beaufort... (NPDES) General Permit for Oil and Gas Geotechnical Surveying and Related Activities in Federal Waters of... authorizes twelve types of discharges from facilities engaged in oil and gas geotechnical surveys to evaluate...

  18. End-user interest in geotechnical data management systems.

    DOT National Transportation Integrated Search

    2008-12-01

    In conducting geotechnical site investigations, large volumes of subsurface information and associated test data : are generated. The current practice relies on paper-based filing systems that are often difficult and cumbersome : to access by users. ...

  19. Organic matter and the geotechnical properties of submarine sediments

    NASA Astrophysics Data System (ADS)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  20. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    USGS Publications Warehouse

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  1. Integrated geophysical methods for geotechnical subsurface investigations : final report.

    DOT National Transportation Integrated Search

    2006-01-01

    This report summarizes the New Hampshire Department of Transportations (NHDOTs) investigation of : geophysical techniques to supplement conventional test borings and other explorations on transportation projects. : The Departments geotechnic...

  2. Geotechnical information database - Phase II : research project capsule.

    DOT National Transportation Integrated Search

    2011-03-01

    The Louisiana Department of Transportation (LADOTD) has been collecting : geotechnical data for many years in a variety of diff erent formats. Accessing this data : and combining it with new data for the purpose of design, analysis, visualization, an...

  3. Development of bilateral data transferability in the Virginia Department of Transportation's Geotechnical Database Management System Framework.

    DOT National Transportation Integrated Search

    2006-01-01

    An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was designed, developed, and implemented at the Virginia Department of Transportation (VDOT) in 2002 to retrieve, manage, archive, and analyze geotechnical da...

  4. Stereographic Projection Techniques for Geologists and Civil Engineers

    NASA Astrophysics Data System (ADS)

    Lisle, Richard J.; Leyshon, Peter R.

    2004-05-01

    An essential tool in the fields of structural geology and geotechnics, stereographic projection allows three-dimensional orientation data to be represented and manipulated. This revised edition presents a basic introduction to the subject with examples, illustrations and exercises that encourage the student to visualize the problems in three dimensions. It will provide students of geology, rock mechanics, and geotechnical and civil engineering with an indispensable guide to the analysis and interpretation of field orientation data. Links to useful web resources and software programs are also provided. First Edition published by Butterworth-Heinemann (1996): 0-750-62450-7

  5. A Machine Learning Approach to Estimate Riverbank Geotechnical Parameters from Sediment Particle Size Data

    NASA Astrophysics Data System (ADS)

    Iwashita, Fabio; Brooks, Andrew; Spencer, John; Borombovits, Daniel; Curwen, Graeme; Olley, Jon

    2015-04-01

    Assessing bank stability using geotechnical models traditionally involves the laborious collection of data on the bank and floodplain stratigraphy, as well as in-situ geotechnical data for each sedimentary unit within a river bank. The application of geotechnical bank stability models are limited to those sites where extensive field data has been collected, where their ability to provide predictions of bank erosion at the reach scale are limited without a very extensive and expensive field data collection program. Some challenges in the construction and application of riverbank erosion and hydraulic numerical models are their one-dimensionality, steady-state requirements, lack of calibration data, and nonuniqueness. Also, numerical models commonly can be too rigid with respect to detecting unexpected features like the onset of trends, non-linear relations, or patterns restricted to sub-samples of a data set. These shortcomings create the need for an alternate modelling approach capable of using available data. The application of the Self-Organizing Maps (SOM) approach is well-suited to the analysis of noisy, sparse, nonlinear, multidimensional, and scale-dependent data. It is a type of unsupervised artificial neural network with hybrid competitive-cooperative learning. In this work we present a method that uses a database of geotechnical data collected at over 100 sites throughout Queensland State, Australia, to develop a modelling approach that enables geotechnical parameters (soil effective cohesion, friction angle, soil erodibility and critical stress) to be derived from sediment particle size data (PSD). The model framework and predicted values were evaluated using two methods, splitting the dataset into training and validation set, and through a Bootstrap approach. The basis of Bootstrap cross-validation is a leave-one-out strategy. This requires leaving one data value out of the training set while creating a new SOM to estimate that missing value based on the

  6. On the geotechnical characterisation of the polluted submarine sediments from Taranto.

    PubMed

    Vitone, Claudia; Federico, Antonio; Puzrin, Alexander M; Ploetze, Michael; Carrassi, Elettra; Todaro, Francesco

    2016-07-01

    This paper reports the results of the first geomechanical laboratory experiments carried out on the polluted submarine clayey sediments of the Mar Piccolo in Taranto (South of Italy). The study had to face with extreme difficulties for the very soft consistency of the sediments and the contaminants. The mineralogy, composition and physical properties of the sediments were analysed, along with their compression and shearing behaviour. The investigation involved sediments up to about 20 m below the seafloor, along three vertical profiles in the most polluted area of the Mar Piccolo, facing the Italian Navy Arsenal. The experimental results were used to derive a preliminary geotechnical model of the site, necessary for the selection and design of the most sustainable in situ mitigation solutions. Moreover, the experimental data reveal that the clayey sediments of the most polluted top layer do not follow the classical geotechnical correlations for normally consolidated deposits. This seems to open interesting perspectives about the effects of pollutants on the geotechnical behaviour of the investigated sediments.

  7. On Some Methods in Safety Evaluation in Geotechnics

    NASA Astrophysics Data System (ADS)

    Puła, Wojciech; Zaskórski, Łukasz

    2015-06-01

    The paper demonstrates how the reliability methods can be utilised in order to evaluate safety in geotechnics. Special attention is paid to the so-called reliability based design that can play a useful and complementary role to Eurocode 7. In the first part, a brief review of first- and second-order reliability methods is given. Next, two examples of reliability-based design are demonstrated. The first one is focussed on bearing capacity calculation and is dedicated to comparison with EC7 requirements. The second one analyses a rigid pile subjected to lateral load and is oriented towards working stress design method. In the second part, applications of random field to safety evaluations in geotechnics are addressed. After a short review of the theory a Random Finite Element algorithm to reliability based design of shallow strip foundation is given. Finally, two illustrative examples for cohesive and cohesionless soils are demonstrated.

  8. GPR applications for geotechnical stability of transportation infrastructures

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Benedetto, F.; Tosti, F.

    2012-09-01

    Nowadays, severe meteorological events are always more frequent all over the world. This causes a strong impact on the environment such as numerous landslides, especially in rural areas. Rural roads are exposed to an increased risk for geotechnical instability. In the meantime, financial resources for maintenance are certainly decreased due to the international crisis and other different domestic factors. In this context, the best allocation of funds becomes a priority: efficiency and effectiveness of plans and actions are crucially requested. For this purpose, the correct localisation of geotechnically instable domains is strategic. In this paper, the use of Ground-Penetrating Radar (GPR) for geotechnical inspection of pavement and sub-pavement layers is proposed. A three-step protocol has been calibrated and validated to allocate efficiently and effectively the maintenance funds. In the first step, the instability is localised through an inspection at traffic speed using a 1-GHz GPR horn launched antenna. The productivity is generally about or over 300 Km/day. Data are processed offline by automatic procedures. In the second step, a GPR inspection restricted to the critical road sections is carried out using two coupled antennas. One antenna is used for top pavement inspection (1.6 GHz central frequency) and a second antenna (600 MHz central frequency) is used for sub-pavement structure diagnosis. Finally, GPR data are post-processed in the time and frequency domains to identify accurately the geometry of the instability. The case study shows the potentiality of this protocol applied to the rural roads exposed to a landslide.

  9. Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area

    NASA Astrophysics Data System (ADS)

    Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike

    2017-04-01

    Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.

  10. Geotechnical data management at the Virginia Department of Transportation.

    DOT National Transportation Integrated Search

    2010-04-01

    This report describes the development and implementation of the geotechnical data management system at the Virginia Department of Transportation (VDOT). The purpose of this project was to develop a practical, comprehensive, enterprise-wide system for...

  11. GeoMO 2008--geotechnical earthquake engineering : site response.

    DOT National Transportation Integrated Search

    2008-10-01

    The theme of GeoMO2008 has recently become of more interest to the Midwest civil engineering community due to the perceived earthquake risks and new code requirements. The constant seismic reminder for the New Madrid Seismic Zone and new USGS hazard ...

  12. The influence of delta formation mechanism on geotechnical property sequence of the late Pleistocene-Holocene sediments in the Mekong River Delta.

    PubMed

    Hoang, Truong Minh; van Lap, Nguyen; Oanh, Ta Thi Kim; Jiro, Takemura

    2016-11-01

    The aim of the study was to characterize a variety of microstructure development-levels and geotechnical property sequences of the late Pleistocene-Holocene deposits in the Mekong River delta (MRD), and the paper furthermore discusses the influences of delta formation mechanisms on them. The survey associated the geotechnical engineering and the sedimentary geology of the late Pleistocene-Holocene deposits at five sites and also undifferentiated Pleistocene sediments. A cross-section which was rebuilt in the delta progradation-direction and between the Mekong and Bassac rivers represents the stratigraphy. Each sedimentary unit was formed under a different delta formation mechanism and revealed a typical geotechnical property sequence. The mechanical behaviors of the sediment succession in the tide-dominated delta with significant fluvial-activity and material source tend to be more cohesionless soils and strengths than those in the tide- and wave-dominated delta and even the coast. The particular tendency of the mechanical behavior of the deposit succession can be reasonably estimated from the delta formation mechanism. The characteristics of the clay minerals from the Mekong River produced the argillaceous soil which does not have extremely high plasticity. The microstructure development-levels are low to very high indicating how to choose hydraulic conductivity value, k, for estimating overconsolidation ratio, OCR, by the piezocone penetration tests (CPTU). The OCR of sediments in the delta types strangely change with depth but none less than 1. The post-depositional processes significantly influenced the microstructure development, particularly the dehydrating and oxidizing processes.

  13. [Geotechnical Board activities and funding]. [Annual] activites report, July 1, 1992--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeallie, P.H.

    1993-07-23

    The Geotechnical Board, a part of the US National Research Council, which is the operating arm of the National Academy of Sciences and the National Academy of Engineering, serves to advise the federal government and others on issues where geotechnology can have an impact, such as environmental remediation and infrastructure development. The board met three times during the reporting period to review current projects and to initiate activities that move the knowledge base of geotechnology forward. The board operates with two long-standing national committees, the US National Committee for Rock Mechanics and the US National Committee on Tunneling Technology. Itmore » also conducts special studies at the request of the government. A list of attachments is given.« less

  14. In-situ Geotechnical Investigation of Arctic Nearshore Zone Sediments, Herschel Island, Yukon

    NASA Astrophysics Data System (ADS)

    Stark, N.; Quinn, B.; Radosavljevic, B.; Lantuit, H.

    2016-02-01

    The Arctic is currently undergoing rapid changes with regard to ice coverage, permafrost retreat and coastal erosion. In addition to hydrodynamic processes, the sediments in the Arctic nearshore zone are affected by potential variations in freeze-thaw cycles, as well as an increase of abundant suspended sediment introduced by active retrogressive thaw slumps and increased river discharge. During the YUKON14 expedition to Herschel Island, Yukon, in-situ geotechnical testing of nearshore zone sediments was conducted using a portable free fall penetrometer. The research goals were mapping of sediment types, identification of surficial sediment stratification related to recent sediment remobilization or deposition processes, and the investigation of the soil mechanical characteristics of the uppermost seabed surface in the nearshore zone. Approximately 200 sites were tested using the portable free fall penetrometer, and five different geotechnical signatures identified and grouped. Most locations were characterized by a soft sediment top layer that exhibited a noticeably lower sediment strength than the underlying sediment. The results were correlated to existing sediment grain size records and a sediment type interpretation based on side scan sonar backscatter information. Strong spatial variations in sediment type and stiffness were observed, as well as in abundance and thickness of a top layer of very soft and loose sediment. It was attempted to relate the geotechnical signature to site-specific hydrodynamic energy, morphology, and vicinity to thaw slumps. The results will contribute to a detailed investigation of Arctic coastal erosion in the region, and the investigation of the role of geotechnical parameters for Arctic coastal erosion.

  15. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  16. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.

  17. Development of the interconnectivity and enhancement (ICE) module in the Virginia Department of Transportation's Geotechnical Database Management System Framework.

    DOT National Transportation Integrated Search

    2007-01-01

    An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was implemented at the Virginia Department of Transportation (VDOT) in 2002 to manage geotechnical data using a distributed Geographical Information System (G...

  18. Geotechnical Field Data and Analysis Report, July 1991--June 1992. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Geotechnical Field Data and Analysis Report documents the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The data are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a routine monitoring program and do not include data from tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in support of performance assessment studies. The purpose of the geomechanical monitoring program is to provide in situ data to supportmore » continuing assessments of the design for the underground facilities. Specifically, the program provides: Early detection of conditions that could compromise operational safety; evaluation of room closure to ensure retrievability of waste; guidance for design modifications and remedial actions; and data for interpreting the actual behavior of underground openings, in comparison with established design criteria. This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30, 1992. Volume 1 provides an interpretation of the field data while Volume 2 describes and presents the data itself.« less

  19. Baseline practices and user needs for Web dissemination of geotechnical data

    USGS Publications Warehouse

    Turner, L.L.; Brown, M.P.; Chambers, D.; Davis, C.A.; Diehl, J.; Hitchcock, C.S.; Holzer, T.L.; Nigbor, R.L.; Plumb, C.; Real, C.; Reimer, M.; Steidl, J.H.; Sun, J.I.; Tinsley, J.C.; Vaughn, D.; ,

    2004-01-01

    This paper presents the findings and recommendations of the User Scenario Work Group (USWG) in identifying a baseline of current practices within the geo-professional community and prioritizing desired functional requirements in the development of a comprehensive geotechnical information management system. This work was conducted as an initial phase of a larger project to demonstrate the effectiveness of a web based virtual data center for the dissemination of geotechnical data from multiple linked databases of various government and private sector organizations. An online survey was administered over the course of several months to practitioners across the nation. The results from the survey were compiled and examined to provide direction to the other project teams in the development of user-driven prototype data system.

  20. Procedures for establishing geotechnical design parameters from two data sources.

    DOT National Transportation Integrated Search

    2013-07-01

    The Missouri Department of Transportation (MoDOT) recently adopted new provisions for geotechnical design that require that : the mean value and the coefficient of variation (COV) for the mean value of design parameters be established in order to : d...

  1. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  2. pLog enterprise-enterprise GIS-based geotechnical data management system enhancements.

    DOT National Transportation Integrated Search

    2015-12-01

    Recent eorts by the Louisiana Department of Transportation and Development (DOTD) and the : Louisiana Transportation Research Center (LTRC) have developed a Geotechnical Information : Database, with a Geographic Information System (GIS) interface....

  3. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  4. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  5. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  6. Project-Based Learning in Geotechnics: Cooperative versus Collaborative Teamwork

    ERIC Educational Resources Information Center

    Pinho-Lopes, Margarida; Macedo, Joaquim

    2016-01-01

    Since 2007/2008 project-based learning models have been used to deliver two fundamental courses on Geotechnics in University of Aveiro, Portugal. These models have evolved and have encompassed either cooperative or collaborative teamwork. Using data collected in five editions of each course (Soil Mechanics I and Soil Mechanics II), the different…

  7. Near surface geotechnical and geophysical data cross validated for site characterization applications. The cases of selected accelerometric stations in Crete island (Greece)

    NASA Astrophysics Data System (ADS)

    Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal

    2015-04-01

    The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected

  8. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random

  9. Work-related injuries and fatalities in the geotechnical site works.

    PubMed

    Akboğa Kale, Özge; Eskişar, Tuğba

    2018-05-19

    Geotechnical site works are comprehensive, and they constitute the first step of the construction process. This study performs data mining of geotechnical works and analyzes the database for the root causes of accidents. The Occupational Safety and Health Administration (OSHA) was chosen for the 1984-2013 time frame with 247 cases. Descriptive statistical analyses were performed to discuss variables such as the end use of the work, project type and cost, soil type and condition, type and degree of injury, cause and type of accident, unsafe acts, and occupation and union status of the victim. The results showed that these accidents have a high frequency of recurrence and have a high severity level (54.3% fatalities). In addition, a total of 838 violations were recorded with penalties reaching 5 million US dollars. This study emphasizes that project-specific countermeasures should be taken regarding the root causes of accidents, leading to vigorous strategies to develop safety measures.

  10. Brief Overlook on the Occupational Accidents Occurring During the Geotechnical Site Works

    NASA Astrophysics Data System (ADS)

    Akboğa Kale, Özge; Eskişar, Tuğba

    2017-10-01

    The aim of this paper is to evaluate occupational accidents reported in geotechnical site works. Variables of the accidents are categorized as the year and month of accidents, the technical codes used for defining the scope of work trades, end use and project type and cost, nature and cause of accidents, occupation of the victims and finally the cause of fatality. As a result, it is seen that the majority of victims were construction laborers or in special trade constructors who were working on a new project or new additions to an existing project. The geotechnical phase of the projects was whether excavation, landfill, sewer-water treatment, pipeline construction, commercial building or road construction. As the outcomes of the study it is evaluated that excavation, trenching and installing pipe or pile driving were the main causes of the accidents while trench collapse, struck by a falling object / projectile and wall collapse were the main causes of fatality. Moreover, it is established that more than half of the fatalities were due to asphyxia followed by fracture. These findings show that accidents occurred in geotechnical works do not only have high frequency but also high severity. This study emphasizes project specific countermeasures should be taken regarding the nature, cost and importance of the project and the occupation variabilities working on the project.

  11. Geotechnical Monitoring of the Automobile Road

    NASA Astrophysics Data System (ADS)

    Matsiy, Vladimir

    2017-12-01

    In the present article, the results of geotechnical monitoring of A-147 automobile road “Dzhubga-Sochi” are given. Some sections of the automobile road suffered from the landslide adjustment movements; it resulted in many deformations of the retaining structures, the damages of the roadbed and ground crawling over the retaining walls. The observation data made it possible to specify the borders of the active landslide and to form a forecast of the landslide activity in the sections of the automobile roads. Due to monitoring being carried out, there was substantiated the necessity to correct the service forms and records connected with the automobile road reconstruction.

  12. IN SITU AND LABORATORY GEOTECHNICAL TESTS OF THE PIERRE SHALE NEAR HAYES, SOUTH DAKOTA - A CHARACTERIZATION OF ENGINEERING BEHAVIOR.

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.

    1986-01-01

    A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.

  13. Development of a geotechnical GIS for subsurface characterization with three dimensional modeling capabilities.

    DOT National Transportation Integrated Search

    2006-06-01

    The New Hampshire Department of Transportation initiated this research to develop a geographical information system (GIS) that : visualizes subsurface conditions three dimensionally by pulling together geotechnical data containing spatial references....

  14. An overview of the geotechnical damage brought by the 2016 Kumamoto Earthquake, Japan

    USGS Publications Warehouse

    Hemanta Hazarika,; Takaji Kokusho,; Kayen, Robert E.; Dashti, Shideh; Yutaka Tanoue,; Shuuichi Kuroda and Kentaro Kuribayashi,; Daisuke Matsumoto,; Furuichi, Hideo

    2016-01-01

    The 2016 Kumamoto earthquake with a moment magnitude of 7.0 (Japanese intensity = 7) that struck on April 16 brought devastation in many areas of Kumamoto Prefecture and partly in Oita Prefecture in Kyushu Region, Japan. The earthquake succeeds a foreshock of magnitude 6.5 (Japanese intensity = 7) on April 14. The authors conducted two surveys on the devastated areas: one during April 16-17, and the other during May 11-14. This report summarizes the damage brought to geotechnical structures by the two consecutive earthquakes within a span of twenty-eight hours. This report highlights some of the observed damage and identifies reasons for such damage. The geotechnical challenges towards mitigation of losses from such earthquakes are also suggested.

  15. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  16. SIG Contribution in the Making of Geotechnical Maps in Urban Areas

    NASA Astrophysics Data System (ADS)

    Monteiro, António; Pais, Luís Andrade; Rodrigues, Carlos; Carvalho, Paulo

    2017-10-01

    The use of Geographic Information Systems (GIS) has spread to several science areas, from oceanography to geotechnics. Its application in the urban mapping was intensified in the last century, which allowed a great development, due to the use of geographic database, new analysis tools and, more recently, free open source software. Geotechnical cartography struggle with a permanent and large environment re-organization in urban area, due to new building construction, trenching and the drilling of sampling wells and holes. This creates an extra important and largest volume of data at any pre-existence geological map. The main problem results on the fact that the natural environment is covered with buildings and communications system. The purpose of this work is to create a viable geographic information base for geotechnical mapping through a free GIS computer program and open source, with non-traditional cartographic sources, giving preference to open platforms. QGIS was used as software and “Google Maps”, “Bing Maps” and “OpenStreetMap” were applied as cartographic sources using the “OpenLayers plugin” module. Finally, we also pretend to identify and delimit the degree of granite’s change and fracturing areas using a “Streetview” platform. This model has cartographic input which are a geological map study area, open cartographic web archives and the use of “Streetview” platform. The output has several layouts, such as topography intersection (roads, borders, etc.), with geological map and the bordering area of Guarda Urban Zone. The use of this platform types decrease the collect data time and, sometimes, a careful observation of pictures that were taken during excavations may reveal important details for geological mapping in the study area.

  17. Geotechnical applications of CCPs in Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edil, T.C.; Benson, C.H.

    2006-07-01

    The article reports research case histories on applications of coal combustion products (CCPs) in Wisconsin developed by the University of Wisconsin Consortium for Fly Ash Use in Geotechnical Applications (FAUGA). Fly ash was used to stabilize poor soils during construction of Wisconsin State Highway (STH) 60, and bottom ash was used as a granular working platform. Long term performance is proving good. Nearly all Class C fly ash in Wisconsin is now used in construction. Leaching characteristics of pavements incorporating fly ash are being monitored by pan lysimeters underneath. A computer model, WiscLEACH has been developed to predict the maximummore » concentration of chemicals in ground water adjacent to roadways using CCPs. 1 photo.« less

  18. Geotechnical properties of municipal solid waste at different phases of biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Krishna R., E-mail: kreddy@uic.edu; Hettiarachchi, Hiroshan, E-mail: hiroshan@ltu.edu; Gangathulasi, Janardhanan, E-mail: jganga2@uic.edu

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were preparedmore » based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength

  19. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    NASA Astrophysics Data System (ADS)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  20. Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches

    DTIC Science & Technology

    2017-01-25

    Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev Marine Physics Branch Marine Geosciences Division Peter...LIMITATION OF ABSTRACT Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev, Peter Herdic...sampling and analysis series for classification and characterization of the surficial seafloor sediment in the Boston Harbor approaches . 25-01-2017

  1. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi

  2. Geotechnical properties of cemented sands in steep slopes

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2009-01-01

    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  3. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  4. Constitutive models for static and dynamic response of geotechnical materials

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, S.

    1983-11-01

    The objective of this research program has been to develop realistic macroscopic constitutive relations which describe static and dynamic properties of geotechnical materials (soils and rocks). To this end a coordinated theoretical and experimental activity has been followed. The theoretical work includes a balanced combination of statistical microscopic (at the grain size level) modeling and a nonclassical elasto-plastic macroscopic formulation. The latter includes the effects of internal friction, plastic compressibility, and pressure sensitivity, as well as anisotropy which is commonly observed in geotechnical materials. The following specific goals have been sought: (1) to develop three-dimensional constitutive relations under ordinary or high pressures (such as those induced by blasting or tectonic forces which may cause a large amount of densification by relative motion and possible crushing of grains); and (2) to examine and characterize the behavior of saturated granular materials under dynamic loading. The latter item includes characterization of possible liquefaction and subsidence which may be induced in granular materials under confining pressure by ground vibration or passage of waves. The theoretical work has been carefully coordinated with key experiments in order to: (1) understand the basic physics of the process, both at macroscopic and microscopic levels; (2) to verify the corresponding theoretical predictions; and (3) to establish relevant material parameters.

  5. Geotechnical Evaluation of the Brownsville Levee Cracking and Partial Slope Failure

    DTIC Science & Technology

    2017-06-01

    Service, Palo Alto Battlefield, Palo Alto, TX, for early historic map data. The discussion that follows presents various forms of historical information...properties for use in the geotechnical analysis. CPT data were used to identify a riverbank and a levee formed of mainly fine-grained, low shear strength...size, mineralogy, consistency, stiffness, presence of mottling, occurrence of concretions, organics, fossils , buried soil horizons, and other

  6. Reuse of coal mining wastes in civil engineering. Part 1: Properties of minestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarzynska, K.M.

    1995-07-01

    This review is intended to introduce the readers to the geotechnical properties of minestone obtained from various countries and to describe laboratory and field methods used to examine and evaluate such material. The contents of the paper consist of general information on the environmental consequences of coal mining, the origin of the by-product, and the classification of the material. Primary emphasis has been placed on describing the physical and mechanical properties with respect to geotechnical engineering. Characteristic properties, such as degradation, weathering, spontaneous heating, etc., are specific for this man-made soil and are discussed in relationship to civil engineering. Finally,more » the current and far-reaching effects of existing radioactivity is also presented. Preparation of the review is based on an extensive literature survey, as well as on the investigations of the author and practical applications. A general conclusion can be made from the reviewed data that a noticeable similarity does exist between the chemical, physical, and mechanical properties of minestone from different sources and countries. this is important because the research results and practical experience obtained in one country may then be applied to projects in another country. The review should be helpful in understanding the behavior of minestone during its transport for prospective utilization in different engineering projects. The author hopes that the information will be useful to those studying environmental, civil, and water engineering, as well as for designers and researchers investigating the potential use of this man-made (anthropogenic) soil in various fields of engineering.« less

  7. Engineering uses of physics-based ground motion simulations

    USGS Publications Warehouse

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  8. Geotechnical Risk Classification for Underground Mines / Klasyfikacja Poziomu Zagrożenia Geotechnicznego W Kopalniach Podziemnych

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Rinne, Mikael

    2015-03-01

    Underground mining activities are prone to major hazards largely owing to geotechnical reasons. Mining combined with the confined working space and uncertain geotechnical data leads to hazards having the potential of catastrophic consequences. These incidents have the potential of causing multiple fatalities and large financial damages. Use of formal risk assessment in the past has demonstrated an important role in the prediction and prevention of accidents in risk prone industries such as petroleum, nuclear and aviation. This paper proposes a classification system for underground mining operations based on their geotechnical risk levels. The classification is done based on the type of mining method employed and the rock mass in which it is carried out. Mining methods have been classified in groups which offer similar geotechnical risk. The rock mass classification has been proposed based on bulk rock mass properties which are collected as part of the routine mine planning. This classification has been subdivided for various stages of mine planning to suit the extent of available data. Alpha-numeric coding has been proposed to identify a mining operation based on the competency of rock and risk of geotechnical failures. This alpha numeric coding has been further extended to identify mining activity under `Geotechnical Hazard Potential (GHP)'. GHP has been proposed to be used as a preliminary tool of risk assessment and risk ranking for a mining activity. The aim of such classification is to be used as a guideline for the justification of a formal geotechnical risk assessment. Górnictwo podziemne pociąga za sobą różnorakie zagrożenia spowodowane przez uwarunkowania geotechniczne. Urabianie złoża w połączeniu z pracą w zamkniętej przestrzeni oraz z niepewnymi danymi geotechnicznymi powodować może zagrożenia, które w konsekwencji prowadzić mogą do wypadków, a te potencjalnie powodować mogą skutki śmiertelne dla osób oraz

  9. Implementation and transition of data interchange for geotechnical and geoenvironmental specialists (DIGGS v2.0).

    DOT National Transportation Integrated Search

    2017-01-01

    Data Interchange for Geotechnical and Geoenvironmental Specialists (DIGGS) is an XML-based system : developed under a Federal Highway Administration (FHWA) State Pooled Funding Study led by the : Ohio Department of Transportation (ODOT) from 2005 to ...

  10. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  11. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  12. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  13. NRL Hyperspectral Imagery Trafficability Tool (HITT): Software andSpectral-Geotechnical Look-up Tables for Estimation and Mapping of Soil Bearing Strength from Hyperspectral Imagery

    DTIC Science & Technology

    2012-09-28

    spectral-geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating...geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating institutions in four...2010; Bachmann, Fry, et al, 2012a). The NRL HITT tool is a model for how we develop and validate software, and the future development of tools by

  14. Characteristics and engineering properties of residual soil of volcanic deposits

    NASA Astrophysics Data System (ADS)

    Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.

    2018-02-01

    Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.

  15. JSC-1: Lunar Simulant of Choice for Geotechnical Applications and Oxygen Production

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Hill, Eddy; Liu, Yang; Day, James M. D.

    2005-01-01

    Lunar simulant JSC-1 was produced as the result of a workshop held in 1991 to evaluate the status of simulated lunar material and to make recommendations on future requirements and production of such material (McKay et al., 1991). JSC-1 was prepared from a welded tuff that was mined, crushed, and sized from the Pleistocene San Francisco volcanic field, northern Arizona. As the initial production of approxiamtely 12,300kgs is nearly depleted, new production has commenced. The mineralogy and chemical properties of JSC-1 are described in McKay et al. (1994) and Hill et al. (this volume); description of its geotechnical properties appears in Klosky et al. (1996). Although other lunar-soil simulants have been produced (e.g., MLS-1: Weiblen et al., 1990; Desai et al., 1992; Chua et al., 1994), they have not been as well standardized as JSC-I; this makes it difficult to standardize results from tests performed on these simulants. Here, we provide an overview of the composition, mineralogy, strength and deformation properties, and potential uses of JSC-1 and outline why it is presently the 'lunar simulant of choice' for geotechnical applications and as a proxy for lunar-oxygen production.

  16. 2000 report on the value pricing pilot program

    DOT National Transportation Integrated Search

    1997-05-01

    This document has been written to provide information on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Geotechnical earthquake engineering topics discussed in this document inc...

  17. Studies on geotechnical properties of subsoil in south east coastal region of India

    NASA Astrophysics Data System (ADS)

    Dutta, Susom; Barik, D. K.

    2017-11-01

    Soil testing and analysis has become essential before commencement of any activity or process on soil i.e. residential construction, road construction etc. It is the most important work particularly in coastal area as these areas are more vulnerable to the natural disastrous like tsunami and cyclone. In India, there is lack of facility to collect and analyse the soil from the field. Hence, to study the various characteristics of the coastal region sub soil, Old Mahabalipuram area, which is the South East region of India has been chosen in this study. The aim of this study is to collect and analyse the soil sample from various localities of the Old Mahabalipuram area. The analysed soil data will be helpful for the people who are working in the field of Geotechnical in coastal region of India to make decision. The soil sample collected from different boreholes have undergone various field and laboratory tests like Pressuremeter Test, Field Permeability Test, Electrical Resistivity Test, Standard Penetration Test, Shear Test, Atterberg Limits etc. are performed including rock tests to know the geotechnical properties of the soil samples for each and every stratum

  18. Estimation of geotechnical parameters on the basis of geophysical methods and geostatistics

    NASA Astrophysics Data System (ADS)

    Brom, Aleksander; Natonik, Adrianna

    2017-12-01

    The paper presents possible implementation of ordinary cokriging and geophysical investigation on humidity data acquired in geotechnical studies. The Author describes concept of geostatistics, terminology of geostatistical modelling, spatial correlation functions, principles of solving cokriging systems, advantages of (co-)kriging in comparison with other interpolation methods, obstacles in this type of attempt. Cross validation and discussion of results was performed with an indication of prospect of applying similar procedures in various researches..

  19. Geotechnical soil characterization of intact Quaternary deposits forming the March 22, 2014 SR-530 (Oso) landslide, Snohomish County, Washington

    USGS Publications Warehouse

    Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun

    2015-01-01

    This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.

  20. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jędrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  1. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  2. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    PubMed Central

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-01-01

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477

  3. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    PubMed

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  4. Problem analysis of geotechnical well drilling in complex environment

    NASA Astrophysics Data System (ADS)

    Kasenov, A. K.; Biletskiy, M. T.; Ratov, B. T.; Korotchenko, T. V.

    2015-02-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate.

  5. Assessment and evaluation of engineering options at a low-level radioactive waste storage site

    NASA Astrophysics Data System (ADS)

    Kanehiro, B. Y.; Guvanasen, V.

    1982-09-01

    Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.

  6. Correlation of Resistivity Value with Geotechnical N-Value of Sedimentary Area in Nusajaya, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Akip Tan, S. N. Mohd; Edy Tonnizam, M.; Saad, R.; Dan, M. F. Md; Nordiana, M. M.; Hazreek, Z. A. M.; Madun, A.

    2018-04-01

    Electrical resistivity survey and the geotechnical SPT blow counts (N-value) were carried out simultaneously on the tropically weathered sedimentary rock mass for an excavation project at Nusajaya, Johor, Malaysia. This study aims to determine subsurface profile by using 2D-resistivity methods and correlate with N-value derived from boring works. Four boreholes were investigated in five survey lines that revealed the site is underlain by moderately to completely weathered sandstone, clay, silt and shale. Data analysis from 2D-resistivity image shows that zones with high resistivity value generally have high N-value, and vice versa. Five zones have inversed the proportional relation between N-value and resistivity Ωm value due to different types of soil lithology. It indicates that 2D-resistivity is significance to detect bodies of anomalous materials or estimating the depth of bedrock. As a conclusion, the integration of geophysical and geotechnical analysis provides a promise approach to understand some relationship concerning the subsurface subsurface ground through the combination of 2D-resistivity and N-value.

  7. The Legacy of the 1948 Underseepage and Crevasse Maps, Lower Mississippi River Levees

    DTIC Science & Technology

    2017-04-01

    Julie R. Kelley Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180...and Julie R. Kelley Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg

  8. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  9. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    PubMed Central

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  10. 40 CFR 265.90 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from the facility via the uppermost aquifer to water supply wells (domestic, industrial, or.... This demonstration must be certified by a qualified geologist or geotechnical engineer and must... geologist or geotechnical engineer, which satisfies the requirements of § 265.93(d)(3), for an alternate...

  11. 40 CFR 265.90 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from the facility via the uppermost aquifer to water supply wells (domestic, industrial, or.... This demonstration must be certified by a qualified geologist or geotechnical engineer and must... geologist or geotechnical engineer, which satisfies the requirements of § 265.93(d)(3), for an alternate...

  12. Geotechnical properties of municipal solid waste at Laogang Landfill, China.

    PubMed

    Feng, Shi-Jin; Gao, Ke-Wei; Chen, Yi-Xin; Li, Yao; Zhang, L M; Chen, H X

    2017-05-01

    Landfills have been widely constructed all around the world in order to properly dispose municipal solid waste (MSW). Understanding geotechnical properties of MSW is essential for the design and operation of landfills. A comprehensive investigation of geotechnical properties of MSW at the largest landfill in China was conducted, including waste composition, unit weight, void ratio, water content, hydraulic conductivity, and shear behavior. A large-scale rigid-wall permeameter and a direct-shear apparatus were adopted to test the hydraulic conductivity and shear behavior of the MSW, respectively. The composition of the MSW varied with age. With the depth increasing from 0 to 16m, the unit weight increased from 7.2 to 12.5kN/m 3 , while the void ratio decreased from 2.5 to 1.76. The water content ranged between 30.0% and 68.9% but did not show a trend with depth. The hydraulic conductivity of the MSW ranged between 4.6×10 -4 and 6.7×10 -3 cm/s. It decreased as the dry unit weight increased and was sensitive to changes in dry unit weight in deeper layers. Displacement-hardening was observed during the whole shearing process and the shear strength increased with the normal stress, the displacement rate, and the unit weight. The friction angle and cohesion varied from (15.7°, 29.1kPa) to (21.9°, 18.3kPa) with depth increasing from 4 to 16m. The shear strength of the MSW obtained in this study was lower than the reported values in other countries, which was caused by the less fibrous materials in the specimens in this study. The results in this study will provide guidance in the design and operation of the landfills in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, P.K.

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  14. Preliminary Geophysical Survey for Assessing the Geotechnical Conditions and Geohazards at Huaca de La Luna, Peru

    NASA Astrophysics Data System (ADS)

    Zavala, G. J.; Lopez, S.; Ebinger, C. J.; Pando, M. A.; Lambert, C.; Morales, R.; Uceda, S.; Perucchio, R.; Castaneda, B.; Aguilar, R.

    2014-12-01

    This paper presents results of near surface geophysical tests to help assess the geotechnical conditions of the archaeological complex of Huaca de la Luna located near the coastal city of Trujillo, Peru. This area of Peru has experienced damaging earthquakes and tsunamis in historic time. The huaca complex is a massive adobe temple progressively built by the Moche civilization from 100 AD to 650 AD. The geophysical tests carried out included Ground Penetrating Radar (GPR), magnetic gradiometer, and Multichannel Analysis of Surface Waves (MASW) to help assess geotechnical conditions such as buried cavities and hallways, thickness and elastic properties of sand sediments, and the depth to the underlying granitic bedrock. The tests were performed to help with the investigation of structural damage observed along a massive adobe wall (north façade) which has shown signs of distress including fissures, settlements, and other damage. The geophysical results together with detailed Lidar surveying are being used as part of this investigation and highlight the usefulness of these non-destructive techniques for archaeological and historical sites.

  15. Shallow subsurface structures and geotechnical characteristics of Tal El-Amarna area, middle Egypt

    NASA Astrophysics Data System (ADS)

    Toni, Mostafa; Hosny, Ahmed; Attia, Mohsen M.; Hassoup, Awad; El-Sharkawy, Amr

    2013-12-01

    The shallow seismic refraction profiling was carried out at 18 sites in Tal El-Amarna, which is a flat area on the eastern bank of the Nile River, 50 km south of El Minia Governorate, middle Egypt. The collected data are used to estimate the P-wave velocity and to delineate the near-surface ground model beneath the study area. This study is supported by the National Research Institute of Astronomy and Geophysics due to the historical interest of the Tal El-Amarna area as a famous tourist place where there exist many Pharaoh temples and tombs. This area is low seismically active, but it is probably of high vulnerability due to the influence of the local geological conditions on earthquake ground motion, as well as the presence of poor constructions in the absence of various issues such as building designs, quality of building materials, etc. Another dataset at the study area is obtained by multi-channel passive source (microtremor) measurements, which have been recorded at four arrays. The frequency-wavenumber (f-k) method was used to derive the dispersion curves from the raw signals at each array. The resulted dispersion curves were inverted using the neighborhood algorithm to obtain the shear and P-wave velocity models. The concluded Vs and Vp values provide a preliminary estimation of the geotechnical parameters and site classification for the shallow soil as they are of great interest in civil engineering applications.

  16. Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers

    NASA Astrophysics Data System (ADS)

    Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; Wawrzaszek, R.

    2014-09-01

    Measurements of mechanical and thermophysical properties of planetary surface allow determining many important parameters useful for planetologists. For example, effective heat conductivity or thermal inertia of the regolith can help to better understand the processes occurring in the bodies interior. Chemical and mineralogical composition gives us a chance to determine the origin and evolution of moons and satellites. Mechanical properties of the surface are one of the key factors needed by civil engineers for developing future bases on space bodies. Space missions to planetary bodies highly restrict the payload concerning its mass and power consumption. Therefore, it is quite impossible to use a standard terrestrial technique like the Load Plate Test or Direct Shear Tests to determine the geotechnical parameters of the planetary regolith. Even the Dynamic Cone Penetration (DCP) method, which is frequently used for field testing, does not fit well with the constraints imposed by a space mission. Nevertheless, its operation principle is very similar to that of at the Low Velocity Penetrators (LVP), several of them being currently on their way to planetary bodies (e.g. the MUPUS instrument) or which were developed in the last couple of years (e.g. the CHOMIK instrument or the KRET device). In this paper we present a comparison between DCP method and LVP operation which was observed during several tests campaigns during mole KRET and CHOMIK instrument development. The tests were performed in different planetary analogues: JSC-1A, Chenobi and AGK-2010, Phobos analogue, cometary analogues F1, F2 and F3 (SRC) and dry quartz sand. In the last part of the paper the concept of results' interpretation is presented.

  17. Project-based learning in Geotechnics: cooperative versus collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Pinho-Lopes, Margarida; Macedo, Joaquim

    2016-01-01

    Since 2007/2008 project-based learning models have been used to deliver two fundamental courses on Geotechnics in University of Aveiro, Portugal. These models have evolved and have encompassed either cooperative or collaborative teamwork. Using data collected in five editions of each course (Soil Mechanics I and Soil Mechanics II), the different characteristics of the models using cooperative or collaborative teamwork are pointed out and analysed, namely in terms of the students' perceptions. The data collected include informal feedback from students, monitoring of their marks and academic performance, and answers to two sets of questionnaires: developed for these courses, and institutional. The data indicate students have good opinion of the project-based learning model, though collaborative teamwork is the best rated. The overall efficacy of the models was analysed (sum of their effectiveness, efficiency and attractiveness). The collaborative model was found more adequate.

  18. Investigation on the effect of geometrical and geotechnical parameters on elongated offshore piles using fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Aminfar, Ali; Mojtahedi, Alireza; Ahmadi, Hamid; Aminfar, Mohammad Hossain

    2017-06-01

    Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile's geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile's geometrical behavior because piles which had the optimal operational degree of about 5° are more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs.

  19. Statewide Geotechnical Asset Management Program Development : Final Report for Rock Slopes, Unstable Soil Slopes and Embankments, Retaining Walls, and Material Sites

    DOT National Transportation Integrated Search

    2017-09-05

    The Alaska Department of Transportation and Public Facilities (AKDOT&PF) has developed the nations first Geotechnical Asset Management Program. The program encompasses rock slopes, unstable slopes and embankments, retaining walls, and material sou...

  20. Results of instrument reliability study for high-level nuclear-waste repositories. [Geotechnical parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, F.; Binnall, E.P.

    1982-10-01

    Reliable instrumentation will be needed to monitor the performance of future high-level waste repository sites. A study has been made to assess instrument reliability at Department of Energy (DOE) waste repository related experiments. Though the study covers a wide variety of instrumentation, this paper concentrates on experiences with geotechnical instrumentation in hostile repository-type environments. Manufacturers have made some changes to improve the reliability of instruments for repositories. This paper reviews the failure modes, rates, and mechanisms, along with manufacturer modifications and recommendations for additional improvements to enhance instrument performance. 4 tables.

  1. Assessing dry density and gravimetric water content of soils in geotechnics with complex conductivity measurements : preliminary investigations

    NASA Astrophysics Data System (ADS)

    Kaouane, C.; Beck, Y.; Fauchard, C.; Chouteau, M.

    2012-12-01

    Quality controls of geotechnical works need gravimetric water content (w) and dry density (γd) measurements. Afterwards, results are compared to Proctor tests and referred to soil classification. Depending on the class of soils, different objectives must be achieved. Those measurements are usually carried out with neutron and gamma probes. Combined use of theses probes directly access (w, γd). Theses probes show great disadvantages as: nuclear hazard, heavy on-site, transporation and storage restrictions and low sampling volumes. Last decades showed a strong development of electrical and electromagnetic methods for mapping water content in soils. Still, their use in Geotechnics is limited due to interfacial effects neglected in common models but strong in compacted soils. We first showed that (w, γd) is equivalent to (φ, Sr) assuming density of particles γs=2.7 (g.cm-3). This assumption is true for common soils used in civil engineering. That first relationship allows us to work with meaningful parameters for geophysicists. Revil&Florsh recently adapted Vinegar&Waxman model for Spectal Induced Polarization (SIP) measurements at low frequencies (<50 kHz). This model relates quantitatively the electrical double layer polarization at the surface of grains. It takes into account saturation, porosity and granulometry. Standard granulometry and mineralogy are generally available in geotechnical campaigns. In-phase conductivity would be mostly related to saturation as quadrature conductivity would be related to porosity and surface conductivity. Although this model was developed for oil-bearing sands, we investigated its potential for compacted soils. Former DC-resistivity (ρ) measurements were carried out on a silty fined-grained soil (A1 in GTR classification or ML-CL in USCS) in a cylindrical cell (radius ~4 cm, heigth 7 cm). Median diameter of grain was 50 μm. For each measurement, samples were compacted at Proctor energy. We assessed (w, γd) by weighting and

  2. Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification

    NASA Astrophysics Data System (ADS)

    Lato, Matthew J.

    respect to numerous engineering projects that are affected by geomechanical stability issues. The ability to efficiently and accurately map discontinuities, detect changes, and standardize roadside geomechanical stability analyses from remote locations will fundamentally change the state-of-practice of geotechnical investigation workflows and repeatable monitoring. This, in turn, will lead to earlier detection and definition of potential zones of instability, will allow for progressive monitoring and risk analysis, and will indicate the need for pro-active slope improvement and stabilization.

  3. Underwater noise from geotechnical drilling and standard penetration testing.

    PubMed

    Erbe, Christine; McPherson, Craig

    2017-09-01

    Geotechnical site investigations prior to marine construction typically involve shallow, small-core drilling and standard penetration testing (SPT), during which a small tube is hammered into the ground at the bottom of the borehole. Drilling (120 kW, 83 mm diameter drillbit, 1500 rpm, 16-17 m drill depth in sand and mudstone) and SPT (50 mm diameter test tube, 15 mm wall thickness, 100 kg hammer, 1 m drop height) by a jack-up rig in 7-13 m of water were recorded with a drifting hydrophone at 10-50 m range. Source levels were 142-145 dB re 1 μPa rms @ 1 m (30-2000 Hz) for drilling and 151-160 dB re 1 μPa 2 s @ 1 m (20-24 000 Hz) for SPT.

  4. Constraints on Pore Pressure in Subduction Zones From Geotechnical Tests and Physical Properties Data

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.

    2005-12-01

    At subduction zones, as incoming sediments are either offscraped or underthrust at the trench, elevated pore pressures result from the combination of rapid loading and low permeability. Pore pressure within underthrust sediment is especially important for the mechanical strength of the plate boundary fault system, because the main décollement localizes immediately above this sediment, and at many subduction zones steps downward into it. Because the underthrust sediment undergoes progressive uniaxial (vertical) strain, quantitative estimates of in situ pore pressure can be obtained by several methods, including: (1) maximum past burial stress ( Pv'}) from laboratory consolidation tests on core samples, and (2) observed compaction trends in boreholes. These methods allow a detailed view of pore pressure and its variability down-section, providing insight into dewatering processes and the evolution of shear strength relevant to early development of the décollement. Geotechnical tests also provide independent measurement of the coefficient of consolidation ( Cv), compressibility ( mv), and permeability (k) of sediment samples, which can be used to parameterize forward models of pressure generation. Here, I discuss pore pressure estimates derived from (1) consolidation tests on core samples, and (2) observed porosity profiles, along transects where ODP drilling has sampled sediment at the Nankai, N. Barbados, and Costa Rican subduction zones. At all three margins, the two independent methods yield consistent results, and indicate development of significant overpressures that increase systematically with distance from the trench. The values are in good agreement with direct measurements in 2 instrumented boreholes at Barbados, maximum and minimum bounds from the known loading rate, and results of 2-D numerical models of fluid flow. Inferred pressures document nearly undrained conditions at the base of the section (excess pressures equal to the load emplaced by

  5. Handbook for Marine Geotechnical Engineering

    DTIC Science & Technology

    2012-02-01

    height dictated by the chosen range. The returning acoustic signals are received by the same fish and transmitted by electrical or fiber optic cable......covered here, are required to predict penetrations in lithified sediments, coral, basalt , and other rock types. These special techniques are highly

  6. Computer Applications to Geotechnical Engineering.

    DTIC Science & Technology

    1983-08-01

    embedment depths for signposts could be estimated. In association with the Outdoor Advertising Association of America , Professor Rutledge devised the...GWT =15 FEET .4FETY FACI.TCI =2 EC’L I-+ FEET 77 1 . 17 4 .- to 30 -4 -4psfr 107000 IwU - Z2. ,C F60- bEPs. .- 10- PC,: ((lX\\A A) A12 -. F * _ _ _ A7_...Design Manual, Outdoor Advertising Association of America , 1955. 4. Saghera, S. S., "Embedment Depth for Nonconstrained and Constrained Poles or

  7. Nondestructive laboratory measurement of geotechnical and geoacoustic properties through intact core-liner

    USGS Publications Warehouse

    Kayen, R.E.; Edwards, B.D.; Lee, H.J.

    1999-01-01

    High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.

  8. An Overview of the Geological and Geotechnical Aspects of the New Railway Line in the Lower Inn Valley

    NASA Astrophysics Data System (ADS)

    Eder, Stefan; Poscher, Gerhard; Sedlacek, Christoph

    The new railway line in the lower Inn-valley is part of the Brenner railway axis from Munich to Verona (feeder north). The first section between the villages of Kundl and Radfeld, west of Wörgl, and the village of Baumkirchen, east of Innsbruck, will become one of the biggest infrastructure projects ever built in Austria, with a length of approx. 43 km and an underground portion of approx. 80%. The article gives an overview of the various geologic formations - hard rock sections in the valley slopes, different water-saturated gravel and sand formations in the valley floor and geotechnically difficult conditions in sediments of Quaternary terraces. It also describes the methodology of the soil reconnaissance using groundwater models for hydrogeologic estimations, core drillings for evaluating geologic models and describes the experiences gained from the five approx. 7.5 km long reconnaissance tunnels for geotechnical and hydrogeological testing. The results of the soil reconnaissance were used to plan different construction methods, such as excavation in soft rock under a jet grouting roof and compressed-air, as well as mechanised shield with fluid support.

  9. Laboratory and Field Investigations of Small Crater Repair Technologies

    DTIC Science & Technology

    2007-09-01

    caps over debris backfill or specially placed or compacted backfill, structural systems to bridge craters, foamed crater backfills, and structural ...Jeb S. Tingle, and Timothy J. McCaffrey Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry...Engineer Research and Development Center (ERDC), Geotechnical and Structures Laboratory (GSL), Vicksburg, MS. The findings and recommendations presented

  10. Difficult Geotechnical Conditions Under the Palace Complex, Case Study from Cianowice, Near Krakow, Poland

    NASA Astrophysics Data System (ADS)

    Gil-Mastalerczyk, Joanna; Gil, Regina

    2016-10-01

    The palace complex in Cianowice near Krakow (Lesser Poland, Poland) built around 1890, after 1945 ceased to function as a residential, so the whole building underwent successive devastation. Military activities, ad hoc repairs and long-term shortage of funds in Poland, led to the destruction of the magnificent assumptions. Since 2006. Palace remained completely unsecured and unattended. Performed in 2012-2015 modernization of the historic palace with the expansion of the basement (for residential building multigenerational) has become the occasion for a thorough diagnosis of the prevailing geotechnical conditions and the state of preservation of threads stone and brick walls and vaults chambers basement. Difficult ground conditions, water penetration, lack of insulation of horizontal and vertical has become one of the main causes of the destruction of the foundations and walls of basements. Moisture from the ground, rising damp in the walls (with dissolved salts in it), evaporate causing erosion of the walls. The result it led to the weakening of the structural and breakout layers of walls. The phenomenon has become particularly clear after the geotechnical surveys, excavations and complete discovery of the basement walls. The conducted works related to general technical renovation and restoration, included foundations (lining and insulation), walls, floors and roof. The assumption palace in Cianowice, through appropriate interference with the use of modern and introduction of a new substance, in any manner that emphasizes value and historical monument became possible to restore the important significance of the object and place.

  11. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    NASA Astrophysics Data System (ADS)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  12. Geotechnical consulting at the stages of design and full repair: A case study of village school in Minusinsk region, Russia

    NASA Astrophysics Data System (ADS)

    Khalimov, Oleg; Strelnikov, Dmitry

    2017-11-01

    The article provides an experimental material showing an investigation of soil under the foundations base of a dangerous block of the building. The investigation was carried out by applying load from a stamp on the soil with a jack supporting the foundation base of the deformed building. There were originally offered two options to strengthen the foundation - a broader base and improvement of the soil with the plate. However, quite a different option was accepted due to the full scale tests. The effective way to strengthen the foundation is measures undertaken without strengthening the soil and without increasing the width of the base, using the actual soil with deformations stabilized for years of operation. The strengthening of the bearing brick walls was made by tightening the main face laying with steel channel profiles to make a firm contact with the foundations. The conducted investigation is an example of geotechnical consulting and improvement of the geotechnical maintenance of dangerous structures at the stages of investigation, design and reconstruction.

  13. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  14. Utilization of MatPIV program to different geotechnical models

    NASA Astrophysics Data System (ADS)

    Aklik, P.; Idinger, G.

    2009-04-01

    The Particle Imaging Velocimetry (PIV) technique is being used to measure soil displacements. PIV has been used for many years in fluid mechanics; but for physical modeling in geotechnical engineering, this technique is still relatively new. PIV is a worldwide growth in soil mechanics over the last decade owing to the developments in digital cameras and laser technologies. The use of PIV is feasible provided the surface contains sufficient texture. A Cambridge group has shown that natural sand contains enough texture for applying PIV. In a texture-based approach, the only requirement is for any patch, big or small to be sufficiently unique so that statistical tracking of this patch is possible. In this paper, some of the soil mechanic's models were investigated such as retaining walls, slope failures, and foundations. The photographs were taken with the help of the high resolution digital camera, the displacements of soils were evaluated with free software named as MatPIV and the displacement graphics between the two images were obtained. Nikon D60 digital camera is 10.2 MB and it has special properties which makes it possible to use in PIV applications. These special properties are Airflow Control System and Image Sensor cleaning for protection against dust, Active D-Lighting for highlighted or shadowy areas while shooting, advanced three-point AF system for fast, efficient and precise autofocus. Its fast and continuous shooting mode enables up to 100 JPEG images at three frames per second. Norm Sand (DIN 1164) was used for all the models in a glass rectangular box. For every experiment, MatPIV was used to calculate the velocities from the two images. MatPIV program was used in two ways such as easy way and difficult way: In the easy way, the two images with 64*64 pixels with 50% or 75% overlap of the interrogation windows were taken into consideration and the calculation was performed with a single iteration through the images and the result consisted of four

  15. Soil-Structure Interaction Study of Red River Lock and Dam No. 1 Subjected to Sediment Loading

    DTIC Science & Technology

    1993-09-01

    Sediment Loading by Robert M. Ebeling, Reed L. Mosher, Kevin Abraham Information Technology Laboratory John F. Peters Geotechnical Laboratory DTIC fl ELECTE...Robert M. Ebeling, Reed L. Mosher, Kevin Abraham Information Technology Laboratory John F. Peters Geotechnical Laboratory U.S. Army Corps of Engineers...Division (CAED), Informa- tion Technology Laboratory (ITL), Dr. Reed L. Mosher, Acting Chief, CAED, Mr. Kevin Abraham, Scientific and Engineering

  16. Determination and prioritization of MoDOT geotechnical related problems with emphasis on effectiveness of design for bridge approach slabs and pavement edge drains

    DOT National Transportation Integrated Search

    2003-01-01

    Surveys, interviews and site visits were used to identify, observe and document geotechnical-related problems in Missouri DOT infrastructure. Documented issues were evaluated and prioritized. Additional attention was focused on Pavement Edge Drains a...

  17. Geologic logs of geotechnical cores from the subsurface Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Maier, Katherine L.; Ponti, Daniel J.; Tinsley, John C.; Gatti, Emma; Pagenkopp, Mark

    2014-01-01

    This report presents and summarizes descriptive geologic logs of geotechnical cores collected from 2009–12 in the Sacramento–San Joaquin Delta, California, by the California Department of Water Resources. Graphic logs are presented for 1,785.7 ft of retained cores from 56 borehole sites throughout the Sacramento-San Joaquin Delta. Most core sections are from a depth of ~100–200 feet. Cores primarily contain mud, silt, and sand lithologies. Tephra (volcanic ash and pumice), paleosols, and gravels are also documented in some core sections. Geologic observations contained in the core logs in this report provide stratigraphic context for subsequent sampling and data for future chronostratigraphic subsurface correlations.

  18. Geotechnical support and topical studies for nuclear waste geologic repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technicalmore » and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''« less

  19. Development of Early Warning System for Landslide Using Electromagnetic, Hydrological, Geotechnical, and Geological Approaches

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Hattori, K.; Chae, B.

    2011-12-01

    The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).

  20. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    NASA Astrophysics Data System (ADS)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilles

    2016-01-01

    The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions. This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100-120 m were successfully mined with an average displacement rate of 10- 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.

  1. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    NASA Astrophysics Data System (ADS)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  2. Geotechnical Engineering Circular No. 3: Design Guidance. Geotechnical Earthquake Engineering for Highways. Volume I - Design Principles

    DOT National Transportation Integrated Search

    1995-01-01

    In order to obtain regional perspective on the major problems and issues to be addressed, a series of nine regional round tables were convened across the nation. One of these was held in Norfolk, VA, on June 11, 1993. The primary focus of this meetin...

  3. Geotechnical Engineering Circular No. 3. Design Guidance: Geotechnical Earthquake Engineering for Highways. Volume II - Design Examples

    DOT National Transportation Integrated Search

    1994-02-01

    The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...

  4. A contactless positioning system for monitoring discontinuities in three dimensions with geological and geotechnical applications

    NASA Astrophysics Data System (ADS)

    Rinaldi-Montes, Natalia; Rowberry, Matt; Frontera, Carlos; BaroÅ, Ivo; Garcés, Javier; Blahůt, Jan; Pérez-López, Raúl; Pennos, Christos; Martí, Xavi

    2017-07-01

    In this paper, a contactless positioning system is presented which has been designed to monitor the kinematic behavior of mechanical discontinuities in three dimensions. The positioning system comprises a neodymium magnet, fixed on one side of a discontinuity, and a magnetoresistive sensing array, fixed on the opposing side. Each of the anisotropic magnetoresistive sensors in the sensing array records the magnetic field along three orthogonal directions. The positioning system intrinsically generates compact data packages which are transmitted effectively using a range of standard wireless telecommunication technologies. These data are then modeled using a global least squares fitting procedure in which the adjustable parameters are represented by the position and orientation of the neodymium magnet. The instrumental resolution of the positioning system can be tuned depending on the strength of the magnetic field generated by the neodymium magnet and the distance between the neodymium magnet and the magnetoresistive sensing array. For a typical installation, the displacement resolution is shown to be circa 10 μm while the rotation resolution is circa 0.1°. The first permanently deployed positioning system was established in June 2016 to monitor the behavior of an N-S trending fault located at the contact between the eastern Alps and the Vienna Basin. The robust design of the positioning system is demonstrated by the fact that no interruptions in the broadcasted data streams have occurred since its installation. It has a range of potential applications in many areas of basic and applied research including geology, geotechnical engineering, and structural health monitoring.

  5. Contribution to Estimating Bearing Capacity of Pile in Clayey Soils

    NASA Astrophysics Data System (ADS)

    Drusa, Marián; Gago, Filip; Vlček, Jozef

    2016-12-01

    The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.

  6. Recent Advances in Tsunami-Seabed-Structure Interaction from Geotechnical and Hydrodynamic Perspectives

    NASA Astrophysics Data System (ADS)

    Sassa, S.

    2017-12-01

    This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an

  7. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Geotechnical Aspects of Rock Erosion in Emergency Spillway Channels. Report 3. Remediation

    DTIC Science & Technology

    1988-09-01

    identified early and treated promptly. The same authors proposed that the rock-mass parameters that govern rippability , when combined with...lithostratigraphic continuity factors, may provide predictive erosion indices from a geotechnical point of view. 16. Rippability is a form of rock-mass...The rock-mass parameters from which a rippability rating (RR) is derived include rock type, hardness, weathering, structure (strike and dip orientation

  8. Geotechnical assessment of road failure and slope monitoring along Nsukka-Adoru-Idah highway, Southeastern Nigeria.

    PubMed

    Maduka, Raphael Iweanya; Igwe, Ogbonnaya; Ayogu, Nnadozie Onyekachi; Ayogu, Chinero Nneka; Nwachukwu, Martin

    2017-01-01

    The quality of highway pavement is greatly influenced by the subgrade materials, the general geology of the area, and the materials used for construction. Investigation into the 75-km Nsukka-Adoru-Idah highway revealed that the pavement was underlain by three lithological units-Imo, Nsukka, and Ajali formations. The geotechnical evaluation carried out in the study includes the particle size distribution, Atterberg limit, specific gravity, compaction tests, and California bearing ratio (CBR). The base course has clay/silt (7-14%), fine sand (1-4%), medium sand (6-13%), and coarse sand (65-86%), while the subgrade presented clay/silt (74-82%), fine sand (6-9%), medium sand (10-17%), and coarse sand (1-3%). The average specific gravity results for the studied base course and subgrades are 2.58 and 2.52. Liquid limit (LL) result ranges from 27 to 60%, while plastic limit (PL) ranges between 17 and 24%, and plasticity index (PI) ranges from 5 to 39%. The maximum dry density (MDD) result ranges from 1.70 to 2.10 mg/m 3 , while the optimum moisture content (OMC) for the samples ranges between 14.1 and 18.0%. The CBR result for soaked and unsoaked samples ranges from 37 to 74 and 48 to 83%, respectively. The low unsoaked CBR (<80%) and high Atterberg limits (LL > 30% and PI > 12%) failed the stipulated Nigerian standard, signifying the need for stabilization. A geotechnical model of a highway road cut generated a factor of safety of 1.45, indicating possibility of slope failure.

  9. Reconstructing former urban environments by combining geophysical electrical methods and geotechnical investigations—an example from Chania, Greece

    NASA Astrophysics Data System (ADS)

    Soupios, P. M.; Loupasakis, C.; Vallianatos, F.

    2008-06-01

    Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.

  10. Geotechnical valorisation of large recycling concrete in FezMeknes region (Morocco)

    NASA Astrophysics Data System (ADS)

    Demehati, A.; Abidi, A.; El Qandil, M.

    2018-05-01

    The growing and accelerated development of agglomerations is resulting in increasing pressure on deposits of materials as natural resources. This results in shortages of aggregates including sand. Situation in the different regions of Morocco, including that of FezMeknes. In addition, the threat to the stability or durability of buildings in general and road works and their annexes in particular is often started either from the surface of the grounds or from areas vulnerable to their geotechnical contact as seating materials surrounding them. The large concrete with recycles aggregates filling or protective mask provides adequate solutions. According to the results of our research, it offers a well-adapted physical and mechanical characterization in transition between conventional concretes, whether or not they are armed, and their support. Its use of protection against the effects of erosion or scouring and against the seismic movements further strengthens its potential field employment.

  11. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  12. Comparing geotechnical to geologic estimates for past overburden in the Pierre-Hayes, South Dakota area: an argument for in-situ pressuremeter determination ( USA).

    USGS Publications Warehouse

    Collins, D.S.; Nichols, T.C.

    1987-01-01

    A knowledge of past overburden thickness is useful for designing underground structures such as waste repositories. This study attempts to determine if a correlation can be made between a geologic estimate and two types of geotechnical calculations of past overburden thickness. In the Pierre-Hayes area, Late Cretaceous Pierre Shales is the only bedrock present, but clasts of the Miocene Ogallala Formation were found in the Pleistocene deposits, suggesting that rocks of the Ogallala Formation once covered this area. Based on the geologic estimate, the Ogallala surface was 1100 ft higher than the present surface. Of the two types of geotechnical data acquired for the Hayes site, the laboratory overconsolidation ratios indicate a past overburden thickness value of 2300 ft, whereas the in situ pressuremeter overconsolidation ratios indicate 1318 ft. We, therefore, believe that in situ determination is a better indicator of past overburden that the laboratory results. However, why the two test results differ to this degree is unknown at present.-from Authors

  13. Development Of International Data Standards For The COSMOS/PEER-LL Virtual Data Center

    NASA Astrophysics Data System (ADS)

    Swift, J. N.

    2005-12-01

    The COSMOS -PEER Lifelines Project 2L02 completed a Pilot Geotechnical Virtual Data Center (GVDC) system capable of both archiving geotechnical data and of disseminating data from multiple linked geotechnical databases. The Pilot GVDC system links geotechnical databases of four organizations: the California Geological Survey, Caltrans, PG&E, and the U. S. Geological Survey The System was presented and reviewed in the COSMOS-PEER Lifelines workshop on June 21 - 23, 2004, which was co-sponsored by the Federal Highway Administration (FHWA) and included participation by the United Kingdom Highways Agency (UKHA) , the Association of Geotechnical and Geoenvironmental Specialists in the United Kingdom (AGS), the United States Army Corp of Engineers (USACOE), Caltrans, United States Geological Survey (USGS), California Geological Survey (CGS), a number of state Departments of Transportation (DOTs), county building code officials, and representatives of academic institutions and private sector geotechnical companies. As of February 2005 COSMOS-PEER Lifelines Project 2L03 is currently funded to accomplish the following tasks: 1) expand the Pilot GVDC Geotechnical Data Dictionary and XML Schema to include data definitions and structures to describe in-situ measurements such as shear wave velocity profiles, and additional laboratory geotechnical test types; 2) participate in an international cooperative working group developing a single geotechnical data exchange standard that has broad international acceptance; and 3) upgrade the GVDC system to support corresponding exchange standard data dictionary and schema improvements. The new geophysical data structures being developed will include PS-logs, downhole geophysical logs, cross-hole velocity data, and velocity profiles derived using surface waves. A COSMOS-PEER Lifelines Geophysical Data Dictionary Working Committee constituted of experts in the development of data dictionary standards and experts in the specific data to be

  14. Geomorphological and geotechnical issues affecting the seismic slope stability of the Duwamish River Delta, Port of Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Palmer, Stephen P.

    1999-01-01

    Young Holocene deposits of the Duwamish River valley underlie a highly developed transportation-industrial corridor, extending from the City of Kent to the Elliott Bay-Harbor Island marine terminal facilities. The deposits have been shaped by relative sea-level rise, but also by episodic volcanism and seismicity. A geologic and geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  15. Two treatment methods for stormwater sediments--pilot plant and landfarming--and reuse of the treated sediments in civil engineering.

    PubMed

    Petavy, F; Ruban, V; Conil, P; Viau, J Y; Auriol, J C

    2009-07-01

    The aim of this research was to present a pilot plant for the treatment of stormwater sediments and to compare the decontamination rate to that obtained by landfarming. The possibilities for reuse of the treated sediments in civil engineering are also studied. Four sediments from retention/infiltration ponds or from street sweeping were studied. In each case organic matter (OM), total hydrocarbons (TH) and polycyclic aromatic hydrocarbons (PAH) were measured. Geotechnical tests were carried out to evaluate the reuse possibilities of the treated sediments. Treatment by means of the pilot plant was efficient at reducing TH and PAH concentrations: THs were reduced by 53-97% and PAHs were decreased by 60-95%. By comparison, a reduction of 45-75% in TH concentration is obtained with landfarming, whereas there is no significant decrease in PAHs. Furthermore, geotechnical tests showed that the treated fractions from the pilot plant can be reused as road embankments and as a capping layer. These results are most encouraging and show that stormwater sediments can valuably be reused after treatment in a pilot plant. Landfarming is less efficient but this technique could be used as a pretreatment in the case of high TH pollution.

  16. Geotechnical characterization of a Municipal Solid Waste Incineration Ash from a Michigan monofill.

    PubMed

    Zekkos, Dimitrios; Kabalan, Mohammad; Syal, Sita Marie; Hambright, Matt; Sahadewa, Andhika

    2013-06-01

    A field and laboratory geotechnical characterization study of a Municipal Solid Waste Incineration Ash disposed of at the Carleton Farms monofill in Michigan was performed. Field characterization consisted of field observations, collection of four bulk samples and performance of shear wave velocity measurements at two locations. Laboratory characterization consisted of basic geotechnical characterization, i.e., grain size distribution, Atterberg limits, specific gravity tests, compaction tests as well as moisture and organic content assessment followed by direct shear and triaxial shear testing. The test results of this investigation are compared to results in the literature. The grain size distribution of the samples was found to be very similar and consistent with the grain size distribution data available in the literature, but the compaction characteristics were found to vary significantly. Specific gravities were also lower than specific gravities of silicic soils. Shear strengths were higher than typically reported for sandy soils, even for MSWI ash specimens at a loose state. Strain rate was not found to impact the shear resistance. Significant differences in triaxial shear were observed between a dry and a saturated specimen not only in terms of peak shear resistance, but also in terms of stress-strain response. In situ shear wave velocities ranged from 500 to 800 m/s at a depth of about 8m, to 1100-1200 m/s at a depth of 50 m. These high shear wave velocities are consistent with field observations indicating the formation of cemented blocks of ash with time, but this "ageing" process in MSWI ash is still not well understood and additional research is needed. An improved understanding of the long-term behavior of MSWI ash, including the effects of moisture and ash chemical composition on the ageing process, as well as the leaching characteristics of the material, may promote unbound utilization of the ash in civil infrastructure. Copyright © 2013 Elsevier

  17. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  18. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  19. The Study of Geotechnical Properties of Sediment in C-C Zone in the Northeastern Pacific for Deep-sea Mining

    NASA Astrophysics Data System (ADS)

    Chi, S.; Kim, K.; Lee, H.; Ju, S.; Yoo, C.

    2007-12-01

    Recently the market price of valuable metals are rapidly increased due to the high demand and limited resources. Therefore, manganese (Mn)-nodules (Polymetallic nodules) in the Clarion-Clipperton fracture zone have stimulated economic interest. Nickel, copper, cobalt and manganese are the economically most interesting metals of Mn-nodules. In order to mine Mn-nodules from sea floor, understanding the geotechnical properties of surface sediment are very important for two major reasons. First, geotechnical data are required to design and build the stable and environmentally acceptable mining vehicles. Second, deep-sea mining activity could significantly effect on the surface layer of deep sea floor. For example, surface sediments will be redistributed through the resuspension and redeposition. Reliable sedimentological and soil mechanical baseline data of the undisturbed benthic environment are essential to assess and evaluate these environmental impacts by mining activity using physical and numerical modeling. The 225 times deployments of the multiple corer guaranteed undisturbed sediment samples in which geotechnical parameters were measured including sediment grain size, density, water content, shear strength. The sea floor sediments in this study area are generally characterized into three different types as follow. The seabed of the middle part (8-12° N) of this study area is mainly covered with biogenic siliceous sediment compared with pelagic red clays in the northern part (16-17° N). However, the southern part (5-6° N) is dominant with calcareous sediments because its water depth is shallower than the carbonate compensation depth (CCD). This result suggests that middle area, covered with siliceous sediment, is more feasible for commercial mining than northern area, covered with pelagic red clay, with the consideration of the nodule miner maneuverability and the environmental impact. Especially, middle part with the highest nodule abundance and valuable

  20. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    NASA Astrophysics Data System (ADS)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  1. Preliminary view of geotechnical properties of soft rocks of Semanggol formation at Pokok Sena, Kedah

    NASA Astrophysics Data System (ADS)

    Ahmad, N. R.; Jamin, N. H.

    2018-04-01

    The research was inspired by series of geological studies on Semanggol formation found exposed at North Perak, South Kedah and North Kedah. The chert unit comprised interbedded chert-shale rocks are the main lithologies sampled in a small-scale outcrop of Pokok Sena area. Black shale materials were also observed associated with these sedimentary rocks. The well-known characteristics of shale that may swell when absorb water and leave shrinkage when dried make the formation weaker when load is applied on it. The presence of organic materials may worsen the condition apart from the other factors such as the history of geological processes and depositional environment. Thus, this research is important to find the preliminary relations of the geotechnical properties of soft rocks and the geological reasoning behind it. Series of basic soil tests and 1-D compression tests were carried out to obtain the soil parameters. The results obtained gave some preliminary insight to mechanical behaviour of these two samples. The black shale and weathered interbedded chert-shale were classified as sandy-clayey-SILT and clayey-silty-SAND respectively. The range of specific gravity of black shale and interbedded chert/shale 2.3 – 2.6 and fall in the common range of shale and chert specific gravity value. In terms of degree of plasticity, the interbedded chert/shale samples exhibit higher plastic degree compared to the black shale samples. Results from oedometer tests showed that black shale samples had higher overburden pressure (Pc) throughout its lifetime compare to weathered interbedded chert-shale, however the compression index (Cc) of black shale were 0.15 – 0.185 which was higher than that found in interbedded chert-shale. The geotechnical properties of these two samples were explained in correlation with their provenance and their history of geological processes involved which predominantly dictated the mechanical behaviour of these two samples.

  2. Elevated lateral stress in unlithified sediment, Midcontinent, United States - geotechnical and geophysical indicators for a tectonic origin

    USGS Publications Warehouse

    Woolery, E.W.; Schaefer, J.A.; Wang, Z.

    2003-01-01

    Indirect and direct geotechnical measurements revealed the presence of high lateral earth pressure (Ko) in shallow, unlithified sediment at a site in the northernmost Mississippi embayment region of the central United States. Results from pile-load and pressuremeter tests showed maximum Ko values greater than 10; however, the complex geologic environment of the Midcontinent made defining an origin for the anomalous Ko based solely on these measurements equivocal. Although in situ sediment characteristics indicated that indirect tectonic or nontectonic geologic mechanisms that include transient overburden loads (e.g., fluvial deposition/erosion, glacial advance/retreat) and dynamic shear loads (e.g., earthquakes) were not the dominant cause, they were unable to provide indicators for a direct tectonic generation. Localized stresses induced anthropogenically by the geotechnical field tests were also considered, but ruled out as the primary origin. A high-resolution shear-wave (SH) reflection image of geologic structure in the immediate vicinity of the test site revealed compression-style neotectonism, and suggested that the elevated stress was a tectonic manifestation. Post-Paleozoic reflectors exhibit a Tertiary (?) structural inversion, as evidenced by post-Cretaceous fault displacement and pronounced positive folds in the hanging wall of the interpreted faults. The latest stratigraphic extent of the stress effects (i.e., all measurements were in the Late Cretaceous to Tertiary McNairy Formation), as well as the relationship of stress orientation with the orientation of local structure and regional stress, remain unknown. These are the subjects of ongoing studies. ?? 2003 Elsevier Science B.V. All rights reserved.

  3. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive

  4. Geoscience techniques for engineering assessment of Oman to India pipeline route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less

  5. Measuring in situ mechanical properties of pavement subgrade soils

    DOT National Transportation Integrated Search

    1999-01-01

    This synthesis report will be of interest to pavement and geotechnical design and research engineers, geologists and engineering geologists, and similar laboratory personnel. It describes the current practice for measuring the in situ mechanical prop...

  6. Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit

    NASA Astrophysics Data System (ADS)

    Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.

    2014-12-01

    This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.

  7. Geotechnical engineering practices in Canada and Europe

    DOT National Transportation Integrated Search

    2011-12-01

    This report describes Machine-to-Machine service architecture and how it is evolving over the next several years. Nearly 50 billion Machine-to-Machine (M2M) devices are predicted to be deployed by all sectors by 2025. The largest impediment to M2M de...

  8. Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories

    NASA Astrophysics Data System (ADS)

    Ojaghi, Mobin; Martínez, Ignacio Lamata; Dietz, Matt S.; Williams, Martin S.; Blakeborough, Anthony; Crewe, Adam J.; Taylor, Colin A.; Madabhushi, S. P. Gopal; Haigh, Stuart K.

    2018-01-01

    Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented.

  9. On Unsaturated Soil Mechanics - Personal Views on Current Research

    NASA Astrophysics Data System (ADS)

    Pande, G. N.; Pietruszczak, S.

    2015-09-01

    This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.

  10. Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Rosser, N. J.; Murphy, W.; Lawrence, J. A.

    2010-08-01

    Coastal monitoring is routinely undertaken to provide an archival record of cliff-line movement that can be used in the development and validation of predictive coast retreat and evolution models. However, coastal monitoring is often purely quantitative in nature, and financial necessity requires deployment over extensive coastal sections. As a result, for local site conditions in particular, only limited geomorphological data are available or included during the development of such predictive models. This has resulted in many current models incorporating a simplistic or generalised representation of cliff behaviour, an approach that progressively loses local credibility when deployed over extensive heterogeneous coastlines. This study addresses this situation at a site of extreme coastline retreat, Holderness, UK, through the application of intensive monitoring of six representative cliff sections nested within a general geomorphological appraisal of the wider coastline as a whole. The data from these surveys have been used to validate a finite difference-based geotechnical modelling assessment of clay cliff stability. Once validated, the geotechnical model was used to simulate a range of scenarios that were sufficient to represent the range of topographic, hydrogeological, geological, and littoral conditions exhibited throughout the region. Our assessment identified that the cliff retreat occurs through the combined influence of direct marine erosion of the cliff, with shallow, structurally controlled failures or substantial mass failures. Critically, the predisposition to any one of these failure mechanisms arises principally as a result of initial cliff height. The results of the numerical modelling have been combined into an empirical slope model that derives the rate of landslide-induced retreat that would arise from mass failures under various future scenarios. Results of this study can be used in the selection and development of retreat models at coastlines

  11. Understanding Mississippi Delta Subsidence through Stratigraphic and Geotechnical Analysis of a Continuous Holocene Core at a Subsidence Superstation

    NASA Astrophysics Data System (ADS)

    Bridgeman, J.; Tornqvist, T. E.; Jafari, N.; Allison, M. A.

    2017-12-01

    Land-surface subsidence can be a major contributor to the relative sea-level rise that is threatening coastal communities. Loosely constrained subsidence rate estimates across the Mississippi Delta make it difficult to differentiate between subsidence mechanisms and complicate modeling efforts. New data from a nearly 40 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the stratigraphic and geotechnical properties of the Holocene succession. Stratigraphically, the core can be grouped into three sections. The top 12 m is dominated by clastic overbank sediment with interspersed organic-rich layers. The middle section, 12-35 m consists predominately of mud, and the bottom section, 35-38.7 m, is marked by a transition into a Holocene-aged basal peat (11,350-11,190 cal BP) which overlies densely packed Pleistocene sediment. Radiocarbon and OSL ages show up to 6 m of vertical displacement since 3,000 cal BP. We infer that most of this was due to compaction of the thick underlying mud package. The top ­­­­­ 70 cm of the core is a peat that represents the modern marsh surface and is inducing minimal surface loading. This is consistent with the negligible shallow subsidence rate as seen at a nearby rod-surface elevation table - marker horizon station and the initial strainmeter data. Future compaction scenarios for the superstation can be modeled from the stratigraphic and geotechnical properties of the core, including the loading from the planned Mid-Barataria sediment diversion which is expected to dramatically change the coastal landscape in this region.

  12. National Program for Inspection of Non-Federal Dams. Highland Lakes-Lower Lake Dam (MA 00598), Connecticut River Basin, Goshen, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    approval. CARNEY M. TERZLAN, KDIBER Design Branch Engineering Division Water\\ontrol Brancr%.J Engineering Division ARAiQAST MANTESI, CHIRA Geotechnical...issued to Hayden, Harding & Buchanan, Inc. on 26 June 1981 by William E. Hodgson Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0006 has been

  13. Lateral support systems and underpinning, volume III : construction methods.

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...

  14. Lateral support systems and underpinning, volume II : design fundamentals.

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover : tunneling for practicing engineers. The main emphasis is on the geotechnical : aspects of engineering. Included in this volume is a state-of-the-art summary of : displa...

  15. Lateral Support Systems And Underpinning. Volume II. Design Fundamentals

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...

  16. Geotechnical reconnaissance of the Mississippi River Delta flood-protection system after Hurricane Katrina: Chapter 3C in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Luna, Ronaldo; Summers, David; Hoffman, David; Rogers, J. David; Sevi, Adam; Witt, Emitt C.

    2007-01-01

    This article presents the post-Hurricane Katrina conditions of the flood-protection system of levees and floodwalls that failed in the environs of the Mississippi River Delta and New Orleans, La. Damage conditions and suggested mechanisms of failure are presented from the geotechnical point of view.

  17. Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage

    NASA Astrophysics Data System (ADS)

    Bièvre, Grégory; Lacroix, Pascal; Oxarango, Laurent; Goutaland, David; Monnot, Guy; Fargier, Yannick

    2017-04-01

    This paper investigates the combined use of extensive geotechnical, hydrogeological and geophysical techniques to assess a small earth dyke with a permanent hydraulic head, namely a canal embankment. The experimental site was chosen because of known issues regarding internal erosion and piping phenomena. Two leakages were visually located following the emptying of the canal prior to remediation works. The results showed a good agreement between the geophysical imaging techniques (Electrical Resistivity Tomography, P- and SH-waves Tomography) and the geotechnical data to detect the depth to the bedrock and its lateral variations. It appeared that surface waves might not be fully adapted for dyke investigation because of the particular geometry of the studied dyke, non-respectful of the 1D assumption, and which induced depth and velocity discrepancies retrieved from Rayleigh and Love waves inversion. The use of these classical prospecting techniques however did not allow to directly locate the two leakages within the studied earth dyke. The analysis of ambient vibration time series with a modified beam-forming algorithm allowed to localize the most energetic water flow prior to remediation works. It was not possible to detect the leakage after remediation works, suggesting that they efficiently contributed to significantly reduce the water flow. The second leakage was not detected probably because of a non-turbulent water flow, generating few energetic vibrations.

  18. MX Siting Investigation. Geotechnical Evaluation. Volume VIII. Nevada - Utah Verification Studies, FY 79. Geotechnical Data Big Smoky CDP, Nevada.

    DTIC Science & Technology

    1979-08-24

    Diablo Baseline and Meridian references: (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and...3) Robinson, Thordarson , and Beetem (1967) (4) Rush (1968) (5) Rush and Schroer (1970) (6) U. S. Geological Survey (1971) (7) U. S. Geological Survey...and Meridian references (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and Beetem (1967) (4

  19. Effects of leachate on geotechnical characteristics of sandy clay soil

    NASA Astrophysics Data System (ADS)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  20. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology

  1. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    NASA Astrophysics Data System (ADS)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  2. Report on workshop to incorporate basin response in the design of tall buildings in the Puget Sound region, Washington

    USGS Publications Warehouse

    Chang, Susan; Frankel, Arthur D.; Weaver, Craig S.

    2014-01-01

    On March 4, 2013, the City of Seattle and the U.S. Geological Survey (USGS) convened a workshop of 25 engineers and seismologists to provide recommendations to the City for the incorporation of amplification of earthquake ground shaking by the Seattle sedimentary basin in the design of tall buildings in Seattle. The workshop was initiated and organized by Susan Chang, a geotechnical engineer with the City of Seattle Department of Planning and Development, along with Art Frankel and Craig Weaver of the USGS. C.B. Crouse of URS Corporation, Seattle made key suggestions for the agenda. The USGS provided travel support for most of the out-of-town participants. The agenda and invited attendees are given in the appendix. The attendees included geotechnical and structural engineers working in Seattle, engineers with experience utilizing basin response factors in other regions, and seismologists who have studied basin response in a variety of locations. In this report, we summarize the technical presentations and the recommendations from the workshop.

  3. Microtremor Study of Site Effect for Disaster Mitigation and Geotechnical Purpose

    NASA Astrophysics Data System (ADS)

    Aswad, Sabrianto; Altin Massinai, Muh.; Syamsuddin

    2018-03-01

    Makassar city have relatively lower earthquake vulnerability compared to other regions in Indonesia, however detailed mapping related to seismic wave amplification needs to be done in the interest of geotechnical, regional planning and disaster mitigation. It is generally known that the magnitude of the damage during the occurrence of earthquakes or tremor occur periodically is influenced by the dynamic characteristics of the building as a function of seismic wave amplification. The degree of seismic wave amplification depends on several factors, including the thickness of the sediment layer, the level of compaction and the geological age factor. The purpose of this research is to investigate seismic vulnerability in Makassar by using spectral comparison through microtremor measurement. There are several of the approaches that can be done and microtremor is the easiest and cheapest method to understand these dynamic characteristics without causing damage effects. Spectra comparison technique used was popular by Nakamura, which is comparison technique of horizontal component noise spectra and the vertical component in sediment areas (H/V spectra). Results from seismic vulnerability index (SVI) distribution maps show values ranging from 0, 14 - 158, 31. In general, the eastern part of the city of Makassar near from coastal areas is more vulnerable to damage especially earthquakes or periodic earth tremor with certain dominant frequency compared with the western part of Makassar City.

  4. Stress history and geotechnical properties of sediment from the Cape Fear Diapir, Blake Ridge Diapir, and Blake Ridge

    USGS Publications Warehouse

    Winters, W.J.

    2000-01-01

    Geotechnical properties of sediment from Ocean Drilling Program Leg 164 are presented as: (1) normalized shipboard strength ratios from the Cape Fear Diapir, the Blake Ridge Diapir, and the Blake Ridge; and (2) Atterberg limit, vane shear strength, pocket-penetrometer strength, and constant-rate-of-strain consolidation results from Hole 995A, located on the Blake Ridge. This study was conducted to understand the stress history in a region characterized by high sedimentation rates and the presence of gas hydrates. Collectively, the results indicate that sediment from the Blake Ridge exhibits significant underconsolidated behavior, except near the seafloor. At least 10 m of additional overburden was removed by erosion or mass wasting at Hole 993A on the Cape Fear Diapir, compared to nearby sites.

  5. The Q-Slope Method for Rock Slope Engineering

    NASA Astrophysics Data System (ADS)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  6. Interrelationships among geotechnical and leaching properties of a cement-stabilized contaminated soil.

    PubMed

    Kogbara, Reginald B

    2017-01-28

    Relationships among selected performance properties have been established using experimental data from a cement-stabilized mixed contaminated soil. The sandy soil was spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. It was then treated with 5%, 10%, 15%, and 20% dosages of Portland cement. Different water contents were considered for lower dosage mixes. Selected geotechnical and leaching properties were determined on 28-day old samples. These include unconfined compressive strength (UCS), bulk density, porosity, hydraulic conductivity, leachate pH and granular leachability of contaminants. Interrelationships among these properties were deduced using the most reasonable best fits determined by specialized curve fitting software. Strong quadratic and log-linear relationships exist between hydraulic conductivity and UCS, with increasing binder and water contents, respectively. However, the strength of interrelationships between hydraulic conductivity and porosity, UCS and porosity, and UCS and bulk density varies with binder and water contents. Leachate pH and granular leachability of contaminants are best related to UCS and hydraulic conductivity by a power law and an exponential function, respectively. These results suggest how the accuracy of not-easily-measurable performance properties may be constrained from simpler ones. Comparisons with some published performance properties data support this.

  7. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    PubMed Central

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M.

    2016-01-01

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized. PMID:27447630

  8. Evolution of Dynamic Analysis in Geotechnical Earthquake Engineering

    DOT National Transportation Integrated Search

    1995-02-01

    The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 calls for a study of U.S. international border crossings. The objective of the study is to identify existing and emerging trade corridors and transportation subsystems that facilita...

  9. Supporting active learning in an undergraduate geotechnical engineering course using group-based audience response systems quizzes

    NASA Astrophysics Data System (ADS)

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or 'clickers' in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS quizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, the ARS summary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.

  10. Understanding Mississippi Delta Subsidence through Stratigraphic and Geotechnical Analysis of a Continuous Holocene Core at a Subsidence Superstation

    NASA Astrophysics Data System (ADS)

    Bridgeman, J.; Tornqvist, T. E.; Allison, M. A.; Jafari, N.

    2016-12-01

    Land-surface subsidence is a major contributor to recent Mississippi Delta land loss. Despite significant research efforts, the primary mechanisms and rates of delta subsidence remain the subject of debate. This has led to a broad range of subsidence rate estimates across the delta, making differentiating between subsidence mechanisms as well as coastal restoration efforts more challenging. New data from a continuous 39 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the grain size, bulk density, geochronology, and geotechnical parameters of the entire Holocene succession. The core consists of three major sections. The top 11 m contain a modern marsh peat, followed by a silty clay loam with interspersed humic clays (14C age 1250 BP), a peat bed (14C age 2200-2950 BP), and silt loams. The middle section from 11 to 35 m is dominated by clay and silty clay, with a relative bulk density of 1.5 g/cc, which gradually becomes denser with depth and the bottom section (35 to 39 m) is marked by a high energy, shell-rich sand facies and a basal peat (14C age 9850 BP), which terminates at the core base in a densely packed, blue-gray silty clay loam, characteristic of the Pleistocene. The radiocarbon ages of marsh peat beds, combined with sea-level markers derived from basal peat elsewhere in the delta, enable the reconstruction of the local subsidence history at this site. Notably, the data shows a significant amount of vertical displacement from the dated organics in the top section of the core; 3.5 m in the humic clays and up to 5 m in the peat bed. The subsidence rates measured by the superstation apparatus, and the geotechnical measurements of core sediments, will aid in determining the dominant subsidence mechanisms (shallow vs. deep) in the region.

  11. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    USGS Publications Warehouse

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  12. Geophysical testing of rock and its relationships to physical properties

    DOT National Transportation Integrated Search

    2011-02-01

    Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...

  13. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies

    NASA Astrophysics Data System (ADS)

    Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.

    2017-02-01

    The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction < 4.76 mm, point out that shear strength for cohesionless sandy materials is only due to effective friction angle, and show a quite homogeneous behaviour over the set of tested samples. The investigated post-4.5 pyroclastic deposits constitute a 5-12 m thick sequence of poorly

  14. A study of geothermal prospects in the western United States

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The commercial development potential of 13 underdeveloped geothermal prospects in the Western United States was examined, and the prospects were ranked in order of relative potential for development on the basis of investment considerations. The following were considered in the ranking: geotechnical and engineering data, energy market accessibility, administrative constraints, and environmental and socio-economic factors. The primary ranking criterion is the unit cost of energy production expected from each prospect. Secondary criteria are administrative constraints, environmental factors and the quality of the geotechnical data.

  15. Properties of the Loess Sediments in Ostrava Region (Czech Republic) and Comparison with Some Other Loess Sediments

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin

    2013-01-01

    This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464

  16. Geotechnical Factors in the Dredgeability of Sediments. Report 1. Geotechnical Descriptors for Sediments to be Dredged

    DTIC Science & Technology

    1993-11-01

    objectives of the work unit. executing dredging projects. The disparities increase risk factors and thus the cost of such SUMMARY: The study identified the...geologists, environmental engineers, biologists, estimators, dredging equipment manufacturers, and dredging contractor personnel have methods for...changed dramatically. A major increase has occurred in the level of contract dredging. Environmental concerns, the consequences of the oil embargo of

  17. Evaluation and implementation of an improved methodology for earthquake ground response analysis : uniform treatment source, path and site effects.

    DOT National Transportation Integrated Search

    2008-12-01

    Shortly after the 1994 Northridge Earthquake, Caltrans geotechnical engineers charged with developing site-specific : response spectra for high priority California bridges initiated a research project aimed at broadening their perspective : from simp...

  18. Active learning in forensic science using Brownfield Action in a traditional or hybrid course in earth, environmental, or engineering sciences

    NASA Astrophysics Data System (ADS)

    Bower, P.; Liddicoat (2), J.

    2009-04-01

    Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.

  19. Application of geotechnical and geophysical field measurements in an active alpine environment

    NASA Astrophysics Data System (ADS)

    Lucas, D. R.; Fankhauser, K.; Springman, S. M.

    2015-09-01

    Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.

  20. Overview of landslide problems, research, and mitigation, Cincinnati, Ohio, area

    USGS Publications Warehouse

    Baum, Rex L.; Johnson, Arvid M.

    1996-01-01

    Landslides cause much damage to property throughout the metropolitan area of Cincinnati, Ohio. Most landslides occur in unconsolidated deposits, including colluvium, till, glacial lake clays, and man-made fill derived from colluvium and glacial deposits. Landslides in thin colluvium are widespread on steeper slopes that wall the valleys of the Ohio River and its tributaries. Abundant landslides also form in thick colluvium on flatter slopes, especially where the colluvium has been disturbed by earthwork. Unusual block glides and block-extrusion glides form where till rests on lake clay. Through the years, knowledge of the distribution and causes of landslides has increased as a result of many investigations. This knowledge became part of the basis for landslide mitigation programs adopted by the City of Cincinnati and Hamilton County, Ohio. In 1974 the Cincinnati City Council passed an excavation and fill ordinance to help reduce landslide damage in areas of new construction. In 1989 following much additional study, Cincinnati created a geotechnical office within its Department of Public Works. The office, which is staffed by a geotechnical engineer, an engineering geologist, and two technicians, carries out a mitigation program. Since 1989, members of the geotechnical staff have worked in several ways to reduce landslide damage in the city; their work includes engineering-geologic mapping of selected parts of the city, inspection of retaining walls that impact public right-of-way, review of proposed construction in hillside areas, inspecting and arranging for repair of landslide areas that affect city property, and compiling geologic and geotechnical data on landslide areas within the city. In 1990, Hamilton County also adopted an excavation and fill ordinance to help reduce the damage due to landslides in areas of new construction.

  1. Experimental assessment of aggregate surfacing materials.

    DOT National Transportation Integrated Search

    2007-06-30

    "An extensive suite of geotechnical laboratory tests were conducted to quantify differences in : engineering properties of three crushed aggregates commonly used on Montana highway projects. The : material types are identified in the Montana Suppleme...

  2. Geophysical and Geotechnical Characterization of Beta-1,3/1,6-glucan Biopolymer treated Soil

    NASA Astrophysics Data System (ADS)

    Chang, I.; Cho, G.

    2012-12-01

    Bacteria or microbes in soil excrete hydrocarbon (e.g. polysaccharide) by-products which are called biopolymers. These biopolymers (or sometime biofilms) recently begun to make a mark on soil erosion control, aggregate stabilization, and drilling enhancement. However, the biological effect on soil behavior (e.g. bio-clogging or bio-cementation) has been poorly understood. In this study, the bio-cementation and bio-clogging effect induced by the existence of β-1,3/1,6-glucan biopolymers in soil were evaluated through a series of geophysical and geotechnical characterization tests in laboratory. According to the experimental test results, as the β-1,3/1,6-glucan content in soil increases, the compressive strength and shear wave velocity increase (i.e., bio-cementation) while the hydraulic conductivity decreases (i.e., bio-clogging) but the electrical conductivity increases due to the high electrical conductivity characteristic of β-1,3/1,6-glucan fibers. Coefficient of consolidation variation with the increases of β-1,3/1,6-glucan content in soil. SEM image of β-1,3/1,6-glucan treated soil. Fibers are form matices with soil particles.

  3. Investigation of the mechanical behaviour of gas-hydrate bearing clayey sediments from the Gulf of Guinea using in-situ geotechnical measurements

    NASA Astrophysics Data System (ADS)

    Taleb, F.; Garziglia, S.; Sultan, N.

    2017-12-01

    Expanding needs for energy resources and concerns about climate change have moved industrial and academic interests towards regions where specific thermobaric conditions allow the formation of gas hydrates (GH). While significant advances have been made to characterize the fabric and structure of these metastable geo-compounds, considerable uncertainty remains regarding the impact of their mechanical properties on the seafloor morphology and stability. This is particularly true for gas hydrates-bearing fine-grained sediments, which remain challenging to preserve or synthesise prior to laboratory testing. As a step towards understanding the mechanical consequences of the concentration and distribution of GH in this type of sediments, this work uses acoustic and geotechnical in situ measurements collected in a high gas flux system offshore Nigeria. Acoustic measurements of compressional wave velocity were shown to be convenient means of both detecting and quantifying gas hydrates in marine sediments. Geotechnical data derived from piezocone readings and their distribution in normalised soil classification charts allowed identifying distinct features of gas hydrates-bearing clayey sediments; such as a mechanical behaviour sharing similarities with that of cemented clays. Correlations between acoustic and piezocone data showed that the stiffness and strength tend to generally increase with increasing GH concentrations. However, several sediment intervals sharing the same hydrates concentration have revealed different features of mechanical behaviour. This was linked to the presence of various GH morphologies within the marine sediments such as groups of hydrate veins or massive hydrate nodules. This in-situ approach allowing both understanding the heterogeneous distribution of GH and characterising their host sediment seems key to assess the potential link between seafloor stability and GH dissociation/dissolution caused by human activities or by natural environmental

  4. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE

  5. Geotechnical Tests on Asteroid Simulant Orgueil

    NASA Technical Reports Server (NTRS)

    Garcia, Alexander D'marco

    2017-01-01

    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  6. Strengthening Environmental Engineering Education in Afghanistan through Cooperating Military Academies

    NASA Astrophysics Data System (ADS)

    Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.

    2007-12-01

    Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this

  7. A marine dynamic penetrometer for the determination of sea floor geotechnical properties

    NASA Astrophysics Data System (ADS)

    Stephan, S.; Kaul, N. E.; Villinger, H. W.

    2013-12-01

    We present a seafloor lance penetration monitoring system: the Lance Insertion Retardation Meter (LIRmeter). The device can be used to infer geotechnical seafloor properties, such as bearing capacity by monitoring the deceleration of a free-fall penetrating lance. The deceleration record can be furthermore used to estimate mean grain size and mud content of the sea floor as well as total penetration depth. The LIRmeter is contained in a pressure vessel (440 x 110 mm) and equipped with accelerometers of different sensitivities to (i) determine sea floor resistance during penetration and (ii) to generate a depth axis. Typically, measurements are carried out in a pogo style fashion to allow a rapid measurement progress during field campaigns. The LIRmeter is intended to determine sea floor properties on the sole basis of deceleration measurements in order to achieve a mechanically and electronically robust system. Data is sampled at a resolution of 16 bit and at a rate of typically 500 Hz for each channel. The device can either be installed in any type of lance i.e. marine heat flow probes, gravity corers, piston corers or can be used in combination with a purpose built lance as a standalone instrument. It has a usable length of four meters, a total weight of 280 kg in air and can be operated up to full ocean depth (6000m). The bearing capacity of the sea floor is a critical factor for marine engineering projects such as burial of marine cables, pipeline laying and foundations. Knowledge of the mud content can provide constraints for the estimation of hydraulic conductivity. The identification of weak zones along a slope can moreover provide vital information for risk assessment studies. Traditionally, frame based, quasi static Cone Penetration Tests (CPT) or sampling methods like gravity coring are used to conduct these types of investigation. In comparison to established but time consuming and rather costly methods, the LIRmeter is intended (i) for near surface

  8. Evaluation of Cone Penetrometer Testing (CPT) for Use with Transportation Projects Phase 1

    DOT National Transportation Integrated Search

    2008-07-01

    The ODOT Office of Geotechnical Engineering (OGE) currently uses conventional drilling methods (e.g., hollow stem auger, solid stem auger) to perform subsurface investigations in unconsolidated materials. These techniques have been used for decades a...

  9. Improving design phase evaluations for high pile rebound sites : final report.

    DOT National Transportation Integrated Search

    2016-05-31

    A testing program performed to help determine typical soils properties encountered during pile installation when high rebound : occurs produced a decision matrix for geotechnical engineers. High pile rebound (HPR) occurred at numerous sites in Florid...

  10. Control of embankment settlement field verification on PCPT prediction methods.

    DOT National Transportation Integrated Search

    2011-07-01

    Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface : investigation and evaluation of different soil properties such as strength and deformation characteristics of the : soil. This report focuses on the v...

  11. Federal truck size and weight policy : looking beyond the comprehensive truck size and weight study : Irvine, California, May 10-11, 2000

    DOT National Transportation Integrated Search

    1997-05-01

    This document presents a series of five design examples illustrating the principles and methods of geotechnical earthquake engineering and seismic design for highway facilities. These principles and methods are described in Volume I - Design Principl...

  12. Evaluation of cone penetration testing (CPT) for use with transportation projects : executive summary report.

    DOT National Transportation Integrated Search

    2011-04-01

    The ODOT Office of Geotechnical : Engineering (OGE) currently uses : conventional drilling methods (e.g., hollow : stem auger, solid stem auger) to perform : subsurface investigations in soil. These : techniques have been used for decades and : have ...

  13. Control of embankment settlement field verification on PCPT prediction methods.

    DOT National Transportation Integrated Search

    2011-07-01

    Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface investigation and evaluation of different soil properties such as strength and deformation characteristics of the soil. This report focuses on the verif...

  14. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Rosli, S.; Mokhtar, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.

    2015-03-01

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  15. NGA East | Pacific Earthquake Engineering Research Center (PEER)

    Science.gov Websites

    the Geotechnical and Vertical WGs shown in Figure 1. The role of the different groups and participants essentially play the role of Resource Experts and the sub-award researchers and contractors play the role of Specialty Contractors. Some individuals from these two groups will also play a Proponent Expert role at

  16. Landslide hazard rating matrix and database : vol. 1 of 2.

    DOT National Transportation Integrated Search

    2007-12-01

    The Office of Geotechnical Engineering (OGE) of the Ohio Department of Transportation (ODOT) : recognizes the need to develop a strategy to provide timely preventive maintenance to avoid on-set of : large or catastrophic slope failures. Furthermore, ...

  17. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    PubMed Central

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  18. Development of a debris flow model in a geotechnical centrifuge

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  19. Estimating the geotechnical Parameters from CSEM monitoring Data for the Buildings and the Environment at the City of 15th May, Egypt

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Atya, Magdy; Khachay, Oleg

    2015-04-01

    The site of investigation, 15th May city, is a new suburb of Helwan, at about 35 km south of Cairo, Egypt. The work is aimed to investigate the rock mass stability at "Quarter 27" in 15th May City, which is linked with cracks formation into the buildings. A controlled source electromagnetic (CSEM) approach developed earlier by IGF UB RAS (Geophysical Federal Institute, Ural Branch of Russian Academy of Science) is applied to image the ranked deformation levels in the massive structure. The wide profile system of observation has been used to monitor the three components of the alternating magnetic field along predefined measuring lines in the study area. Four cycles of observation have been carried out in 2008, 2010, 2011, and 2012. The acquired data sets have been subjected to analytical processing procedure to estimate the changes in the geotechnical parameters during the time of these four cycles of observation. The analytical treatments provided good information about the structure of the rock massive and its rank of degradation, the lateral distribution of the geotechnical heterogeneity, and finally a conclusive outcome about foundation stability. We conclude that the general dynamic state close to the destruction level within the investigation area is getting worse over the time; this is reflected in the crack's densities and positions, also on the changes in the lateral distribution of geoelectric heterogeneity as an indicator of the saturation of the surface rock in the study area with water [1]. Reference 1. Magdy A. Atya, Olga A. Hachay, Mamdouh M. Soliman, Oleg Y. Khachay, Ahmed B. Khalill, Mahmoud Gaballah, Fathy F.Shaaban and Ibrahim A.El. Hemali. CSEM imaging of the near surface dynamics and its impact for foundation stability at quarter 27,15-th of May City, Helwan, Egypt. // Earth sciences research journal, 2010,Vol.14, N1, p.76-87.

  20. Spatial Statistics of the Clark County Parcel Map, Trial Geotechnical Models, and Effects on Ground Motions in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.

    2011-12-01

    When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.

  1. Sonar imaging of flooded subsurface voids phase I : proof of concept.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...

  2. Geotechnical aspects of locating the Łagiewnicka Route on the area of the "White Seas" in Kraków

    NASA Astrophysics Data System (ADS)

    Zięba, Jakub; Bazarnik, Mirosława

    2018-04-01

    The article presents the results of field studies and laboratory tests of the subsoil of the section of the ";Łagiewnicka" route located on the area of so-called "White Seas" [1] in Kraków-Łagiewniki. The analysed samples come from the layer of anthropogenic soils being the result of the operation of the Solvay Sodium Plant in the 20th century. The results of the geotechnical and land-surveying studies served as the basis for developing a numerical model to determine the pressure on the walls of the planned tunnel and the horizontal thrust in the planned excavation. Besides, the study and test results were used to perform an analysis of the excavation's stability and to check the impact of the sheet pile on land deformations near the John Paul II Centre in Kraków.

  3. PREFACE: International Symposium on Geohazards and Geomechanics (ISGG2015)

    NASA Astrophysics Data System (ADS)

    Utili, S.

    2015-09-01

    These Conference Proceedings contain the full papers in electronic format of the International Symposium on 'Geohazards and Geomechanics', held at University of Warwick, UK, on September 10-11, 2015. The Symposium brings together the complementary expertise of world leading groups carrying out research on the engineering assessment, prevention and mitigation of geohazards. A total of 58 papers, including 8 keynote lectures cover phenomena such as landslide initiation and propagation, debris flow, rockfalls, soil liquefaction, ground improvement, hazard zonation, risk mapping, floods and gas and leachates. The techniques reported in the papers to investigate geohazards involve numerical modeling (finite element method, discrete element method, material point method, meshless methods and particle methods), experimentation (laboratory experiments, centrifuge tests and field monitoring) and analytical simplified techniques. All the contributions in this volume have been peered reviewed according to rigorous international standards. However the authors take full responsibility for the content of their papers. Agreements are in place for the edition of a special issue dedicated to the Symposium in three international journals: Engineering Geology, Computational Particle Mechanics and International Journal of Geohazards and Environment. Authors of selected papers will be invited to submit an extended version of their work to these Journals that will independently assess the papers. The Symposium is supported by the Technical Committee 'Geo-mechanics from Micro to Macro' (TC105) of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE), 'Slope Stability in Engineering Practice' (TC208), 'Forensic Geotechnical Engineering' (TC302), the British Geotechnical Association and the EU FP7 IRSES project 'Geohazards and Geomechanics'. Also the organizers would like to thank all authors and their supporting institutions for their contributions. For any

  4. The growing importance of geo-scientists in the global oil field service industry

    NASA Astrophysics Data System (ADS)

    Schwartz, L.

    2005-12-01

    Schlumberger is often seen as a physics, chemistry and engineering company whose primary businesses are directional drilling, well logging, cementing, perforating and stimulation. However, in the future we see enormous potential for growth in the areas of seismic for reservoir monitoring, production services and project management. To succeed we will have to greatly strengthen our geo-technical workforce - geologists, geophysicists, drilling, reservoir and petroleum engineers. This will involve recruiting new graduates and developing their careers in addition to mid-career hiring. For the last 25 years, we have developed a culture of hiring in the countries where we work and of career development for employees of all nationalities. I will review our recruiting, training and university relations efforts and will discuss the adjustments we have made to effectively manage the growth of our geo-technical community.

  5. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review.

    PubMed

    Cardoso, Rafaela; Silva, Rui Vasco; Brito, Jorge de; Dhir, Ravindra

    2016-03-01

    The use of recycled aggregates (RA) in construction constitutes a significant step towards a more sustainable society and also creates a new market opportunity to be exploited. In recent years, several case-studies have emerged in which RA were used in Geotechnical applications, such as filling materials and in unbound pavement layers. This paper presents a review of the most important physical properties of different types of RA and their comparison with natural aggregates (NA), and how these properties affect their hydraulic and mechanical behaviour when compacted. Specifically, the effects of compaction on grading size distribution curves and density are analysed, as well as the consequences of particle crushing on the resilient modulus, CBR and permeability. The paper also contains an analysis of the influence of incorporating different RA types on the performance of unbound road pavement layers as compared with those built with NA by means of the International Roughness Index and deflection values. The results collected from the literature indicate that the performance of most RA is comparable to that of NA and can be used in unbound pavement layers or in other applications requiring compaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 3D subsurface geological modeling using GIS, remote sensing, and boreholes data

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos

    2016-08-01

    The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.

  7. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azwin, I. N., E-mail: nurazwinismail@yahoo.com; Rosli, S.; Nordiana, M. M.

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64Cmore » electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.« less

  8. River embankment characterization: The joint use of geophysical and geotechnical techniques

    NASA Astrophysics Data System (ADS)

    Perri, Maria Teresa; Boaga, Jacopo; Bersan, Silvia; Cassiani, Giorgio; Cola, Simonetta; Deiana, Rita; Simonini, Paolo; Patti, Salvatore

    2014-11-01

    Recent flood events in Northern Italy (particularly in the Veneto Region) have brought river embankments into the focus of public attention. Many of these embankments are more than 100 years old and have been repeatedly repaired, so that detailed information on their current structure is generally missing. The monitoring of these structures is currently based, for the most part, on visual inspection and localized measurements of the embankment material parameters. However, this monitoring is generally insufficient to ensure an adequate safety level against floods. For these reasons there is an increasing demand for fast and accurate investigation methods, such as geophysical techniques. These techniques can provide detailed information on the subsurface structures, are non-invasive, cost-effective, and faster than traditional methods. However, they need verification in order to provide reliable results, particularly in complex and reworked man-made structures such as embankments. In this paper we present a case study in which three different geophysical techniques have been applied: electrical resistivity tomography (ERT), frequency domain electromagnetic induction (FDEM) and Ground Penetrating Radar (GPR). Two test sites have been selected, both located in the Province of Venice (NE Italy) where the Tagliamento River has large embankments. The results obtained with these techniques have been calibrated against evidence resolving from geotechnical investigations. The pros and cons of each technique, as well as their relative merit at identifying the specific features of the embankments in this area, are highlighted. The results demonstrate that geophysical techniques can provide very valuable information for embankment characterization, provided that the data interpretation is constrained via direct evidence, albeit limited in space.

  9. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and

  10. Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.

    DOT National Transportation Integrated Search

    2017-04-01

    An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...

  11. Geotechnical Reconnaissance of the 3 November 2002, Mw 7.9, Denali- Earthquake, Alaska

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Sitar, N.; Carver, G.; Collins, B.; Moss, R.

    2002-12-01

    Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted a reconnaissance of the region to investigate geotechnical and surface rupture features of the event. The focus of our investigation was to characterize the spatial extent and amplitude of ground failures and fault displacements, and assess damage to structures. As a first step, our team flew along the Denali fault from the Black Rapids Glacier, west of the Richardson Highway, to the Glenn Highway (Tok Cut-off). We also conducted a brief air reconnaissance of the southern part of the Totschunda fault northwest of the Nabesna River, and brief ground surveys where the fault intersected the highways and the TAPS pipeline. The most noteworthy aerial observations were that geotechnical and structural damages appeared to be focused towards the eastern end of the Denali- fault rupture area. For example, liquefaction features in the bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers whereas, the eastern Johnson and Tok Rivers and, especially, the Nabesna River had observable-to-abundant fissures and sand vents. Another curious aspect of the apparent differences in strong motion along and across the fault was the abundance of landslide and rock avalanche features on the south side of the fault and a dearth of these features on the northern side. Ice on frozen lakes and ponds were shattered within about 30-40 km of the fault along the western part of the surface rupture and to the east became more widespread. In the Northway region ice on most lakes was broken at distances of more than 100 km. The surface rupture was very linear, continuous, and confined to a

  12. Determination of the Characteristic Values and Variation Ratio for Sensitive Soils

    NASA Astrophysics Data System (ADS)

    Milutinovici, Emilia; Mihailescu, Daniel

    2017-12-01

    proposing to be a step in determination of limits of the variation ratios for the contractile soils category, for the most used geotechnical parameters in the Romanian engineering practice, namely: the index of consistency and the cohesion.

  13. Development of Site Characterization Simulator Specifications

    DTIC Science & Technology

    1996-11-01

    Jeff Farrar, Geotechnical Engineer with Earth Sciences Laboratory, Bureau of Reclamation; Jason Smolensky, Hydrogeologist at SRK-Canada, and Doctors Ed...Heyse and Mark Goltz , Department of Engineering and Environmental Management, Air Force Institute of Technology). Considering these discussions, the...Windows 3.1 or higher, 35mb, hard disk. Delta Research Corporation, Niceville FL. 139 Roberts, P.V., Goltz , M.N., and Mackay, D.M. 1986. A Natural

  14. 30 CFR 585.645 - What must I include in my GAP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...

  15. 30 CFR 585.645 - What must I include in my GAP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...

  16. 30 CFR 585.645 - What must I include in my GAP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...

  17. Correlation of engineering parameters of the presumpscot formation to the seismic cone penetration test (SCPTU).

    DOT National Transportation Integrated Search

    2015-08-01

    The seismic cone penetration test with pore pressure measurement (SCPTu) is a geotechnical investigation technique which : involves pushing a sensitized cone into the subsurface at a constant rate while continuously measuring tip resistance, sleeve :...

  18. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication

  19. Geotechnical aspects in the epicentral region of the 2011, Mw5.8 Mineral, Virginia earthquake

    USGS Publications Warehouse

    Green, Russell A.; Lasley, Samuel; Carter, Mark W.; Munsey, Jeffrey W.; Maurer, Brett W.; Tuttle, Martitia P.

    2015-01-01

    A reconnaissance team documented the geotechnical and geological aspects in the epicentral region of the Mw (moment magnitude) 5.8 Mineral, Virginia (USA), earthquake of 23 August 2011. Tectonically and seismically induced ground deformations, evidence of liquefaction, rock slides, river bank slumps, ground subsidence, performance of earthen dams, damage to public infrastructure and lifelines, and other effects of the earthquake were documented. This moderate earthquake provided the rare opportunity to collect data to help assess current geoengineering practices in the region, as well as to assess seismic performance of the aging infrastructure in the region. Ground failures included two marginal liquefaction sites, a river bank slump, four minor rockfalls, and a ~4-m-wide, ~12-m-long, ~0.3-m-deep subsidence on a residential property. Damage to lifelines included subsidence of the approaches for a bridge and a water main break to a heavily corroded, 5-cm-diameter valve in Mineral, Virginia. Observed damage to dams, landfills, and public-use properties included a small, shallow slide in the temporary (“working”) clay cap of the county landfill, damage to two earthen dams (one in the epicentral region and one further away near Bedford, Virginia), and substantial structural damage to two public school buildings.

  20. Geotechnical Materials Database for Embankment Design and Construction

    DOT National Transportation Integrated Search

    2011-12-01

    This project was focused on the assimilation of engineering properties of borrow soils across the state of : South Carolina. Extensive data on soils used for embankment construction were evaluated and compared : within Group A (Piedmont) and Group B ...

  1. Rock Slide Monitoring by Using TDR Inclinometers

    NASA Astrophysics Data System (ADS)

    Drusa, Marián; Bulko, Roman

    2016-12-01

    The geotechnical monitoring of the slope deformations is widespread at present time. In many geological localities and civil engineering construction areas, monitoring is a unique tool for controlling of negative factors and processes, also inform us about actual state of rock environment or interacting structures. It is necessary for risk assessment. In our case, geotechnical monitoring is controlling rockslide activity around in the future part of motorway. The construction of new highway route D1 from Bratislava to Košice crosses the territory which is affected by a massive rockslide close to Kraľovany village. There was a need to monitor the activity of a large unstable rockslide with deep shear planes. In this case of underground movement activity, the Department of Geotechnics of the University of Žilina installed inclinometers at the unstable area which worked on Time Domain Reflectometry (TDR) principle. Based on provided measurements, effectivity and suitability of TDR inclinometers for monitoring of deep underground movement activity is demonstrated.

  2. Micromechanical Behavior and Modelling of Granular Soil

    DTIC Science & Technology

    1989-07-01

    DiMaggio and Sandier 1971, Baladi and Rohani 1979). The problem of inherent (structural) anisotropy - especially important for 3 anisotropically...Republic of Germany. Baladi ,G.Y. and Rohani, B. (1979), "Elastic-Plastic Model for Saturated Sand," Journal of the Geotechnical Engineering Division, ASCE

  3. Estimating setup of driven piles into Louisiana clayey soils : tech summary.

    DOT National Transportation Integrated Search

    2009-11-01

    Geotechnical engineers and researchers (Seed and Reese 1955, Long et al. 1999, and Bullock et al. 2005) have reported for many years : that the axial capacity of a driven pile may increase over time, which is usually referred to as pile setup or free...

  4. Estimating Setup of Piles Driven into Louisiana Clayey Soils : Tech Summary

    DOT National Transportation Integrated Search

    2009-11-01

    Geotechnical engineers and researchers (Seed and Reese 1955, Long et al. 1999, and Bullock et al. 2005) have reported for many years that the axial capacity of a driven pile may increase over time, which is usually referred to as pile setup or freeze...

  5. Use of high-resolution geophysical and geotechnical techniques for artificial reef site selection, west Cameron planning area, offshore Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, D.L.; Wagner, J.B.

    1988-09-01

    Before siting oil and gas platforms on the sea floor as artificial reefs offshore Louisiana, potentially hazardous and unstable geologic conditions must be identified and evaluated to assess their possible impacts on platform stability. Geologic and man-made features can be identified and assessed from high-resolution geophysical techniques (3.5-7.0 kHz echograms, single-channel seismic, and side-scan sonar). Such features include faults, diapirs, scarps, channels, gas seeps, irregular sea floor topography, mass wasting deposits (slumps, slides, and debris flows), pipelines, and other subsea marine equipment. Geotechnical techniques are utilized to determine lithologic and physical properties of the sediments for correlation with the geophysicalmore » data. These techniques are used to develop a series of geologic maps, cross sections, and pipeline and platform-location maps. Construction of echo-character maps from 3.5-kHz data provides an analysis of near-bottom sedimentation processes (turbidity currents and debris flows).« less

  6. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, William; Mondt, William

    The purpose of this CRADA was to develop a useful and commercially viable version of ERT technology for use in the oil, mining, engineering, and geotechnical industries. The goals required to accomplish these tasks included (1) developing commercial-grade data-acquisition systems and data analysis software, and (2) completing transfer of the state-of-the-art know-how, held by LLNL scientists and engineers, to personnel at RIMtech, Inc.

  8. Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair

    DTIC Science & Technology

    2013-06-01

    Mariely Mejías-Santiago and William D. Carruth Geotechnical and Structures Laboratory US Army Engineer Research and Development Center 3909 Halls...24. Pavement structure at Test Site 1. ....................................................................................... 28  Figure 25. Pavement... structure at ERDC test site. ................................................................................ 30  Figure 26. Heatwurx HWX-30 electric

  9. Estimation of water table based on geomorphologic and geologic conditions using public database of geotechnical information over Japan

    NASA Astrophysics Data System (ADS)

    Koshigai, Masaru; Marui, Atsunao

    Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.

  10. Geotechnical properties of core sample from methane hydrate deposits in Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Egawa, K.; Konno, Y.; Ito, T.; Kida, M.; Jin, Y.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2013-12-01

    To date, MH extraction has been simulated in several ways to help ensure the safe and efficient production of gas, with a particular focus on the investigation of landsliding, uneven settlement, and production well integrity. The mechanical properties of deep sea sediments and gas-hydrate-bearing sediments, typically obtained through material tests, are essential for the geomechanical response simulation to hydrate extraction. We conducted triaxial compression tests and the geotechnical properties of the sediments was investigated. Consolidated undrained compression tests were performed for silty sediments. And consolidated drained tests were performed for sandy samples. In addition, permeability was investigated from isotropic consolidation results. These core samples recovered from methane hydrate deposits of Daini Atsumi Knoll in Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. The pressure core samples were rapidly depressurized on the ship and it were frozen using liquid nitrogen to prevent MH dissociation. Undrained shear strength of the core samples increase linearly with depth from sea floor. These core samples should be normally consolidated sample in-situ. Drained shear strength increases dramatically with hydrate saturation increases. Peak stress ratio q/p' of the core sample which has 73% of hydrate saturation was approximately 2.0 and it decrease down to 1.3 at the critical state. Dilatancy also changed from compressive tendency to dilative tendency with hydrate saturation increase. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  11. Engineering Properties of Resin Modified Pavement (RMP) for Mechanistic Design

    DTIC Science & Technology

    2000-03-01

    conducted by personnel of the Airfields and Pavements Division (APD), Geotechnical Laboratory (GL), ERDC, Vicksburg, MS, during the period October 1995...mixture and resin modified portland cement grout are produced and placed separately . The RMP is typically a 50-mm-thick layer placed on top of a...military installations in the following years. The Federal Aviation Administration, also eager to develop an alternative paving material technology

  12. Revising a Design Course from a Lecture Approach to a Project-Based Learning Approach

    ERIC Educational Resources Information Center

    Kunberger, Tanya

    2013-01-01

    In order to develop the evaluative skills necessary for successful performance of design, a senior, Geotechnical Engineering course was revised to immerse students in the complexity of the design process utilising a project-based learning (PBL) approach to instruction. The student-centred approach stresses self-directed group learning, which…

  13. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the

  14. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.

    PubMed

    Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar

    2018-06-05

    The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    DTIC Science & Technology

    1995-07-31

    of an Idealized ’Wet Clay’.” Nobari, E. S., Lee, K. L., and Duncan, J. M. Soil Mechanics, Wiesbaden I, 47-54. (1973). “ Hydraulic Fracturing in Zoned...nonsteady flow conditions - Pore pressures induced by loading under undrained conditions - Potential for cracking in embankment dams - Potential for hydraulic ... fracturing in embankment dams - Potential for hydraulic separation between concrete and soil - Settlements and horizontal movements b. Comparing

  16. Analysis of change orders in geotechnical engineering work at INDOT.

    DOT National Transportation Integrated Search

    2011-01-01

    Change orders represent a cost to the State and to tax payers that is real and often extremely large because contractors tend to charge very large : amounts to any additional work that deviates from the work that was originally planned. Therefore, ef...

  17. 7th international conference on case histories in geotechnical engineering.

    DOT National Transportation Integrated Search

    2013-08-01

    Funding used to enhance objectives of conference and to present successful case histories of varied project, orally, in posters and in : proceedings. This will become a storehouse of knowledge for future reference.

  18. Investigation of geotechnical parameters from CSEM mapping and monitoring data at the oases Kharga and Baris of Sahara desert, Egypt

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg; Attia, Magdy; Khalil, Ahmed; Mekkawi, Mahmoud; Soliman, Mamdouh

    2016-04-01

    The site of investigation, oasis Kharga, is located at about 600 km south of Cairo, Egypt; Baris is about 90 km from Kharga also to south and towards more inside the desert. The work was aimed to investigate the rock mass stability at Baris and to estimate the water intake in the Oasis Kharga. A controlled source electromagnetic (CSEM) approach developed earlier by IGF UB RAS (Geophysical Federal Institute, Ural Branch of Russian Academy of Science) is applied to image the ranked deformation levels in the massive structure of the Baris. The wide profile system of observation has been used to monitor the three components of the alternating magnetic field along predefined measuring lines in the study area. Here we can show the first results that we shall continue during some cycles of monitoring. The second part of our work was linked with mapping the massif structure inside the oasis City, where only using our device we could construct the geoelectrical sections for 5 profiles and show the real structure of the water volume and its complicated structure up to 200 meters depth recording the values of real not apparent resistivity. The analytical treatments provided good information about the structure of the rock massive and its rank of degradation, the lateral distribution of the geotechnical heterogeneity, and finally a conclusive outcome about foundation stability. We can conclude that the general dynamic state close to the destruction level within the investigation areas is getting worse over the time; this is reflected in the crack's densities and positions, also on the changes in the lateral distribution of geoelectrical heterogeneity as an indicator of the saturation of the surface rock in the study area with water [1,2]. References 1. Magdy A. Atya, Olga A. Hachay, Mamdouh M. Soliman, Oleg Y. Khachay, Ahmed B. Khalill, Mahmoud Gaballah, Fathy F.Shaaban and Ibrahim A.El. Hemali. CSEM imaging of the near surface dynamics and its impact for foundation stability

  19. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  20. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  1. Us army corps of engineers - Engineering research and development center - Petrographic analysis of section 3 personnel tunnel concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J. M.

    The Concrete and Materials Branch (CMB) of the Geotechnical and Structures Laboratory was requested to perform an analysis on concrete cores collected from the north and south walls of the H-Canyon Section 3 Personnel Tunel, Savannah River Site, Aiken, South Carolina to determine the cause of the lower than expected compressive strength. This study examined five cores provided to the ERDC by the Department of Energy. The cores were logged in as CMB No. 170051-1 to 170051-5 and subjected to petrographic examination, air void analysis, chemical sprays, scanning electron microscopy, and x-ray diffraction.

  2. Modification of hydraulic conductivity in granular soils using waste materials.

    PubMed

    Akbulut, S; Saglamer, A

    2004-01-01

    This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.

  3. Correlation of the Rock Mass Rating (RMR) System with the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System (W-RMR)

    NASA Astrophysics Data System (ADS)

    Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.

    2016-11-01

    Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.

  4. Boring Information and Subsurface Data Base Package User’s Guide.

    DTIC Science & Technology

    1984-09-01

    Army Engineer Waterways Experiment Station Computer Application in’ Ceotechnical Labor o y mue lctosi cia Geotechnical Engineering P0 Box 631...l F -3 7F - 2 1Y 1 U 3. T. 2 F1’--I F 4 -FEST- F,-1rE *~7 1 . ESTR - I -IL’’ 1 2 A. T F- E:7 * 7 T)*i ES l 2) 1-’E M 6FI- I; 2 6 𔄁.D L fO.W -ELLYV

  5. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brechtel, C.E.; Lin, Ming; Martin, E.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to themore » Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.« less

  6. Development of digital instructional modules for transportation engineers overviewing the fundamentals of how to obtain soil properties in practice.

    DOT National Transportation Integrated Search

    2013-12-01

    The work completed in this project created a series of online lab modules that : transportation professionals could use as a reference to learn how to conduct, how to : interpret, and the applications of geotechnical lab tests used in practice to det...

  7. Catalog of Wargaming and Military Simulation Models

    DTIC Science & Technology

    1989-09-01

    and newly developed software models. This system currently (and will in the near term) supports battle force architecture design and evaluation...aborted air refuelings, or replacement aircraft. PLANNED IMPROVEMENTS AND MODIFICATIONS: Completion of model. INPUT: Input fields are required to...vehicle mobility evaluation model). PROPONENT: Mobility Systems Division, Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station

  8. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  9. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hughes, Z. J.; FitzGerald, D. M.

    2012-06-01

    Understanding saltmarsh response to sea-level rise is critical for management and mitigation of these valuable coastal areas. However, comprehensive field studies of sea-level driven changes to the marsh landscape that consider combined biological, geological, and hydrodynamic interactions are rare. This study analyzes ecophysical feedbacks from crab colonization and bioturbation on geotechnical and geochemical properties of the soil in a Mid-Atlantic Spartina alterniflora saltmarsh. The study area is within a marsh that is experiencing creek extension due to accelerated sea-level rise and increasing periods of marsh inundation. Measurements of redox potential, pH, belowground biomass, and soil strength reveal that intense crab bioturbation by Sesarma reticulatum significantly changes the biogeochemical properties of the soil. Oxidized conditions in the upper 10-15 cm of the marsh induced by burrowing causes enhanced degradation of S. alterniflora belowground biomass (roots and rhizomes, reduction from 1.9 ± 0.6 kg/m2 to 1.1 ± 0.4 kg/m2), which reduces the structural integrity of the soil. This process ultimately increases the erosion potential of the sediment in creek head areas (documented by a reduction in shear strength from 10 ± 7 kPa to 2 ± 1 kPa), facilitating creek extension in order to accommodate tidal flows. The pervasiveness of similar tidal creek morphology in southeast Atlantic saltmarshes suggests this process is occurring in other marshes with a moderate tidal range undergoing sea-level rise.

  10. Construction of high-rise buildings in the Far East of Russia

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Sergey; Bugunov, Semen; Pogulyaeva, Evgeniya; Peters, Anastasiya; Kotenko, Zhanna; Grigor'yev, Danil

    2018-03-01

    The construction of high-rise buildings on plate foundation in geotechnical conditions of the Russian Far East is a complicated problem. In this respect foundation engineering becomes rather essential. In order to set a firm foundation it is necessary to take into account the pressure distribution at the structure base, in homogeneity of building deformation, which is due to collaborative geotechnical calculations complicated by a number of factors: actual over-placement of soils, the complex geometry of the building under construction, spatial work of the foundation ground with consideration for physical nonlinearity, the influence of the stiffness of the superstructure (reinforced concrete framing) upon the development of foundation deformations, foundation performance (the performance of the bed plate under the building and stairwells), the origination of internal forces in the superstructure with differential settlement. The solution of spatial problems regarding the mutual interaction between buildings and foundations with account of the factors mentioned above is fully achievable via the application of numerical modeling methodology. The work makes a review of the results of high-rise plate building numerical modeling in geotechnical conditions of the Russian Far East by way of the example of Khabarovsk city.

  11. A Gis Model Application Supporting The Analysis of The Seismic Hazard For The Urban Area of Catania (italy)

    NASA Astrophysics Data System (ADS)

    Grasso, S.; Maugeri, M.

    After the Summit held in Washington on August 20-22 2001 to plan the first World Conference on the mitigation of Natural Hazards, a Group for the analysis of Natural Hazards within the Mediterranean area has been formed. The Group has so far determined the following hazards: (1) Seismic hazard (hazard for historical buildings included); (2) Hazard linked to the quantity and quality of water; (3) Landslide hazard; (4) Volcanic hazard. The analysis of such hazards implies the creation and the management of data banks, which can only be used if the data are properly geo-settled to allow a crossed use of them. The obtained results must be therefore represented on geo-settled maps. The present study is part of a research programme, namely "Detailed Scenarios and Actions for Seismic Prevention of Damage in the Urban Area of Catania", financed by the National Department for the Civil Protection and the National Research Council-National Group for the Defence Against Earthquakes (CNR-GNDT). Nowadays the south-eastern area of Sicily, called the "Iblea" seismic area of Sicily, is considered as one of the most intense seismic zones in Italy, based on the past and current seismic history and on the typology of civil buildings. Safety against earthquake hazards has two as pects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena such as amplification, land sliding and soil liquefaction. So the correct evaluation of seismic hazard is highly affected by risk factors due to geological nature and geotechnical properties of soils. The effect of local geotechnical conditions on damages suffered by buildings under seismic conditions has been widely recognized, as it is demonstrated by the Manual for Zonation on Seismic Geotechnical Hazards edited by the International Society for Soil Mechanics and Geotechnical Engineering (TC4, 1999). The evaluation of local amplification effects may be carried out by means of either

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua S.; Rautman, Christopher Arthur

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. Thismore » work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.« less

  13. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...

  14. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...

  15. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...

  16. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...

  17. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...

  18. Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis

    USGS Publications Warehouse

    Kayen, R.E.; Schwab, W.C.; Lee, H.J.; Torresan, M.E.; Hein, J.R.; Quinterno, P.J.; Levin, L.A.

    1989-01-01

    Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6?? to 2.0?? slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6-15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth < 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations. ?? 1990.

  19. Geophysical methods for determining the geotechnical engineering properties of earth materials.

    DOT National Transportation Integrated Search

    2010-03-01

    Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...

  20. Application of geotechnical data to resource planning in southeast Alaska.

    Treesearch

    W.L. Schroeder; D.N. Swanston

    1987-01-01

    Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...

  1. MX Siting Investigation Geotechnical Siting Status Report. Volume I.

    DTIC Science & Technology

    1978-06-21

    and have moderate shear strength. GNU. HAl SUNAL, INC ENGINEERING AND GEOPHYSICAL PROPERTIES Int rrniatd.an. ungur . Aluvial Lacustrine /oNan gdotlS t...an unvarnished, active surface of sediment transport gra A53 stream channel and floodplain deposits. A52 - Unconsolidated to poorly consolidated sand...silt, and sandy gravel, with va c.0 A52 surface gravels forming isolated areas of desert pavement. This fan is in vario Cc surface of sediment

  2. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Bhoopendra, D.; Fukuoka, H.; Kuwano, T.; Ichikawa, K.

    2016-12-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in the densely-populated zone. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contribute to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the two basaltic landslide areas in Mauritius. A recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works.Both sites are located in the highly populated area in the capital city of Mauritius.The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of extensometers installed on these sites. Colluvium samples from both sites of the same characteristics with the sliding surface were tested in the ring shear apparatus in Japan under different normal stresses reducing from 300 kPa to 50 kPa step-wise at a shear velocity of 0.02 mm/min under drained condition to obtain the residual friction angle (φ) and the cohesion (c). Obtained residual friction angle and cohesion

  3. Scaling and Predicting the Geotechnical Resistance Provided by Alfalfa in Experimental Studies of Alluvial-Channel Morphology and Planform

    NASA Astrophysics Data System (ADS)

    Bankhead, N.; Simon, A.

    2008-12-01

    Several complex interactions occur between riparian vegetation and bank stability processes. Although there are both positive and negative effects of riparian vegetation on streambank stability, a link between increased vegetation density and decreased bank erosion and lateral migration rates of channels has generally been recorded. The ability of vegetation to promote increased bank stability leads to a positive feedback, in which bank stability then allows the growth and establishment of more vegetation. To study interactions between vegetation density and channel planform, past flume studies have used alfalfa sprouts (Medicago sativa), seeded over the entire floodplain in varying densities. Such studies have observed reductions in braiding intensity with increased alfalfa density. It has been assumed in these studies that the alfalfa sprouts increase the resistance of the bank material to lateral erosion. When alfalfa sprouts are scaled up they simulate mature riparian trees well. However, the geotechnical properties of alfalfa roots, and quantification of the increase in resistance provided to the banks under different densities of alfalfa have thus far been ignored. It is therefore unknown if the resistance provided by the alfalfa roots also scales well to real-world root-reinforcement values. To quantify additional bank strength, alfalfa sprouts were grown in sand and the roots tested at regular intervals to measure tensile strength. Results of tensile-strength measurements for alfalfa sprouts displayed the typical non-linear decrease of tensile strength (in MPa) with increasing root diameter. Values for the additional cohesion provided by alfalfa roots were calculated by inputting alfalfa tensile-strength and root density data to the root-reinforcement model, RipRoot, resulting in root-reinforcement values of 0 to 11.8 kPa. These values are similar to those that would be expected under field conditions. The root-cohesion values calculated for alfalfa sprouts

  4. Evaluation of Rhizobium tropici-derived Biopolymer for Erosion Control of Protective Berms. Field Study: Iowa Army Ammunition Plant

    DTIC Science & Technology

    2016-06-01

    for several cyanobacteria (Hu et al. 2003) as well as for EPS in clay soil (Nugent et al. 2009). The adhesion, water retention, and protective...exopolymers on the liquid limit of clays and its engineering applications. Transportation Research Record: Journal of the Transportation Research...Development of progressive failure in sensitive clay slopes. Canadian Geotechnical Journal 49: 782-795. Rushing, J. F., and J. K. Newman., 2010

  5. Cavity Detection and Delineation Research. Report 4. Microgravimetric Survey: Manatee Springs Site, Florida.

    DTIC Science & Technology

    1983-03-01

    RESEARCH Title Author S Report 1: Mlcoravirmetrlc and Magnetic Surveys: Medford Cave Dwain K~ Sufer Sit Florida Report 2: Seismic Methodology. Medford...ERORMNGORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKS. PRFORINGAREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment...Station *Geotechnical Laboratory CWIS Work Unit 31150 * P.O. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

  6. Permafrost, Seasonally Frozen Ground, Snow Cover and Vegetation in the USSR

    DTIC Science & Technology

    1984-12-01

    Snow Cover in Physical Geographic Processes (1948). He covered aspects of the dynamics of the snow cover, its properties and the connection between...Bigl, Research Physical Scientist, of the Geotechnical Research Branch, Experimental Engineering Division, un- der the general supervision of Dr...generalized from a detailed vegetation map in the volume Physical Geographic Atlas of the World (Gerasimov 1964), The tundra zone consists mostly of

  7. Construction Productivity Advancement Research (CPAR) Program.

    DTIC Science & Technology

    1998-04-01

    1981). "Laboratory study of hydraulic fracturing ," Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil...Christi, TX. Yanagisawa and Komak Panah. (1994). "Two-dimensional study of hydraulic fracturing criteria in cohesive soils," Soils and Foundations...horizontal directional drilling process and the risk of hydraulic fracturing . Reasonable limits must be placed on maximum fluid pressures in the

  8. Uncertainty Analysis for DAM Projects.

    DTIC Science & Technology

    1987-09-01

    overwhelming majority of articles published on the use of statistical methodology for geotechnical engineering focus on performance predictions and design ...Results of the present study do not support the adoption of more esoteric statistical procedures except on a special case basis or in research ...influence that recommended statistical procedures might have had on the Carters Project, had they been applied during planning and design phases

  9. Existing Resources, Standards, and Procedures for Precise Monitoring and Analysis of Structural Deformations. Volume 2. Appendices

    DTIC Science & Technology

    1992-09-01

    deformations in underground mines has been developed in Canada in cooperation with the Canada Centre for Mineral and Energy Technology ( CANMET ). The... technological developments in both geodetic and geotechnical instrumentation, at a cost one may achieve almost any, practically needed, instrumental...Due to the ever growing technological progress in all fields of engineering and, connected with it, the growing demand for higher accuracy, efficiency

  10. Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module

    DTIC Science & Technology

    2009-05-01

    ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and

  11. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    PubMed

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  12. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions

    PubMed Central

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-01-01

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line. PMID:29617285

  13. Construction of the bridge in the cavern in the Vrata tunnel (Croatia)

    NASA Astrophysics Data System (ADS)

    Garasic, Mladen; Sasa Kovacevic, Meho; Juric-Kacunic, Danijela

    2010-05-01

    In the Dinaric karst system in Croatia some 11500 speleological objects have been explored so far, more than 1000 of which were discovered during construction works. Such speleological objects without natural entrance on the terrain surface (which are called "caverns") have been discovered on the construction sites of the highways. Over the past twenty years they have been systematically investigated and treated. A special kind of remediation was conducted in the cavern's large hall of the "Vrata" tunnel on the Zagreb - Rijeka highway. Due to size, shape, cavern's position and hydrogeological parameters (fissured and karstified aquifers) within the karst system it was necessary to design and construct a 58 m bridge over the cavern. In addition, the cavern's vault had to be reinforced and stabilized, as the overburden was very thin. The beam-and -stringer grid with special anchors was used. The cavern's rehabilitation in the "Vrata" tunnel was a unique undertaking, and the bridge (without piers) is the cavern's longest bridge in the world. A speleological object of large dimensions was discovered in the "Vrata"tunnel's right tube on the Rijeka-Zagreb highway. Speleological, geotechnical, engineering geological and hydrogeological investigation works were carried out for the purpose of preservation the speleological object (cavern). On the basis of classification results of rock masses and conducted numerical analyses the support system for the cavern's vault stabilization was selected. The support system's elements include the beam-and-stringer grid constructed on the terrain's surface above the cavern, tendons and geotechnical anchors. To ensure stability of the speleological object, and to conduct the backward numerical analyses the measurement of vertical deformations from the terrain's surface along the rock's mass by means of sliding micrometers was undertaken. Backward numerical analyses combined with geotechnical measurements enable safer and more rational

  14. Development of 1-D Shake Table Testing Facility for Liquefaction Studies

    NASA Astrophysics Data System (ADS)

    Unni, Kartha G.; Beena, K. S.; Mahesh, C.

    2018-04-01

    One of the major challenges researchers face in the field of earthquake geotechnical engineering in India is the high cost of laboratory infrastructure. Developing a reliable and low cost experimental set up is attempted in this research. The paper details the design and development of a uniaxial shake table and the data acquisition system with accelerometers and pore water pressure sensors which can be used for liquefaction studies.

  15. Reconnaissance Report, Section 205 Chattooga River Trion, Georgia, Chattooga County

    DTIC Science & Technology

    1991-07-01

    magnitude, mb, of 7.5, at a distance of about 118 km, in the New Madrid source zone. The earthquake motions estimated to occur at Barkley from an...4: Liquefaction Susceptibility Evaluation and Post- Earthquake Strength Determination Volume 5: Stability Evaluation of Geotechnical Structures The...contributions from ORN. Mssrs. Ronald E. Wahl of Soil and Rock Mechanics Division, Richard S. Olsen, and Dr. M. E. Hynes of the Earthquake Engineering and

  16. Sub Surface Geoelectrical Imaging for Potential Geohazard in Infrastructure Construction in Sidoarjo, East Java

    NASA Astrophysics Data System (ADS)

    Sumintadireja, Prihadi; Irawan, Diky

    2017-06-01

    Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.

  17. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  18. The new DMT SAFEGUARD low-cost GNSS measuring system and its application in the field of geotechnical deformation and movement monitoring

    NASA Astrophysics Data System (ADS)

    Schröder, Daniel

    2017-04-01

    In the recent years an increasing awareness of geodetic measurement systems and their application for monitoring projects is clearly visible. With geodetic sensors it is possible to detect safety-related changes at monitoring objects with high temporal density, high accuracy and in a very reliable manner. Quality acquisitions, processing and storage of monitoring data as well as a professional on-site implementation are the most important requirements and challenges to contemporary systems in civil engineering, mining as well as oil and gas production. Monitoring measures provide important input for early warning, alarm, protection and verification of potential hazardous environments and therefore the risk management applied to projects have a significant influence. The implementation has to follow an optimization process incorporating necessary accuracy, reliability and economic efficiency. From the economical point of view the costs per observation point are crucial for most monitoring projects. Keeping in mind that the costs of classical high-end GNSS stations with a geodetic dual-frequency receiver is within the range of several 10,000 euro. Large monitoring networks with a high number of simultaneously observed points are very expensive and therefore eventually have to be cut back, substituted by compromising methods or totally withdrawn. A further development in the area of GNSS receivers could reduce this disadvantage. Within the last few years single-frequency receivers that record L1-signals of GPS/GLONASS and offer sub-centimeter positioning accuracies are increasingly offered on the market. The accuracy of GNSS measurements depends on many factors as the hardware itself as well as on external influences related to the measurement principals. The external influences can be strongly reduced or eliminated by appropriate measuring and processing methods. For a reliable monitoring system it is necessary that the results are comparable and consistent for each

  19. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  20. US Army Corps of Engineers Reconnaissance Report: North Coast of Honduras Flooding,

    DTIC Science & Technology

    1988-03-01

    1,000 ’ Study Element O Sector Two Sector Six Coordination (Other Agencies, etc) $ 60 $ 40 $ 50 Institutional/Financial 30 10 30 " Agricultural...Socioeconnic 100 180 150 Hydrologic 80 130 110 Hydraulic 170 260 200 Geotechnical 130 100 90 , Structural 80 50 70 Cost Estimating 20 30 40 Surveys and...77- cc CC Ar 0~ , - .1i cr* 6 *1*, ~..tic V𔃾t ’ e-4 rN. I- - B-10 ona- 20 T. n 10 7- tl o l I 40 - 30 - ~.ll 1 r- r. Fig B-" MEA MOTL

  1. Integration of Centrifuge Testing in Undergraduate Geotechnical Engineering Education at Remote Campuses

    ERIC Educational Resources Information Center

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-01-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…

  2. Integration of centrifuge testing in undergraduate geotechnical engineering education at remote campuses

    NASA Astrophysics Data System (ADS)

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-06-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The students' activities within the module are centred on building a model of a shallow foundation on a sand deposit utilising a centrifuge facility and using this model for: (1) visual observation of the response of soil-foundation systems, (2) learning the use of instrumentation, (3) interpretation of acquired data, and (4) comparing experimental results to theoretical predictions. Testing a soil-foundation system helped the students identify the lab experiments needed to analyse and design the system. A survey was used to gauge students' perceptions of learning as a result of introducing the module, which were found to be positive.

  3. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  4. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  5. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  6. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  7. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  8. Engineering ethics beyond engineers' ethics.

    PubMed

    Basart, Josep M; Serra, Montse

    2013-03-01

    Engineering ethics is usually focused on engineers' ethics, engineers acting as individuals. Certainly, these professionals play a central role in the matter, but engineers are not a singularity inside engineering; they exist and operate as a part of a complex network of mutual relationships between many other people, organizations and groups. When engineering ethics and engineers' ethics are taken as one and the same thing the paradigm of the ethical engineer which prevails is that of the heroic engineer, a certain model of the ideal engineer: someone both quite individualistic and strong enough to deal with all the moral challenges that could arise. We argue that this is not the best approach, at least today in our interrelated world. We have achieved a high degree of independence from nature by means of technology. In exchange for this autonomy we have become increasingly tied up with very complex systems to which we constantly delegate new tasks and powers. Concerns about safety keep growing everywhere due to the fact that now we have a sensitive awareness of the huge amount of power we are both consuming and deploying, thus, new forms of dialogue and consensus have to be incorporated at different levels, in different forums and at different times. Within these democratic channels of participation not just the needs and interests, but also the responsibilities and mutual commitments of all parties should be taken into account.

  9. GPR applications in Civil Engineering in Spain - state-of-the-art

    NASA Astrophysics Data System (ADS)

    Pérez Gracia, Vega; Solla, Mercedes; Santos-Assunçao, Sonia; Lorenzo, Henrique

    2014-05-01

    GPR was introduced in Spain in 1990, and the first significant work was the PhD thesis of H. Lorenzo in 1994. Due to its versatile applicability, the employ has been increased and actually, GPR is extensively used in detection of pipes, wiring and urban services mainly. During the last years, this method was also widely utilized in the detection of graves from the civil war and in forensic studies, with irregular results. It was also commonly applied in archaeology. Actually exists more than 20 private companies offering geotechnical services by means of GPR. Also, several public institutions as Universities and Research Institutes base part of their research in GPR or in GPR applications. Notwithstanding, no training courses of specific formation on GPR is offered, but in several doctorate programs it is possible to work with GPR. Also, in many schools, GPR is part of the geophysical formation of graduate students. However, no national guidelines and rules exist, and each company defines the investigation protocols. Nevertheless, one of the aims of the Comisión Española de Geodesia y Geofísica (Spanish Committee for Geodesy and Geophysics) is to define guidelines for the GPR studies. Probably, the existence of national guidelines or perhaps European guidelines could be the most effective way to promote the responsible use of GPR in different domains. On the other hand, perhaps recommendations on the use of combined methodologies could be a practical way to persuade in the application of geophysical non-destructive technologies. The CEDEX, Centro de Estudios y Experimentación de Obras Públicas (Center for Studies and Experimentation in Civil Engineering), which is a civil engineering research agency in Spain, offers different test sites to calibrate and evaluate the method. It is an autonomous organization, organically ascribed at present to the Ministry of Fomento, and functionally ascribed to the Ministries of Fomento and Medioambiente of Spain, giving

  10. Geomorphological mapping and geotechnical testing of the March 22, 2014, SR530 landslide near Oso, Washington

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Reid, M. E.; Vallance, J. W.; Iverson, R. M.; Schmidt, K. M.

    2014-12-01

    The March 22, 2014 landslide near Oso, Washington devastated a community, killing 43 people, destroying dozens of homes, and temporarily closing a section of State Route (SR) 530. The landslide, characterized as a debris avalanche - debris flow - rotational slide, was triggered by heavy precipitation in the region and initiated from a 200 m tall section of Pleistocene glacial deposits. The entire landslide encompassed an area of 1.2 km2. To understand the mobility of this landslide, we performed geological and geomorphological mapping throughout the initiation, transport, and deposition zones. In addition, we mapped a 450-m-long cross-section through the western distal lobe created by the excavation to reopen the SR530 roadbed to temporary traffic. Samples collected during mapping were used for geotechnical testing to evaluate the mobility of the landslide materials. Our detailed (1:300) geological mapping of the excavation revealed the juxtaposition of sand (glacial outwash) and clay (glaciolacustrine) debris avalanche hummocks towards the distal end of the landslide. Further, we found that two sections of the roadbed, having a combined length of at least 150 m, were entrained in the landslide. Throughout the debris avalanche deposit, 1:1200-scale geomorphological mapping identified a preponderance of sand boils located within thinner deposits between hummocks, suggesting that liquefaction played a role in the landslides mobility. In the central distal end of the landslide, we mapped on-lap deposits, wherein distal debris flow material overrode smaller hummocks of the larger debris avalanche deposit. Discovery of these deposits indicates that the run out of the landslide might have been even longer in places had topographic barriers (i.e., the other side of the valley) not reflected the flow back towards itself.

  11. Investigation to determine the vulnerability of reclaimed land to building collapse using near surface geophysical method

    NASA Astrophysics Data System (ADS)

    Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.

    2017-05-01

    Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.

  12. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  13. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  14. Engineering Ethics in the Subject of Engineering History

    NASA Astrophysics Data System (ADS)

    Isohata, Hiroshi

    Engineering ethics has been focused in the field of engineering education since the introduction of accreditation system of engineering education. In this paper, contents of the subject of engineering history are examined and discussed from the viewpoints of education of engineering ethics through a practical case of civil engineering history in a college. For the first step, codes of engineering ethics regulated in various engineering organizations are analyzed and the common contents are extracted to set the requirements for the education of engineering ethics. Then contents of the subject of engineering history are examined according to the requirements. Finally, conditions of engineering history for engineering ethics are discussed.

  15. Engineering Encounters: Teaching Educators about Engineering

    ERIC Educational Resources Information Center

    Tank, Kristina M.; Raman, D. Raj; Lamm, Monica H.; Sundararajan, Sriram; Estapa, Anne

    2017-01-01

    This column presents ideas and techniques to enhance science teaching. This month's issue describes preservice elementary teachers learning engineering principles from engineers. Few elementary teachers have experience with implementing engineering into the classroom. While engineering professional development opportunities for inservice teachers…

  16. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  17. Geotechnical and Surface Wave Investigation of Liquefaction and Strong Motion Instrumentation sites of the Denali Fault, Mw 7.9, Earthquake

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Thompson, E.; Minasian, D.; Collins, B.; Moss, R.; Sitar, N.; Carver, G.

    2003-12-01

    Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted two investigations to map the regional extent and severity of liquefaction ground failures and assess the geotechnical properties of these sites, as well as profile the soil properties beneath three seismometers located at Alyeska Pump Stations 9, 10, and 11. The most noteworthy observations are that liquefaction damage was focused towards the eastern end of the rupture area. For example, liquefaction features in the river bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers, whereas the eastern Robertson River and non-glacial Tok River, and especially the Nabesna River, had observable-to-abundant fissures and sand vents. Several rivers systems were studied in detail. The Nabesna River emerges from its glacier, and drains and fines northward as it crosses the fault zone resulting in an asymmetrical liquefaction pattern. South of the fault, falling liquefaction resistance of soil (fining from sandy gravel to gravely sand) and rising loads from ground motions (approaching the fault) abruptly intersect such that there is a well defined, narrow, soil transition from undisturbed-to-fully liquefied approximately 5 kilometers from the fault. North of the fault, both liquefaction resistance (continued fining) and ground motions fall in tandem, leaving a much broader zone of liquefaction. The Delta River liquefaction occurrence is more complex, where side-entering glacial rivers form non-liquefiable gravel fans and alter the composition and compactness of the main-stem deposits. Immediately upstream of the gravelly Canwell glacier tributary, and immediately at the

  18. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  19. Combination of different seismic methods and geotechnical sounding for a rapid characterization of the near-surface ground

    NASA Astrophysics Data System (ADS)

    Dietrich, P.; Kretschmer, F.; Vienken, T.; Popp, S.

    2009-04-01

    For economical and feasible seismic exploration of the near-surface ground, an approach has been developed for the joint application of reflection and refraction seismics as well as multi-channel analysis of surface waves (MASW). The measuring concept was tested within the research project COMEXTECH, dealing with the exploration of construction ground. Besides the overall characterization of the subsurface by refraction and reflection seismics, the MASW can be used for the derivation of relevant soil parameters such as soil stiffness. The centre of the measuring concept represents a land streamer, pulled by a vehicle equipped with the seismic source. The 24-channel land streamer may be tipped with different geophones, according to the focus of investigation. We used three fully equipped land streamers with 72 channels at all at the test site Nauen close to Berlin, Germany. The first 24 positions of the land streamer nearby the seismic source were filled with 4.5 Hz geophones. The next two land streamers were tipped with 14 Hz geophones, respectively. The idea behind this arrangement is that the positions close to the shot point, which are not utilisable for reflection seismics, can be used for the interpretation of surface waves. The signal was given with an accelerated weight drop mounted on a cross-country vehicle. Shots were arranged every meter, and four shots per shot point were executed for an increased signal/noise ratio. Three registration units (GeodeTM by Geometrics) were connected in series for signal recording. At the site, a profile of 164 m length was investigated in bidirectional manner in combination with geotechnical exploration technique. The purpose of bidirectional recording is to check the reliability and sensitivity of the seismic array and to increase the resolution of the image of the subsurface. By using the same shot points forth and back, a multiple overlap rate for certain common depth points (CDP) can be achieved, which is thought to

  20. Humanitarian engineering in the engineering curriculum

    NASA Astrophysics Data System (ADS)

    Vandersteen, Jonathan Daniel James

    There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development

  1. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  2. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov Websites

    Engineering, Biomedical Engineering(414) 229-6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Malkoc, Ph.D.Visiting Assistant ProfessorBiomedical Engineering414-229-6919malkoc@uwm.eduEng & Math Engineering / Electrical Engineering(414) 229-3327misra@uwm.eduEng & Math Sciences E-314 profile photo

  3. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  4. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  5. Proceedings of the Third International Symposium on Ground Freezing Held at Hanover, New Hampshire on 22-24 June 1982.

    DTIC Science & Technology

    1982-01-01

    The cyclicly changing axial stresses a . and a are leading to the dynamic stress path which loads the frozen soil [MN/m’) samples. It is obvious that...Fig. 5 are related to a sinoidal dynamic axial loading . Figure a sample temperature of T = -10*C, in 4 shows schematically a triaxial test re- Fig. 6...Czajkowski (1978), Behaviour of Fro-ry phase was not reached. zen Clay under Cyclic Axial Loading , Journal of the Geotechnical Engineer- ing Division

  6. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  7. How Engineers Engineer: Lessons from My First Big Engineering Project

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Little did the author realize how much his first engineering project would change his career path, but when it came, he was hooked forever on doing R&D-type engineering. In this article, the author takes the reader back to his first really important electrical engineering project. While the technology he worked on back then is antiquated by…

  8. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  9. [Time-evolution study on the cation exchange in the process of reinforcing slip soil by laser-induced breakdown spectroscopy].

    PubMed

    Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang

    2014-03-01

    In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.

  10. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  11. 78 FR 5710 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Airworthiness Directives; Engine Alliance Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Engine Alliance GP7270 and GP7277 turbofan engines. This AD requires initial and repetitive...) Applicability This AD applies to all Engine Alliance GP7270 and GP7277 turbofan engines with a high-pressure...

  12. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  13. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  14. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  15. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Dabycharun, Bhoopendra; Kuwano, Takeshi; Ichikawa, Kensuke; Fukuoka, Hiroshi

    2016-04-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in densely-populated zone. Although the long-term annual precipitation show slightly decreasing trend, number of tropical cyclone over Mauritius is clearly increasing at least in the past 3 decades. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contributes to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the above-mentioned two basaltic landslide areas in Mauritius. Recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works. In the field investigation, aerial photo interpretation was used to investigate the zone of cracks and scarps for both sites. The landslide areas for Chitrakoot and Vallee Pitot were estimated to 1.8 km2 and 5,000 m2 respectively. Both sites are located in the highly populated area in the capital city of Mauritius. The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of

  16. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  17. Environmental Engineering in Mining Engineering Education

    ERIC Educational Resources Information Center

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  18. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  19. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less

  20. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  2. Activist engineering: changing engineering practice by deploying praxis.

    PubMed

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  3. Using Collaborative Engineering to Inform Collaboration Engineering

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  5. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  6. Geotechnical Investigation of the Potential Use of Shredded Scrap Tires in Soil Stabilization.

    DOT National Transportation Integrated Search

    1998-11-01

    Silt-tire and clay-tire mixtures, containing 0% to 100% shredded tire material by weight, with tire chips ranging in size from 7mm-13mm, 13mm-25mm, and 25mm-38mm, were tested for a series of engineering properties including compaction characteristics...

  7. GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques

    NASA Astrophysics Data System (ADS)

    Rezaie, F.; Panahi, M.

    2015-03-01

    The main issue in determining seismic vulnerability is having a comprehensive view of all probable damages related to earthquake occurrence. Therefore, taking into account factors such as peak ground acceleration at the time of earthquake occurrence, the type of structures, population distribution among different age groups, level of education and the physical distance to hospitals (or medical care centers) and categorizing them into four indicators of geotechnical, structural, social and physical distance to needed facilities and from dangerous ones will provide us with a better and more exact outcome. To this end, this paper uses the analytic hierarchy process to study the importance of criteria or alternatives and uses the geographical information system to study the vulnerability of Tehran to an earthquake. This study focuses on the fact that Tehran is surrounded by three active and major faults: Mosha, North Tehran and Rey. In order to comprehensively determine the vulnerability, three scenarios are developed. In each scenario, seismic vulnerability of different areas in Tehran is analyzed and classified into four levels: high, medium, low and safe. The results show that, regarding seismic vulnerability, the faults of Mosha, North Tehran and Rey make, respectively, 6, 16 and 10% of Tehran highly vulnerable, while 34, 14 and 27% is safe.

  8. Chemical Engineering Students: A Distinct Group among Engineers

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  9. Engineering the Way to Becoming a Federal Engineer.

    ERIC Educational Resources Information Center

    Morgans, Carl J.

    1991-01-01

    Federal engineer tells engineering students how to become federal engineers and discusses the potential rewards and disadvantages of a civil service career. Notes that federal jobs are available for engineering graduates who are knowledgeable in the search process and who are persistent in seeking out such jobs. (NB)

  10. Women and the Engineering Profession: the Stereotypical Engineer

    NASA Astrophysics Data System (ADS)

    Cory, Suzanne N.; Rezaie, Bahman

    The paucity of female engineers has been a problem for years, and most universities suffer from a lack of women majoring in engineering. It is possible that the stereotypical image or perceived gender of engineers may deter young women from considering a career in the field. In order to determine whether 1st-year college students held perceptions regarding personality traits and probable gender of an engineer, a survey was developed based on the Personality Factor (PF) questionnaire originally developed by Cattell (1943). Results indicate that personality traits most often associated with engineers were primarily masculine. Also, engineers were most often expected to be male, especially by the females in this study. Perceived personality traits and the probable gender of engineers were compared to those of 5 other professions: accountants, lawyers, physicians, insurance broker/agents, and computer and information systems specialists. Several differences in perceived personality traits were found. In addition, engineers were perceived as more likely to be male than members of all of the other occupations studied except computer and information systems specialists. Possible approaches to begin altering young women's perceptions of personality traits and the probably gender of a stereotypical engineer are discussed.

  11. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  12. Engineering Encounters: Reverse Engineering

    ERIC Educational Resources Information Center

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  13. High School Teachers' Conceptions of Engineers and Engineering

    ERIC Educational Resources Information Center

    Hoh, Yin Kiong

    2012-01-01

    This paper describes a workshop activity the author has carried out with 80 high school science teachers to enable them to overcome their stereotypical perceptions of engineers and engineering. The activity introduced them to the biographies of prominent women in engineering, and raised their awareness of these female engineers' contributions to…

  14. Students' Changing Images of Engineering and Engineers. Research Brief

    ERIC Educational Resources Information Center

    Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel

    2008-01-01

    This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…

  15. Engine systems and methods of operating an engine

    DOEpatents

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  16. Engine systems and methods of operating an engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scotto, Mark Vincent

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    NASA Astrophysics Data System (ADS)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  18. A Comparison of Traditional, Step-Path, and Geostatistical Techniques in the Stability Analysis of a Large Open Pit

    NASA Astrophysics Data System (ADS)

    Mayer, J. M.; Stead, D.

    2017-04-01

    With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.

  19. Methodology of Dynamic Monitoring of Structures in the Vicinity of Hydrotechnical Works - Selected Case Studies

    NASA Astrophysics Data System (ADS)

    Wyjadłowski, Marek

    2017-12-01

    The constant development of geotechnical technologies imposes the necessity of monitoring techniques to provide a proper quality and the safe execution of geotechnical works. Several monitoring methods enable the preliminary design of work process and current control of hydrotechnical works (pile driving, sheet piling, ground improvement methods). Wave parameter measurements and/or continuous histogram recording of shocks and vibrations and its dynamic impact on engineering structures in the close vicinity of the building site enable the modification of the technology parameters, such as vibrator frequency or hammer drop height. Many examples of practical applications have already been published and provide a basis for the formulation of guidelines, for work on the following sites. In the current work the author's experience gained during sheet piling works for the reconstruction of City Channel in Wrocław (Poland) was presented. The examples chosen describe ways of proceedings in the case of new and old residential buildings where the concrete or masonry walls were exposed to vibrations and in the case of the hydrotechnical structures (sluices, bridges).

  20. Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF

    2017-08-01

    Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.

  1. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    DTIC Science & Technology

    1974-08-30

    1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses

  2. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  3. Building inclusive engineering identities: implications for changing engineering culture

    NASA Astrophysics Data System (ADS)

    Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.

    2018-05-01

    Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.

  4. Evaluation of subsoil competence for foundation studies at site III of the Delta State University, Nigeria

    NASA Astrophysics Data System (ADS)

    Ofomola, M. O.; Iserhien-Emekeme, R. E.; Okocha, F. O.; Adeoye, T. O.

    2018-06-01

    An integrated geophysical and geotechnical investigation has been carried out at site III of the Delta State University, Abraka, Nigeria. This took place in a bid to generate information on the competence of the soil in withstanding stress and strain emanating from overburden or pore pressure, swelling, cracking and other anthropogenic activity in relation to civil engineering and building structures. An electromagnetic method employing the very low frequency (VLF) technique, and electrical resistivity employing the Wenner and the vertical electrical sounding techniques were used for this study. Soil samples were also collected at depth for geotechnical analysis. Isoresistivity slices generated from the data of 33 VES stations at 1 m showed generally low resistivity values of subsurface earth materials, classified as clayey sand, sandy clay or clay, and ranging from 60-300 Ωm. However, at depths of 3 and 5 m, the result showed a generally high resistivity distribution with values ranging from 500-6000 Ωm, which is an indication of competent Earth materials of fine to coarse grain sand. The results of the liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction and clay content of the soil samples vary from 10%-17%, 18%-29%, 3%-15%, 45-95 KN m-2, 31°-35° and 14%-22% respectively. The low cohesion, low clay content and high angle of internal friction of the soil at the encountered depth makes it competent for engineering foundation. It is concluded that the subsoil in the area, starting at a depth of 3 m, is a competent material for hosting engineering structures.

  5. Evolutionary-based approaches for determining the deviatoric stress of calcareous sands

    NASA Astrophysics Data System (ADS)

    Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh

    2013-01-01

    Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.

  6. Engineering Change Management Method Framework in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander

    2016-11-01

    Engineering changes make an impact on different process chains in and outside the company, and lead to most error costs and time shifts. In fact, 30 to 50 per cent of development costs result from technical changes. Controlling engineering change processes can help us to avoid errors and risks, and contribute to cost optimization and a shorter time to market. This paper presents a method framework for controlling engineering changes at mechanical engineering companies. The developed classification of engineering changes and accordingly process requirements build the basis for the method framework. The developed method framework comprises two main areas: special data objects managed in different engineering IT tools and process framework. Objects from both areas are building blocks that can be selected to the overall business process based on the engineering process type and change classification. The process framework contains steps for the creation of change objects (both for overall change and for parts), change implementation, and release. Companies can select singleprocess building blocks from the framework, depending on the product development process and change impact. The developed change framework has been implemented at a division (10,000 employees) of a big German mechanical engineering company.

  7. 77 FR 9837 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Directives; Lycoming Engines Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Lycoming Engines reciprocating engines. This AD was prompted by a report of a ``machined-from-billet'' HA-6 carburetor having a...

  8. First-year engineering students' views of the nature of engineering

    NASA Astrophysics Data System (ADS)

    Karatas, Faik O.

    The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.

  9. Plasma Engines,

    DTIC Science & Technology

    1982-09-08

    low thrust, long duration power device, the plasma engine 6 has certain distinct advantages. For a chemical fuel rocket engine , a thrust of M.’)1...PLASMA ENGINES.CU) UNCLASSZICD FTO-ZIftS)T-0636-98 NL * UUUUU UUMile ~ FTD-ID(RS)T-0636-82 FOREIGN TECHNOLOGY DIVISION q 14 PLASMA ENGINES bv Sung...8 September 1982 MICROFICHE NR: FTD-82-C-001198 PLASMA ENGINES By: Sung Yuyang English pages: 7 Source: Hangkong Zhishi, March 1982, pp. 12-13 Country

  10. Start Your Engines: Surfing with Search Engines for Kids.

    ERIC Educational Resources Information Center

    Byerly, Greg; Brodie, Carolyn S.

    1999-01-01

    Suggests that to be an effective educator and user of the Web it is essential to know the basics about search engines. Presents tips for using search engines. Describes several search engines for children and young adults, as well as some general filtered search engines for children. (AEF)

  11. 77 FR 58003 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY: Federal Aviation Administration (FAA... certain Lycoming Engines (L)O-360, (L)IO-360, AEIO-360, O-540, IO- 540, AEIO-540, (L)TIO-540, IO-580, and IO-720 series reciprocating engines. That AD currently requires replacing certain crankshafts in the...

  12. A general engineering scenario for concurrent engineering environments

    NASA Astrophysics Data System (ADS)

    Mucino, V. H.; Pavelic, V.

    The paper describes an engineering method scenario which categorizes the various activities and tasks into blocks seen as subjects which consume and produce data and information. These methods, tools, and associated utilities interact with other engineering tools by exchanging information in such a way that a relationship between customers and suppliers of engineering data is established clearly, while data exchange consistency is maintained throughout the design process. The events and data transactions are presented in the form of flowcharts in which data transactions represent the connection between the various bricks, which in turn represent the engineering activities developed for the particular task required in the concurrent engineering environment.

  13. 78 FR 35747 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Airworthiness Directives; Engine Alliance Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... Alliance GP7270 and GP7277 turbofan engines. This AD was prompted by damage to the high-pressure compressor... Alliance GP7270 and GP7277 turbofan engines with a high-pressure compressor (HPC) stage 6 disk, part number...

  14. Study of Sedimentary Outcrop of Semanggol Formation with the Correlation of Geology, Geotechnical and Geophysics Technique

    NASA Astrophysics Data System (ADS)

    Nordiana, A. N.; Nordiana, M. M.; Jia, Teoh Ying; Hisham, Hazrul; Sulaiman, Nabila; Maslinda, Umi; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad

    2017-04-01

    The study location was at Bukit Kukus, Kuala Ketil, Kedah, Malaysia where the geological outcrop of this Semanggol Formation comprises of chert, mudstone, and volcanic tuff. The study was conducted using two geophysical methods, which are 2-D Resistivity and Ground Penetrating Radar (GPR). The objectives of the study are to correlate both of the geophysical methods through the value of conductivity and to identify the physical properties of rocks through the value of porosity and permeability. The data acquisition for both methods was conducted on the same line. For 2-D Resistivity method, the length of the line is 60 m with 1.5 m electrode spacing and the array used was Wenner-Schlumberger. For GPR method, the survey line was on top of the resistivity line, and the frequency of the antenna used is 250 MHz. A good correlation exists between both of the GPR signature and contour maps for resistivity from the surfer 10 software with the outcrop feature. Conductivity value from both GPR and Resistivity method was compared and the range value of conductivity obtained from GPR method almost equivalent with Resistivity method based on derivation and calculation for the sedimentary rocks, which are 0.037 to 0.574 miliSiemens per metre (mS/m) for chert and 0.186 to 10.142 miliSiemens per metre (mS/m) for mudstone. Two types of rock samples were taken, and several geotechnical tests were conducted, but only the value of permeability, K and porosity, ɸ of chert can be calculated, which are 1.95E-22 m2 (original condition) and 2.27E-22 m2 (dry condition) and 3 percent respectively as the sample of mudstone was damaged. The parameter of the 2-D resistivity method derived from Archie’s law was used to calculate the porosity, ɸf value using the Formation Factor equation. The range values of porosity, ɸf for chert mostly in the range of 5 to 25 percent, which is 6.26 to 13.36 percent but slightly out of range for mudstone, which is 14.12 to 36.02 percent.

  15. Geotechnical and structural lessons learnt from the aqaba (ml = 6.2) earthquake of Novemeber 22, 1995

    NASA Astrophysics Data System (ADS)

    Al-Homoud, A.

    2003-04-01

    This study reflects in some details on the following aspects related to the region: geological and tectonic setting, seismicity, swarms activity data base and seismic hazard assessment. Moreover, it documents the following aspects of the November 22, 1995 earthquake: tectonic, seismological, instrumental seismic data, strong motion recordings and response spectral and local site effect analysis, geotechnical effects and structural observations in the region affected by the earthquake. The study identifies local site effects on structural damages. These observations were analyzed in connection with the observed damages. It is concluded that liquefaction potential, effect of soil column, poor quality of construction, and underestimating the design base shear are the main factors that contributed to the observed damages. Practical recommendations are suggested for the authorities to avoid similar damages in newly constructed buildings and lifelines during future similar earthquakes. On November 22, 1995, the Gulf of Aqaba region was shaken by a strong earthquake that was felt from Sudan to Lebanon. The epicenter was located in the gulf water midway between the Egyptian cities of Dahab and Nuweiba on the Sinai Peninsula. The main shock was followed by thousands of aftershocks, the strongest of which occurred on November 23, 1995 with a local magnitude of 5.4. The main shock triggered strong motion accelerographs belonging to the Jordanian and Israeli networks at Aqaba and Eilat cities, respectively. Structural damages to buildings and lifeline systems were reported in several cities located along the gulf coast including Aqaba in Jordan,Haql in Saudi Arabia, Sharm Al-Sheik, Dahab and Nuweiba in Egypt, and Eilat in Israel. In the city of Nuweiba, located 40 km north of the epicenter, surveyed damage suggests that the horizontal peak ground was in the range of 0.16 g - 0.25 g. Strong motion records indicated that at the port cit of Eilat (a distance of 92.7 km from the

  16. 21. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Engine identified as a 'single cylinder vacuum assist engine for Tod tandem compound engine' showing compressor. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  17. 20. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Engine identified as a 'single cylinder vacuum assist engine for the Tod tandem compound engine' showing crank end. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  18. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  19. High Reliability Engine Control Demonstrated for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    1999-01-01

    For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.

  20. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  1. 14. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW HIGHLIGHTS THE CRANK AND 24' DIAMETER FLYWHEEL. THE ENGINE IS A 7,940 HP MESTA-CORLISS CROSS-COMPOUND STEAM ENGINE ITS BORE AND STROKE ARE 32"X84"X60". NOTE FLY BALL GOVERNOR ON ENGINE. MILL DRIVE SHAFT ATTACHED TO PULLEY ON LOCATED ON CRANK. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  2. 4. INTERIOR OF ENGINE ROOM, CONTAINING UNITEDTOD TWINTANDEM ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF ENGINE ROOM, CONTAINING UNITED-TOD TWIN-TANDEM ENGINE, FOR 40" BLOOMING MILL; AS SEEN FROM THE UPPER LEVEL BRIDGE CRANE, THIS ENGINE WAS THE DIRECT DRIVE TO THE 40" BLOOMING MILL LOCATED IN THE ADJACENT ROOM TO THE LEFT. THE UNITED-TOD ENGINE, A TWIN TANDEM COMPOUND STEAM ENGINE, WAS RATED AT 20,000 MP. IN 1946 NEW HIGH PRESSURE CYLINDERS WERE INSTALLED AND THE ENGINE RAN ON 200 PSI STEAM, WITH A 44"X76"X60" STROKE, TO A BUILT-UP COUNTER-BALANCED CENTER CRANK. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  3. Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation

    NASA Astrophysics Data System (ADS)

    Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li

    2017-11-01

    In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.

  4. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Doris; Boucher, Cheryl

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOxmore » emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This

  5. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  6. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  7. Teaching Engineering Practices

    NASA Astrophysics Data System (ADS)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  8. A simple method of calculating Stirling engines for engine design optimization

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  9. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  10. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  11. 4. Engine room, east end looking east toward engine #4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Engine room, east end looking east toward engine #4 (Enterprise Diesel; reduction gear in foreground; in left rear, two D.C. generators with Ames Ironworks horizontal engine and sturtevant vertical engine - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  12. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  13. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  14. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  15. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  16. Development of engineering drawing ability for emerging engineering education

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao

    2017-09-01

    Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.

  17. Modular co-culture engineering, a new approach for metabolic engineering.

    PubMed

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Predictors of Associate's Degree Completion in Engineering and Engineering Technologies

    NASA Astrophysics Data System (ADS)

    Reys-Nickel, Lynsey L.

    The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a

  19. Hillslope hydrology and stability

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  20. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2011-12-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  1. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2012-01-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  2. 40 CFR 91.115 - Certification procedure-determining engine power and engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine power and engine families. 91.115 Section 91.115 Protection of Environment ENVIRONMENTAL... ENGINES Emission Standards and Certification Provisions § 91.115 Certification procedure—determining engine power and engine families. (a) Engine power must be calculated using SAE J1228. This procedure has...

  3. 78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Airworthiness Directives; International Aero Engines AG Turbofan Engines AGENCY: Federal Aviation Administration... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing... turbofan engines, serial numbers V20001 through V20285, with No. 4 bearing internal scavenge tube, part...

  4. Engineering Review Information System

    NASA Technical Reports Server (NTRS)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  5. Automotive Stirling Engine Development Program Mod I Stirling engine development

    NASA Technical Reports Server (NTRS)

    Simetkosky, M. A.

    1983-01-01

    The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.

  6. Modernizing engine displays

    NASA Technical Reports Server (NTRS)

    Schneider, E. T.; Enevoldson, E. K.

    1984-01-01

    The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.

  7. The Engineer of 2020: Visions of Engineering in the New Century

    ERIC Educational Resources Information Center

    National Academies Press, 2004

    2004-01-01

    To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership…

  8. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  9. 16. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW IS TAKEN FROM THE HIGH-PRESSURE SIDE OF THE ENGINE SHOWING THE SERVICE PLATFORM - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  10. Engineering Employment and Unemployment, 1971. Engineering Manpower Bulletin Number 19.

    ERIC Educational Resources Information Center

    Alden, John D.

    Statistics concerning employment of scientists were obtained from 59,300 scientists responding to an Engineers Joint Council questionnaire. Findings reported are: (1) the overall unemployment rate was 3 percent for engineers compared to a rate of 5.8 percent for all other workers; (2) considering engineers not having engineering jobs, the…

  11. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  12. Globalization and Organizational Change: Engineers' Experiences and Their Implications for Engineering Education

    ERIC Educational Resources Information Center

    Lucena, Juan C.

    2006-01-01

    The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…

  13. Improving engineering effectiveness

    NASA Technical Reports Server (NTRS)

    Fiero, J. D.

    1985-01-01

    Methodologies to improve engineering productivity were investigated. The rocky road to improving engineering effectiveness is reviewed utilizing a specific semiconductor engineering organization as a case study. The organization had a performance problem regarding new product introductions. With the help of this consultant as a change agent the engineering team used a systems approach to through variables that were effecting their output significantly. Critical factors for improving this engineering organization's effectiveness and the roles/responsibilities of management, the individual engineers and the internal consultant are discussed.

  14. 78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... proposed AD. Discussion We received a report of a fire warning on an IAE V2525 turbofan engine shortly...

  15. Beneficial reuse of fly ashes in geotechnical engineering with physicochemical and electron microscopic methods.

    DOT National Transportation Integrated Search

    2013-06-01

    The sedimentation behavior of fine grained soil is largely dependent on its pore fluid chemistry. Physicochemical properties of the : pore fluid, such as ionic strength and pH, could greatly influence the micro structure of kaolinite which in turn in...

  16. MX Siting Investigation. Prime Characterization Sites Central High Plains Candidate Siting Province.

    DTIC Science & Technology

    1979-02-15

    information obtained from these studies , in combination with data obtained in the Screen- ing studies , has been used for geotechnical ranking (FN-TR-25). I...Plains Candi- date Siting Province (CSP), one of six provinces included in the geotechnical Characterization studies . The location of the sites within...remaining after Intermediate Screening were divided into CSPs based on similar geotechnical characteristics. Intermediate Screening studies (FN-TR-17

  17. Traditional engineering in the biological century: the biotraditional engineer.

    PubMed

    Friedman, M H

    2001-12-01

    The increasing importance of life science in all engineering is prompting departments in the traditional engineering disciplines to offer life science as part of their curricula. Students who take advantage of this opportunity--"biotraditional engineers"--will be well positioned for careers in their discipline and in related areas of bioengineering. The founder engineering societies, such as the Bioengineering Division of ASME, are responding to this trend by broadening their scope and working increasingly across interdisciplinary borders.

  18. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1978-01-01

    Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.

  19. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  20. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  1. Formalization of the engineering science discipline - knowledge engineering

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an

  2. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  3. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  4. First-year engineering students' views of the nature of engineering: implications for engineering programmes

    NASA Astrophysics Data System (ADS)

    Karataş, F. Ö.; Bodner, G. M.; Unal, Suat

    2016-01-01

    A study was conducted on the views of the nature of engineering held by 114 first-year engineering majors; the study built on prior work on views of the nature of science held by students, their instructors, and the general public. Open-coding analysis of responses to a 12-item questionnaire suggested that the participants held tacit beliefs that engineering (1) involves problem solving; (2) is a form of applied science; (3) involves the design of artefacts or systems; (4) is subject to various constraints; and (5) requires teamwork. These beliefs, however, were often unsophisticated, and significant aspects of the field of engineering as described in the literature on engineering practices were missing from the student responses. The results of this study are important because students' beliefs have a strong influence on what they value in a classroom situation, what they attend to in class, and how they choose to study for a course.

  5. Geotechnical Investigations

    DTIC Science & Technology

    2001-01-01

    and erosion of embankment or foundation materials and hydraulic fracturing while using water. The new ER establishes a policy for drilling in earth...Table 5-4 In Situ Tests to Determine Stress Conditions Bibliographic Test Soils Rocks Reference Remarks Hydraulic fracturing X...Leach (1977) Only for normally consolidated or slightly Mitchell, Guzikowski, consolidated soils and Villet (1978) Hydraulic fracturing X RTH 344 Stress

  6. The responsibilities of engineers.

    PubMed

    Smith, Justin; Gardoni, Paolo; Murphy, Colleen

    2014-06-01

    Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.

  7. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2003-01-01

    The objective is to develop the capability to numerically model the performance of gas turbine engines used for aircraft propulsion. This capability will provide turbine engine designers with a means of accurately predicting the performance of new engines in a system environment prior to building and testing. The 'numerical test cell' developed under this project will reduce the number of component and engine tests required during development. As a result, the project will help to reduce the design cycle time and cost of gas turbine engines. This capability will be distributed to U.S. turbine engine manufacturers and air framers. This project focuses on goals of maintaining U.S. superiority in commercial gas turbine engine development for the aeronautics industry.

  8. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  9. Infusing Engineering Concepts: Teaching Engineering Design

    ERIC Educational Resources Information Center

    Daugherty, Jenny

    2012-01-01

    Engineering has gained considerable traction in many K-12 schools. However, there are several obstacles or challenges to an effective approach that leads to student learning. Questions such as where engineering best fits in the curriculum; how to include it authentically and appropriately; toward what educational end; and how best to prepare…

  10. 15. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW IS TAKEN FROM THE HIGH-PRESSURE SIDE OF THE ENGINE SHOWING THE HOUSING EXTENSION; TO THE RIGHT, IN THE BACKGROUND, IS THE 24' CAST-IRON FLYWHEEL. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  11. Understanding engineering professionalism: a reflection on the rights of engineers.

    PubMed

    Stieb, James A

    2011-03-01

    Engineering societies such as the National Society of Professional Engineers (NSPE) and associated entities have defined engineering and professionalism in such a way as to require the benefit of humanity (NSPE 2009a, Engineering Education Resource Document. NSPE Position Statements. Governmental Relations). This requirement has been an unnecessary and unfortunate "add-on." The trend of the profession to favor the idea of requiring the benefit of humanity for professionalism violates an engineer's rights. It applies political pressure that dissuades from inquiry, approaches to new knowledge and technologies, and the presentation, publication, and use of designs and research findings. Moreover, a more politically neutral definition of engineering and/or professionalism devoid of required service or benefit to mankind does not violate adherence to strong ethical standards.

  12. How Engineers Negotiate Domain Boundaries in a Complex, Interdisciplinary Engineering Project

    NASA Technical Reports Server (NTRS)

    Panther, Grace; Montfort, Devlin; Pirtle, Zachary

    2017-01-01

    Engineering educators have an essential role in preparing engineers to work in a complex, interdisciplinary workforce. While much engineering education focuses on teaching students to develop disciplinary expertise in specific engineering domains, there is a strong need to teach engineers about the knowledge that they develop or use in their work (Bucciarelli 1994, Allenby Sarewitz, 2011; Frodeman, 2013). The purpose of this research is to gain a better understanding of the knowledge systems of practicing engineers through observations of their practices such that the insights learned can guide future education efforts. Using an example from a complex and interdisciplinary engineering project, this paper presents a case study overviewing the types of epistemological (or knowledge-acquiring or using) complexities that engineers navigate. Specifically, we looked at a discussion of the thermal design of a CubeSat that occurred during an engineering review at NASA. We analyzed the review using a framework that we call 'peak events', or pointed discussions between reviewers, project engineers, and managers. We examined the dialog within peak events to identify the ways that knowledge was brought to bear, highlighting discussions of uncertainty and the boundaries of knowledge claims. We focus on one example discussion surrounding the thermal design of the CubeSat, which provides a particularly thorough example of a knowledge system since the engineers present explained, justified, negotiated, and defended knowledge within a social setting. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards in this way. We highlight issues that should matter to engineering educators, such as the need to discuss what level of uncertainty is sufficient and the need to negotiate boundaries of system responsibility. Although this analysis is limited to a single discussion or 'peak event', our case shows that this

  13. Be a Professional - Be Licensed! - Take the agricultural engineering professional engineering exam

    USDA-ARS?s Scientific Manuscript database

    Between October 2005 and October 2007, only 78 Agricultural Engineers took the professional engineering (PE) exam in the field of Agricultural Engineering, while the other 406 registered Agricultural Engineering Examinees took tests offer by other engineering disciplines. With the decline in partic...

  14. Engineering Encounters: An Engineering Design Process for Early Childhood

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  15. 77 FR 20743 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ...-24785; Directorate Identifier 2006-NE-20-AD] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for certain Lycoming Engines (L)O-360, (L)IO-360, AEIO-360, O-540, IO-540, AEIO-540...

  16. Engineering Background: Modern Formats and Challenges of Conceptual Engineering

    NASA Astrophysics Data System (ADS)

    Khamidullina, A. F.; Kuzmina, M. A.; Khusnutdinova, E. M.; Konakhina, I. A.

    2017-09-01

    This paper describes the analysis of problems and development perspectives of engineering education in our and other countries. Special attention is given to modern formats of education that motivate creative efforts of engineers-to-be as well as issues of conceptual engineering taking the challenges of modernity into account.

  17. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  18. Protein engineering for metabolic engineering: current and next-generation tools

    PubMed Central

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  19. Protein engineering for metabolic engineering: current and next-generation tools.

    PubMed

    Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C

    2013-05-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  1. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  2. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  3. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  4. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  5. Alternative Automobile Engines

    ERIC Educational Resources Information Center

    Wilson, David Gordon

    1978-01-01

    Requirements for cleaner and more efficient engines have stimulated a search for alternatives to the conventional spark-ignition engine. So far, the defects of the alternative engines are clearer than the virtues. The following engines are compared: spark ignition, diesel, vapor-cycle, Stirling, and gas turbine. (Author/MA)

  6. 19. Engine identified as a single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Engine identified as a single cylinder vacuum assist engine for the Filer and Stowell 15-inch continuous mill. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  7. 78 FR 9003 - Airworthiness Directives; Engine Alliance Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... GP7270 and GP7277 turbofan engines. This proposed AD was prompted by damage to the high-pressure... GP7277 turbofan engines with a high-pressure compressor (HPC) stage 6 disk, part number (P/N) 382-100-505...

  8. Engineering Programs of Tomorrow: The Role of Agricultural Engineering.

    ERIC Educational Resources Information Center

    Edwards, Donald M.

    Due to rapid growth of societal and technological endeavors, engineers of the future will require greater technical competence. At the same time, engineering will become more people oriented with greater emphasis placed on people input into decision making. As a result, engineering education must not only provide improved technical education but…

  9. First-year Engineering Education with the Creative Electrical Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.

  10. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines AGENCY: Federal Aviation... all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant... directive (AD): 2013-24-06 Thielert Aircraft Engines GmbH: Amendment 39-17680; Docket No. FAA-2013-0561...

  11. 2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  12. 1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITEDTOD TWINTANDEM ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITED-TOD TWIN-TANDEM ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  13. 5. Engine room, general view looking east, engine #2 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Engine room, general view looking east, engine #2 in foreground (1895, now cannibalized for parts), engine #3 is in the background - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  14. Effect of grain size distribution on stress-strain behavior of lunar soil simulants

    NASA Astrophysics Data System (ADS)

    Monkul, Mehmet Murat; Dacic, Amina

    2017-08-01

    Geotechnical behavior of the lunar soils is important for engineering analyses regarding various aspects of the future extraterrestrial settlement plans including lunar exploration and construction. Many lunar soil simulants had been produced so far, in order to resemble lunar soils and conduct such analyses. The goal of this study is to investigate how and to what extent the variations in the grain size distribution of different lunar soil simulants affect their shear strength and volume change behaviors, both of which are quite important for constitutive modeling and geotechnical design. Static simple shear tests were conducted on four lunar soil simulants that were reproduced in terms of original gradation characteristics. The results indicate that various gradational parameters, such as mean grain size, coefficient of uniformity and fines content influence the shear strength, the amount of volumetric dilatancy, and the rate of dilatancy of simulant specimens in different levels when they were compared at the same density or void ratio. The possible reasons behind such different levels of influence were also discussed by focusing on the initial fabric of specimens achieved before shearing and the interaction between silt and sand matrices in the simulants.

  15. Development of regional liquefaction-induced deformation hazard maps

    USGS Publications Warehouse

    Rosinski, A.; Knudsen, K.-L.; Wu, J.; Seed, R.B.; Real, C.R.; ,

    2004-01-01

    This paper describes part of a project to assess the feasibility of producing regional (1:24,000-scale) liquefaction hazard maps that are based-on potential liquefaction-induced deformation. The study area is the central Santa Clara Valley, at the south end of San Francisco Bay in Central California. The information collected and used includes: a) detailed Quaternary geological mapping, b) over 650 geotechnical borings, c) probabilistic earthquake shaking information, and d) ground-water levels. Predictions of strain can be made using either empirical formulations or numerical simulations. In this project lateral spread displacements are estimated and new empirical relations to estimate future volumetric and shear strain are used. Geotechnical boring data to are used to: (a) develop isopach maps showing the thickness of sediment thatis likely to liquefy and deform under earthquake shaking; and (b) assess the variability in engineering properties within and between geologic map units. Preliminary results reveal that late Holocene deposits are likely to experience the greatest liquefaction-induced strains, while Holocene and late Pleistocene deposits are likely to experience significantly less horizontal and vertical strain in future earthquakes. Development of maps based on these analyses is feasible.

  16. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    NASA Astrophysics Data System (ADS)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  17. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  18. Introduction to tissue engineering and application for cartilage engineering.

    PubMed

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  19. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  20. 76 FR 77108 - Airworthiness Directives; International Aero Engines Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Airworthiness Directives; International Aero Engines Turbofan Engines AGENCY: Federal Aviation Administration...-D5, V2530-A5, and V2533-A5 turbofan engines. This AD was prompted by three reports of high- pressure..., V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528- D5, V2530-A5, and V2533-A5 turbofan engines...