Science.gov

Sample records for geothermal area north

  1. Geologic Interpretation of the Geothermal Potential of the North Bonneville Area

    SciTech Connect

    Nielson, D.L.; Moran, M.R.

    1980-02-15

    Possible geothermal development for the township of North Bonneville, Washington is being investigated because of the proximity of the town to hot springs in a geologic province of good geothermal potential. Surface expression of geothermal resources is provided by conduits through an impermeable reservoir cap and is therefore generally structurally controlled. Near North Bonneville the geologic formations that underlie potential drilling sites are the Eagle Creek formation and the Ohanpecosh Formation. The Lower Miocene Eagle Creek Formation is composed of poorly consolidated volcanic conglomerates, sandstones, tuffs, and includes a few minor interbedded lava flows. The Eocene-Oligiocene Ohanapecosh (Weigle) Formation in its nearest exposures to North Bonneville is composed of volcaniclastics and lava flows. The Ohanapecosh has been altered to zeolites and clays and is therefore well consolidated and impermeable. The lack of permeability provides the necessary reservoir cap for any geothermal system that may be present at depth. This formation, to the northeast, in the Wind River drainage is greater than 19,000 ft. thick. Circulation of geothermal heated water from this thick sequence of impermeable strata must be associated with penetrating fracture zones.

  2. Geothermal resource evaluation of the Yuma area

    SciTech Connect

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  3. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  4. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect

    Icerman, L.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  5. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    NASA Astrophysics Data System (ADS)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the

  6. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    SciTech Connect

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  7. Geology of the Colado Geothermal Area, Pershing County, Nevada

    SciTech Connect

    Sibbett, B.S.; Bullett, M.J.

    1980-07-01

    The Colado geothermal area in south-central Pershing County, Nevada is defined by hot water wells in alluvium just west of the West Humboldt Range. Geothermal gradient holes have encountered temperatures up to 113.5/sup 0/C at a depth of 76 m (250 ft) with a gradient reversal in the alluvium below this depth. The West Humboldt Range consists mainly of Triassic to Jurassic slaty shale to quartzite of the Auld Lang Syne Group. Carbonate rocks of the Jurassic Lovelock Formation have been thrust over pelitic rocks on the south end of the area. Erosional remnants of Tertiary tuffs and sediments overlay the metasediments in the West Humboldt Range. The principal structures are high-angle faults striking north-northwest, northeast and north-south. The horst-to-graben transition along the range front consists of several step faults trending irregularly north. The structural pattern in the west edge of the range probably continues to the west under the Quaterary alluvium where the source of the hot water is located. Thermal waters probably rise along a major fault intersection in the Mesozoic rocks then spread out in an aquifer in the alluvium. Several thrust faults are exposed south of Coal Canyon, and a structural break in the Mesozoic rock exists under the canyon. Several low-angle faults are present north of Coal Canyon but their effect, if any, on the geothermal occurrence is not known.

  8. Geothermal applications for highway rest areas

    SciTech Connect

    Strawn, J.A.; Engen, I.A.

    1982-02-01

    A feasibility study, made for the South Dakota Department of Transportation, regarding geothermal applications for highway rest areas is described. This preliminary information indicated that the retrofit of the heating systems in the rest area structures was feasible. Specific design assumptions, equipment selections, costs, and other data are reported. This information is conceptual in nature.

  9. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California

    SciTech Connect

    Youngs, Leslie G.

    1982-07-01

    The California Division of Mines and Geology (CDMG) selected the San Bernardino area for detailed geothermal resource investigation because the area was known to contain promising geothermal resource sites, the area contained a large population center, and the City of San Bernardino had expressed serious interest in developing the area's geothermal resource. Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs, South San Bernardino, and Harlem Hot Springs--in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the South San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142 C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the South San Bernardino geothermal area was 56 C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal areas was 49.5 C at 174 meters (570 feet) in an abandoned water well.

  10. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  11. Geothermal resource area 11, Clark County area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  12. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  13. Low Entalpy Geothermal suitability of north Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Cuccuru, Stefano; Oggiano, Giacomo

    2015-04-01

    This note focus on geothermal potentialities of north Sardinia, where several positive thermal anomalies occur along with geolithological and climatic conditions, which make the area specifically suitable for geoexchange. Sardinia consists of a Variscan basement metamorphosed at different grade and further intruded by a late orogenic batholith. Above this basement, since Mesozoic time, a composite sedimentary and volcanic succession occurs, with maximum thickness of 2-3 Km in correspondence of some extensional and strike-slip Cenozoic basins. The volcanic activity consists of a calcalkaline cycle with crustal component, which started in the late Eocene and ended in the Serravallian; another, mantle derived, alkaline-transitional cycle took place during Pliocene and ended in the middle Pleistocene. Several evidences of geothermal circuits occur in northwestern Sardinia, where some springs characterized by anomalous water temperatures and/or chemical-physical features (e.g., high salinity and carbon dioxide content) were known. In addiction those already exploited (e.g., S. Lucia, S. Martino), new springs and boreholes characterized by positive anomalous water temperatures (in the range of 24 and 35 °C) have been highlighted during our recent surveys. These waters are warmer than the homoeothermic level temperature (where no seasonal variations are recorded), which in the area is 15-16 °C. Considering the absence of active volcanism, the anomalous temperatures must be generated by the uprising of deep meteoric water along a plumbing network of crustal faults that bound the extensional as well as the strike slip basins. Rainwater heated for geothermal gradient can upwell rapidly interacting with surface aquifers that, hence, experience heating at different degree. The physical characteristics (i.e., thermal conductivity, open porosity, permeability etc) of the rocks cropping in north Sardinia, regardless the positive thermal anomalies, are profitably suitable for

  14. Coniform stromatolites from geothermal systems, North Island, New Zealand

    USGS Publications Warehouse

    Jones, B.; Renaut, R.W.; Rosen, Michael R.; Ansdell, K.M.

    2002-01-01

    Coniform stromatolites are found in several sites in the Tokaanu and Whakarewarewa geothermal areas of North Island, New Zealand. At Tokaanu, silicification of these stromatolites is taking place in Kirihoro, a shallow hot springfed pool. At Whakarewarewa, subfossil silicified coniform stromatolites are found on the floor of "Waikite Pool" on the discharge apron below Waikite Geyser, and in an old sinter succession at Te Anarata. The microbes in the coniform stromatolites from Tokaanu, Waikite Pool, and Te Anarata have been well preserved through rapid silicification. Nevertheless, subtle differences in the silicification style induced morphological variations that commonly mask or alter morphological features needed for identification of the microbes in terms of extant taxa. The coniform stromatolites in the New Zealand hotspring pools are distinctive because (1) they are formed of upward tapering (i.e., conical) columns, (2) neighboring columns commonly are linked by vertical sheets or bridges, (3) internally, they are formed of alternating high- and low-porosity laminae that have a conical vertical profile, and (4) Phormidium form more than 90% of the biota. As such, they are comparable to modern coniform mats and stromatolites found in the geothermal systems of Yellowstone National Park and ice-covered lakes in Antarctica. Formation of the coniform stromatolites is restricted to pools that are characterized by low current energy and a microflora that is dominated by Phormidium. These delicate and intricate stromatolites could not form in areas characterized by fast flowing water or a diverse microflora. Thus, it appears that the distribution of these distinctive stromatolites is controlled by biological constraints that are superimposed on environmental needs.

  15. Geology of Platanares geothermal area, Copan, Honduras

    SciTech Connect

    Heiken, G.; Duffield, W.; Wohletz, K.; Priest, S.; Ramos, N.; Flores, W.; Eppler, D.; Ritchie, A.; Escobar, C.

    1987-05-01

    The Platanares, Copan (Honduras) geothermal area is located in a highly faulted terrain of Paleozoic(.) metamorphic rocks, Cretaceous clastic sedimentary rocks, and Tertiary volcanic rocks. All thermal manifestations are located along faults. The volcanic rocks are probably too old to represent the surface expression of an active crustal magma body. Thus, the thermal water is interpreted to be heated during deep circulation in a regime of elevated heat flow. The water chemistry suggests that the geothermal reservoir originates within the Cretaceous sedimentary sequence and that the reservoir temperature may be as high as 240/sup 0/ C. Two exploration coreholes penetrated the volcanic sequence and bottomed within Cretaceous redbeds. Well PLTG-1 is 650 m deep and flows at 3 Mw thermal from a 160/sup 0/ C permeable zone. Well PLTG-2 is 401 m deep and has a thermal gradient of 139/sup 0/ C/km. Exploration drilling is continuing, with a third corehole to be drilled in May, 1987.

  16. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  17. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be

  18. Geothermal resource area 10: Lincoln County, Nevada. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 10 includes all of the land in Lincoln County, Nevada. Within this area are 10 known geothermal anomalies: Caliente Hot Springs, Panaca Warm Springs, Delume's Springs, Flatnose Ranch Spring, Hiko Springs, Crystal Springs, Ash Springs, Geyser Ranch Springs, Hammond Ranch Springs, Sand Springs, and Bennett's Springs. The geothermal resource in Lincoln County, though somewhat limited, has some potential for development. All of the known geothermal areas have measured temperatures of less than 160/sup 0/F. Most have temperatures of less than 100/sup 0/F. Because of the low temperature of the resource and, for the most part, the distance of the resource from any population base, the potential application types are somewhat restricted. Two of the 10 sites have significant potential in relation to local energy and economic requirements. Caliente has already partially developed the resource located under the community. It is now supplying some hot water and space heating needs for a trailer court, several homes, and a hospital. The energy already on-line in Caliente is making a significant impact on the economic base of the community and decreasing the demand for conventional energy resources. Recent studies have indicated the technical and economic feasibility of installing a district space heating system. If such a system were developed, it could only increase the economic benefits receeived from this alternative energy resource. Ash Springs has already been developed into a recreational area. Because of the high flow rate and the adequate water temperature of the resource, prawn or fish farming may have good potential at this site.

  19. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France)

    NASA Astrophysics Data System (ADS)

    Lagabrielle, Yves; Clerc, Camille; Vauchez, Alain; Lahfid, Abdeltif; Labaume, Pierre; Azambre, Bernard; Fourcade, Serge; Dautria, Jean-Marie

    2016-03-01

    Although they are famous among Earth scientists, the Lherz peridotites are exposed within geological formations of the North Pyrenean Zone (NPZ) still lacking detailed investigations. Our study focuses on the metasediments of the Aulus basin hosting the Lherz peridotite body and associated ultramafic fragments of smaller size. The new data set comprises of structural analysis and detailed geological mapping of the massive Mesozoic marbles that form the prerift sequence typical of the NPZ and of the ultramafic-rich clastic breccia formations surrounding the peridotite bodies. The massive marbles display an evolution from hot and ductile to cold and brittle deformation, indicative of an exhumation process ending with the sedimentary reworking of both the deformed Mesozoic metasediments and the exhumed ultramafic rocks. Crystal Preferred Orientations (CPO) measured in the marbles support a deformation mechanism by dislocation creep of calcite, which is dominant between 400 °C and 600 °C; these deformation temperatures are within the range determined earlier by Clerc et al. (2015), using RSCM (Raman Spectroscopy of Carbonaceous Material) geothermometry. As a consequence, we better describe the transition from ductile to brittle deformation in the prerift marbles and clarify the origin of the syn-rift breccias. Due to continuous exhumation along detachments' faults, the brecciated metamorphic carbonates of the prerift NPZ sedimentary cover were passively uplifted towards shallower levels and progressively unroofed, while transported passively on the back of the exhumed ultramafic footwall. These results are consistent with the recent interpretations of the North Pyrenean peridotites as remnants of subcontinental mantle rocks exhumed within the pre-Pyrenean rift system. We emphasize the importance of tectonic decoupling between the Mesozoic sedimentary cover and the Palaeozoic basement, which leads to the juxtaposition of metamorphosed and deformed Mesozoic sediments

  20. Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America

    SciTech Connect

    Blackwell, David D.; Steele, John L.; Carter, Larry C.

    1990-01-01

    The large and small-scale geothermal features of the North American continent and surrounding ocean areas illustrated on the new 1:5,000,000 DNAG Geothermal Map of North America are summarized. Sources for the data included on the map are given. The types of data included are heat flow sites coded by value, contours of heat flow with a color fill, areas of major groundwater effects on regional heat flow, the top-of-geopressure in the Gulf Coast region, temperature on the Dakota aquifer in the midcontinent, location of major hot springs and geothermal systems, and major center of Quaternary and Holocene volcanism. The large scale heat flow pattern that is well known for the conterminous United States and Canada of normal heat flow east of the Cordillera and generally high heat flow west of the front of the Cordillera dominates the continental portion of the map. However, details of the heat flow variations are also seen and are discussed briefly in this and the accompanying papers.

  1. Indoor radon concentration in geothermal areas of central Italy.

    PubMed

    Ciolini, R; Mazed, D

    2010-09-01

    The indoor radon ((222)Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world's geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m(-3) for Larderello area and 43 Bq m(-3) for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded.

  2. SNOWBIRD ROADLESS AREA, NORTH CAOLINA.

    USGS Publications Warehouse

    Lesure, Frank G.; Chatman, Mark L.

    1984-01-01

    The Snowbird Roadless Area includes all the upper reaches of Snowbird Creek and the surrounding rugged ridges of the Unicoi Mountains, North Carolina. Mineral-resource surveys show that the area contains folded metasedimentary rocks of the Great Smoky Group of Late Proterozoic age and that the area has little promise for the occurrence of mineral resources. Abundant rock suitable for crushed rock and rough building stone is the only identified mineral resource, but extensive deposits of this commodity occur throughout the region outside the roadless area. Oil and gas and massive sulfide deposits are possible resources.

  3. Representative well models for eight geothermal-resource areas

    SciTech Connect

    Carson, C.C.; Lin, Y.T.; Livesay, B.J.

    1983-02-01

    Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

  4. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.; Gese, D.D.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate within the underlying rocks. 21 refs.

  5. Monitoring well systems in geothermal areas

    SciTech Connect

    Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

    1982-03-01

    The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

  6. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  7. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  8. The detection of geothermal areas from Skylab thermal data

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.; Pohn, H. A.

    1975-01-01

    Skylab-4 X-5 thermal data of the geysers area was analyzed to determine the feasibility of using midday Skylab images to detect geothermal areas. The hottest ground areas indicated on the Skylab image corresponded to south-facing barren or sparsely vegetated slopes. A geothermal area approximately 15 by 30 m coincided with one of the hottest areas indicated by Skylab. This area could not be unambiguously distinguished from the other areas which are believed to be hotter than their surroundings as a result of their topography, and micrometeorological conditions. A simple modification of a previous thermal model was performed and the predicted temperatures for the hottest slopes using representative values was in general agreement with the observed data. It is concluded that data from a single midday Skylab pass cannot be used to locate geothermal areas.

  9. The Geyser Bight geothermal area, Umnak Island, Alaska

    SciTech Connect

    Motyka, R.J. ); Nye, C.J. Univ. of Alaska, Fairbanks, AK . Geophysical Inst.); Turner, D.L. . Geophysical Inst.); Liss, S.A. )

    1993-08-01

    The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO[sub 2] rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165 and 200 C, respectively, as estimated by geothermometry. Sulfate-water isotope geothermometers suggest a deeper reservoir with a temperature of 265 C. The thermal spring waters have relatively low concentrations of Cl (600 ppm) but are rich in B (60 ppm) and As (6 ppm). The As/Cl ratio is among the highest reported for geothermal waters. 41 refs., 12 figs., 8 tabs.

  10. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  11. Conceptual model of the Klamath Falls, Oregon geothermal area

    SciTech Connect

    Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

    1987-01-01

    Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed.

  12. Conceptual Model of the Klamath Falls, Oregon Geothermal Area

    SciTech Connect

    Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

    1987-01-20

    Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. 1 tab., 8 figs., 21 refs.

  13. City of North Bonneville, Washington: Geothermal Exploration production test well

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Based on discussions with the City of North Bonneville, the production test well was drilled to a depth that would also explore for ground water temperatures near 130 F (54.4 C). Depth projections to a 130 F bottom hole temperature were made by assuming a constant ground water temperature rise greater than 50 C per kilometer, and by assuming that essentially homogeneous or equivalent conductive rock units would be encountered. Minimum water production requirements were not set, although the City determined that about 800 gpm would be acceptable. Larger upper casing diameters of 16 and 12 inches were installed in order to provide the future use of either a vertical turbine or submersible pump, as desired by the city. The scope of work included interpretation of well characteristics, evaluation of ground water as a geothermal resource, geologic analysis of data from drilling and testing, drilling supervision, daily drilling cost accounting, and preparation of a final report. The report includes geologic evaluation of the drilling and test data, ground water and geothermal potential.

  14. European Geothermal Drilling Experience-Problem Areas and Case Studies

    SciTech Connect

    Baron, G.; Ungemach, P.

    1981-01-01

    Geothermal drilling has long been restricted in Western Europe to the sole dry steam field of Larderello in Italy. In the last few years, a wider experience is building up as a consequence of intensified exploration and development programs carried out for evaluation and production of both low- and high-enthalpy geothermal resources. A sample of some 40 boreholes indicates the problem areas which are given.

  15. Geothermal Heat Flux Assessment Using Remote Sensing Land Surface Temperature and Simulated Data. Case Studies at the Kenyan Rift and Yellowstone Geothermal Areas

    NASA Astrophysics Data System (ADS)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C.; van der Meer, F. D.

    2015-12-01

    In this work we propose an innovative approach to assess the geothermal heat flux anomalies in the regions of the Kenyan Rift and the Yellowstone geothermal areas. The method is based on the land surface temperature (LST) differences obtained between remote sensing data and land surface model simulations. The hypothesis is that the model simulations do not account for the subsurface geothermal heat source in the formulation. Remote sensing of surface emitted radiances is able to detect at least the radiative portion of the geothermal signal that is not in the models. Two methods were proposed to assess the geothermal component of LST (LSTgt) based on the aforementioned hypothesis: a physical model and a data mining approach. The LST datasets were taken from the Land Surface Analysis Satellite Application Facilities products over Africa and the Copernicus Programme for North America, at a spatial resolution of 3-5 km. These correspond to Meteosat Second Generation and Geostationary Operational Environmental Satellite system satellites data respectively. The Weather Research and Forecasting model was used to simulate LST based on atmospheric and surface characteristics using the Noah land surface model. The analysis was carried out for a period of two months by using nighttime acquisitions. Higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer data were also used on the Kenyan area to produce similar outputs employing existing methods. The comparison of the results from both methods and areas illustrated the potential of the data and methodologies for geothermal applications.

  16. A gravity model for the Coso geothermal area, California

    SciTech Connect

    Feighner, M.A.; Goldstein, N.E.

    1990-08-01

    Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 {times} 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity variations can be explained by two lithologic units: (1) low density wedges of Quarternary alluvium with interbedded thin basalts (2.4 g/cm{sup 3}) filling the Rose Valley and Coso Basin/Indian Wells Valley, and (2) low density cover of Tertiary volcanic rocks and intercalated Coso Formation (2.49 g/cm{sup 3}). A 3-D iterative approach was used to find the thicknesses of both units. The gravity anomaly remaining after effects from Units 1 and 2 are removed is a broad north-south-trending low whose major peak lies 5 km north of Sugarloaf Mountain, the largest of the less than 0.3 m.y. old rhyolite domes in the Coso Range. Most of this residual anomaly can be accounted for by a deep, low-density (2.47 g/cm{sup 3}) prismatic body extending from 8 to about 30 km below the surface. While some of this anomaly might be associated with fractured Sierran granitic rocks, its close correlation to a low-velocity zone with comparable geometry suggests that the residual anomaly is probably caused a large zone of partial melt underlying the rhyolite domes of the Coso Range. 12 refs., 9 figs.

  17. Re-Evaluating Geothermal Potential with GIS Methods and New Data: Williston Basin, North Dakota

    NASA Astrophysics Data System (ADS)

    Crowell, A. M.; Gosnold, W. D.; UND Geothermal Laboratory

    2011-12-01

    The University of North Dakota Geothermal Laboratory is working on the National Geothermal Data Aggregation project in conjunction with Southern Methodist University (SMU) and other partners, and funded by the Department of Energy to collect data for exploration and utilization of resources for geothermal power production. We have examined 10,951 wells in the Williston Basin to determine accurate methods for estimating power extraction potential in a sedimentary basin. The calculations we used involved defining the area of wells within designated ranges and calculating the geothermal fluid reservoir volume using porosity data from the North Dakota Geological Survey Wilson M. Laird Core Library. We defined the parameters for our calculations as: bottom-hole temperature (BHT), formation thickness data, surface area of the polygon around wells within the temperature range, and porosity data. The wells in each formation with a BHT over 90°C were imported into ArcGIS, buffered to 1.6 kilometers from centroid, and outlined with a polygon feature to define the surface area. We then included average formation thickness to determine an approximate volume for ten water and rock reservoirs. In calculating this available energy the following three assumptions were made; that 1/1000 of the water volume is available to use per year, that the temperature is lowered to 50°C during electrical power production, and that the efficiency of the binary power plant utilized is 14%. The estimated recoverable energy in the volume of rock containing geothermal fluids by temperature range is as follows: 1.32 x 108 MW for 90°-100° C, 1.92 x 108 MW for 100°-110° C, 2.15 x 108 MW for 110°-120° C, 2.4 x 108 MW for 120°-130° C, 1.4 x 108 MW for 130°-140° C, 4.95 x 107 MW for 140°-150° C, and 3.67 x 107 MW for 150° C and up.

  18. Assessment of the Geothermal Potential Within the BPA Marketing Area.

    SciTech Connect

    Lund, John W.; Allen, Eliot D.

    1980-07-01

    The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

  19. Geochemistry of selected rock samples: Colado geothermal area, Nevada

    SciTech Connect

    Christensen, O.D.; Sibbett, B.S.; Bullett, M.J.

    1981-01-01

    The results of the chemical analysis of 30 surface rock samples from the Colado geothermal area are presented. The samples represent a variety of materials affected by several hydrothermal events which have formed Au, Sb and clay deposits within the area. The active geothermal system is currently being evaluated for electrical power production. The elements As, Sb, Au, Ag, Li and Hg have been concentrated during more than one of the hydrothermal events which have affected the Colado area. Distinct chemical signatures do not exist for any particular event, instead, it appears that this suite of elements has been repeatedly remobilized, probably in response to similar physical and chemical conditions and processes. Delineation of geochemical zoning related to the active geothermal system is possible only because it is spatially separated from the older hydrothermal deposits. The chemical similarity between the older hydrothermal events and the present hydrothermal system suggest that the Sb and Au mineralization formed at shallow depths in a boiling geothermal environment. It is suggested that new ore zones may be discovered in the Willard mining district if the geothermal model is applied to exploration.

  20. Beowawe Geothermal Area evaluation program. Final report

    SciTech Connect

    Iovenitti, J. L

    1981-03-01

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  1. Study of the geothermal production potential in the Williston Basin, North Dakota

    SciTech Connect

    Chu, Min H.

    1991-09-10

    Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

  2. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  3. Regional and local networks of horizontal control, Cerro Prieto geothermal area

    USGS Publications Warehouse

    Massey, B.L.

    1979-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.

  4. Electrical Resistivity Investigations of the Kurşunlu (Manisa/Turkey) Geothermal Area

    NASA Astrophysics Data System (ADS)

    Sarı, Coşkun; Timur, Emre

    2016-04-01

    It is of considerable importance to explore the geological structure around active faults, especially near-surface unconsolidated layers, to estimate the faults' activity. There are numerous case studies to investigate geothermal reservoirs and surrounding active faults using geophysical exploration methods; however, only a few cases have been verified in detail by comparison with other geological information. Electrical resistivity data provide a substantial contribution to the geophysical mapping and monitoring of geothermal reservoirs. We applied electrical methods, which can be effective for exploring to several hundred meters depth, to reveal geological structures covered by thick Quaternary alluvium formations. Geothermal activity around city of Manisa in Gediz Graben (Western Turkey) has been investigated by many researchers and many geothermal boreholes were drilled in order to produce electricity and for heating purposes. The Kurşunlu geothermal area is with the southern side of the Gediz Graben in 2 km west of Salihli, Manisa, Turkey. According to rising demand on thermal water around Salihli, geophysical studies were performed using the Vertical Electrical Sounding (VES) measurements at 16 stations around the area of Kurşunlu hot springs, and they were interpreted using both one and two-dimensional modelling. Vertical and horizontal resistivity sections were mapped, and it was determined that two low-resistivity layers exist both in the North (stations 1,2 and 4) and the South (stations 6 and 10) part of the survey area. As a result of the studies, the boundaries of the low-resistivity layer were mapped and test drilling locations were recommended.

  5. Historical impacts of geothermal resources on the people of North America

    SciTech Connect

    Lund, J.W.

    1995-10-01

    The Indians of North America considered hot springs as a sacred place where the {open_quotes}Great Spirit{close_quotes} lived, and thus were great believers in the miraculous healing powers of the heat and mineral waters. These areas were also known as neutral ground; where warriors could travel to and rest unmolested by other tribes. Even though archeological finds date Native American presence at hot springs for over 10,000 years, there is no recorded history prior to the arrival of the Europeans in the 1500`s. Many legends concerning geothermal activities are part of the Native American oral history, such as about Madame Pele, the Hawaiian goddess of volcanic fire, and the story of the battle between Skell and Llao describing the eruptions of Mt. Mazama (Crater Lake) and Mt. Shasta. Obsidian was one of the prized volcanic trading items used by the Indians for tools and weapons.

  6. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as "key areas." These forty-three areas constitute a network of areas that hold sites that likely are important to wintering North American herons. Within each area, we identify specific sites that are potentially important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  7. Continued seismic monitoring of the Geysers, California geothermal area

    SciTech Connect

    Ludwin, R.S.; Bufe, C.G.

    1980-01-01

    Probable effects of geothermal development on seismicity at the Geysers are shown by the spatial coherence of decreases in gravity and pressure with maximum geodetic deformation and seismic moment sum along a line through the most developed area of the geothermal field. Increases in the mean number of events per day and in the magnitude of largest annual event correlate with increases in steam production. The two largest earthquakes in the steam field occurred near the two injection wells most distant from production wells, and large events (M/sub c greater than or equal to 2.5) occurred most frequently during months of peak injection. Spatial seismic clusters in proximity to injection wells have occurred soon after injection began. Preliminary data also indicate an increase in seismicity in a previously aseismic area near plant 15 following the beginning of power production at that plant in 1979.

  8. The Geysers-Clear Lake area, California: thermal waters, mineralization, volcanism, and geothermal potential

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Burns, M.G.; Goff, F.E.; Peters, E.K.; Thompson, J.M.

    1993-01-01

    Manifestations of a major thermal anomaly in the Geysers-Clear Lake area of northern California include the late Pliocene to Holocene Clear Lake Volcanics, The Geysers geothermal field, abundant thermal springs, and epithermal mercury and gold mineralization. The epithermal mineralization and thermal springs typically occur along high-angle faults within the broad San Andreas transform fault system that forms the western boundary of the North American plate in this area. The young volcanic rocks overlie Mesozoic marine rocks of the Great Valley sequence which have been thrust above the coeval Franciscan Complex and penecontemporaneously dropped back down along low-angle detachment faults. Geothermal power production has peaked at The Geysers and pressure declines indicate significant depletion of the fluid resource. It is proposed that recently discovered, isotopically shifted steam in the northwest Geysers area indicates the presence not of deep connate water but rather of boiled-down, boron-rich Franciscan evolved meteoric water. This water is likely to be present in limited quantities and will not provide a significant hot water resource for geothermal power production at The Geysers field or from the main Clear Lake volcanic field. -from Authors

  9. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    SciTech Connect

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  10. Seismic monitoring of the Olkaria Geothermal area, Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Simiyu, Silas M.; Keller, G. Randy

    2000-01-01

    Seismic monitoring of the Olkaria Geothermal area in the southern Rift Valley region of Kenya has been carried out since 1985. The initial purpose of this effort was to determine the background level of seismicity before full exploitation of the geothermal resource was started. This monitoring began with one seismic station. However, since May 1996, a seismic network comprising six stations was operated and focused mainly on the East Production Field. During the 5 months of network recording up to mid-September 1996, more than 460 local events originating within the Olkaria Geothermal area ( Ts- Tp<5 s) were recorded, out of which 123 were well-located. Also, 62 events were recorded at regional distances (5 s< Ts- Tp<40 s), and 44 events at teleseismic distance ( Ts- Tp>40 s). During this period, the local microseismicity was found to be continuous with swarms occurring every 4-5 days. Duration magnitudes based on the coda length did not exceed 3.0. Preliminary spectral analysis shows three kinds of seismic signals, with only the first type displaying well-defined P- and S-phases. The seismicity is mainly concentrated in the central area of the recording network, and the linear alignments in the epicenters are striking. A prominent alignment occurs along the Ololbutot fault zone extending from the northern end of the greater Olkaria volcanic complex to the south near the southern terminus of Hell's gorge. Two other prominent alignments occur along NW-SE trends that coincide with fault zones which have been detected by geological and gravity studies. Consequently, they are interpreted to be associated with fluid movement in the geothermal field. These preliminary results suggest that seismic monitoring will be useful to both monitor the field during production and to help site additional wells.

  11. In-situ grown silica sinters in Icelandic geothermal areas.

    PubMed

    Tobler, Dominique J; Stefánsson, Andri; Benning, Liane G

    2008-12-01

    Field in-situ sinter growth studies have been carried out in five geochemically very different Icelandic geothermal areas with the aim to quantify the effects of water chemistry, (e.g. silica content (250 to 695 p.p.m. SiO(2)), salinity (meteoric to seawater), pH (7.5 to 10)), temperature (42-96 degrees C) and microbial abundance (prevalence, density) on the growth rates, textures and structures of sinters forming within and around geothermal waters. At each location, sinter growth was monitored over time periods between 30 min and 25 months using glass slides that acted as precipitation substrates from which sinter growth rates were derived. In geothermal areas like Svartsengi and Reykjanes, subaqueous sinters developed rapidly with growth rates of 10 and 304 kg year(-1 )m(-2), respectively, and this was attributed primarily to the near neutral pH, high salinity and medium to high silica content within these geothermal waters. The porous and homogeneous precipitates that formed at these sites were dominated by aggregates of amorphous silica and they contained few if any microorganisms. At Hveragerdi and Geysir, the geothermal waters were characterized by slightly alkaline pH, low salinity and moderate silica contents, resulting in substantially lower rates of sinter growth (0.2-1.4 kg year(-1 )m(-2)). At these sites sinter formation was restricted to the vicinity of the air-water interface (AWI) where evaporation and condensation processes predominated, with sinter textures being governed by the formation of dense and heterogeneous crusts with well-defined spicules and silica terraces. In contrast, the subaqueous sinters at these sites were characterized by extensive biofilms, which, with time, became fully silicified and thus well preserved within the sinter edifices. Finally, at Krafla, the geothermal waters exhibited high sinter growth rates (19.5 kg year(-1 )m(-2)) despite being considerably undersaturated with respect to amorphous silica. However, the bulk of

  12. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  13. Geothermal resource area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

  14. Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect

    Robinson, S.; Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

  15. Corrosion in geothermal brines of the Salton Sea Known Geothermal Resource Area

    SciTech Connect

    Cramer, S.D.; Carter, J.P.

    1980-01-01

    Corrosion research is being conducted by the Bureau of Mines, U.S. Department of the Interior, to determine suitable construction materials for geothermal resource recovery plants. High chromium-molybdenum iron-base alloys, nickel-base and titanium-base alloys, and a titanium-zirconium-molybdenum alloy (TZM) exhibited good resistance to general, crevice, pitting, and weld corrosion and stress corrosion cracking in laboratory tests in deaerated brines of the Salton Sea known geothermal resource area (KGRA) type at 232 /degree/C and in brine containing dissolved carbon dioxide and methane. Only titanium-base alloys were resistant to corrosion in oxygenated Salton Sea KGRA-type brine. Copper adversely affected the resistance to general corrosion of low-alloy steels in deaerated brine, whereas chromium, nickel, silicon, and titanium improved it. Carbon steel, Type 4130 steel, and Types 410 and 430 stainless steels exhibited poor corrosion resistance in field tests in five brine and steam process streams produced from geothermal well Magmamax No. 1. These alloys were highly susceptible to pitting and crevice corrosion. General corrosion rates were high for the carbon and Type 4130 steels. 24 refs.

  16. Corrosion in geothermal brines of the Salton Sea Known Geothermal Resource Area

    SciTech Connect

    Cramer, S.D.; Carter, J.P.

    1980-01-01

    Corrosion research is being conducted by the Bureau of Mines to determine suitable construction materialls for geothermal resource recovery plants. High chromium-molybdenum iron-base alloys, nickel- and titanium-base alloys, and titanium-zirconium-molybdenum alloy exhibited good resistance to general, crevice, pitting, and weld corrosion and stress corrosion cracking in laboratory tests in deaerated brines of the Salton Sea Known Geothermal Resource Area (KGRA) type at 232/sup 0/C and in brine containing dissolved carbon dioxide and methane. Only titanium-base alloys were resistant to corrosion in oxygenated Salton Sea KGRA-type brine. Copper adversely affected the resistance to general corrosion of low-alloy steels in deaerated brine, whereas chromium, nickel, silicon, and titanium improved it. Carbon steel, type 4130 steel, and types 410 and 430 stainless steels exhibited poor corrosion resistance in field tests in five brine and steam process streams produced from geothermal well Magmamax 1. These alloys were highly susceptible to pitting and crevice corrosion. General corrosion rates were high for carbon and type 4130 steels.

  17. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  18. Building geomechanical characteristic model in Ilan geothermal area, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Yu-Hsuan; Hung, Jih-Hao

    2015-04-01

    National Energy Program-Phase II (NEPPII) was initiated to understand the geomechanical characteristic in Ilan geothermal area. In this study, we integrate well cores and logs (e.g. Nature Gamma-ray, Normal resistivity, Formation Micro Imager) which were acquired in HongChaiLin (HCL), Duck-Field (DF) and IC21 to determine the depth of fracture zone, in-situ stress state, the depth of basement and lithological characters. In addition, the subsurface in-situ stress state will be helpful to analyze the fault reactivation potential and slip tendency. By retrieved core from HCL well and the results of geophysical logging, indicated that the lithological character is slate (520m ~ 1500m) and the basement depth is around 520m. To get the minimum and maximum horizontal stress, several hydraulic fracturing tests were conducted in the interval of 750~765m on HCL well. The horizontal maximum and minimum stresses including the hydrostatic pressure are calculated as 15.39MPa and 13.57MPa, respectively. The vertical stress is decided by measuring the core density from 738m to 902m depth. The average core density is 2.71 g/cm3, and the vertical stress is 19.95 MPa (at 750m). From DF well, the basement depth is 468.9m. Besides, by analyzing the IC21 well logging data, we know the in-situ orientation of maximum horizontal stress is NE-SW. Using these parameters, the fault reactivation potential and slip tendency can be analyzed with 3DStress, Traptester software and demonstrated on model. On the other hand, we interpreted the horizons and faults from the nine seismic profiles including six N-S profiles, two W-E profiles and one NE-SW profile to construct the 3D subsurface structure model with GOCAD software. The result shows that Zhuosui fault and Kankou Formation are dip to north, but Hanxi fault and Xiaonanao fault are dip to south. In addition, there is a syncline-like structure on Nansuao Formation and the Chingshuihu member of the Lushan Formation. However, there is a conflict

  19. Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon

    SciTech Connect

    Not Available

    1980-05-01

    The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

  20. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    SciTech Connect

    Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

    1981-08-01

    Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

  1. Geochemistry of the Colado geothermal area, Pershing County, Nevada

    SciTech Connect

    Christensen, O.D.

    1980-07-01

    Multielement geochemical analysis of drill cuttings from 18 shallow and 2 intermediate-depth temperature gradient holes outlines an area of anomalous geochemistry related to the fluid flow and temperature distribution within the Colado geothermal area. The concentrations of Hg, As, Li, and Be belong to more than one statistical population and provide the clearest expression of hydrothermal processes. Enrichments of these four elements define anomalous zones which are spatially coincident with a measured temperature anomaly. The spatial distribution suggests that thermal fluid rises into alluvium in the vicinity of a major Basin and Range fault to depths of 200 to 400 feet (60 to 120 m), then flows laterally within shallow alluvial aquifers down the local hydrologic gradient. As the fluid cools, Li, Be, As, and Hg are deposited in response to changing physical and chemical conditions. As and Be appear to be deposited early in higher temperature zones; Li begins to deposit early but forms a rather dispersed geochemical anomaly; Hg is anomalous throughout the entire geothermal area but is concentrated in a shallow halo above the As and Be anomalies. The distributions suggest that the entry of thermal fluids from depth into the alluvium is spatially restricted to a small area and that the larger area of the observed thermal anomaly is due to the flow of warm fluid within shallow aquifers.

  2. Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado

    DOE Data Explorer

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,215,000 South boundary: approximately 4,160,000 West boundary: approximately 216,000 East boundary: approximately 245,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps

  3. Mineral resources of the Kofa Unit 4 North Wilderness Study Area, Yuma County, Arizona

    SciTech Connect

    Sherrod, D.R.; Smith, D.B.; Kleinkopf, M.D.; Gese, D.D.

    1990-01-01

    The Kofa Unit 4 North Wilderness Study Area (AZ-050-033) is located in Yuma County, southwestern Arizona. At the request of the U.S. Bureau of Land Management, 1,380 acres of the Kofa Unit 4 North Wilderness Study Area were evaluated for mineral resources (known) and mineral resource potential (undiscovered). Throughout the report, reference to the Kofa Unit 4 North Wilderness Study Area or to the study area refers only to that part of the wilderness study area for which mineral surveys were requested by the U.S. Bureau of Land Management. Low resource potential for geothermal energy exists northwest of the range-bounding faults of the study area. The study area has no resource potential for oil or gas.

  4. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  5. Transportation study for the Geysers Geothermal Resource Area

    SciTech Connect

    Not Available

    1981-12-01

    Potential cumulative impacts on the transportation system are assessed and recommendations are made as to options for handling future transportation development. The area is served by state highways, county roads, and an internal network of private roads. Access into the area is limited, and the roads must handle a variety of traffic including an unusually high percentage of heavy trucks transporting construction equipment and materials, hazardous chemicals, and toxic wastes. In conducting the transportation study public documents on geothermal power plant developments were researched and field trips to inspect the transportation facilities were made. People who have a special interest in the transportation system were also interviewed. In addition, traffic, accident, and road data were analyzed. Traffic forecasts based on projected geothermal resource develpoment were made. All access roads are of substandard design and efficient in structural adequacy. With projected traffic at 40% above the current level for most of the next six years, it is expected that cumulative impacts will cause accelerated degradation of the existing roads.

  6. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    SciTech Connect

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  7. Air pollution and mortality in the Rotorua geothermal area.

    PubMed

    Bates, M N; Garrett, N; Graham, B; Read, D

    1997-10-01

    The effects on human health of geothermal emissions in the Rotorua area have been little studied. We calculated standardised mortality ratios (SMRs), comparing residents domiciled in the Rotorua territorial local authority area with those living in the rest of New Zealand, using mortality data for the decade 1981-1990. The SMRs were adjusted for age, calendar year, sex, and ethnicity. Diagnostic categories examined were based on known target-organ systems of hydrogen sulphide toxicity. Mortality causes examined were diseases of the nervous system and sense organs, diseases of the circulatory system, diseases of the respiratory system, and birth defects. Of these, notably elevated SMRs were found only for diseases of the respiratory system, particularly in Maori women (SMR = 1.61, 95 per cent confidence interval 1.19 to 2.12). A major concern was the possibility of confounding by ethnicity. This is because ethnicity in census data is based on self-identification, whereas ethnicity on death certificates is often based on funeral directors' impressions. This leads to serious underreporting of Maori mortality statistics. For the purposes of this study, this situation was further complicated by indications that ethnicity recording for Maori may be more accurate in the Rotorua area than in the rest of New Zealand. Our analysis suggested that, in general, SMRs based on ethnicity are likely to be spuriously high. Although this study found no clear indications of excess mortality in the Rotorua area likely to have been associated with geothermal emissions, there were limitations in the data that could have prevented the recognition of causal associations.

  8. 200 North Aggregate Area source AAMS report

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

  9. Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section

    SciTech Connect

    Adam Brandt

    2015-11-15

    This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.

  10. Hydrologic reconnaissance of the geothermal area near Klamath Falls, Oregon

    USGS Publications Warehouse

    Sammel, E.A.; Peterson, D.L.

    1976-01-01

    Geothermal phenomena observed in the vicinity of Klamath Falls include hot springs with temperatures that approach 204°F (96 o C) (the approximate boiling temperature for the altitude), steam and water wells with temperatures that exceed 212°F (100°C), and hundreds of warm-water wells with temperatures mostly ranging from 68° to 95°F (20° to 35°C). Although warm waters are encountered by wells throughout much of the 350 square miles (900 square kilometers) of the area studied, waters with temperatures exceeding 140°F (60°C) are confined to three relatively restricted areas, the northeast part of the City of Klamath Falls, Olene Gap, and the southwest flank of the Klamath Hills.The hot waters are located near, and are presumably related to, major fault and fracture zones of the Basin and Range type. The displaced crustal blocks are composed of basaltic flow rocks and pyroclastics of Miocene to Pleistocene age, and of sediments and basalt flows of the Yonna Formation of Pliocene age. Dip-slip movement along the high-angle faults may be as much as 6,000 feet (1,800 meters) at places.Shallow ground water of local meteoric origin moves through the upper 1,000 to 1,500 feet (300 to 450 meters) of sediments and volcanic rocks at relatively slow rates. A small amount of ground water, perhaps 100,000 acre feet (1.2 x 108 cubic meters) per year, leaves the area in flow toward the southwest, but much of the ground water is discharged as evapotranspiration within the basin. Average annual precipitation on 7,317 square miles (18,951 square kilometers) of land surface near Klamath Falls is estimated to be 18.16 inches (461 millimeters), of which between 12 and 14 inches (305 and 356 millimeters) is estimated to be lost through evapotranspiration.Within the older basaltic rocks of the area, hydraulic conductivities are greater than in the shallow sediments, and ground water may move relatively freely parallel to the northwest-southeast structural trend. Recharge to the

  11. Geologic framework and hot dry rock geothermal potential of the Castle Dome area, Yuma County, Arizona

    SciTech Connect

    Gutmann, J.T.

    1981-02-01

    The Castle Dome Mountains and surrounding ranges constitute a voluminous pile of silicic volcanic rocks within the Basin and Range province of southwestern Arizona. Previously reported as Cretaceous and Quaternary in age, these volcanics all are of late Oligocene to early Miocene age as indicated by five new K-Ar dates. Reconnaissance field studies indicate that the volcanic section locally has undergone large rotations that contrast with the usual structural style of the Basin and Range and resemble the thin-skinned rotational tectonics documented for earlier, mid-Tertiary extensional deformation in ranges to the north and northeast. Significant geothermal potential of the Castle Dome area is suggested by a shallow depth to the Curie isotherm and by the apparent presence of a good electrical conductor at anomalously shallow depth in the crust. Warm wells exist in the area and Shearer (1979) reported a geothermal gradient of about 70/sup 0/C/km in a dry well near the center of the gravity low. Radiogenic heat production in the silicic batholith inferred above constitutes a reasonable candidate for a shallow regional heat source.

  12. Geologic framework and hot dry rock geothermal potential of the Castle Dome area, Yuma County, Arizona

    NASA Astrophysics Data System (ADS)

    Gutmann, J. T.

    1981-02-01

    The Castle Dome Mountains and surrounding ranges constitute a voluminous pile of silicic volcanic rocks within the Basin and Range province of southwestern Arizona. Previously reported as Cretaceous and Quaternary in age, these volcancies all are of late Oligocene to early Miocene age as indicated by five new K-Ar dates. Reconnaissance field studies indicate that the volcanic section locally has undergone large rotations that contrast with the usual structural style of the Basin and Range and resemble the thin skinned rotational tectonics documented for earlier, mid Tertiary extensional deformation in ranges to the north and northeast. Significant geothermal potential of the Castle Dome area is suggested by a shallow depth to the Curie isotherm and by the apparent presence of a good electrical conductor at anomalously shallow depth in the crust. Warm wells exist in the area as well as a geothermal gradient of about 700 C/km in a dry well near the center of the gravity low radiogenic heat production in the silicic batholith inferred above constitutes a reasonable candidate for a shallow regional heat source.

  13. Research in the Geysers-Clear Lake geothermal area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Donnelly-Nolan, Julie M.

    1981-01-01

    The Geysers-Clear Lake area is one of two places in the world where major vapor-dominated hydrothermal reservoirs are commercially exploited for electric power production. Because energy can be extracted more efficiently from steam than from hot water, vapor-dominated systems are preferable for electric power generation, although most geothermal electric power facilities tap water-dominated systems. The Geysers- Clear Lake geothermal system has therefore been of great interest to the geothermal industry.

  14. Magmatic Evolution of the Coso Geothermal Area, California

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Miller, J. S.; Leeman, W. P.; Johnson, B. R.; Monastero, F. C.

    2007-12-01

    as the geothermal production area is approached suggests that the magmatic flux is highest there even though erupted volumes are significantly larger outside the geothermal area. One scenario consistent with the above data is as follows. Post-subduction tectonic events triggered magmatism at 3.5 Ma, tapping fertile, subduction-metasomatized lithospheric mantle. Basalts stalled in and partially melted the mid-crust, generating a mixed-magma series and copious volcanism. Depletion of the mantle source by 2 Ma led to a hiatus in magmatism. A change in basalt chemistry to OIB- affinity in the last 1 Ma suggests a profound change in magma source - likely involving decompression melting of ascending asthenospheric mantle, perhaps related to lithosphere delamination. Injection of such magmas into the lower crust, would have generated rhyolites by remelting of earlier emplaced mafic bodies - imparting a juvenile isotopic signature in the late rhyolites. Precursory Pliocene magmatism is a common feature of other western U.S. geothermal areas, including Twin Peaks, The Geysers, and Long Valley.

  15. OVERFLOW ROADLESS AREA, GEORGIA AND NORTH CAROLINA.

    USGS Publications Warehouse

    Koeppen, Robert P.; Davis, Michael P.

    1984-01-01

    The Overflow Roadless Area in the Blue Ridge Mountains of Georgia and North Carolina is underlain by complexly folded schist and gneiss of Proterozoic age. A mineral-resource survey found little likelihood for the occurrence of mineral or energy resources in the area. Minor isolated localities of mica pegmatite and amethyst gemstone occur in the area. Gneiss and schist suitable for rock aggregate are present in large quantities, but similar rocks abound outside the area. Natural gas may possibly be present at great depth beneath the overthrust of the Blue Ridge. Further seismic studies and exploratory drilling are needed to evaluate the natural gas potential of this part of the Eastern Overthrust Belt.

  16. Testing methodology and chemical composition of hypersaline geothermal fluid at the Salton Sea known geothermal resource area, California

    SciTech Connect

    Rabizadeh, A.

    1986-01-01

    This report presents sampling methodology, analytical procedures, and chemical characterization of geothermal fluids from a hypersaline geothermal reservoir in the Salton Sea Known Geothermal Area. The collection and analysis schemes were designed to allow complete analysis of liquid and gaseous constituents of high pressure hypersaline geothermal fluids. The analytical procedures are described in a fairly standard but detailed format showing normal steps, precision, and sensitivity. The sampling techniques and equipment are elaborated specifically for this work, and are evaluated and modified in the field if necessary, so a sample is extracted with simplicity, accuracy, and reliability. Analytical methods are drawn from consultation with practitioners, literature results, and first-hand experience. The primary objectives are sensitivity, interference, availability, and ease of operation. A basic and quantitative description of geological, physical, and chemical character of geothermal resources is presented, and the climatology and air and water quality of Imperial County, California are described. The pre-flash composition of fluids and the composition of noncondensable gases are discussed. Test results are compared, whenever available, with the results from tests from other production wells in the same area.

  17. Geology and geothermal potential of the tecuamburro volcano area, Guatemala

    USGS Publications Warehouse

    Duffield, W.A.; Heiken, G.H.; Wohletz, K.H.; Maassen, L.W.; Dengo, G.; McKee, E.H.; Castaneda, O.

    1992-01-01

    Tecuamburro, an andesitic stratovolcano in southeastern Guatemala, is within the chain of active volcanoes of Central America. Though Tecuamburro has no record of historic eruptions, radiocarbon ages indicate that eruption of this and three other adjacent volcanoes occurred within the past 38,300 years. The youngest eruption produced a dacite dome. Moreover, powerful steam explosions formed a 250 m wide crater about 2900 years ago near the base of this dome. The phreatic crater contains a pH-3 thermal lake. Fumaroles are common along the lake shore, and several other fumaroles are located nearby. Neutral-chloride hot springs are at lower elevations a few kilometers away. All thermal manifestations are within an area of about 400 km2 roughly centered on Tecuamburro Volcano. Thermal implications of the volume, age, and composition of the post-38.3 ka volcanic rocks suggest that magma, or recently solidified hot plutons, or both are in the crust beneath these lavas. Chemical geothermometry carried out by other workers suggests that a hydrothermal-convection system is centered over this crustal heat source. Maximum temperatures of about 300??C are calculated for samples collected in the area of youngest volcanism, whereas samples from outlying thermal manifestations yield calculated temperatures <- 165??C. An 808 m deep drill hole completed in 1990 to partly test the geothermal model developed from surface studies attained a maximum temperature of almost 240??C. Thus, the possibility of a commercial-grade hydrothermal resource in the area seems high. ?? 1992.

  18. Lassen Known Geothermal Resource Area, California: audio-magnetotelluric, telluric profiling, and self-potential studies

    SciTech Connect

    Christopherson, K.R.; Hoover, D.B.; Lewis, V.; Radtke, B.; Senterfit, R.M.

    1980-01-01

    During the summer of 1979, geophysical work was done in the Lassen KGRA in northeastern California to assess the geothermal potential of the area. As part of the study, 68 audio-magnetotelluric (AMT) soundings were made and 2 telluric and self-potential (SP) profiles were done. The AMT station locations are shown. The scalar resistivities were contoured for 7.5 and 27 hertz data at north-south and east-west E-line orientations. The contour maps are complex, reflecting both lateral changes in geology and geothermal activity. The locations of the telluric and self-potential traverses are given. The profiles for traverse 1 show varied SP and telluric responses. The variations are probably geologically related with the drop in SP voltage and telluric resistivity on the east end of the traverse caused by a lateral lithology change. The profiles for traverse 2 show a sharp drop in SP voltage combined with a sharp increase in telluric resistivity near station 6. This could be associated with large-scale intrusive features (a ring dike) which trend to the northwest.

  19. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  20. 2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM TOP OF BERM. - NIKE Missile Base C-84, Acid Fueling Station, North of Launch Area Entrance Drive, eastern central portion of base, Barrington, Cook County, IL

  1. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    NASA Astrophysics Data System (ADS)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  2. Geothermal Resource Area 5, Churchill, Douglas, Lyon and Storey Counties area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Within this four county area there are many known geothermal resources ranging in temperature from 70 to over 350{sup 0}F. Thirteen of these resources are considered major and have been selected for evaluation. Various potential uses of the energy found were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These factors were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation; space heating; recreation; industrial process heat; and agriculture.

  3. Microbes in mercury-enriched geothermal springs in western North America.

    PubMed

    Geesey, Gill G; Barkay, Tamar; King, Sue

    2016-11-01

    Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction

  4. Ground and indoor radon measurements in a geothermal area

    NASA Astrophysics Data System (ADS)

    Seyis, Cemil; İnan, Sedat; Streil, Thomas

    2010-10-01

    Geothermally active sites compared to a relatively passive site (no geothermal activity) contain much higher radon in the soil. As expected, the maximum soil radon content is at or near the major fracture zone where hot water emanates to the surface. Thus, buildings in geothermal sites nearby or at top of cracks that facilitate hot-water transfer to the surface may be extremely dangerous in terms of high radon concentrations and this situation may pose a big threat for the inhabitants. Controlled aeration of such high-risk buildings must be carefully and continuously conducted.

  5. Annotated bibliography of the hydrology, geology, and geothermal resources of the Jemez Mountains and vicinity, north-central New Mexico

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Delaney, B.M.

    1986-01-01

    The Jemez Mountains volcanic complex, located in north-central New Mexico at the intersection of the Rio Grande rift and Jemez lineament, is a potential location for geothermal energy exploration. This bibliography lists selected papers pertaining to the geology, hydrology, geochemistry, geothermometry, geophysics, ecology, and geothermal and hydrologic modeling aspects of the Jemez region. The bibliography is composed of 795 citations with annotations and a subject and author index. (USGS)

  6. Geothermal assessment of the MX deployment area in Nevada. Final report, April 1, 1981-April 30, 1982

    SciTech Connect

    Trexler, D.T.; Bruce, J.L.; Cates, D.; Dolan, H.H.; Covington, C.H.

    1982-06-01

    A preliminary geothermal resource assessment of the MX deployment area in Nevada focused on Coyote Spring Valley in southeastern Nevada. Initially, an extensive literature search was conducted and a bibliography consisting of 750 entries was compiled covering all aspects of geology pertaining to the study area. A structural study indicates that Coyote Spring Valley lies in a tectonically active area which is favorable for the discovery of geothermal resources. Hot water may be funneled to the near-surface along an extensive fracture and fault system which appears to underlie the valley, according to information gathered during the literature search and aerial photo survey. A total of 101 shallow temperature probes were emplanted in Coyote Spring Valley. Three anomalous temperature points all lying within the same vicinity were identified in the north-central portion of the valley near a fault. A soil-mercury study also identified one zone of anomalous mercury concentrations around the north end of the Arrow Canyon Range. A literature search covering regional fluid geochemistry indicated that the three fluid samples taken from Coyote Spring Valley have a higher concentration of Na + K. During field work, seven fluid samples were collected in Coyote Spring Valley which also appear to be derived from volcanic units due to the presence of Ca-Mg or Na-K carbonate-bicarbonate. A temperature gradient study of six test water wells indicates that only one geothermal well with a temperature of 35.5/sup 0/C (96/sup 0/F) exists in the central portion of the valley at the north end of Arrow Canyon Range near the zone of anomalous soil-mercury points. A cultural assessment of Coyote Spring Valley was performed prior to field work.

  7. Comparison of airborne and spaceborne TIR data for studying volcanic geothermal areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Heasler, H.; Jaworowski, C.; Bergfeld, D.; Evans, W.

    2015-12-01

    Mapping and quantifying the surface expression of geothermal heat flux in volcanic geothermal areas is important for establishing baseline thermal activity to better detect and understand any future changes that may be related to hydrothermal or volcanic processes, or human activities. Volcanic geothermal areas are often too large and inaccessible for only field-based thermal monitoring, so thermal infrared (TIR) remote sensing tools are also used. High resolution (sub-meter) airborne TIR imagery can be used for detailed, quantitative analyses of small, subtle geothermal features. Airborne data acquisitions have the advantage of being able to be acquired under ideal conditions (e.g., predawn, cloud-free), but the disadvantage of high costs - thus precluding high-frequency monitoring. Satellite-based TIR data from the Landsat 8 platform are freely available and can be acquired regularly for change detection, but are acquired with coarser spatial resolution (e.g., 100-m pixels), and thus are not as sensitive to subtle thermal characteristics. Two geothermal areas with clear, nighttime TIR data from nearly concurrent (within days) airborne and spaceborne instruments were investigated: Norris Geyser Basin in Yellowstone National Park, WY; and the Casa Diablo geothermal field, near Mammoth Lakes, CA. At Norris Geyser Basin, the area covered by high-resolution airborne TIR imagery is almost entirely geothermally heated ground, with hundreds of fumaroles, hot springs, and thermal drainages - although some non-geothermal background is exposed. With the coarser resolution Landsat 8 data, there are thermal variations within the smaller area covered by the airborne data, but the entire area appears to be thermally anomalous with respect to the non-geothermal background outside the basin. In the geothermal field around the Casa Diablo geothermal site, there are numerous, small areas of geothermal heating that are clearly distinguishable above the background by the high

  8. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  9. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  10. Coso monitoring program, October 1990 through September 1991. [GEOTHERMAL RESOURCE AREA

    SciTech Connect

    Monahan, J.H.; Condon, D.E.

    1991-12-01

    The Coso Monitoring Program is a continuing effort in support of the development of the Navy's geothermal resources within the Known Geothermal Resource Area (KGRA). Data are presented on the monitoring of steam flow rates and temperatures, water levels in ponds and wells, water chemistry, and rainfall in the Coso Hot Springs Resort Area. A monthly photographic essay of the mudfields and pools shows the variation of surface water levels throughout the year.

  11. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    PubMed

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  12. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    PubMed

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area. PMID:27418073

  13. Geothermal resource areas database for monitoring the progress of development in the United States

    NASA Astrophysics Data System (ADS)

    Lawrence, J. D.; Lepman, S. R.; Leung, K. N.; Phillips, S. L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described as well as the structure of the database.

  14. Comparison of 1-Dimensional and 2- Dimensional Vertical Electrical Sounding (VES) Results in Geothermal Area

    NASA Astrophysics Data System (ADS)

    Çakmak, Olcay; Uyanık, Osman

    2016-04-01

    This study was performed in a geothermal area in Denizli-Turkey. All measures were taken in 2013 along to three months. VES measurements were taken throughout 3 profiles of parallel to each other in geothermal area. Distance of between profiles was selected as 500m. Each of the VES point lengths were taken as between 3-4km in a total of taken 90 number VES measurements. Also distance between the VES points was selected as 250m. Extensional direction of VES point of inside the same profile was designed to be suitable for two-dimensional. Measurements were evaluated as one-dimensional (1D) and after this two-dimensional (2D) then evaluation results were discussed. The geothermal reservoir depth was investigated and was tried to identify potential mechanical borehole locations depending on 1D and 2D evaluation results. Keywords: Geothermal Area, Vertical Electrical Sounding, 1D-2D resistivity results

  15. A brief description of geological and geophysical exploration of the Marysville geothermal area

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Brott, C. A.; Goforth, T. T.; Holdaway, M. J.; Morgan, P.; Petefish, D.; Rape, T.; Steele, J. L.; Spafford, R. E.; Waibel, A. F.

    1974-01-01

    Extensive geological and geophysical surveys were carried out at the Marysville geothermal area during 1973 and 1974. The area has high heat flow (up to microcalories per square centimeter-second, a negative gravity anomaly, high electrical resistivity, low seismic ground noise, and nearby microseismic activity. Significant magnetic and infrared anomalies are not associated with the geothermal area. The geothermal anomaly occupies the axial portion of a dome in Precambrian sedimentary rocks intruded by Cretaceous and Cenozoic granitic rocks. The results from a 2.4-km-deep test well indicate that the cause of the geothermal anomaly is hydrothermal convection in a Cenozoic intrusive. A maximum temperature of 95 C was measured at a depth of 500 m in the test well.

  16. Geothermal resource areas database for monitoring the progress of development in the United States

    SciTech Connect

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  17. 12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND NORTH SIDE GUARD WALL - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  18. 10. INTERIOR, 'CENTRAL NORTH WING' PORTION OF SHOP AREA, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR, 'CENTRAL NORTH WING' PORTION OF SHOP AREA, FROM STAIRCASE ON NORTH SIDE OF 'WING', LOOKING SOUTHEAST. - Oakland Naval Supply Center, Lumber Storage & Box Factory, East of Fifth Street, between H & I Streets, Oakland, Alameda County, CA

  19. 5. VIEW OF NORTH PARK AVENUE TRAILHEAD PARKING AREA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF NORTH PARK AVENUE TRAILHEAD PARKING AREA FACING SOUTHEAST. - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  20. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes

  1. Mineral resources of the Kofa Unit 4 North Wilderness Study Area, Yuma County, Arizona

    SciTech Connect

    Sherrod, D.R.; Smith, D.B.; Kleinkopf, M.D. ); Gese, D.D. )

    1990-01-01

    This paper reports on the Kofa Unit 4 North Wilderness Study Area, in the Castle Dome Mountains of Arizona, underlain by Tertiary volcanic rocks that have been deformed by northwest-trending normal faults. The study area has inferred resources of zeolite minerals, which have been mined within the study area. The resource potential for additional zeolite minerals is high in three small areas surrounding the known zeolite occurrences and is unknown in areas of silicic lava flows or intrusions that may include thin altered tuff. The resource potential is low for gold, solver, lead, and zinc throughout the study area and for geothermal energy along range-bounding faults in the study area.

  2. Shallow geothermal investigations into the existence of the Valles Caldera outflow plume near Ponderosa and Jemez Pueblo, north-central, New Mexico

    NASA Astrophysics Data System (ADS)

    Salaz, Robert Ezekiel

    Geothermal research within the Jemez Mountains spans several decades and is documented in many papers. This study serves to extend the research boundary to the south and east outside of Valles caldera and Canon de San Diego, where the main occurrences of geothermal activity are located. The focus of this investigation is to test for a deep ~900 m, stratigraphically-bound thermal aquifer within the Madera Limestone along the western margin of the Santo Domingo basin transition zone near Ponderosa and Jemez Pueblo, in north-central New Mexico. Numerous springs were sampled for aqueous geochemistry to identify leakage of a deeper geothermal aquifer into shallow aquifers. Wells were sampled for temperature anomalies. In addition, two travertine deposits were analyzed for stable isotope composition and one deposit was dated using U-Series techniques to assess the timing and origin of deposition. This study is important because researchers in other extensional basins have identified reasonably good geothermal reservoirs in deep carbonate aquifers that are similar in geologic setting to the Madera Limestone aquifer of this study. The existence of a deep geothermal aquifer near Ponderosa and Jemez Pueblo, New Mexico could prove to be another prospect for geothermal exploration in the Jemez Mountains. Aqueous geochemistry of springs are plotted on ternary Piper diagrams to help classify similar geochemical trends and group these trends into recognizable patterns. These data indicate calcium carbonate rich waters in the north that may gradationally change to alkaline type waters as they flow south through the study area. Contrasting this data, SiO2 and TDS concentrations show two separate systems that may indicate separate confined aquifers. Two distinct TDS regions are observed, one with higher concentrations (>1000 ppm) shows a decrease from N-S and one with lower concentrations (<600 ppm) shows an increase from N-S. The data indicate that the waters can be classified as

  3. Enhanced Geothermal Systems: Mitigating Risk in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Mai, Paul Martin; Wiemer, Stefan; Deichmann, Nicholas; Ripperger, Johannes; Kästli, Philipp; Bachmann, Corinne; Fäh, Donat; Wössner, Jochen; Giardini, Domenico

    2009-08-01

    With the global challenge to satisfy an increasing demand for energy while at the same time stabilizing or reducing carbon dioxide (CO2) concentrations in the atmosphere, geothermal energy from enhanced geothermal systems (EGSs) increasingly is being recognized as an attractive alternative energy source throughout the world. However, the risks associated with the seismicity necessarily induced during the development of an EGS constitute a significant challenge for the widespread implementation of this technology. This article provides a preliminary overview of lessons learned from an attempt to develop an EGS beneath the city of Basel, Switzerland.

  4. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  5. Natural resource economic implications of geothermal area use

    SciTech Connect

    Darby, d'E Charles

    1993-01-28

    Large-scale use of geothermal energy is likely to result in depletion of natural resources that support both biodiversity and other human uses. Most of the problems could be averted with competent planning and adherence to agreed conditions, but they commonly develop because they are not perceived to be directly geothermal in origin and hence are not taken into account adequately. Some of the implications of such issues are discussed below, with particular reference to countries where all or most resources are held under traditional principals of custom ownership.

  6. Hydrogeologic and hydrogeochemical assessment of geothermal fluids in the Pyramid Lake area, Washoe country, Nevada

    SciTech Connect

    Ojiambo, S. Bwire

    1992-01-01

    This paper evaluates the hydrogeological and hydrogeochemical characteristics of the geothermal fluids in the Pyramid Lake area using data from existing published and unpublished reports on springs, challow and deep wells in the area. Four geochemical provinces, namely, chloride, bicarbonate, suphate and nixed chloride-bicarbonate have been identified. Chloride waters are found in known geothermal areas. Two subsurface water recharge zones which reed the shallow and deep geothermal systems are proposed. These are the Virginia Mountains and their Northern extension and the Fox and Lake Ranges. Tertiary and Quaternary faulting systems in these mountains and Ranges act as heat conduits for geothermal fluids. The Needle Rocks geothermal system is postulated to be deeper than the San Emidio system. A connection between the Needle Rocks system and the Pyramid and Anaho islands warm springs is not clear from this study because of lack of chemical data from these islands. More systematic measurements of static water levels, temperatures, well lithology, water chemistry and isotopes data are recommended to enable better understanding of the geothermal systems in the area.

  7. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  8. Relation between liquid hydrocarbon reserves and geothermal gradients - Norwegian North Sea

    SciTech Connect

    Baird, R.A. )

    1991-03-01

    Comparison of average geothermal gradients and initial liquid hydrocarbon reserves for 28 Norwegian North Sea fields indicates that gradients in the largest North Sea oil fields cluster around 2.1F/100 feet. No reserves are found where gradients are lower than 1.8F/100 feet or higher than 2.3F/100 feet. At 6.89 billion barrels, reserves for 14 fields falling between 2.05 and 2.15/100 feet total over four times the reserves for all other fields put together. Reserves for seven fields at gradients lower than 2.05F/100 feet and for seven higher than 2.15F/100 feet total 594 and 991 million barrels, respectively. The conclusion is that 2.1F/100 feet is the optimum gradient for generation of liquid hydrocarbons in the Norwegian North Sea, given the depth, kerogen type, and source rock potential of the Kimmeridge Clay, the primary source rock there. Gradients lower than this have not stimulated maximum generation from the source rock. At higher gradients, increasing gas production from source rocks and thermal cracking of previously generated liquid hydrocarbons to gas are effective in limiting liquid hydrocarbon reserves. The 2.1F/100 feet gradient should be a useful pathfinder in the search for new oil reserves in the Norwegian North Sea. Determination of the optimum gradient should be a useful pathfinder in other regions as well.

  9. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  10. Seaplane ramp area looking north. Seaplane ramp 2 is at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Seaplane ramp area looking north. Seaplane ramp 2 is at right foreground. Building 1 is at extreme left. Boathouse and small boat docks visible in distance. - Naval Air Station North Island, Seaplane Ramps Nos. 2, 3 & 4, North Island, San Diego, San Diego County, CA

  11. Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area

    SciTech Connect

    1981-12-01

    Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

  12. Geology of the platanares geothermal area, Departamento de Copan, Honduras

    USGS Publications Warehouse

    Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.

    1991-01-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  13. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone

  14. Airborne Geophysical Surveys Illuminate the Geologic and Hydrothermal Framework of the Pilgrim Springs Geothermal Area, Alaska

    NASA Astrophysics Data System (ADS)

    McPhee, D. K.; Glen, J. M.; Bedrosian, P. A.

    2012-12-01

    An airborne magnetic and frequency-domain electromagnetic (EM) survey of the Pilgrim Springs geothermal area, located on the Seward Peninsula in west-central Alaska, delineates key structures controlling hydrothermal fluid flow. Hot springs, nearby thawed regions, and high lake temperatures are indicative of high heat flow in the region that is thought to be related to recent volcanism. By providing a region-wide geologic and geophysical framework, this work will provide informed decisions regarding drill-site planning and further our understanding of geothermal systems in active extensional basins. Helicopter magnetic and EM data were acquired using a Fugro RESOLVE system equipped with a high sensitivity cesium magnetometer and a multi-coil, multi-frequency EM system sensitive to the frequency range of 400-140,000 Hz. The survey was flown ~40 m above ground along flight lines spaced 0.2-0.4 km apart. Various derivative and filtering methods, including maximum horizontal gradient of the pseudogravity transformation of the magnetic data, are used to locate faults, contacts, and structural domains. A dominant northwest trending anomaly pattern characterizes the northeastern portion of the survey area between Pilgrim Springs and Hen and Chickens Mountain and may reflect basement structures. The area south of the springs, however, is dominantly characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with the north-south extension that formed the basin. Regionally, the springs are characterized by a magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. The lows may result from demagnetization of magnetic material along range-front parallel features that dissect the basin. We inverted in-phase and quadrature EM data along each profile using the laterally-constrained inversion of Auken et al. (2005). Data were inverted for 20-layer

  15. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas

    NASA Astrophysics Data System (ADS)

    Verma, S. K.; Mogi, T.; Abd Allah, S.

    2010-12-01

    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  16. Reconnaissance of hydrologic monitoring sites and preliminary monitoring plan for the Vale, Oregon, geothermal area

    USGS Publications Warehouse

    Gannett, Marshall W.; Caldwell, Rodney R.

    1996-01-01

    The Bonneville Power Administration is working with private industry to develop a geothermal demonstration project in the Known Geothermal Resources Area (KGRA) near Vale, Oregon. Hydrologic monitoring in the area is planned in order to evaluate any impacts from the proposed development. The hydrology in and around the Vale KGRA is not well known. Additionally, little is known about the targeted geothermal reservoir and the nature of its connection to the shallow ground-water system. Given this uncertainty, a variety of features were selected to ensure adequate monitoring coverage. Wells and springs in and around the geothermal area were evaluated, and 19 were selected as potential monitoring sites. In selecting wells and springs for monitoring, particular emphasis was placed on those with a known or probable connection with the geothermal system because they would most likely be the first to show any effects from development. The selected features include thermal wells in the hot-spring area near the town of Vale and a hot spring south of the KGRA. Several warm wells (70 to 90 degrees Fahrenheit) near the KGRA were also selected because it is likely that the water produced from these wells includes a component of geothermal water. In order to identify any effects of development, it is necessary to have an understanding of natural and man-caused variations and trends prior to development. A quarterly measurement schedule is proposed to help characterize these variations and trends. It is anticipated that the proposed monitoring plan will be modified as exploration and development proceed and more is learned about the geothermal system.

  17. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    SciTech Connect

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of the Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.

  18. City of North Bonneville, Washington: Geothermal Exploration Project, production test well, Phase II. Final report

    SciTech Connect

    Not Available

    1982-06-01

    Based on discussions with the City of North Bonneville, the production test well was drilled to a depth that would also explore for ground water temperatures near 130/sup 0/F (54.4/sup 0/C). Depth projections to a 130/sup 0/F bottom hole temperature were made by assuming a constant ground water temperature rise greater than 50/sup 0/C per kilometer, and by assuming that essentially homogeneous or equivalent conductive rock units would be encountered. Minimum water production requirements were not set, although the City determined that about 800 gpm would be acceptable. Large upper casing diameters of 16 and 12 inches were installed in order to provide the future use of either a vertical turbine or submersible pump, as desired by the city. The scope of work included interpretation of well characteristics, evaluation of ground water as a geothermal resource, geologic analysis of data from drilling and testing, drilling supervision, daily drilling cost accounting, and preparation of a final report. The report includes geologic evaluation of the drilling and test data, ground water and geothermal potential.

  19. INTERIOR VIEW, LOOKING NORTH, CUPOLA AREA WITH OVERHEAD CRANE USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING NORTH, CUPOLA AREA WITH OVERHEAD CRANE USED TO TRANSFER LARGE LADLES OF IRON FROM ONE LOCATION TO ANOTHER. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  20. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  1. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

  2. Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area

    SciTech Connect

    Not Available

    1980-07-01

    Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

  3. 3D Model of the Tuscarora Geothermal Area

    SciTech Connect

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern

  4. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Target Areas Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Coloradodo Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics Spatial Domain: Extent: Top: 4546251.530446 m Left: 151398.567298 m Right: 502919.587395 m Bottom: 4095100.068903 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece

    NASA Astrophysics Data System (ADS)

    Dotsika, E.; Leontiadis, I.; Poutoukis, D.; Cioni, R.; Raco, B.

    2006-06-01

    Two separate aquifers have been identified in Chios Island. The first one, Nenita, is found in the southern part of the island and the other one, Aghiasmata and Aghia Markela, in the northern part, which is characterized by high salinity waters. Chemical and isotopic contents were used for the investigation of the origin and evolution of thermal water in sedimentary and volcanic rocks, for the estimation of the mixing process between meteoric and seawater involved in the deep geothermal systems and for the evaluation of the deep aquifer temperature. The hot borehole and spring waters discharging in Chios Island, Greece, change in composition from earth-alkaline-bicarbonate-type to alkaline-type chloride. The chemical and physical characteristics of bicarbonate well waters show interaction between meteoric waters and Neocene rocks. In general, for these waters as their mineralization increases the Mg 2+ contents increase. The deuterium and oxygen contents of these water samples indicate a meteoric origin. The Na + and Cl - ions dominate the chemistry of the thermal waters of Aghia Eleni spring. This thermal water appears to be a mixture of seawater and ground water. The marine contribution for this sample is 80-89%. The chemical and isotopic data of the thermal Cl-rich water springs of the northern part of the island, Aghiasmata and Aghia Markela, suggest that they are fed by thermal water mixed with local groundwater and seawater respectively. The parent geothermal liquid is either a mixture mad up of local groundwater (˜40%) and arc-type magmatic water (˜60%), that did not exchange oxygen isotopes, or a mixture constituted by local groundwater (˜70%) and seawater (˜30%), which experienced a significant oxygen isotope exchange. Assessments from chemical and isotopic geothermometer applied on the thermal waters springs suggest the probable existence of a deep geothermal reservoir of middle-high enthalpy (220 °C) in the northern (Aghiasmata and Aghia Markela

  6. Attenuation and source properties at the Coso Geothermal area, California

    USGS Publications Warehouse

    Hough, S.E.; Lees, J.M.; Monastero, F.

    1999-01-01

    We use a multiple-empirical Green's function method to determine source properties of small (M -0.4 to 1.3) earthquakes and P- and S-wave attenuation at the Coso Geothermal Field, California. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method. Stress-drop values of at least 0.5-1 MPa are inferred for all of the events; in many cases, the corner frequency is outside the usable bandwidth, and the stress drop can only be constrained as being higher than 3 MPa. P- and S-wave stress-drop estimates are identical to the resolution limits of the data. These results are indistinguishable from numerous EGF studies of M 2-5 earthquakes, suggesting a similarity in rupture processes that extends to events that are both tiny and induced, providing further support for Byerlee's Law. Whole-path Q estimates for P and S waves are determined using the multiple-empirical Green's function (MEGF) method of Hough (1997), whereby spectra from clusters of colocated events at a given station are inverted for a single attenuation parameter, ??, with source parameters constrained from EGF analysis. The ?? estimates, which we infer to be resolved to within 0.01 sec or better, exhibit almost as much scatter as a function of hypocentral distance as do values from previous single-spectrum studies for which much higher uncertainties in individual ?? estimates are expected. The variability in ?? estimates determined here therefore suggests real lateral variability in Q structure. Although the ray-path coverage is too sparse to yield a complete three-dimensional attenuation tomographic image, we invert the inferred ?? value for three-dimensional structure using a damped least-squares method, and the results do reveal significant lateral variability in Q structure. The inferred attenuation variability corresponds to the heat-flow variations within the geothermal region. A central low

  7. 16. Detail view of the scale area at the north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail view of the scale area at the north end of the 1937 main section, looking east-northeast; the original office is at th left, and the scale at the right - Ewing Livestock Market, South side of First Avenue North, 500 feet west of Route 724, Ewing, Lee County, VA

  8. North Sea difficult but prime area for applications

    SciTech Connect

    Skattum, K.S. )

    1990-04-02

    The Norwegian North Sea sector has been considered a very expensive area for subsea developments compared to the Gulf of Mexico and Brazil, where, the cost of a completed subsea well is several times less. An analysis of these large differences shows how the costs for North Sea projects can be reduced.

  9. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

  10. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  11. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    SciTech Connect

    Julian, B.R.; G.R. Foulger; K. Richards-Dinger; F. Monastero

    2006-04-01

    Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy’s permanent seismometer network at the Coso geothermal area, California. The results show irregular strengthening with time of the wave-speed ratio VP/VS at shallow depths. These changes result predominately from progressive relative increase in VS with respect to VP, and could result from processes associated with geothermal operations such as decrease in fluid pressure and the drying of argillaceous minerals such as illite.

  12. Contribution of Persistent Scatterer Interferometry (PSI) to map surface displacement in the Travale - Radicondoli Geothermal area (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Botteghi, S.; Del Ventisette, C.; Montanari, D.; Manzella, A.; Moretti, S.

    2012-12-01

    Synthetic Aperture Radar Interferometry (InSAR) has been successfully used to map the deformation of the earth surface. Multi-interferogram techniques, known as Persistent Scatterer Interferometry (PSInSAR), are a powerful tools to monitoring surface deformation connected with seismic and volcanic activity, landslides, and subsidence due to fluid extraction. The availability of many data acquired by space agencies, as well as European Space Agency (ESA), and the high spatial resolution of PSI methodology, allow to reconstruct the temporal evolution of the ground surface deformations, measuring relative displacements of individual points (Permanent Scatterers, or PS) and estimating the velocity of deformation recorded in the period covered by satellites acquisitions. The possibility to detect the continuous ground surface displacement can provide an important information about reservoir behavior during production, helping to improve the development of a geothermal field (e.g. Hole et al. 2007; JVGR). The present study aims to test PSInSAR techniques over Travale-Radicondoli area, in order to assess the surface deformation connected with the exploitation of this geothermal field. The Travale-Radicondoli area is located about 15 km E-SE of the well-known Larderello-geothermal filed - southwestern Tuscany, Italy-, extending at the south-western margin of the Anqua-Radicondoli Basin. In this area two different reservoir have been identified: a shallow steam dominated reservoir, consisting of carbonate and evaporitic units, and a deep superheated steam reservoir, within metamorphic basement units and thermometamorphic rocks. Industrial exploitation of geothermal resources in the Travale-Radicondoli area began in 1950 and concerned only a small zone on the southern margin of the area, known as the "old field", characterized by a water dominated system. Since 1973, an intensive exploitation started in a more productive area located north-east of the "old field", where the

  13. Field stress corrosion tests in brine environments of the Salton Sea known geothermal resource area

    SciTech Connect

    Carter, J.P.; Cramer, S.D.

    1980-01-01

    Corrosion research is being conducted to determine suitable construction materials for geothermal resource recovery plants. As part of this research, a 30-day stress corrosion test was conducted at the Salton Sea Known Geothermal Resource Area on seven iron- and nickel-base alloys in four brine and steam process streams using wellhead brine from geothermal well Magmamax 1. The tests showed transgranular cracking of AISI 316L stainless steel and intergranular and transgranular cracking of AISI 430 stainless steel in all four process streams. E-Brite 26-1 exhibited intergranular and transgranular cracking in three of the four process streams. Carbon steel, Inconel 625 and Hastelloys G and C-276 show no evidence of stress corrosion cracking.

  14. VIEW OF BUILDING 233, NORTH SIDE OF POOL AREA, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 233, NORTH SIDE OF POOL AREA, SHOWING WEST WALL OF BUILDING 22, FACING EAST - Roosevelt Base, Swimming Pool, Reeves Avenue, enclosed by Building No. 22 & Arcade, Long Beach, Los Angeles County, CA

  15. 8. View north from hallway, through administration area to front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View north from hallway, through administration area to front entrance. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. Panoramic view looking north at Boiler Plant area (Building No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panoramic view looking north at Boiler Plant area (Building No. 39 at right with stack). Part 1 of 3. - National Home for Disabled Volunteer Soldiers Western Branch, 4101 South Fourth Street, Leavenworth, Leavenworth County, KS

  17. Panoramic view looking north at Boiler Plant area (Building No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panoramic view looking north at Boiler Plant area (Building No. 39 at center with stack). Part 2 of 3. - National Home for Disabled Volunteer Soldiers Western Branch, 4101 South Fourth Street, Leavenworth, Leavenworth County, KS

  18. 5. WEST MEZZANINE, LOOKING NORTH, AREA PREVIOUSLY CONTAINED HIGH TENSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. WEST MEZZANINE, LOOKING NORTH, AREA PREVIOUSLY CONTAINED HIGH TENSION BUS AND SWITCHING EQUIPMENT FOR BUILDINGS L1 AND L2 - Portland General Electric Company, Lincoln Substation, 1841 Southeast Water Street, Portland, Multnomah County, OR

  19. 5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ALUMINUM SLIDING GLASS WINDOW GLAZING REPLACEMENTS, AND RAILING FOR STAIRS TO BASEMENT. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  20. 27. View in the Shagbark Hickory area looking north to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View in the Shagbark Hickory area looking north to the visitor's center (duplicate of HALS no. LA-1-2 (CT)) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  1. 65. VIEW OF RADAR TRANSMITTER AREA, LOOKING NORTH Everett Weinreb, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. VIEW OF RADAR TRANSMITTER AREA, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  2. Looking North into Lab Metallurgy Testing Area and Enrichment Motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North into Lab Metallurgy Testing Area and Enrichment Motor within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  3. Vault Area (original section), east corridor, looking north (Vault Nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Vault Area (original section), east corridor, looking north (Vault Nos. 1-9 - Fort McNair, Film Store House, Fort Lesley J. McNair, P Street between Third & Fourth Streets, Southwest, Washington, District of Columbia, DC

  4. 3. Building 7 north elevation (west end), showing loading area. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Building 7 north elevation (west end), showing loading area. View looking south. - John & James Dobson Carpet Mill (West Parcel), Building No. 7, 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  5. Interior, looking north at transmitter and power supply areas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, looking north at transmitter and power supply areas - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Transmitter Building, At the end of Steam Road, Moscow, Somerset County, ME

  6. 3. Detail of north loading dock area showing column, insulated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail of north loading dock area showing column, insulated doors, and detail of underside of canopy - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  7. 1. VIEW LOOKING NORTH IN SHOP AREA. BUILDING 15 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTH IN SHOP AREA. BUILDING 15 ON RIGHT, BUILDING 22 ON LEFT, AND BUILDING 1 IN DISTANCE. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  8. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect

    Klauk, R.H.; Budding, K.E.

    1984-07-01

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  9. Education challenges in the North Sea area.

    PubMed

    Ducrotoy, Jean Paul

    2003-01-01

    This paper introduces the North Sea as a fast evolving coastal ecosystem. The variability of natural conditions relates to the global climatic change and to human disturbances, which originate regionally. Education is an integral part of the strategy to improve environmental awareness. Considering contemporary challenges for educating the wider public about the main issues of environmental concern, attention is paid to various plans, which are being developed in North-Western Europe from primary schools to universities. "Learning for life" relies on an opening of the vocation of traditional universities and on the creation of a European university. Sharing resources in a competitive environment is one response given by British universities in the framework of a Discipline Network in Coastal Sciences and Management in 1996-2000. Networking is truly the key to a fast evolving teaching and learning context, notably in relation to ever developing information and communication technologies. The dissemination of scientific information is primordial in this context; a case study relating to the European project "Marine biodiversity in Europe" (BIOMARE) demonstrates the need for an elaborated strategy leading to socio-economic considerations. Empowering communities and governance are the main possible outcomes of such an enlarged approach to education, involving teachers, students, researchers, professionals, and volunteers. Proposals are made for amplifying the involvement of non-scientists into scientific research and its applications to management. Finally, a case is made for facilitating the mobility of all concerned, with a view to annihilate language and cultural barriers.

  10. Education challenges in the North Sea area.

    PubMed

    Ducrotoy, Jean Paul

    2003-01-01

    This paper introduces the North Sea as a fast evolving coastal ecosystem. The variability of natural conditions relates to the global climatic change and to human disturbances, which originate regionally. Education is an integral part of the strategy to improve environmental awareness. Considering contemporary challenges for educating the wider public about the main issues of environmental concern, attention is paid to various plans, which are being developed in North-Western Europe from primary schools to universities. "Learning for life" relies on an opening of the vocation of traditional universities and on the creation of a European university. Sharing resources in a competitive environment is one response given by British universities in the framework of a Discipline Network in Coastal Sciences and Management in 1996-2000. Networking is truly the key to a fast evolving teaching and learning context, notably in relation to ever developing information and communication technologies. The dissemination of scientific information is primordial in this context; a case study relating to the European project "Marine biodiversity in Europe" (BIOMARE) demonstrates the need for an elaborated strategy leading to socio-economic considerations. Empowering communities and governance are the main possible outcomes of such an enlarged approach to education, involving teachers, students, researchers, professionals, and volunteers. Proposals are made for amplifying the involvement of non-scientists into scientific research and its applications to management. Finally, a case is made for facilitating the mobility of all concerned, with a view to annihilate language and cultural barriers. PMID:12787627

  11. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  12. Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California

    SciTech Connect

    Lutz, S.J.; Moore, J.N.; Copp, J.F.

    1995-06-01

    Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression of the geothermal system appears to be related to a combination of lithologic, structural and mineralogic factors. The position of the outflow plume is partially controlled by the distribution of fractured crystalline intrusives within foliated metamorphic rocks. Intrusive-metamorphic lithologic contacts are characterized by sericite-pyrite alteration and correlate with fluid entries in the wells. The base of a thick intrusive unit in several wells coincides with the 250{degrees}C isotherm based on fluid inclusion data. A smectite clay zone developed in the overlying metamorphic rock acts as a cap to the productive zone and inhibits vertical movement of the geothermal fluids above the main upwelling zone. The upwelling zone lies within a epidote-quartz veined, coarse-grained granite at depth in the southern portion of the field. The mineralogy of the clays varies systematically with depth and temperature. The distribution of fine-grained clay minerals with depth indicates that the smectite cap thickens dramatically from the north to the south, and overlies a strongly sericitized zone in the upwelling portion of the reservoir. Wairakite-chlorite-epidote-calcite-quartz veins at the contact with the deep granite record deposition from the hottest geothermal fluids (342{degrees}C) in the Coso field.

  13. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  14. Preliminary assessment of the geologic setting, hydrology, and geochemistry of the Hueco Tanks geothermal area, Texas and New Mexico. Geological Circular 81-1

    SciTech Connect

    Henry, C.D.; Gluck, J.K.

    1981-01-01

    The Hueco Tanks geothermal area contains five known but now inactive hot wells (50/sup 0/ to 71/sup 0/C). The area trends north-south along the east side of Tularosa-Hueco Bolson astride the Texas-New Mexico border approximately 40 km northeast of El Paso. Because of its proximity to El Paso, geothermal water in the Hueco Tanks area could be a significant resource. Hueco Bolson is an asymmetric graben. Greatest displacement along boundary faults is on the west side adjacent to the Franklin Mountains. Faults, probably with less displacement, also form an irregular boundary on the east side of the bolson. Several probable faults may allow the rise of thermal waters from depth. Ground water in the central part of Hueco Bolson flows southward to the Rio Grande. However, four of the five hot wells occur in a ground-water trough along the eastern margin of the bolson. The trough may be bounded by one of the postulated faults serving as a barrier to ground-water flow. Data on permeability of potential reservoir rocks, including basin fill and fractured bedrock, suggest that they may be sufficiently permeable for development of geothermal water. The concentration of dissolved solids in the geothermal waters varies from 1100 to at least 12,500 mg/L, but most waters show high concentrations. They are Na-Cl-(SO/sub 4/) waters similar in composition to nonthermal waters in basin fill. The composition probably results from contact with evaporite deposits either in basin fill or in Paleozoic bedrock. Shallow reservoirs reach maximum temperatures of about 80/sup 0/ to 110/sup 0/C. Available data are too limited to evaluate adequately the resource potential of geothermal water in the Hueco Tanks area.

  15. Preliminary assessment of the geologic setting, hydrology, and geochemistry of the Hueco Tanks geothermal area, Texas and New Mexico. Geological Circular 81-1

    SciTech Connect

    Henry, C.D.; Gluck, J.K.

    1981-01-01

    The Hueco Tanks geothermal area contains five known but now inactive hot wells (50/sup 0/ to 71/sup 0/C). The area trends north-south along the east side of Tularosa-Hueco Bolson astride the Texas-New Mexico border approximately 40 km northeast of El Paso. Because of its proximity to El Paso, geothermal water in the Hueco Tanks area could be a significant resource. Hueco Bolson is an asymmetric graben. Greatest displacement along boundary faults is on the west side adjacent to the Franklin Mountains. Faults, probably with less displacement, also form an irregular boundary on the east side of the bolson. Several probable faults may allow the rise of thermal waters from depth. Ground water in the central part of Hueco Bolson flows southward to the Rio Grande. However, four of the five hot wells occur in a ground-water trough along the eastern margin of the bolson. The trough may be bounded by one of the postulated faults serving as a barrier to ground-water flow. Data on permeability of potential reservoir rocks, including basin fill and fractured bedrock, suggest that they may be sufficiently permeable for development of geothermal water. The concentration of dissolved solids in the geothermal waters varies from 1100 to at least 12,500 mg/L, but most waters show high concentrations. They are Na-Cl-(SO/sub 4/) waters similar in composition to nonthermal waters in basin fill. The composition probably results from contact with evaporite deposits either in basin fill or in Paleozoic bedrock. Shallow reservoirs reach maximum temperatures of about 80/sup 0/ to 110/sup 0/C. Available data are too limited to evaluate adequately the resource potential of geothermal water in the Hueco Tanks area. A complete exploration program, including geological, hydrological, and geochemical investigation, is recommended.

  16. Constraining chemical geothermometry with reactive transport models: An example study of the Dixie Valley geothermal area

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Peiffer, L.; Spycher, N.; Sonnenthal, E. L.; Iovenitti, J. L.; Kennedy, B. M.

    2012-12-01

    In this study, 1D and 2D reactive transport simulations of the Dixie Valley geothermal area (Nevada, USA) were performed using Toughreact [1] to evaluate the fluid flow pathways and rates of equilibration of hydrothermal fluids. Modeling studies were combined with new multicomponent geothermometry, which is being used to estimate the temperature of geothermal reservoirs based on chemical analysis of geothermal springs. The concept is based on the assumption of chemical equilibrium between the thermal fluid and minerals of the reservoir rock [2]. If re-equilibration occurs between the reservoir at depth and the surface, then the 'deep' chemical signature of the fluid is lost and the obtained reservoir temperature is underestimated. The simulations were run for a vertical cross-section that has been structurally and geologically characterized. Model calibration was performed using available site information such as chemical analysis of geothermal springs, isotherms inferred from geothermal wells and results of a previous flow simulation study [3]. Model runs included the simulation of typical near-surface processes such as dilution, mixing and salt leaching occurring at the Dixie Valley geothermal area. Each reactive transport model produced 'synthetic' waters that were processed using the multicomponent chemical geothermometer code GeoT [4]. This code computes the saturation indices of reservoir minerals as a function of the temperature. Reservoir temperature is inferred when mineral saturation indices all cluster around zero. GeoT results were also compared with classical solute geothermometers (silica, Na-K-(Ca), K-Mg) [5]. Simulation results reveal that a minimum vertical fluid velocity on the order of a meter per day is needed to preserve the geochemical signature of a geothermal reservoir and to predict its temperature. The simulations also show that deep geochemical signatures are well preserved if fracture surfaces are partially coated by secondary minerals

  17. GRAVIMETRIC STUDY OF THE IXTLAN DE LOS HERVORES, GEOTHERMAL AREA, MIDWESTERN MEXICAN VOLCANIC BELT (MVB)

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ortiz, I.

    2009-12-01

    Analysis and interpretation of gravimetric anomalies over the Occidental-Central Mexican Volcanic Belt, sheds new light on the subsurface structure of the Ixtlan de los Hervores, geothermal area. In Mexico, there are several geothermal areas that have been exploited commercially (Cerro Prieto, Los Azufres, Los Humeros, Tres Virgenes fields). However, there are many other known fields that have not been exploited. This is the case in the area of "Ixtlan de los Hervores" in the state of Michoacan. The analyzed region covers a rectangular area, aproximality from 20o N to 20.5° N and 102° W to 102.2°W. In the region there are thick basalt flows. The area is characterized by low and elongated hills formed by volcanic flows and on a smaller scale lacustrian sediments and major normal faults with a NW-SE direction particularly, the Ixtlan-Encinal fault which controls the trace of the Duero River and the Pajacuarán fault. The anomaly map was compared with the surface geology and the anomalies were correlated with major volcanic features, since our main interest was in mapping the subsurface faults and volcanic bodies. Two profiles were selected that cross major anomalies and the geothermal zone of Ixtlan. The Talwani algorithm for 2-D polygonal bodies has been used for calculating the theoretical anomalies. The proposed models adequately explain the main observed geological features. The models are made up of two lithostratigraphic units of volcanic rocks, represented by the Tertiary basalts, which adequately reflect the area's volcanic environment. These basaltic units, corresponding to different volcanic events were cut by the Ixtlan well. Both models reflect the existence of the Ixtlan-Encinal fault, the most important feature in the area which is also responsible for the existence of the geothermal area.

  18. 3D Geothermal Modelling Using Gravity Survey on Dolok Marawa, Simalungun District, North Sumatera

    NASA Astrophysics Data System (ADS)

    Rivandi, A.; Destawan, R.; Fajri, Z. R.; Hidayat, W.

    2016-01-01

    In North Sumatera, gravity method is applied to identify the geothermal model. This method measured the earth gravitational field. This research has 160 measurement points covering 9 square kilometers. We obtained complete Bouguer anomaly values ranging 85 mGal - 130.68 mGal interpreted as a heat source of andesitic igneous rocks that are affected by the presence of Mount Bahtopu magma chamber. We interpreted the values between 40 mGal - 80 mGal as reservoir and caprock. The 3D gravity inverse modelling conducted using Gravblox, and identifying the following lithologies; Toba Pyroclastic Fall (Qjt) with density 1.92 g/cm3, Toba Pyroclastic Flow (Qjt) with density 2.00 g/cm3, Mount Bahtopu Andesite (Qlb) with density 2.4 g/cm3, and 2.6 g/cm3 which is interpreted as heat source in form of andesitic rock and Mount Bahtopu magma chamber. This heat source is estimated to be at a depth of 1.45 km to 3.78 km below the surface.

  19. Hydrogeologic reconnaissance of the beowawe geysers geothermal area, Nevada

    USGS Publications Warehouse

    Olmsted, F.H.; Rush, F.E.

    1987-01-01

    The Beowawe Geysers in north-central Nevada are the discharge from a hydrothermal-convection system in a region of high heat flow. The site of thermal-fluid upflow (at about 18 kg/s before drilling and well testing) appears to be related to the intersection at depth of two major fault zones. Assuming steady-state conditions, recharge within the drainage basin could account for both thermal and nonthermal ground-water discharge. Circulation of thermal fluid to depths exceeding 5 km is required to attain estimated temperatures of more than 220??C. ?? 1987.

  20. Preliminary assessment of the geothermal resource potential of the Yuma area, Arizona

    NASA Astrophysics Data System (ADS)

    Stone, C.

    The geothermal resource potential of the Yuma area of Arizona is discussed. The area is made up of low, rugged northwest trending mountains separated by deep sediment filled basins. Northwest trending en-echelon faults bound the range fronts and the basins, and created several horst blocks (basement highs) that crop out at or near the surface. The Algodonnes fault is inferred to represent the northeast margin of the Salton Trough and apparently an inactive extension of the San Andreas fault system. Extensive well pumping and applications of irrigation waters in recent years have created an unnatural state of flux in the hydrologic regime in the Yuma area. Electrical resistivity values in the Bouse Formation are exceptionally low, about 3 ohm-m. Heat flow appears to be normal for the Basin and Range province. Ground water temperatures indicate zones of rising warm water, with one such warm anomaly confirmed by sparse geothermal gradient data.

  1. Late Tectonic history of Beaufort Sea - North Pacific area

    SciTech Connect

    McWhae, J.R.H.

    1985-02-01

    The Kaltag fault (and its northern associated splay, the Rapid fault array) is the sheared suture between the Eurasian-Alaskan plate and the North American plate in the area between the Mackenzie Delta and the Alaskan Border. This condition has been maintained throughout considerable additional phases of faulting and folding from mid-Cretaceous to the present. Previously, the Alaskan plate had been the northwestern nose of the North America plate. The interplate suture was deflected to the north as the Canadian Shield was approached. The Kaltag fault continued northeastward 2000 km seaward of the Sverdrup rim, northwest of the Canadian Arctic Island, and north of Greenland. The driving force was directed from the southwest by the Eurasian plate after its collision in Early Cretaceous (Hauterivian) with the North American plate and the docking of north-moving exotic terranes from the Pacific. During the early Tertiary, perhaps in concert with the accretion of the Okhotsk block to the Asian plate north of Japan, the northern Pacific subduction zone jumped southward to the Aleutian Arc where it has persisted until today. A distance of 800 km separates the stable shelf of the Canadian craton, at the Alberta Foothills thrust belt, from the subduction zone off Vancouver Island. The foreland thrust belt and the accretion of exotic terranes in Mesozoic and Tertiary times extended the continental crust of the North American plate westward to the present active transform margin with the Pacific plate along the Queen Charlotte fault zone.

  2. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.

  3. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  4. Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations

    SciTech Connect

    East, J.

    1981-05-01

    The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

  5. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  6. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    SciTech Connect

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath

  7. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  8. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    SciTech Connect

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests.

  9. NORTH FORK SMITH RIVER ROADLESS AREA, CALIFORNIA AND OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Hamilton, Michael

    1984-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the North Fork Smith River Roadless Area, California. The area has probable and sustantiated resource potential for nickel, chromium, copper, and mercury and approximately 2300 mining claims exist in or adjacent to the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  10. NORTH FORK OF THE AMERICAN RIVER WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    Mineral-resource surveys of the North Fork of the American River Wilderness study area, California have identified a zone of substantiated resource potential for gold and silver. Zones of probable gold and silver potential occur in the eastern part of the area between the Wubbena and La Trinidad mines and locally around the Marrs mine. A zone with probable chromium potential occurs in the serpentinite belt along the western border of the area. No energy resources were identified in this study.

  11. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect

    Nye, C.J. . Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK . Div. of Geological and Geophysical Surveys); Motyka, R.J. . Div. of Geological and Geophysical Surveys); Turner, D.L. . Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  12. Geothermal Technologies Program: Utah

    SciTech Connect

    Not Available

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  13. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  14. Geophysical reconnaissance of prospective geothermal areas on the Island of Hawaii using electrical methods

    SciTech Connect

    Kauahikaua, J.; Mattice, M.

    1981-12-01

    Resistivity data from several areas were compiled, analyzed, and interpreted in terms of possible geologic models. On the basis of this analysis alone, two areas have been ruled out for possible geothermal exploitation, two have been interpreted to have a moderate-temperature resource, and two have been interpreted to have a high-temperature resource. The two areas which have been ruled out are the Keaau and South Point areas. The Kawaihae area and the lower northwest rift zone of Hualalai appear to have anomalous resistivity structures which suggest a moderate-temperature resource in each of these areas. Finally, specific areas in the lower southwest and lower east rift zones of Kilaauea have been outlined as locations where high-temperature fluids may exist at depth.

  15. Geophysical reconnaissance of prospective geothermal areas on the island of Hawaii using electrical methods

    SciTech Connect

    Kauahikaua, J.; Mattice, M.

    1981-07-01

    Resistivity data from several areas were compiled, analyzed, and interpreted in terms of possible geologic models. On the basis of this analysis alone, two areas have been ruled out for possible geothermal exploitation, two have been interpreted to have a moderate-temperature resource, and two have been interpreted to have a high-temperature resource. The two areas which have been ruled out are the Keaau and South Point areas. The Kawaihae area and the lower northwest rift zone of Hualalai appear to have anomalous resistivity structures, which suggest a moderate-temperature resource in each of these areas. Finally, specific areas in the lower southwest and lower east rift zones of Kilauea have been outlined as locations where high-temperature fluids may exist at depth.

  16. Geology and surface geochemistry of the Roosevelt Springs Known Geothermal Resource Area, Utah

    SciTech Connect

    Lovell, J.S.; Meyer, W.T.; Atkinson, D.J.

    1980-01-01

    Available data on the Roosevelt area were synthesized to determine the spatial arrangement of the rocks, and the patterns of mass and energy flow within them. The resulting model lead to a new interpretation of the geothermal system, and provided ground truth for evaluating the application of soil geochemistry to exploration for concealed geothermal fields. Preliminary geochemical studies comparing the surface microlayer to conventional soil sampling methods indicated both practical and chemical advantages for the surface microlayer technique, which was particularly evident in the case of As, Sb and Cs. Subsequent multi-element analyses of surface microlayer samples collected over an area of 100 square miles were processed to produce single element contour maps for 41 chemical parameters. Computer manipulation of the multi-element data using R-mode factor analysis provided the optimum method of interpretation of the surface microlayer data. A trace element association of As, Sb and Cs in the surface microlayer provided the best indication of the leakage of geothermal solutions to the surface, while regional mercury trends may reflect the presence of a mercury vapour anomaly above a concealed heat source.

  17. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  18. Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks

    SciTech Connect

    Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

    2002-05-09

    Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

  19. The hot dry rock geothermal potential of the Susanville (CA) area

    SciTech Connect

    Brown, D.W.

    1996-10-01

    A portion of northeastern California that lies within the Basin and Range Province represents a large, untapped geothermal energy resource in the form of hot, but essential impermeable, rock. If a means of developing sufficient permeability in the deep, granitic basement can be demonstrated, the electric power generation potential would be considerable. The objective of this study is to look at the specific geographical region extending from northeast to southeast of the village of Litchfield to the Nevada border as a target area for the first commercial application of Hot Dry Rock reservoir stimulation techniques. The ultimate goal is to provide background information that could lead to the creation of a commercial-scale, engineered geothermal reservoir in granitic basement rock of low permeability.

  20. Monitoring of arsenic, boron and mercury by lichen and soil analysis in the Mt. Amiata geothermal area (central Italy)

    SciTech Connect

    Loppi, S.

    1997-12-31

    Epiphytic lichens and top-soils from the Mt. Amiata geothermal field (central Italy) were analyzed for their As, B and Hg content. Three areas were selected: (1) Abbadia S. Salvatore, where a large Hg mine with smelting and roasting plant was located; (2) Piancastagnaio, where there are geothermal power plants; (3) a remote site far from mines and geothermal power plants. The results showed that the geothermal power plants do not represent a macroscopic source of arsenic and boron contamination in the area. As far as mercury is concerned, at the Hg mining area of Abbadia S. Salvatore concentrations were extremely high both in soil and epiphytic lichens, and the anomalous content in these organisms was due to the uptake of elemental mercury originating from soil degassing. At the geothermal area of Piancastagnaio, soil mercury was not different from that in the control area, but Hg in lichens was almost twice the control levels, suggesting that the gaseous emissions from the geothermal power plants are an important source of air contamination.

  1. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  2. 15. BALD MOUNTAIN MILL, INTERIOR SHOWING PRECIPITATION AREA FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. BALD MOUNTAIN MILL, INTERIOR SHOWING PRECIPITATION AREA FROM NORTH, c. 1934. SHOWS PRECIPITATION TANK No. 1 (NOTE LOCKS), ZINC FEEDER WITH MIXING CONE, VACUUM RECEIVER AND PIPING. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  3. Pump room level, looking north in service bay area. Visible ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump room level, looking north in service bay area. Visible from left to right are the direct current breaker panel, battery bank, door to stairwell, and hanging tools. - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  4. 12. OVERHEAD VIEW OF THE EVISCERATION AREA; LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OVERHEAD VIEW OF THE EVISCERATION AREA; LOOKING NORTH FROM THE VISITORS' GALLERY; NOTE THE RAISED CONCRETE PLATFORMS FOR WORKERS; VISCERA TABLE HAS BEEN REMOVED - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  5. Vault Area (original section), east corridor, looking north, showing tops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Vault Area (original section), east corridor, looking north, showing tops of individual vaults and vent housings - Fort McNair, Film Store House, Fort Lesley J. McNair, P Street between Third & Fourth Streets, Southwest, Washington, District of Columbia, DC

  6. 3. OVERALL VIEW OF UTILITY AREA, TO NORTH (CARPENTER SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF UTILITY AREA, TO NORTH (CARPENTER SHOP IS FIRST BUILDING ON LEFT; EQUIPMENT SHOP IS BEHIND TRUCKS TO LEFT; MACHINE SHOP IS AT CENTER BACK; WAREHOUSE IS THIRD BUILDING FROM FRONT ON THE RIGHT; FIREHOUSE IS SECOND BUILDING FROM FRONT ON THE RIGHT) - Oak Creek Historic Complex, Springdale, Washington County, UT

  7. LOST COVE AND HARPER CREEK ROADLESS AREAS, NORTH CAROLINA.

    USGS Publications Warehouse

    Griffitts, W.R.; Crandall, T.M.

    1984-01-01

    An investigation indicated that a part of the Lost Cove and Harper Creek Roadless Areas, North Carolina has a probable mineral-resource potential for uranium, niobium, and beryllium. The study areas lie within the Blue Ridge physiographic province and are predominantly underlain by Precambrian plutonic and metasedimentary rocks of low metamorphic grade. The uranium occurs in vein-type deposits and in supergene-enriched foliated rocks. The geologic setting precludes the presence of fossil fuel resources.

  8. Monitoring crustal deformation in The Geysers-Clear Lake geothermal area, California

    USGS Publications Warehouse

    Lofgren, Ben Elder

    1978-01-01

    Geodetic surveys since 1972-73 reveal significant crustal deformation in The Geysers-Clear Lake region. Resurveys of precise control networks are measuring both vertical and horizontal ground movement, with most of the change continuing in the area of geothermal fluid withdrawal. Preliminary evidence suggests right-lateral horizontal movement on northwest-trending fault systems and vertical and horizontal compression of the deep geothermal reservoir system. A direct correlation is suggested between ground-surface deformation and subsurface pressure changes in the reservoir system. Although surface changes appear too small to be of environmental concern in The Geysers-Clear Lake region, they indicate hydrodynamic changes in the reservoir of significant import. Two types of vertical changes in The Geysers production area are indicated in the 1973-77 data--(a) a regional subsidence between the Collayomi and Mercuryville fault zones and (b) local subsidence directly related to the area of principal steam production. Maximum subsidence of 13 centimeters in 4? years occurred in the area of most concentrated steam withdrawals and where fluid-pressure declines were near maximum. Subsidence rates throughout the production area from 1973 to 1975 were about half the 1975-77 rates in apparent correlation with pressure changes measured in the reservoir system. Horizontal ground movement as great as 2.0 centimeters per year, generally inward toward the center of production, was measured around the perimeter of the steam production area.

  9. Map showing geothermal resources of The Lake City-Surprise Valley Known Geothermal Resource Area, Modoc County, California

    SciTech Connect

    Not Available

    1981-01-01

    Geothermal data are summarized from published and unpublished geophysical, geochemical, and geologic reports on Surprise Valley prepared during the past 26 years. Particular emphasis is placed on a comprehensive structural interpretation of the west half of the valley that is based on map compilation of concealed faults that have been inferred from geophysical methods and exposed faults that can be seen in the field and/or on aerial photographs. The faults apparently control the location of modern geothermal activity.

  10. Geophysical investigation and assessment of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada

    NASA Astrophysics Data System (ADS)

    McDonald, Mark Richmond

    A gravity and ground-based magnetic survey was conducted at the Rye Patch Known Geothermal Resource Area located at Rye Patch, Nevada. The purpose of the study was to attempt to further delineate the geothermal reservoir and/or to identify potential drilling targets. The survey consisted of collecting data at 264 new stations to augment data from 203 stations collected in 2008. Information from previous seismic, aeromagnetic and geochemical investigations was also examined and incorporated. Filtering methods including removal of a polynomial trend surface and wavelength filtering were utilized on the gravity data to remove the strong regional overprint caused by the large density contrast between the low density alluvium within the valley versus the near-surface higher density rock in the higher elevations. After filtering, the Rye Patch Fault, the Range Front Fault, an east-west trending feature at the location of "southeast" fault, and another possible fault at the southern end of the study area are observable in the Rye Patch geothermal anomaly area. In the Humboldt House anomaly area, the northeast trending features identified by MacNight et al. (2005) and Ellis (2011) are not discernable although there is a significant gravity low in this area. Based on estimates arrived at by using 2nd derivative methods, fault dip angles are on the order of 80° and are consistent with previous conceptual models of the site. Computer modeling indicates that the fault blocks may also be rotated back to the east. Due to errors in collecting diurnal information, the ground-based magnetic information was of limited use. Anomalies identified with the magnetic data do however correlate with the locations of anomalies identified using gravity and aeromagnetic surveys. Results indicate that gravity methods can be an effective method of defining approximate fault locations, lengths, and approximate trends and dip angles.

  11. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect

    Layman Energy Associates, Inc.

    2006-08-15

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this

  12. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    USGS Publications Warehouse

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  13. Preliminary assessment of the geothermal resource potential of the Yuma area, Arizona

    SciTech Connect

    Stone, C.

    1981-01-01

    The Yuma area has had a long and complex tectonic history. The most southwesterly corner of the area presently comprises a small segment of the Salton Trough, a deep sediment-filled structural depression. Known geothermal anomalies in the Salton Trough make the Yuma area a favorable exploration target even though spreading-center heat sources are not expected to occur there. Geological and geophysical investigations reveal that the area is made up of low, rugged northwest-trending mountains separated by deep sediment-filled basins. Relief is a result of both erosional and structural activity. Northwest-trending en-echelon faults bound the range fronts and the basins, and have created several horst blocks (basement highs) that crop out at or near the surface. The Algodonnes fault is inferred to represent the northeast margin of the Salton Trough and apparently an inactive extension of the San Andreas fault system. Extensive well-pumping and applications of irrigation waters in recent years have created an unnatural state of flux in the hydrologic regime in the Yuma area. Gravity and aeromagnetic anomalies trend strongly northwest through the region as do lineaments derived from Landsat and Skylab photos. Electrical resistivity values in the Bouse Formation are exceptionally low, about 3 ohn-m. Heat flow appears to be normal for the Basin and Range province. Ground-water temperatures indicate zones of rising warm water, with one such warm anomaly confirmed by sparse geothermal-gradient data.

  14. Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area

    NASA Astrophysics Data System (ADS)

    Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek

    2015-09-01

    The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  15. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  16. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1983-01-01

    Three areas in the Texas Gulf Coastal Plain were studied using electric logs and seismic-reflection data to interpret their depositional and structural history and to compare their potential as geopressured-geothermal reservoirs. The Cuero study area, on the lower Wilcox (upper Paleocene) growth-fault trend, is characterized by closely and evenly spaced, subparallel, down-to-the-basin growth faults, relatively small expansion ratios, and minor block rotation. Distributary-channel sandstones in the geopressured lower Wilcox Group of the South Cook fault block appear to be the best geothermal aquifers in the Cuero area. The Blessing study area, on the lower Frio (Oligocene) growth-fault trend, shows wider and more variable fault spacing and much greater expansion ratios and block rotation, particularly during early Frio time. Thick geopressured sandstone aquifers are laterally more extensive in the Blessing area than in the Cuero area. The Pleasant Bayou study area, like the Blessing area, is on the Frio growth-fault trand, and its early structural development was similar rapid movement of widely spaced faults resulted in large expansion ratios and major block rotation. However, a late-stage pattern of salt uplift and withdrawal complicated the structural style. Thick geopressured lower Frio sandstone aquifers are highly permeable and laterally extensive, as in the Blessing area. In all three areas, geopressured aquifers were created where early, rapid movement along down-to-the-basin growth faults juxtaposed shallow-water sands against older shales, probably deposited in slope environments. Major transgressions followed the deposition of reservoir sands and probably also influenced the hydraulic isolation that allowed the build up of abnormal pressures. 26 refs., 49 figs., 8 tabs.

  17. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  18. The Geysers-Clear Lake geothermal area, California - an updated geophysical perspective of heat sources

    USGS Publications Warehouse

    Stanley, W.D.; Blakely, R.J.

    1995-01-01

    The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors

  19. Low temperature geothermal resource evaluation of the Moses Lake-Ritzville-Connell area, Washington

    SciTech Connect

    Widness, S.

    1983-11-01

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given. A technique developed by Biggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG).

  20. Mineral and geothermal resource potential of Wild Cattle Mountain and Heart Lake roadless areas Plumas, Shasta, and Tehama Counties, California

    SciTech Connect

    Muffler, L.J.P.; Clynne, M.A.; Cook, A.L.

    1982-01-01

    The results of geological, geochemical, and geophysical surveys in Wild Cattle Mountain and Heart Lake Roadless Areas indicate no potential for metallic or non-metallic mineral resources in the areas and no potential for coal or petroleum energy resources. However, Wild Cattle Mountain Roadless Area and part of Heart Lake Roadless Area lie in Lassen Known Geothermal Resources Area, and much of the rest of Heart Lake Roadless Area is subject to non-competitive geothermal lease applications. Both areas are adjacent to Lassen Volcanic National Park, which contains extensive areas of fumaroles, hot springs, and hydrothermally altered rock; voluminous silicic volcanism occurred here during late Pleistocene and Holocene time. Geochemical data and geological interpretation indicate that the thermal manifestations in the Park and at Morgan and Growler Hot Springs (immediately west of Wild Cattle Mountain Roadless Area) are part of the same large geothermal system. Consequently, substantial geothermal resources are likely to be discovered in Wild Cattle Mountain Roadless Area and cannot be ruled out for Heart Lake Roadless Area.

  1. Assessment of Ecological and Seismological Situations In The Geothermal Area of Tbilisi By Hydrodynamic Monitoring

    NASA Astrophysics Data System (ADS)

    Chelidze, T.; Buntebarth, G.; Melikadze, G.; Kumsiashvili, G.; Bendukidze, G.

    The paper is devoted to the investigation of the hydrodynamic regime of deep aquifers of the Tbilisi hydrothermal area, in order to delineate the spatial distribution of ther- mal water basins and to understand recorded anomalies quantitatively. Thermal min- eral waters or "sulphur springs" of Tbilisi have been of particular importance for its population during the 1,5 thousand years history of Tbilisi. Water of these springs is hot (40-50 C) and somewhat sulphurous: contain sulphuretted hydrogen and it is used for therapeutic and recreation purposes. The water resort is based on them. Hot natural springs are connected to the exposed sediments of middle Eocene in the river Mtkvari gorge. The water-bearing complex of volcanic type of middle Eocene is abundant at the Tbilisi thermal fields. Through drilling in the North - West part of the city (Lisi dis- trict), several boreholes were opened, where the sulphurous thermal water of 60-70 oC has been encountered. This water is used for room heating. Drilling will be continued for providing the city with hot water. It is planned to warm 30-40 % of the whole Tbil- isi using the geothermal water circulation system. From west to east, these deposits are buried under younger rocks. 20-30 km far from the deposit, oil has been found in an anticline structure. Intensive exploitation of this oil deposit caused the perturbation of the hydraulic regime with consequences in its central part where the thermal springs partly faded out in the eighties. Until present, the hydrodynamical interdependence be- tween these 3 districts has been studied by various authors, but its true character is still unclear. The spatial extent of the thermal waters has also to be investigated. Without detailed research, the sustainable and ecologically correct use of the thermal reservoir is impossible. In the period from July 1999 to July 2001 the monitoring network of water level in boreholes (WLB) and microtemperatures was operating on three wells

  2. Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.

    PubMed

    Burns, Bruce R; Ward, Jonet; Downs, Theresa M

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted. PMID:24136681

  3. Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.

    PubMed

    Burns, Bruce R; Ward, Jonet; Downs, Theresa M

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  4. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    SciTech Connect

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

    1987-09-01

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  5. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  6. Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006

    SciTech Connect

    Julian, B.R.; G.R. Foulger; F. Monastero

    2008-04-01

    Measurements of temporal changes in Earth structure are commonly determined using localearthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural variation in earthquake locations. Even if the source locations did not change (if only explosion data were used, for example), derived structures would inevitably differ because of observational errors. A better approach is to invert multiple data sets simultaneously, which makes it possible to determine what changes are truly required by the data. This problem is similar to that of seeking models consistent with initial assumptions, and techniques similar to the “damped least squares” method can solve it. We have developed a computer program, dtomo, that inverts multiple epochs of arrival-time measurements to determine hypocentral parameters and structural changes between epochs. We shall apply this program to data from the seismically active Coso geothermal area, California, in the near future. The permanent network operated there by the US Navy, supplemented by temporary stations, has provided excellent earthquake arrival-time data covering a span of more than a decade. Furthermore, structural change is expected in the area as a result of geothermal exploitation of the resource. We have studied the period 1996 through 2006. Our results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening with time of a negative VP/VS anomaly in the upper ~ 2 km of the reservoir. This progressive reduction in VP/VS results predominately from an increase of VS with respect to VP. Such a change is expected to result from

  7. Trace-element geochemistry of gradient hole cuttings: Beowawe geothermal area, Nevada

    SciTech Connect

    Christensen, O.D.

    1980-12-01

    Multielement geochemical analysis of drill cuttings from 26 shallow temperature-gradient drill holes and of surface rock samples reveals trace element distributions developed within these rocks as a consequence of chemical interaction with thermal fluid within the Beowawe geothermal area. The presently discharging thermal fluids are dilute in all components except silica, suggesting that the residence time of these fluids within the thermal reservoir has been short and that chemical interaction with the reservoir rock minimal. Interaction between these dilute fluids and rocks within the system has resulted in the development of weak chemical signatures. The absence of stronger signatures in rocks associated with the present system suggests that fluids have had a similar dilute chemistry for some time. The spatial distribution of elements commonly associated with geothermal systems, such as As, Hg and Li, and neither laterally nor vertically continuous. This suggests that there is not now, nor has there been in the past, pervasive movement of thermal fluid throughout the sampled rock but, instead, that isolated chemical anomalies represent distinct fluid-flow chanels. Discontinuous As, Li and Hg concentrations near White Canyon to the east of the presently active surface features record the effects of chemical interaction of rocks with fluids chemically unlike the presently discharging fluids. The observed trace element distributions suggest that historically the Beowawe area has been the center of more than one hydrothermal event and that the near-surface portion of the present hot-water geothermal system is controlled by a single source fracture, the Malpais Fault, or an intersection of faults at the sinter terrace.

  8. Design of a geothermal monitoring network in a coastal area and the evaluation system

    NASA Astrophysics Data System (ADS)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  9. Association of Cancer Incidence and Duration of Residence in Geothermal Heating Area in Iceland: An Extended Follow-Up

    PubMed Central

    Kristbjornsdottir, Adalbjorg; Aspelund, Thor; Rafnsson, Vilhjalmur

    2016-01-01

    Background Residents of geothermal areas have higher incidence of non-Hodgkin’s lymphoma, breast cancer, prostate cancer, and kidney cancers than others. These populations are exposed to chronic low-level ground gas emissions and various pollutants from geothermal water. The aim was to assess whether habitation in geothermal areas and utilisation of geothermal water is associated with risk of cancer according to duration of residence. Methods The cohort obtained from the census 1981 was followed to the end of 2013. Personal identifier was used in record linkage with nation-wide emigration, death, and cancer registries. The exposed population, defined by community codes, was located on young bedrock and had utilised geothermal water supply systems since 1972. Two reference populations were located by community codes on older bedrock or had not utilised geothermal water supply systems for as long a period as had the exposed population. Adjusted hazard ratio (HR), 95% confidence intervals (CI) non-stratified and stratified on cumulative years of residence were estimated in Cox-model. Results The HR for all cancer was 1.21 (95% CI 1.12–1.30) as compared with the first reference area. The HR for pancreatic cancer was 1.93 (1.22–3.06), breast cancer, 1.48 (1.23–1.80), prostate cancer 1.47 (1.22–1.77), kidney cancer 1.46 (1.03–2.05), lymphoid and haematopoietic tissue 1.54 (1.21–1.97), non-Hodgkin´s lymphoma 2.08 (1.38–3.15) and basal cell carcinoma of the skin 1.62 (1.35–1.94). Positive dose-response relationship was observed between incidence of cancers and duration of residence, and between incidence of cancer and degree of geothermal/volcanic activity in the comparison areas. Conclusions The higher cancer incidence in geothermal areas than in reference areas is consistent with previous findings. As the dose-response relationships were positive between incidence of cancers and duration of residence, it is now more urgent than before to investigate

  10. Geothermal assessment of part of the east shore area, Davis and Weber Counties, Utah

    SciTech Connect

    Klauk, R.H.; Prawl, C.A.

    1984-07-01

    Geothermal reconnaissance techniques attempted in this study included a water temperature survey, and chemical analyses of springs and wells. The temperature survey identified 12 wells with water temperatures 20/sup 0/C or higher. These wells were, however, located throughout the study area and with the exception of one location (W-15), exhibited no other low-temperature thermal characteristics that indicated warmer temperatures could be expected at depth or within the vicinity. Sample location W-15 was similar, chemically, to Hooper and Ogden Hot Springs as well as samples collected from three other non-thermal wells in the area. Although these three samples had temperatures that only ranged from 14/sup 0/ to 16/sup 0/C, chemical geothermometer results indicate temperatures to be expected at depth range from 60/sup 0/ to 90/sup 0/C. Other chemical characteristics of these samples indicative of low-temperature geothermal potential not previously identified include common ion concentrations high in Na and Cl, high concentrations of trace elements such as Li, Ba, and Sr, as well as Ca/HCO/sub 3/ and Cl/B ratios greater than background.

  11. Evaluation of the geothermal resource in the area of Albuquerque, New Mexico

    SciTech Connect

    Jiracek, G.R.; Swanberg, C.A.; Morgan, P.; Parker, M.D.

    1983-07-01

    Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (<30 m) temperature gradients (>100/sup 0/C/km) discovered in our drillholes, (7) deeper (<500 m) gradients from water wells exceeding 80/sup 0/C/km, and (8) chemical analyses of 88 groundwater samples yielding estimated base reservoir temperatures as high as 190/sup 0/C. An area of elevated shallow temperature gradients (less than or equal to 140/sup 0/C/km) was discovered a few kilometers west of Albuquerque by our 69 hole drilling program. Resistivity, magnetic, and gravity measurements combined with computer modeling suggests that heated ground water is forced closer to the surface here by flow over a buried ridge. A well drilled nearby yielded the highest recorded temperature in the Albuquerque area at its maximum depth (32.8/sup 0/C at 364 m). The deep gradient is 35/sup 0/C/km. An oil test well close by reported large volumes of water at 1 km; therefore, the possibility of a low temperature (>50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth.

  12. Relationship of geological and geothermal field properties: Midcontinent area, USA, an example

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Brower, J.C.

    1993-01-01

    negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.

  13. 14 CFR 135.98 - Operations in the North Polar Area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operations in the North Polar Area. 135.98... Operations § 135.98 Operations in the North Polar Area. After August 13, 2008, no certificate holder may operate an aircraft in the region north of 78° N latitude (“North Polar Area”), other than...

  14. A controlled source audiomagnetotelluric investigation of the Ennis Hot Springs Geothermal Area, Ennis, Montana: Final report: Part 2

    SciTech Connect

    Emilsson, G.R.

    1988-06-01

    A controlled-source audiomagnetotelluric survey (CSAMT) at the Ennis Hot Springs geothermal area revealed a low resistivity anomaly (3 ohm-m to 10 ohm-m) in the vicinity of the hot springs. The hot springs issue from the base of a gravel terrace on the west side of the Madison Valley. Low apparent resistivities extend to the west under the gravel terrace as well as to the north in an elongated ''plume''. To the southwest the apparent resistivity increases rapidly due to an uplift in the valley basement. One-dimensional inverse modeling in the center of the valley indicates a buried conductive layer probably due to a thick layer of clay-bearing sediments since a nearby test well does not show elevated temperatures. Near the hot springs, one-dimensional inverse modeling did not prove useful, partly because of the two and three-dimensional nature of the structure. Two-dimensional forward modeling near the hot springs provides a more quantitative delineation of the low resistivity zone and of the faulted basement uplifts to the west and south. Details of the structure beneath the conductive zone near the hot springs are difficult to resolve and most of the model control in this region is provided by well logs and seismic data. A technique for correcting data collected in the region close to the transmitter where the plane wave assumption is not valid has derived and has been applied to the low frequency data. 29 refs., 35 figs., 1 tab.

  15. Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography

    USGS Publications Warehouse

    Gunasekera, R.C.; Foulger, G.R.; Julian, B.R.

    2003-01-01

    Intensive geothermal exploitation at The Geysers geothermal area, California, induces myriads of small-magnitude earthquakes that are monitored by a dense, permanent, local seismometer network. Using this network, tomographic inversions were performed for the three-dimensional Vp and Vp/Vs structure of the reservoir for April 1991, February 1993, December 1994, October 1996, and August 1998. The extensive low-Vp/Vs anomaly that occupies the reservoir grew in strength from a maximum of 9% to a maximum of 13.4% during the 7-year study period. This is attributed to depletion of pore liquid water in the reservoir and replacement with steam. This decreases Vp by increasing compressibility, and increases Vs because of reduction in pore pressure and the drying of argillaceous minerals, e.g., illite, which increase the shear modulus. These effects serendipitously combine to lower Vp/Vs, resulting in a strong overall effect that provides a convenient tool for monitoring reservoir depletion. Variations in the Vp and Vs fields indicate that water depletion is the dominant process in the central part of the exploited reservoir, and pressure reduction and mineral drying in the northwest and southeast parts of the reservoir. The rate at which the Vp/Vs anomaly grew in strength in the period 1991-1998 suggests most of the original anomaly was caused by exploitation. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective geothermal reservoir depletion monitoring tool and can potentially provide information about depletion in parts of the reservoir that have not been drilled.

  16. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    NASA Astrophysics Data System (ADS)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  17. Geology of the Knife River area, North Dakota

    USGS Publications Warehouse

    Benson, William Edward

    1953-01-01

    The Knife River area, consisting of six 15-minute quadrangles, includes the lower half of the Knife River valley in west-central North Dakota. The area, in the center of the Williston Basin, is underlain by the Tongue River member of the Fort Union formation (Paleocene) and the Golden Valley formation (Eocene). The Tongue River includes beds equivalent to the Sentinel Butte shale; the Golden Valley formation, which receives its first detailed description in this report, consists of two members, a lower member of gray to white sandy kaolin clay and an upper member of cross-bedded micaceous sandstone. Pro-Tongue River rocks that crop out in southwestern North Dakota include the Ludlow member of the Fort Union formation, the Cannonball marine formation (Paleocene) and the Hell Creek, Fox Hills, and Pierre formations, all upper Cretaceous. Post-Golden Valley rocks include the White River formation (Oligocene) and gravels on an old planation surface that may be Miocene or Pliocent. Surficial deposits include glacial and fluvial deposits of Pleistocene age and alluvium, dune sand, residual silica, and landslide blocks of Recent age. Three ages of glacial deposits can be differentiated, largely on the basis of three fills, separated by unconformities, in the Knife River valley. All three are of Wisconsin age and probably represent the Iowan, Tazewell, and Mankato substages. Deposits of the Cary substage have not been identified either in the Knife River area or elsewhere in southern North Dakota. Iowan glacial deposits form the outermost drift border in North Dakota. Southwest of this border are a few scattered granite boulders that are residual from the erosion of either the White River formation or a pre-Wisconsin till. The Tazewell drift border cannot be followed in southern North Dakota. The Mankato drift border can be traced in a general way from the South Dakota State line northwest across the Missouri River and through the middle of the Knife River area. The major

  18. Chemical analyses of ground water related to geothermal investigations in the Teton River area, eastern Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1979-01-01

    Water samples from 31 wells and springs in eastern Idaho and western Wyoming were collected to help evaluate the potential geothermal resources in the Teton River area. Water analyses included anions and cations, oxygen-18, deuterium, and several minor elements. Actual temperature of the thermal waters ranged from 23 to 49C. Estimated aquifer temperatures, as derived from geochemical thermometers, ranged from 45 to 145C based on sodium-potassium-calcium ratios. Using the cation thermometer, two analyses indicated aquifer temperatures lower than actual measured temperatures. Using a mixing model method, estimated temperatures ranged from 205 to 320C, the higher being of questionable value. The different methods used showed little correlation. Based on isotope data, the warm waters may be of local meteoric origin and not heated enough to react significantly with aquifer rocks; or, they originated as precipitation at high altitude and great distance from the area. (Woodard-USGS)

  19. Geothermal Field Development in the European Community Objectives, Achievements and Problem Areas

    SciTech Connect

    Ungemach, Pierre

    1983-12-15

    Achievements and problem areas are reviewed with respect to various engineering implications of geothermal field development in the European Community (EC). Current and furture development goals address three resource settings. (a) low enthalpy sources (30-150{degrees}C), an outlook common to all Member states as a result of hot water aquifers flowing in large sedimentary units with normal heat flow, widespread thoughout the EC; (b) high enthalpy sources (<150{degrees}C) in areas of high heat flow which, as a consequence of the geodynamics of the Eurasian plate, are limited to Central and South-West Italy and to Eastern Greece; (c) hot dry rocks (HDR), whose potential for Europe, and also the difficulties in implementing the heat mining concept, are enormous. A large scale experiment conducted at medium depth in Cornwall (UK) proves encouraging though. It has provided the right sort of scientific inputs to the understanding of the mechanics of anisotropic brittle basement rocks.

  20. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    SciTech Connect

    Heiken, G.; Duffield, W.

    1990-09-01

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  1. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  2. Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington

    SciTech Connect

    Widness, Scott

    1983-11-01

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

  3. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and

  4. Three-dimensional Q -1 model of the Coso Hot Springs Known Geothermal Resource Area

    NASA Astrophysics Data System (ADS)

    Young, Chi-Yuh; Ward, Ronald W.

    1980-05-01

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of the anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factor δt* for the events recorded with the highest signal-to-noise ratio. The δt* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the δt* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or `lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12- km depth. Between the depth of 12-20 km a thick zone of high attenuation (Q <50) exists, offset toward the east from the surface anomaly.

  5. Industrially induced changes in Earth structure at the geysers geothermal area, California

    USGS Publications Warehouse

    Foulger, G.R.; Grant, C.C.; Ross, A.; Julian, B.R.

    1997-01-01

    Industrial exploitation is causing clearly-measurable changes in Earth structure at The Geysers geothermal area, California. Production at The Geysers peaked in the late 1980s at ???3.5 ?? 103 kg s-1 of steam and 1800 MW of electricity. It subsequently decreased by about 10% per year [Barker et al., 1992] because of declining reservoir pressure. The steam reservoir coincides with a strong negative anomaly (???0.16, ???9%) in the compressional-to-shear seismic wave speed ratio vP/vS, consistent with the expected effects of low-pressure vapor-phase pore fluid [Julian et al., 1996]. Between 1991 and 1994 this anomaly increased in amplitude by up to about 0.07 (???4%). This is consistent with the expected effects of continued pressure reduction and conversion of pore water to steam as a result of exploitation. These unique results show that vP/vS tomography can easily detect saturation changes caused by exploitation of reservoirs, and is a potentially valuable technique for monitoring environmental change. They also provide geophysical observational evidence that geothermal energy is not a renewable energy source.

  6. Seasonal and geothermal production variations in concentrations of He and CO2 in soil gases, Roosevelt Hot Springs Known Geothermal Resource Area, Utah, U.S.A.

    USGS Publications Warehouse

    Hinkle, M.E.

    1991-01-01

    To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.

  7. Geothermal in transition

    SciTech Connect

    Anderson, J.L.

    1991-10-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii.

  8. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  9. 40. NORTH ACROSS WOODWORKING AREA IN NORTHWESTERN QUADRANT OF FACTORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. NORTH ACROSS WOODWORKING AREA IN NORTHWESTERN QUADRANT OF FACTORY ACROSS STACKED LUMBER ON SAWHORSES TOWARD CIRCA 1900 THICKNESS PLANER, SHOP-MADE BELT GUARD, AND BELOW THE SKYLIGHT OVERHEAD LINE SHAFT, BELTS, AND PULLEYS. BEYOND THE LUMBER ON A WHEELED WORK STATION ARE CIRCA 1900 ROLLS FOR BENDING PROPER CURVATURE IN STEEL WINDMILL BLADES AND CIRCA 1900 BEADING MACHINE FOR FORMING CREASES IN THE EDGES OF SHEET METAL PARTS SUCH AS WHEEL BLADES. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  10. 46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN QUADRANT OF FACTORY AS SEEN FROM DOORWAY IN SOUTH FRONT WALL. ALONG WEST INTERIOR WALL ARE SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. IN FRONT OF THE WALL ARE THE CIRCA 1900 SHEET METAL SHEAR AND CIRCA 1900 SHEET METAL BRAKE. AT THE RIGHT SIDE OF THE IMAGE ALONGSIDE VERTICAL CEILING SUPPORTS IS METAL-COVERED BENCH FOR SHEET METAL WORK. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  11. Improved Detection of Microearthquakes in Geothermal Areas - Applying Empirical Matched Field Processing to Traditional and EGS sites

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Wang, J.; Harris, D. B.

    2012-12-01

    The aim of this project is to increase the amount of information that can be extracted from seismic data collected in EGS or traditional geothermal areas. To accomplish our objective, we develop a seismic imaging technique that can map seismicity from discrete microearthquake sources using the Matched Field Processing (MFP) method. We use data from the Salton Sea geothermal field available from the Southern California Earthquake Data Center. Data between November 2009 and December 2010 was downloaded off the web and 231 high-quality master events were identified from the online catalog. This time period included two robust earthquake swarms. We created matched field steering vector calibrations for 7 three-component stations within the Salton Sea Geothermal Field. The official earthquake catalog identified 1536 events. When we applied the empirical MFP technique to the same data, we identified 5357 events. We then compare the results from this traditional geothermal area with results obtained from an Engineered Geothermal System (EGS) site. Finally, we compare the number of events in the improved earthquake catalogs with available fluid injection data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities

    NASA Astrophysics Data System (ADS)

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola

    2015-04-01

    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  13. Targeting geothermal exploration sites in the Mount St. Helens area using soil mercury surveys

    SciTech Connect

    Holmes, J.; Waugh, K.

    1983-11-01

    The background mercury level was determined for the areas studied, providing preliminary information for future work. Identification of areas which might merit more intensive sampling was also accomplished. The clusters of samples with high Hg concentrations in both areas may indicate high heat flow and should be investigated further. Problems involving the use of this method in the Cascades were also identified. Both areas north and south of the mountain had approximately the same standard deviation (expressed as a percentage of the mean), even though the sampling horizons seemed much more consistent and less disturbed in the Marble Mountain area than in the Green River Soda Springs area. This may indicate that for these areas, secondary controls are more important, or that Hg anomalies are much smaller than indicated in studies of other areas.

  14. Environmental Assessment -- Test Area North pool stabilization project update

    SciTech Connect

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

  15. Draft environmental assessment -- Test Area North pool stabilization project update

    SciTech Connect

    1997-06-01

    The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

  16. 39. NORTH TOWARD GENERAL VIEW OF WOODWORKING SHOP AREA IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. NORTH TOWARD GENERAL VIEW OF WOODWORKING SHOP AREA IN THE NORTHWESTERN QUADRANT OF THE FACTORY. THE LINE SHAFT, BELTS, AND PULLEYS WHICH OPERATED MACHINERY ARE CLEARLY VISIBLE BENEATH THE SKYLIGHT IN THE CEILING. A SHOP-MADE BELT GUARD MADE FROM SAWED LUMBER AND HARDWARE CLOTH IS SEEN NEAR THE CENTER OF THE PHOTOGRAPH, BENEATH WHICH ARE A CIRCA 1900 TABLE SAW AND A SMALL WHEELED WORK STATION WITH A BELT-ACTUATED PAINT PIGMENT GRINDER. IN THE RIGHT AREA OF THE IMAGE ARE A TIRE BENDER AND A CIRCA 1900 CROSS-CUTOFF CIRCULAR SAW. SAWHORSES AT THE LEFT SIDE SUPPORT STACKED LUMBER IN FRONT OF A CIRCA 1900 THICKNESS PLANER. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  17. Geology of the Plumtree area, Spruce Pine district, North Carolina

    USGS Publications Warehouse

    Brobst, Donald Albert

    1953-01-01

    This report describes the results of study and geologic mapping (1:12,000) in the 70-square-mile Plumtree area in the northeastern part of the Spruce Pine pegmatite district, on the Blue Ridge upland in western North Carolina. The district has been the chief domestic source of feldspar and sheet mica. The mining belt just west of the Blue Ridge Front trends northeast and is 25 miles long and 10 miles wide. The center of the Plumtree area lies 10 miles northeast of Spruce Pine pegmatite district, on the Blue Ridge upland in western North Carolina. The district has been the chief domestic source of feldspar and sheet mica. The mining belt just west of the Blue Ridge Front trends northeast and is 25 miles long and 10 miles wide. The center of the Plumtree area lies 10 miles northeast of Spruce Pine and includes parts of Mitchell and Avery Counties shown on the portions of the 7.5-minute Spruce Pine, Linville Falls, Newland, North Carolina, and Carvers Gap, North Carolina and Tennessee quadrangle. The topography varies from rugged mountains to rounded or flat topped hills near the entrenched, meandering master streams. Old erosion surfaces are approximately 600,1,100, 1,500, and 2,500 feet above the present master stream level. The area is in late youth or early maturity after rejuvenation.. The regionally metamorphosed rocks of the amophibolite facies form three mappable units: mica gneiss, mica schist, and hornblende rock. These rocks, perhaps of Precambrian age, are intimately interlayered with thicknesses of the individual layers ranging from less than one inch to several tons of feet. Field relationships and chemical data suggest that the mica (Carolina-type) rocks were derived from sandstones, graywackes, and shales and that the hornblende-rich (Roan-type) layers were derived from impure carbonate rocks. The igneous rocks include alaskite and associated pegmatite of early Paleozoic age (?), dunite and associated soapstone of a prepegmatite age, and a few diabasic

  18. Non-double-couple earthquake mechanisms at the Geysers geothermal area, California

    USGS Publications Warehouse

    Ross, A.; Foulger, G.R.; Julian, B.R.

    1996-01-01

    Inverting P- and S-wave polarities and P:SH amplitude ratios using linear programming methods suggests that about 20% of earthquakes at The Geysers geothermal area have significantly non-double-couple focal mechanisms, with explosive volumetric components as large as 33% of the seismic moment. This conclusion contrasts with those of earlier studies, which interpreted data in terms of double couples. The non-double-couple mechanisms are consistent with combined shear and tensile faulting, possibly caused by industrial water injection. Implosive mechanisms, which might be expected because of rapid steam withdrawal, have not been found. Significant compensated-linear-vector-dipole (CLVD) components in some mechanisms may indicate rapid fluid flow accompanying crack opening. Copyright 1996 by the American Geophysical Union.

  19. Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana

    SciTech Connect

    Lyons, W.S.

    1982-12-01

    The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

  20. Evaluation of the production potential of the Crystal Hot Springs geothermal resource, north central Utah

    SciTech Connect

    Blair, C.K.; Owen, L.B.

    1981-01-01

    Results of an artesian flow test of a 1000 foot deep well (USP/TH-1) are reported. The testing program was designed to provide necessary data for estimating the long-term production potential of the geothermal resource. Based on results of a 72 hour flow test, it was concluded that the state-owned portion of the Crystal Hot Springs resource is potentially capable of supplying sufficient energy to provide space and hot water heating for the minimum security portion of the Utah State Prison. However, development of the resource will have to be carefully managed to prevent premature depletion of the reservoir.

  1. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy)

    NASA Astrophysics Data System (ADS)

    Morteani, Giulio; Ruggieri, Giovanni; Möller, Peter; Preinfalk, Christine

    2011-02-01

    The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1-147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.

  2. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  3. Low-temperature geothermal potential of the Ojo Caliente warm springs area, northern New Mexico

    SciTech Connect

    Vuataz, F.D.; Stix, J.; Goff, F.; Pearson, C.F.

    1984-05-01

    A detailed geochemical investigation of 17 waters (thermal and cold, mineralized and dilute) was performed in the Ojo Caliente-La Madera area. Two types of thermomineral waters have separate and distinctive geologic, geochemical, and geothermal characteristics. The water from Ojo Caliente Resort emerges with temperatures less than or equal to 54/sup 0/C from a Precambrian metarhyolite. Its chemistry, typically Na-HCO/sub 3/, has a total mineralization of 3600 mg/l. Isotopic studies have shown that the thermal water emerges from the springs and a hot well without significant mixing with the cold shallow aquifer of the valley alluvium. However, the cold aquifer adjacent to the resort does contain varying amounts of thermal water that originates from the warm spring system. Geothermometry calculations indicate that the thermal water may be as hot as 85/sup 0/C at depth before its ascent toward surface. Thermodynamic computations on the reaction states of numerous mineral phases suggest that the thermal water will not cause major scaling problems if the hot water is utilized for direct-use geothermal applications. By means of a network of very shallow holes, temperature and electrical conductivity anomalies have been found elsewhere in the valley around Ojo Caliente, and resistivity soundings have confirmed the presence of a plume of thermal water entering the shallow aquifer. The group of lukewarm springs around La Madera, with temperatures less than or equal to 29/sup 0/C, chemical type of NaCaMg-HCO/sub 3/Cl and with a total mineralization less than or equal to 1500 mg/l behaves as a different system without any apparent relation to the Ojo Caliente system. Its temperature at depth is not believed to exceed 35 to 40/sup 0/C.

  4. An integrated geophysical study of the northern Kenya rift crustal structure: Implications for geothermal energy prospecting for Menengai area

    NASA Astrophysics Data System (ADS)

    Mariita, Nicholas O.

    2003-07-01

    shown by a transition zone located just south of Baringo-Bogoria basin. This zone is about 20 km wide and is bounded by pronounced east-west trending faults. In addition to regional analysis of rift structure, a detailed study of the Menengai volcano area was conducted using over 100 DC resistivity soundings. Resistivity anomalies have been highlighted by contouring the apparent resistivity values from the soundings at various depths and investigating how they vary with depth and how they compare with those from the Olkaria geothermal field. The resistivity and gravity signatures suggest the presence of a heat source and a geothermal reservoir hosted within the fractured/faulted brittle trachytic lavas of the rift floor to the north and northeast of Menengai caldera. It is hoped that this analysis will be used in future exploration efforts. (Abstract shortened by UMI.)

  5. Incidence of cancer among residents of high temperature geothermal areas in Iceland: a census based study 1981 to 2010

    PubMed Central

    2012-01-01

    Background Residents of geothermal areas are exposed to geothermal emissions and water containing hydrogen sulphide and radon. We aim to study the association of the residence in high temperature geothermal area with the risk of cancer. Methods This is an observational cohort study where the population of a high-temperature geothermal area (35,707 person years) was compared with the population of a cold, non-geothermal area (571,509 person years). The cohort originates from the 1981 National Census. The follow up from 1981 to 2010 was based on record linkage by personal identifier with nation-wide death and cancer registries. Through the registries it was possible to ascertain emigration and vital status and to identify the cancer cases, 95% of which had histological verification. The hazard ratio (HR) and 95% confidence intervals (CI) were estimated in Cox-model, adjusted for age, gender, education and housing. Results Adjusted HR in the high-temperature geothermal area for all cancers was 1.22 (95% CI 1.05 to 1.42) as compared with the cold area. The HR for pancreatic cancer was 2.85 (95% CI 1.39 to 5.86), breast cancer 1.59 (95% CI 1.10 to 2.31), lymphoid and hematopoietic cancer 1.64 (95% CI 1.00 to 2.66), and non-Hodgkins lymphoma 3.25 (95% CI 1.73 to 6.07). The HR for basal cell carcinoma of the skin was 1.61 (95% CI 1.10 to 2.35). The HRs were increased for cancers of the nasal cavities, larynx, lung, prostate, thyroid gland and for soft tissue sarcoma; however the 95% CIs included unity. Conclusions More precise information on chemical and physical exposures are needed to draw firm conclusions from the findings. The significant excess risk of breast cancer, and basal cell carcinoma of the skin, and the suggested excess risk of other radiation-sensitive cancers, calls for measurement of the content of the gas emissions and the hot water, which have been of concern in previous studies in volcanic areas. There are indications of an exposure

  6. Town of Pagosa Springs geothermal heating system

    SciTech Connect

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  7. The Colorado School of Mines Nevada geothermal study

    NASA Technical Reports Server (NTRS)

    Keller, G. V.; Grose, L. T.; Crewpson, R. A.

    1974-01-01

    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully.

  8. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  9. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2016-09-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  10. Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México

    NASA Astrophysics Data System (ADS)

    Espinosa-Cardeña, J. M.; Campos-Enriquez, J. O.

    2008-10-01

    Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m 2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.

  11. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    USGS Publications Warehouse

    Plouff, Donald

    2006-01-01

    The U.S. Geological Survey (USGS) conducted geophysical studies in support of the resource appraisal of the Crump Geyser Known Geothermal Resource Area (KGRA). This area was designated as a KGRA by the USGS, and this designation became effective on December 24, 1970. The land classification standards for a KGRA were established by the Geothermal Steam Act of 1970 (Public Law 91-581). Federal lands so classified required competitive leasing for the development of geothermal resources. The author presented an administrative report of USGS geophysical studies entitled 'Geophysical background of the Crump Geyser area, Oregon, KGRA' to a USGS resource committee on June 17, 1975. This report, which essentially was a description of geophysical data and a preliminary interpretation without discussion of resource appraisal, is in Appendix 1. Reduction of sheets or plates in the original administrative report to page-size figures, which are listed and appended to the back of the text in Appendix 1, did not seem to significantly degrade legibility. Bold print in the text indicates where minor changes were made. A colored page-size index and tectonic map, which also show regional geology not shown in figure 2, was substituted for original figure 1. Detailed descriptions for the geologic units referenced in the text and shown on figures 1 and 2 were separately defined by Walker and Repenning (1965) and presumably were discussed in other reports to the committee. Heavy dashed lines on figures 1 and 2 indicate the approximate KGRA boundary. One of the principal results of the geophysical studies was to obtain a gravity map (Appendix 1, fig. 10; Plouff, and Conradi, 1975, pl. 9), which reflects the fault-bounded steepness of the west edge of sediments and locates the maximum thickness of valley sediments at about 10 kilometers south of Crump Geyser. Based on the indicated regional-gravity profile and density-contrast assumptions for the two-dimensional profile, the maximum

  12. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand

    NASA Astrophysics Data System (ADS)

    Harvey, M. C.; Rowland, J. V.; Luketina, K. M.

    2016-10-01

    Drones are now routinely used for collecting aerial imagery and creating digital elevation models (DEM). Lightweight thermal sensors provide another payload option for generation of very high-resolution aerial thermal orthophotos. This technology allows for the rapid and safe survey of thermal areas, often present in inaccessible or dangerous terrain. Here we present a 2.2 km2 georeferenced, temperature-calibrated thermal orthophoto of the Waikite geothermal area, New Zealand. The image represents a mosaic of nearly 6000 thermal images captured by drone over a period of about 2 weeks. This is thought by the authors to be the first such image published of a significant geothermal area produced by a drone equipped with a thermal camera. Temperature calibration of the image allowed calculation of heat loss (43 ± 12 MW) from thermal lakes and streams in the survey area (loss from evaporation, conduction and radiation). An RGB (visible spectrum) orthomosaic photo and digital elevation model was also produced for this area, with ground resolution and horizontal position error comparable to commercially produced LiDAR and aerial imagery obtained from crewed aircraft. Our results show that thermal imagery collected by drones has the potential to become a key tool in geothermal science, including geological, geochemical and geophysical surveys, environmental baseline and monitoring studies, geotechnical studies and civil works.

  13. Geothermal reconnaissance of the area between Marsa Alam and Ras Banas, northern Red Sea, Egypt, using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Saada, Saada A.

    2016-06-01

    Aeromagnetic data of the area between Marsa Alam and Ras Banas were interpreted to estimate the Curie point isotherm, investigate the geothermal gradient and to determine its surface heat flow. Appling spectral analysis and 2-D inverse modeling techniques to aeromagnetic anomalies has provided equitable promising geological results, useful to further geothermal exploration. Spectral analysis indicates that, the area is underlined by an average Curie-point depth of about 10.58 km. This implies an average thermal heat flow (137 mW/m2) greater than the average heat flow of the Red Sea margins (116 mW/m2). The investigated area was divided into three subregions and the average depth to centroid was estimated for each subregion. 2-D inverse modeling technique indicated that the magnetic sources can be interpreted by a set of dykes dipping to the NE and SW. The integration of radially power spectrum and 2-D inverse modeling was used to estimating the depths to the bottom of these magnetic bodies (equivalent to the Curie-point depth). It indicated a general decrease from 24 to 10 km from west to east toward the Red Sea rifting zone. The calculated surface heat flow increases from 55 mW/m2 to >150 mW/m2 in the same direction. Consequently, the offshore area between Ras Banas and Marsa Alam is a promising area for further exploration of geothermal resources.

  14. New Zealand geothermal: Wairakei -- 40 years

    SciTech Connect

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  15. Seismic and Gravity Investigations of the Caja del Rio Geothermal Area, New Mexico

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Burke, B.; Butler, E.; Harper, C.; Livermore, J.; McGlannan, A.; Wasik, A.; Baldridge, W. S.; Biehler, S.; Ferguson, J. F.; McPhee, D. K.; Snelson, C. M.; Sussman, A. J.

    2012-12-01

    The SAGE (Summer of Applied Geophysical Experience) program collected new seismic and gravity data in 2012 in the Caja del Rio area of northern New Mexico. The area, about 25 km NW of Santa Fe, has been identified as a potential geothermal resources area based on relatively high temperature gradients in drill holes. The SAGE 2012 data collection was part of an integrated geophysical study of the area initiated in 2011. Seismic data consisted of a 6.4 km SE to NW profile (80 three-component stations, 20 m station spacing, using a Vibroseis source - 20 m spacing for reflection VPs; 800 m spacing for refraction VPs) with both refraction and CMP reflection coverage. The surface conditions (dry unconsolidated cover over a thin volcanic layer) increased surface wave energy and limited the signal-to-noise level of the refraction and reflection arrivals. The refraction data were modeled with first arrival travel time methods. The reflection data were processed to produce a CMP stacked record section. Strong, NW-dipping reflectors, interpreted as from the Espinaso formation, are visible at about 1.4 seconds two-way time. One hundred and sixty-four new gravity measurements (detailed data at 500 m spacing along the seismic profile and regional stations) were collected and combined with existing regional data for modeling. Interpretation of the seismic and gravity data was aided by refraction velocities, the existence of a nearby regional seismic reflection profile from industry, and lithologies and well-logs from a deep well. The sedimentary basin interpreted from the seismic and gravity data, along with existing geological and geophysical information, consists of a thick section of Tertiary rift fill (capped by a thin layer of volcanic rocks), over Mesozoic and Paleozoic rocks, with a total basin thickness of about 3 km.

  16. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  17. Water-quality investigation near the Chico and Hunters geothermal lease-application areas, Park and Sweet Grass Counties, Montana

    USGS Publications Warehouse

    Leonard, Robert B.; Shields, Ronald R.; Midtlyng, Norman A.

    1978-01-01

    Water quality in and adjacent to geothermal lease-application areas in Montana near Chico and Hunters Hot Springs was investigated during two surveys in October 1976 and April 1977. The data were needed to evaluate the effects of proposed geothermal exploration and development on the Yellowstone River and its tributaries. Water from the two hot springs, the Yellowstone River, and its tributaries that drain the proposed lease areas are generally suitable for drinking, except for excessive concentrations of fluoride and hydrogen sulfide in waters from Hunters Hot Springs. The water from Chico Hot Springs is suitable for irrigation, but the water from Hunters Hot Springs presents a very high sodium and medium salinity hazard and is generally unsatisfactory for irrigation. The effect of the thermal waters on streamflow and chemical discharge of the Yellowstone River during the surveys was negligible. (Woodard-USGS)

  18. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    SciTech Connect

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  19. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G.

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  20. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan--an isotopic evidence.

    PubMed

    Ahmad, M; Akram, W; Hussain, S D; Sajjad, M I; Zafar, M S

    2001-11-01

    The Murtazabad area represents one of the major geothermal fields in Pakistan, with seven hot springs lying along the Main Karakoram Thrust. Discharge of the springs is 50-1200 l per minute with the surface temperature from 40 to 94 degrees C. Environmental isotopes and chemical concentrations have been used to investigate the origin and subsurface history of thermal water. Four sets of water samples were collected and analyzed for various isotopes including 18O, 2H and 3H of water; 34S and 18O of dissolved sulphates and chemical contents. Isotopic and chemical data show that the origin of thermal water is meteoric water. On the delta-diagram, delta18O and delta2H data plotting below the local meteoric water line with a slope around 12.3 show that the original thermal water receives recharge from precipitation at higher altitude (3000 m) and undergoes delta18O shift of about 1 per thousand due to exchange with rocks. Different correlations between isotopes, temperature and Cl indicate that the observed isotopic compositions have evolved due to mixing of different proportions of shallow water at different spring paths during movement of thermal water towards the surface. It is also inferred from the tritium data along with delta18O and delta2H that the circulation time is long and is estimated to be more than 50 years.

  1. Test Area North Pool Stabilization Project: Environmental assessment

    SciTech Connect

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as {open_quotes}commercial fuels{close_quotes} except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative.

  2. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  3. Modeling Seasonal Thermal Radiance Cycles for Change Detection at Volcanic / Geothermal Areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R.; Beuttel, B. S.

    2013-12-01

    Remote sensing observations of thermal features associated with (and often preceding) volcanic activity have been used for decades to detect and monitor volcanism. However, anomalous thermal precursors to volcanic eruptions are usually only recognized retrospectively. One of the reasons for this is that precursor thermal activity is often too subtle in magnitude (spatially, temporally, or in absolute temperature) to be unambiguously detected in time to issue warnings or forecasts. Part of the reason for this is the trade-off between high spatial and high temporal resolution associated with satellite imaging systems. Thus, the goal of this work has been to develop some techniques for using high-temporal-resolution, coarse-spatial-resolution imagery to try to detect subtle thermal anomalies. To identify anomalies, background thermal activity must first be characterized. Every active, or potentially active, volcano has a unique thermal history that provides information about normal background thermal activity due to seasonal or diurnal variations. Understanding these normal variations allows recognition of anomalous activity that may be due to volcanic / hydrothermal processes - ultimately with a lead time that may be sufficient to issue eruption warnings or forecasts. Archived MODIS data, acquired ~daily from 2000 to 2012, were used to investigate seasonal thermal cycles at three volcanic areas with different types of thermal features: Mount St. Helens, which had a dacite dome-building eruption from 2004-2008; Mount Ruapehu, which has a 500-m diameter active summit crater lake; and Yellowstone, which is a large active geothermal system that has hundreds of hot springs and fumarole fields spread out over a very large area. The focus has been on using MODIS 1-km sensor radiance data in the MIR and TIR wavelength regions that are sensitive to thermal emission from features that range in temperature from hundreds of °C, down to tens of °C (below the boiling temperature

  4. Geothermal resources of Utah, 1980

    SciTech Connect

    Not Available

    1980-01-01

    This map shows heat flow, Known Geothermal Resources Areas, thermal springs and wells, and areas of low-temperature geothermal waters. Also shown are Indian reservations, military reservation, national or state forests, and parks, wildlife refuges, wilderness areas, etc. (MHR)

  5. Source processes of industrially-induced earthquakes at the Geysers geothermal area, California

    USGS Publications Warehouse

    Ross, A.; Foulger, G.R.; Julian, B.R.

    1999-01-01

    Microearthquake activity at The Geysers geothermal area, California, mirrors the steam production rate, suggesting that the earthquakes are industrially induced. A 15-station network of digital, three-component seismic stations was operated for one month in 1991, and 3,900 earthquakes were recorded. Highly-accurate moment tensors were derived for 30 of the best recorded earthquakes by tracing rays through tomographically derived 3-D VP and VP / VS structures, and inverting P-and S-wave polarities and amplitude ratios. The orientations of the P-and T-axes are very scattered, suggesting that there is no strong, systematic deviatoric stress field in the reservoir, which could explain why the earthquakes are not large. Most of the events had significant non-double-couple (non-DC) components in their source mechanisms with volumetric components up to ???30% of the total moment. Explosive and implosive sources were observed in approximately equal numbers, and must be caused by cavity creation (or expansion) and collapse. It is likely that there is a causal relationship between these processes and fluid reinjection and steam withdrawal. Compensated linear vector dipole (CLVD) components were up to 100% of the deviatoric component. Combinations of opening cracks and shear faults cannot explain all the observations, and rapid fluid flow may also be involved. The pattern of non-DC failure at The Geysers contrasts with that of the Hengill-Grensdalur area in Iceland, a largely unexploited water-dominated field in an extensional stress regime. These differences are poorly understood but may be linked to the contrasting regional stress regimes and the industrial exploitation at The Geysers.

  6. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  7. A&M. Radioactive parts security storage area. Camera facing north. Fourrail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area. Camera facing north. Four-rail track leads to south end (front door) of TAN-647. Dolly is loaded with transport cask and liner. To its right, view shows back end of TAN-648, which is accessed by road on its north side. Photographer: M. Holmes. Date: December 21, 1959. INEEL negative no. 59-6080. - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Operation of a mineral recovery unit on brine from the Salton Sea Known Geothermal Resource Area. Report of investigations/1982

    SciTech Connect

    Schultze, L.E.; Bauer, D.J.

    1982-07-01

    The Bureau of Mines operated a mineral recovery unit to recover metal values from post-flash geothermal brines from the Salton Sea known geothermal resource area as part of its research into the use of plentiful resources. The brine was available for metals recovery after its heat content had been used to generate electricity. The brine source was treated with lime to precipitate the contained iron, manganese, lead, and zinc before injection of the heat-depleted brine into the underground reservoir. Data are presented on the effects of process variables, such as rate and method of lime addition and air oxidation versus air exclusion. Variations in precipitation of metal values, composition of precipitates, effectiveness of slurry thickeners, and methods of treating the precipitates to recover metal values are discussed.

  9. Operation of a mineral-recovery unit on brine from the Salton Sea known geothermal resource area

    SciTech Connect

    Schultze, L.E.; Bauer, D.J.

    1982-01-01

    The Bureau of Mines operated a mineral recovery unit to recover metal values from post-flash geothermal brines from the Salton Sea known geothermal resource area as part of its research into the use of plentiful resources. The brine was available for metals recovery after its heat content had been used to generate electricity. The brine source was treated with lime to precipitate the contained iron, manganese, lead, and zinc before injection of the heat-depleted brine into the underground reservoir. Data are presented on the effects of process variables, such as rate and method of lime addition and air oxidation versus air exclusion. Variations in precipitation of metal values, composition of precipitates, effectiveness of slurry thickeners, and methods of treating the precipitates to recover metal values are discussed.

  10. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The...

  11. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The...

  12. Neural network modeling and prediction of resistivity structures using VES Schlumberger data over a geothermal area

    NASA Astrophysics Data System (ADS)

    Singh, Upendra K.; Tiwari, R. K.; Singh, S. B.

    2013-03-01

    This paper presents the effects of several parameters on the artificial neural networks (ANN) inversion of vertical electrical sounding (VES) data. Sensitivity of ANN parameters was examined on the performance of adaptive backpropagation (ABP) and Levenberg-Marquardt algorithms (LMA) to test the robustness to noisy synthetic as well as field geophysical data and resolving capability of these methods for predicting the subsurface resistivity layers. We trained, tested and validated ANN using the synthetic VES data as input to the networks and layer parameters of the models as network output. ANN learning parameters are varied and corresponding observations are recorded. The sensitivity analysis of synthetic data and real model demonstrate that ANN algorithms applied in VES data inversion should be considered well not only in terms of accuracy but also in terms of high computational efforts. Also the analysis suggests that ANN model with its various controlling parameters are largely data dependent and hence no unique architecture can be designed for VES data analysis. ANN based methods are also applied to the actual VES field data obtained from the tectonically vital geothermal areas of Jammu and Kashmir, India. Analysis suggests that both the ABP and LMA are suitable methods for 1-D VES modeling. But the LMA method provides greater degree of robustness than the ABP in case of 2-D VES modeling. Comparison of the inversion results with known lithology correlates well and also reveals the additional significant feature of reconsolidated breccia of about 7.0 m thickness beneath the overburden in some cases like at sounding point RDC-5. We may therefore conclude that ANN based methods are significantly faster and efficient for detection of complex layered resistivity structures with a relatively greater degree of precision and resolution.

  13. Subsurface geology and potential for geopressured-geothermal energy in the Turtle Bayou field-Kent Bayou field area, Terrebonne Parish, Louisiana

    SciTech Connect

    Moore, D.R.

    1982-09-01

    A 216 square mile area approximately 65 miles southwest of New Orleans, Louisiana, has been geologically evaluated to determine its potential for geopressured-geothermal energy production. The structural and stratigraphic analyses were made with emphasis upon the Early and Middle Miocene age sediments which lie close to and within the geopressured section. Three geopressured sands, the Robulus (43) sand, Cibicides opima sand, and Cristellaria (I) sand, are evaluated for their potential of producing geothermal energy. Two of these sands, the Robulus (43) sand and the Cibicides opima sand, meet several of the United States Department of Energy's suggested minimum requirements for a prospective geopressured-geothermal energy reservoir.

  14. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  15. Area- and site-specific geothermal leasing/permitting profiles; updated geothermal leasing/permitting performance assessment

    SciTech Connect

    Beeland, G.V.; Schumann, E.; Wieland, M.

    1982-02-01

    Sufficient discussion of the elements of the leasing and permitting programs is included to place the information developed in proper context. A table and process flow diagram developed previously which outline the steps in the non-competitive leasing process, is reprinted. Computer printout profiles are presented on 195 identifiable areas in the following states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Sufficient information on the boundaries of these areas is contained in the report to permit identification of their general location on any map of the appropriate state which shows township and range locations.

  16. Interpretation of Magnetic Anomalies in Salihli (Turkey) Geothermal Area Using 3-D Inversion and Edge Detection Techniques

    NASA Astrophysics Data System (ADS)

    Timur, Emre

    2016-04-01

    There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.

  17. Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon

    USGS Publications Warehouse

    Evans, James G.

    1986-01-01

    The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.

  18. Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area

    SciTech Connect

    Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

    1985-04-01

    Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

  19. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  20. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  1. Geological and geothermal 3D modelling of the Vienna Basin, Austria - pilot area of the project TRANSENERGY

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; Bottig, M.; Zekiri, F.; Fuchsluger, M.; Götzl, G.; Schubert, G.; Brüstle, A.

    2012-04-01

    In general, sedimentary basins show high potential for the use of geothermal energy. Since the Vienna Basin is a densely populated area, (approximately 1.7 million people in the city of Vienna plus surroundings) geothermal power and heat could play a significant role in the future. The Vienna basin is a relatively cold system where the 100 °C isotherm is to be found at a minimum of about 2500 meters. This fact, meaning the need of deep thus expensive wells, adding the problem of space for drillings and geothermal power plants are challenging subjects in terms of exploitation. The aim of the present work is to model the thermal regime of the Vienna basin and take a closer look on two exploitation scenarios in different hydrological systems (parts of the Bajuvaric and Juvavic nappes in the basement and the horizon of Aderklaa conglomerates in the Neogene sediments). In the first phase, a geological 3D model was created using published data (surface geology, interpreted cross sections from drilling and seismic data) as well as markers from selected wells (data derived from OMV). The geometrical model was built in GoCADTM, where in a first step surfaces were created, displaced along major faults and further exported for the following numerical simulations. In total, 14 Surfaces were created, seven Neogene layers and seven structuring the basement. The thermal modelling is realized using the finite-element software COMSOL Multiphysics© and FEFLOW. Major surfaces were imported into COMSOL as geometry objects, which is not practicable for very complex, fine structures. To represent smaller units inside the subdomains, the associated material parameters had to be imported as functions of the three space coordinates. To gain initial values for the exploitation scenario modelling a steady-state solution has to be achieved. For the lower model boundary, a Neumann boundary condition was set using a newly derived heat flow density map (project TRANSENERGY, Geological Survey

  2. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... of the proposed action is to provide a reliable source of high quality treated water to northwestern... quality treated water because northwestern North Dakota has experienced water supply problems for many... of a biota water treatment plant, to treat the source water from Lake Sakakawea before it...

  3. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... of the proposed action is to provide a reliable source of high quality treated water to northwestern... quality treated water because northwestern North Dakota has experienced water supply problems for many... of a biota water treatment plant, to treat the source water from Lake Sakakawea before it...

  4. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    SciTech Connect

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998

  5. Changes in physical-thermal properties of soil related to very shallow geothermal systems in urban areas

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Psyk, Mario; Popp, Thomas; Bertermann, David

    2016-04-01

    In the near future the population living in urban areas is expected to increase. This worldwide trend will lead to a high concentrations of infrastructures in confined areas, whose impact on land use and shallow subsurface must be well evaluated. Since shallow geothermal energy resource is becoming increasingly important as renewable energy resource, due to its huge potential in providing thermal energy for residential and tertiary buildings and in contributing to reduce greenhouse gas emission, the number of installed geothermal systems is expected to continue to rise in the near future. However, a leading question concerns the short and long-term effect of an intensive thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage. From an environmental and technical point of view, changes on ground temperatures can influence the physical-thermal properties of soil and groundwater as well as their chemical and biological features. In this study the preliminary results of ITER Project are presented. This project, funded by European Union, focuses on improving heat transfer efficiency of very shallow geothermal systems, as horizontal collector systems or special forms (i.e. helix system), interesting the first 2 m of depth from ground level. Given the heterogeneity of sedimentary deposits in alluvial plain and the uncertainties related to the estimation of thermal parameters for unconsolidated material affected by thermal use, physical-thermal parameters (i.e. moisture content, bulk density, thermal conductivity...) where determined in laboratory for sand, clay and loamy sand samples. In addition, preliminary results from a field test site located within an urban area will be also shown. The main aim is to improve our knowledge of heat transfer process in the soil body in order (i) to create a reference database to compare subsequently the impact of temperature variations on the same properties and (ii) to provide reliable data for

  6. Crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in Southwest Iceland

    NASA Astrophysics Data System (ADS)

    Juncu, D.; Arnadottir, T.; Budzińska, K.; Hooper, A. J.

    2014-12-01

    Several geothermal energy production fields are currently harnessed in Iceland. One of these is located at the Hengill triple junction, where the oblique plate motion along the Reykjanes peninsula is partitioned between the E-W oriented transform along the South Iceland Seismic Zone (SISZ) and spreading across the Western Volcanic Zone in SW Iceland. The Hengill volcano has high temperature geothermal areas utilized by the Hellisheiði and Nesjavellir power plants. The region around the power plants is subject to motion and deformation of the Earth's surface due to several processes. These include the motion of the Earth's crust due to plate spreading, co- and post seismic deformation due to earthquakes in the South Iceland Seismic Zone and deformation due to water and steam extraction and wastewater re-injection near geothermal power plants. We measure surface displacement using both GPS and InSAR data. The former are obtained from four continuous and more than 15 campaign GPS stations, with time-series starting after two M6 earthquakes on 29 May 2008 in Ölfus - the western most part of the SISZ. The InSAR data consist of 10 images taken on track 41 of the TerraSar-X mission, starting October 2009. We can see a clear subsidence signal in the proximity of the power plants with a maximum of ~18 mm/yr in Line-of-Sight direction (LOS) at Hellisheiði. The subsidence is elongated in NNE-SSW direction and possibly related to the orientation of the Hengill fissure swarm. In addition to subsidence, we observe an uplift signal of ca. 10 mm/yr in LOS west of the Hellisheiði site, potentially due to wastewater re-injection in the area. The area of maximum uplift is located close to the epicenters of two M4 earthquakes that occurred in October 2011. Since the signal around the power plants is the most prominent, we start our investigation with trying to find an appropriate model for deformation due to fluid extraction and re-injection with the aim of simulating the data. By

  7. Remotely sensed structural controls on heat flow in the Devils Kitchen Area, south central California: Implications for geothermal exploration

    SciTech Connect

    Gregory, B.J.; Baumgartner, E.P. ); Austin, W. )

    1990-05-01

    Rigorous quantitative analysis of low-altitude high-sensitivity aeromagnetic data and black and white orthophotos has revealed a subtle yet pervasive set of structural relationships that appear to strongly influence temperature gradients and flow rates mapped from local geothermal production wells in the Devils Kitchen area. Surface mapped trends show systematic rotational relationships with trends mapped at depth, and recent unrotated fractures can be shown to cross-cut all elements of the structural grain. The statistical comparison of these elements along with the mapping of increased fracture porosity zones suggests a cost-effective way to determine future drilling locations.

  8. Fault block kinematics at a releasing stepover of the Eastern California shear zone: Partitioning of rotation style in and around the Coso geothermal area and nascent metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.

    2006-10-01

    Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams

  9. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part II. Water temperature and chemistry

    SciTech Connect

    Klauk, R.H.; Davis, D.A.

    1984-12-01

    Geothermal reconnaissance techniques have identified five areas in Utah County warranting further investigation for low-temperature geothermal resources. One area in northern Utah Valley is along Utah Lake fault zone and includes Saratoga Hot Springs. Water temperatures within this area range from 21 to 43/sup 0/C. Common ion analyses as well as B and Li concentrations indicate waters sampled in this area are anomalous when compared to other samples from the same aquifer. Two other areas in southern Utah Valley also coincide with the Utah Lake fault zone. Common ion analyses, trace element concentrations, and C1/HCO/sub 3/ ratios distinguish these areas from all other waters in this valley. Temperatures within these southern areas range from 21 to 32/sup 0/C. All three thermal areas are possibly the result of deep circulation of meteoric water being warmed and subsequently migrating upward within the Utah Lake fault zone. The Castilla Hot Springs area has been expanded by this study to include a spring located 3 mi further up Spanish Fork Canyon near the Thistle earthflow. A temperature of 50/sup 0/C was recorded for this spring and chemistry is similar to Castilla. In Goshen Valley, the fifth geothermal area identified, measured temperatures range from 20 to 27/sup 0/C for some wells and springs. Chemical analyses, however, do not discern the location of low-temperature geothermal reservoirs. 18 refs., 7 figs., 5 tabs.

  10. Mineral Resources of the Black Mountains North and Burns Spring Wilderness Study Areas, Mohave County, Arizona

    USGS Publications Warehouse

    Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.

    1990-01-01

    At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to

  11. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  12. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    USGS Publications Warehouse

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    hydrothermal alteration and deposition at the surface is identifiable on the infrared imagery of this area, closey related spatially to a resistivity low at depth. Extinct geothermal areas near El Salitre, Ixtlan, and farther west at San Gregorio are clearly delineated on both infrared images and infrared ektachrome photographs. Predawn infrared images also show high-angle fault zones suggesting the dominance of block tectonics in much of the area. Special image enhancement techniques applied to the original magnetic tape records will be required for more precise identification of warm ground zones and for a qualitative or semiquantitative estimate of ground radiance associated with anomalously high convective heat flow. ?? 1971.

  13. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    NASA Astrophysics Data System (ADS)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the

  14. Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the Modern Age

    SciTech Connect

    Cataldi, R. )

    1993-08-01

    This investigation aims not only to gain greater insight into the ancient uses of natural heat and its by-products, but also to gather elements for comprehending what kind of impact the presence of geothermal manifestations and the occurrence of volcanic eruptions may have produced on the ancient inhabitants of the Mediterranean and Mesoamerican regions. The first part of the paper discusses what may have occurred in the time period from the Lower Paleolithic (10[sup 5]--10[sup 6] years ago) until the end of the Neolithic. Throughout this period, the relationship of man with the various manifestations of terrestrial heat and its associated products was quite close and intense. In addition to the initial development of direct uses, this relationship with geothermal energy also involved man's cultural sphere. The second part of the paper discusses the development of direct uses and the importance that thermal balneology attained in some regions of the Mediterranean area in historical times. The exploitation and processing of hydrothermal products by the Etruscans, the blossoming of balneotherapy and the multiple functions of the spas in Roman times, the decline of all direct uses between the 5th and 6th centuries A.D. following the collapse of the Roman Empire, and the intensive exploitation of the manifestations of Larderello between the 11th and 16th centuries are discussed. The third part of the work refers to the Mesoamerican area (Mexico and neighboring regions) and covers the period extending from several millennia before the Christian era until the time of the voyages of Columbus. The last part of the paper attempts to reconstruct the birth and initial development of scientific thought regarding the various types of geothermal phenomena, starting from the oldest known illustration of a volcanic eruption until the end of the Middle Ages. 2 figs., 1 tab.

  15. Behavior of temperature and concentration of shallow groundwater in the Raft River Geothermal Area

    SciTech Connect

    Tang, D.H.; Goldman, D.; Martinez, J.A.; Lantz, R.B.

    1980-05-01

    A moderate-temperature (140/sup 0/C) geothermal power plant demonstration, sponsored by the Department of Energy, is currently under development in South Central Idaho. Environmental concerns about the quality of the local shallow groundwater prompted a modeling study. Simulation results (1) suggest significant thermal and quality levels within the 30-year projected plant operation and (2) makes obvious the importance of understanding the interconnected hydraulic systems.

  16. Heat-tolerant flowering plants of active geothermal areas in Yellowstone National Park.

    PubMed

    Stout, Richard G; Al-Niemi, Thamir S

    2002-08-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 degrees C at 2-5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long-term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 degrees C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti-sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 degrees C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs.

  17. Heat-tolerant flowering plants of active geothermal areas in Yellowstone National Park.

    PubMed

    Stout, Richard G; Al-Niemi, Thamir S

    2002-08-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 degrees C at 2-5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long-term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 degrees C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti-sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 degrees C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  18. Heat‐tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park

    PubMed Central

    STOUT, RICHARD G.; AL‐NIEMI, THAMIR S.

    2002-01-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (≥40 °C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 °C at 2–5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long‐term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 °C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti‐sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 °C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  19. Chronology of late Pleistocene and Holocene volcanics, Long Valley and Mono Basin geothermal areas, eastern California

    USGS Publications Warehouse

    Wood, S.H.

    1983-01-01

    mono magma chamber suggests that rhyolite magma may have been emplaced in the shallow crust as recently as 32,000 to 40,000 yrs ago. Calculations by Lachenbruch et al. (1976, Jour. Geophys. Research, v. 81, p. 769-784) that a thermal disturbance at this age would have propagated upward by solid conduction only 4 km and offer an explanation for the lack of a heat-flow anomaly and surface indications of hydrothermal activity over the Mono magma chamber and its associated ring-fracture system. This report also contains new information on the age and chemistry of volcanics on the Mono Lake island, the Inyo domes, and tephras within the Long Valley Caldera. A newly discovered rhyolite tuff ring of late Quaternary age in the Toowa volcanic field of the southern Sierra Nevada is briefly described for it represents a new area that should be examined for potential as a geothermal area.

  20. 12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR2, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR-2, SHOWING TRAIL UP TO FOREBAY, RETAINING WALL, PEPPER TREES, AND SAR-2 IN DISTANCE. VIEW TO SOUTH-SOUTHEAST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  1. MUTAGENIC CHARACTERISTICS OF RIVER WATERS FLOWING THROUGH LARGE METROPOLITAN AREAS IN NORTH AMERICA

    EPA Science Inventory

    Mutagenic characteristics of river waters flowing through large metropolitan areas in North America

    The hanging technique using blue rayon, which specifically adsorbs mutagens with multicyclic planar structures, has the advantages over most conventional methods of not havi...

  2. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey

    SciTech Connect

    Davis, D.A.; Cook, K.L.

    1983-04-01

    During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

  3. Quantifying the undiscovered geothermal resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    National Park, are unique in North America and highly unlikely to have counterparts with equivalent characteristics among the systems comprising the undiscovered resources. (2) Historical geothermal exploration has been limited in both the effectiveness of techniques employed and spatial coverage, since most exploration has targeted areas associated with surface thermal manifestations in the most easily accessible lands. (3) As noted by other investigators, in general, the hottest and largest geothermal systems are those with heat sources arising from recent magmatic activity. Consequently, a larger fraction of the undiscovered resource is associated with those areas favorable to the formation of this type of geothermal system, including some relatively remote areas, such as the Aleutian volcanic arc in Alaska.

  4. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  5. Geothermal drilling research overview

    SciTech Connect

    Glowka, D.A.

    1996-04-10

    Sandia conducts a comprehensive geothermal drilling research program for the US Department of Energy. The program currently consists of eight program areas: lost circulation technology; advanced synthetic-diamond drill bit technology, high-temperature logging technology; acoustic technology; slimhole drilling technology; drilling systems studies; Geothermal Drilling Organization projects; and geothermal heat pump technology. This paper provides justification and describes the projects underway in each program area.

  6. Up-to-date state and prospects for the development of geothermal resources of the North Caucasus region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2014-06-01

    The modern state of production and use of geothermal resources of the region is evaluated and the low efficiency of their development is shown. Promising developmental technologies of hydrogeothermal resources of various energy potentials with attachment to concrete geothermal deposits are presented. Technologies on the complex development of hydrogeothermal resources with the use of water for drinking or industrial water supply, the thermal potential for various energy needs, and the extraction of the gas and mineral components dissolved in water are highly efficient technologies, which make it possible to solve important environmental, economical, and social problems of the region.

  7. Influence of time on metamorphism of sedimentary organic matter in liquid-dominated geothermal systems, western North America.

    USGS Publications Warehouse

    Barker, C.E.

    1983-01-01

    Reflectance data of sedimentary organic matter samples from six liquid-dominated geothermal systems are strongly temperature-dependent. Geologic evidence indicates that reaction duration ranges from approx 103 to 106 yr in these systems that appear to have near-maximum temperatures. The strong temperature dependence of vitrinite reflectance indicates that after about 104 yr, reaction duration has little or no influence on metamorphism of organic matter in liquid-dominated geothermal systems. These data indicate that vitrinite reflectance can be used to determine the maximum temperature reached in hot sedimentary basins of moderate longevity. -after Author

  8. Mineral saturation and scaling tendencies of waters discharged from wells (>150 şC) in geothermal areas of Turkey

    NASA Astrophysics Data System (ADS)

    Tarcan, Gültekin

    2005-04-01

    Aqueous species distribution was calculated from the chemical composition of water discharges from 27 selected production wells, with reservoir temperatures >150 şC, in seven geothermal areas including Kızıldere, Salavatlı, Germencik, Kavaklıdere-Sazdere, Salihli-Caferbeyli, Simav, and Tuzla. Twenty-five of the water compositions are relatively dilute with electroconductivity values of 1826 to 7200 μS/cm and are dominated by Na (410 to 2027 mg/kg), Cl (45 to 1882 mg/kg), and alkalinity-CO 2 (491 to 2312 mg/kg). Two water samples from Tuzla are highly saline connate waters with Cl of 35 273 to 44 140 mg/kg and Na of 18 200 to 22 250 mg/kg. Mineral equilibrium modeling indicates that the aquifer waters in these selected geothermal wells, with some exceptions, are oversaturated with respect to calcite, aragonite, and celestite, but undersaturated with respect to gypsum, anhydrite, fluorite, Ca-montmorillonite, anorthite, albite-low, gibbsite, illite, kaolinite, and K-feldspar. The waters are at near saturation with respect to chalcedony, quartz, amorphous silica, dolomite, and strontianite. Calculation of mineral saturation states, geochemical studies, and field observations show that carbonate minerals (calcite, aragonite, and dolomite), amorphous silica, and sulfate minerals (celestite and anhydrite) are most likely to be precipitated as scales in geothermal wells. Assessment of calcite and amorphous silica scaling tendencies for selected well waters indicates that hot injection is favorable for Tuzla well T-2 (˜50-170 şC) and for Kızıldere wells R-1 and KD-6 (around 100 şC). For the other wells, cold injection (<50 şC) is favored if calcite and amorphous silica accumulation is to be avoided in injection wells.

  9. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China.

    PubMed

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Wu, Geng; Dong, Hailiang; Wang, Yanhong; Li, Bing; Wang, Yanxin; Guo, Qinghai

    2014-01-01

    A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 10(1) to 7.08 × 10(3) per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15% of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3-4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6-9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.

  10. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    SciTech Connect

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  11. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  12. Genetic similarity between Taenia solium cysticerci collected from the two distant endemic areas in North and North East India.

    PubMed

    Sharma, Monika; Devi, Kangjam Rekha; Sehgal, Rakesh; Narain, Kanwar; Mahanta, Jagadish; Malla, Nancy

    2014-01-01

    Taenia solium taeniasis/cysticercosis is a major public health problem in developing countries. This study reports genotypic analysis of T. solium cysticerci collected from two different endemic areas of North (Chandigarh) and North East India (Dibrugarh) by the sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The variation in cox1 sequences of samples collected from these two different geographical regions located at a distance of 2585 km was minimal. Alignment of the nucleotide sequences with different species of Taenia showed the similarity with Asian genotype of T. solium. Among 50 isolates, 6 variant nucleotide positions (0.37% of total length) were detected. These results suggest that population in these geographical areas are homogenous.

  13. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    SciTech Connect

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  14. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  15. Deglaciation of the Wijdefjorden-Austfjorden area, north Spitsbergen

    NASA Astrophysics Data System (ADS)

    Forwick, Matthias; Vorren, Tore O.; Hass, H. Christian; Vogt, Christoph

    2013-04-01

    Swath-bathymetry, high-resolution seismics and lithological data from the Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen, have been analysed. The data indicate that multiple halts and/or readvances during the deglaciation of the study area at the end of the last glacial occurred. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. It is suggested that the retarded deglaciation of the study area is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high plateau in the central parts of the study area (approx. 45 km beyond the present fjord head). Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflect that the ice front retreated slowly across this shallow area and that repeated readvances occurred. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred rapidly.

  16. Geothermal systems of the Cascade Range

    USGS Publications Warehouse

    Muffler, L.J.; Bacon, Charles R.; Duffield, W.A.

    1982-01-01

    In the central and southern Cascade Range, plate convergence is oblique, and Quaternary volcanism produces mostly basalt and mafic andesite; large andesite-dacite composite volcanoes and silicic dome fields occur in restricted areas of long-lived igneous activity. To the north, plate convergence is normal, producing widely spaced centers in which mafic lavas are minor. Most Cascade volcanoes are short-lived and unlikely to be underlain at shallow levels by large magma bodies that could support high-temperature geothermal systems. Such systems are known, however, near Meager Mountain, at Newberry Volcano, and near Lassen Peak. Persistent fumaroles occur on several major composite volcanoes, but drilling to date has been insufficient to determine whether exploitable geothermal reservoirs occur at depth. Thermal springs away from the major volcanic centers are few and generally inconspicuous. However, significant geothermal systems along and west of the Cascade Range may well be masked by abundant cold ground water.

  17. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  18. Three-dimensional Q/sup -1/ model of the Coso Hot Springs known geothermal resource area

    SciTech Connect

    Young, C.; Ward, R.W.

    1980-05-10

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factordeltat* for the events recorded with the highest signal-to-noise ratio. The deltat* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the deltat* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or 'lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12-km depth. Between the depth of 12--20 km a thick zone of high attenuation (Q<50) exists, offset toward the east from the surface anomaly.

  19. Influence of shutdown phases on the microbial community composition and their effects on the operational reliability in a geothermal plant in the North German Basin

    NASA Astrophysics Data System (ADS)

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2014-05-01

    Microbial activity can influence the dissolution and/or precipitation of minerals, as well as corrosion phenomena that may lead to a lower efficiency of engineered systems. To enhance the understanding of these processes, the microbial biocenosis in fluids produced from the cold well of a deep geothermal heat store located in the North German Basin (NGB) was characterized during normal plant operation and immediately after plant downtime phases. The microbial community composition was dominated by three different genera of sulphate reducing bacteria (SRB) and fermentative Halanaerobiaceae in the 46 ° C tempered fluids during regular operation, whereas after shut down phases sequences of sulphur oxidizing bacteria (SOB) were additionally detected. The detection of SOB is regarded as an indication of oxygen introduction into the well during the downtime phase. This corresponded to the higher redox potential of fluids taken directly after the restart of fluid production in the cold well. In addition to an extremely high particle loading rate after plant restart, a higher DNA content as well as an increase of specific gene copy numbers of SRB and SOB by a factor of 104 and 105 respectively were observed. Obviously stagnant conditions favored the enrichment of biomass and particles in the well. This is supported by the determination of a higher sulphate and hydrogen sulphide content in the fluids taken initially after plant restart. With increasing fluid production during the restart, SRB specific gene copy numbers decreased much slower than SOB specific gene copy numbers, which led to the assumption that SOB abundance is limited to the near wellbore area. Besides the absence of particle removal by fluid flow and the deposition of particles by sedimentation during the shut down phase, oxygen introduction and subsequent activity of SOB may also have favored microbial induced formation of precipitates in the well. It is quite likely that the interaction of SRB and SOB

  20. State of the art of aerial thermography in Iceland: thermography of geothermal areas during the past 20 years

    NASA Astrophysics Data System (ADS)

    Bjornsson, Sigfus; Arnason, Kolbeinn

    1995-03-01

    Aerial thermography was first applied in Iceland in the early sixties in conjunction with the suboceanic eruption of Surtsey. The same technique was subsequently applied (in the late sixties, early seventies) to some major geothermal areas in Iceland. Although it gave a global view of heat on the surface, local geologists/geophysicists were not impressed by the inroad of this space technology. According to this view, the technique lacked sensitivity, resolution, means of calibration, and gave very distorted images. Although microwave remote sensing (applied in glaciology) and processing of Landsat data (including IR) was practiced, aerial thermography lay at rest in Iceland until the mid eighties, when it was taken up again first for demonstration purposes using an instrument we rented jointly with the Geodetic Institute, but later it would be based on our own developments. Our work being application driven, due to the way this development is financed, the emphasis in the late eighties/early nineties was mainly on the near infrared range. For the last three years it has shifted however towards the far infrared range again and focused on geothermal areas, both for scientific purposes as well as for natural heat reservoirs for distance heating networks. Aerial thermography of wide area natural heat and energy distribution networks sets stringent requirements, e.g. to sensitivity and temporal, spatial as well as spectral resolutions. Efforts to meet that goal in Iceland have led to new developments based on wide aperture line scanners covering swaths in the flight direction, frame based focal plane cameras and on improved signal processing and data processing procedures. A particular emphasis has been on error corrections due to unpredictable aircraft movements.

  1. MTR, TRA603. NORTH ELEVATION. PLUG STORAGE AREA WITH ROLLING STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. NORTH ELEVATION. PLUG STORAGE AREA WITH ROLLING STEEL DOOR. PIPE TUNNEL IN SUB-BASEMENT. FIXED SASH WINDOWS IN BALCONY SECTION. DOOR DETAILS. BLAW-KNOX 3150-803-7, 7/1950. INL INDEX NO. 531-0603-00-098-100566, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. INTERIOR VIEW OF MAGNESIUM TREATMENT AREA, LOOKING NORTH, WITH 10TON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF MAGNESIUM TREATMENT AREA, LOOKING NORTH, WITH 10-TON LADLE POURING MOLTEN IRON INTO 20-TON LADLE. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  3. 77 FR 9260 - Establishment of Dakota Grassland Conservation Area, North Dakota and South Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Fish and Wildlife Service Establishment of Dakota Grassland Conservation Area, North Dakota and South... public that the U.S. Fish and Wildlife Service (Service) has established the Dakota Grassland... Grassland Conservation Area on September 21, 2011, with the purchase of a 318.18-acre grassland easement...

  4. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  5. Hydrology of the dunes area north of Coos Bay, Oregon

    USGS Publications Warehouse

    Robison, J.H.

    1973-01-01

    Hydrology of a 20-square-mile area of dunes along the central Oregon coast was studied. The area is underlain by 80 to 150 feet of Quaternary dune and marine sand which overlies Tertiary marine clay and shale. Ground water for industrial and municipal use is being withdrawn at a rate of 4 million gallons per day. Original plans to withdraw as much as 30 million gallons per day are evidently limited by the prospect of excessive lowering of levels in shallow lakes near the wells, and possibly sea-water intrusion, if water-level gradients are reversed. At the present stage of development there are 18 production wells, each capable of producing 200-300 gallons per minute from the lower part of the sand deposits. Except for thin layers of silt, clay, and organic matter, the deposits of sand are clean and uniform; horizontal permeability is two orders of magnitude times the vertical permeability. Because of the low vertical permeability, drawdown cones are not evident in the upper part of the aquifer adjacent to the wells. However, present pumping lowers general water levels in the lakes and the shallow ground-water zone as much as several feet. A two-layer electric analog model was built to analyze effects of present and projected development as well as any alternate plans. Model results were used to develop curves for short-term prediction of water levels.

  6. Baseline mineral analysis of leaves from populations of two native plant species from geothermal areas of Imperial Valley, California

    SciTech Connect

    Romney, E.M.; Wallace, A.; Kinnear, J.; Alexander, G.V.

    1982-07-01

    Leaf samples of Larrea tridentata (Sesse and Moc. ex DC) Cov. (n = 230) and of Plantago insularis Eastw. var. fastigiata (n = 179) were analyzed for mineral elements by emission spectroscopy. The study was part of a program to evauate baseline conditions near a geothermal area being developed for generation of electricity. Analyses varied between species, among locations, and within locations. As a general average, about a fifth of the variability was due to analytical error, which is largely the result of nonhomogenous samples. Cluster analysis grouped the so-called dust elements iron, silicon, aluminum, titanium, and sometimes vanadium. Correlations of interest were Ca versus Sr(+), K versus Na and Li(-), and P versus K(+). Frequency distribution histograms, skewness, and kurtosis calculations indicated some normal curves and possibly some log normal curves. Three- to fivefold ranges in concentrations of different elements were observed, even in populations defined as uniform by Duncan's multiple range test.

  7. Synoptically driven down-slope winds and their effects on local nocturnal-drainage air flow in The Geysers Geothermal Resource Area

    SciTech Connect

    Orgill, M.M.; Schreck, R.I.; Whiteman, C.D.

    1981-07-01

    Some of the possible synoptic to local sale interactions are identified and discussed that may have an important influence on the development and persistence of nocturnal drainage (katabatic) winds in the eastern portion of The Geysers geothermal development area. On the basis of the July 1979 ASCOT field data at The Geysers, the interactions identified are summarized.

  8. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

  9. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  10. Materials corrosion tests applicable to a cooling system using areated treated geothermal brine or the high saline waters associated with geothermal areas

    SciTech Connect

    Suciu, Dan F.; Wikoff, Penny M.

    1982-10-08

    The results of an investigation conducted to determine the corrosion characteristics of a number of alloys in a high saline environment are discussed. The ferritic stainless steels and several copper/nickel alloys exhibited good corrosion resistance in these high saline geothermal environments.

  11. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  12. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    SciTech Connect

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  13. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  14. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  15. Seismic monitoring of EGS tests at the Coso Geothermal area, California, using accurate MEQ locations and full moment tensors

    SciTech Connect

    Foulger, G.R.; B.R. Julian, B.R.; F. Monastero

    2008-04-01

    We studied high-resolution relative locations and full moment tensors of microearthquakes (MEQs) occurring before, during and following Enhanced Geothermal Systems (EGS) experiments in two wells at the Coso geothermal area, California. The objective was to map new fractures, determine the mode and sense of failure, and characterize the stress cycle associated with injection. New software developed for this work combines waveform crosscorrelation measurement of arrival times with relative relocation methods, and assesses confidence regions for moment tensors derived using linearprogramming methods. For moment tensor determination we also developed a convenient Graphical User Interface (GUI), to streamline the work. We used data from the U.S. Navy’s permanent network of three-component digital borehole seismometers and from 14 portable three-component digital instruments. The latter supplemented the permanent network during injection experiments in well 34A-9 in 2004 and well 34-9RD2 in 2005. In the experiment in well 34A-9, the co-injection earthquakes were more numerous, smaller, more explosive and had more horizontal motion, compared with the pre-injection earthquakes. In the experiment in well 34-9RD2 the relocated hypocenters reveal a well-defined planar structure, 700 m long and 600 m high in the depth range 0.8 to 1.4 km below sea level, striking N 20° E and dipping at 75° to the WNW. The moment tensors show that it corresponds to a mode I (opening) crack. For both wells, the perturbed stress state near the bottom of the well persisted for at least two months following the injection.

  16. Selecting ground-motion models developed for induced seismicity in geothermal areas

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  17. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  18. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  19. Assessment of geothermal resources of Caliente, Nevada

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bruce, J.

    1980-03-01

    An assessment of the geothermal resources of Caliente, Nevada was made to provide information on resource characteristics and to site 2 (two) 500 ft (152 m) test wells to confirm the resource. The strategy used in the resource assessment employed a logical sequence of work elements that included 1) baseline data collection, 2) field investigations, 3) laboratory analyses and 4) data interpretation and synthesis. Airphoto interpretation indicated that a series of normal faults produced a stepped arrangement in the canyon walls on the west side of Meadow Valley Wash north of downtown Caiente. This area coincides with the area of known geothermal occurrences. Temperature measurements in existing wells indicate a rapid cooling of the geothermal waters as they mix with cold groundwater flows in Meadow Valley Wash. Soil mercury analyses range from 15 ppB to as high as 120 ppB. Trends in soil mercury content may indicate the presence of buried faults. Temperature measured in 2-meter deep auger holes indicated temperatures as high as 40/sup 0/C in an area north of the Lincoln County Medical Facility. Interpretation of chemical analyses, both major and minor, of waters collected from wells and streams in the area failed to conclusively show any mechanisms for the mixing of thermal and nonthermal waters. The selection of sites for the 2 (two) 500 ft (152 m) reservoir confirmation wells was made using the results of temperature surveys, geologic structure and historic observations.

  20. Geothermal Energy & Economic Development

    SciTech Connect

    2004-07-01

    Whether they are used to generate electricity or for direct-use applications, geothermal energy projects contribute to the economy of areas where they are located. Geothermal power plant operations are often a major source of tax revenue to local governments.

  1. Geothermal pipeline - progress and development update, geothermal progress monitor

    SciTech Connect

    1996-08-01

    This document is a progress and development update and geothermal progress monitor prepared by the Geo-Heat Center at the Oregon Institute of Technology in Klamath Falls, Oregon. Several upcoming meetings in the field of geothermal energy and resource development are announced. Proposed and past geothermal activities within the Glass Mountain Known Geothermal Resource Area are also discussed. As of this date, there has been limited geothermal exploration in this area, however, two projects located in the near vicinity have been proposed within the last two years.

  2. Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)

    DOE Data Explorer

    Blackwell, D.D. and others

    Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

  3. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a)...

  4. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a)...

  5. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    USGS Publications Warehouse

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  6. Mount Hood Wilderness and adjacent areas, Oregon

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted in 1980. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area on the north side of Zigzag Mountain, where vein-type lead-zinc-silver deposits occur and an area on the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F) hot-water systems in the wilderness is probable in three areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  7. CHARACTERIZATION OF LAND USE IN RIPARIAN AREAS WITHIN THE CONTENTNEA WATERSHED OF NORTH CAROLINA

    EPA Science Inventory

    Characterization of land use in riparian areas within the Contentnea watershed of North Carolina.

    Wright, C.J.,1 and S.W. Alberty.2 1U.S. Environmental Protection Agency, Athens, GA 30605 USA; 2OAO Corporation, Athens, GA 30605 USA.

    Legislation mandating riparian bu...

  8. 77 FR 30320 - General Management Plan/Environmental Impact Statement, Ross Lake National Recreation Area, North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... National Park Service General Management Plan/Environmental Impact Statement, Ross Lake National Recreation Area, North Cascades National Park Service Complex, Skagit and Whatcom Counties, WA AGENCY: National... Department of the Interior, National Park Service (NPS) has prepared and approved a Record of Decision...

  9. Display area, looking north towards the classified storage rooms, D.M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Display area, looking north towards the classified storage rooms, D.M. Logistics and D.O. Offices in northwest corner. Viewing bridge is at upper left, and alert status display at upper right - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  10. Those Left Behind: Recent Social Changes in a Heavy Emigration Area of North Central New Mexico

    ERIC Educational Resources Information Center

    Leonard, Olen E.; Hannon, John H.

    1977-01-01

    Examining social and economic change associated with a recent mass exodus of Spanish surnamed populations from rural villages in north-central New Mexico, this article addresses attitudes of those left behind and postulates that while the impact of migration has been felt throughout the area, its intensity has fluctuated among villages. (Author/JC)

  11. Using Species-Area Relationships to Inform Baseline Conservation Targets for the Deep North East Atlantic

    PubMed Central

    Foster, Nicola L.; Foggo, Andrew; Howell, Kerry L.

    2013-01-01

    Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic. PMID:23527053

  12. Calculation of Area and Volume for the North Part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 5.2 million depth measurements were collected along more than 765 miles (1,230 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 385,000 acres (1,560 square kilometers) and a maximum volume of about 5,693,000 acre-feet (about 7 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum natural water-surface altitude of the north part of Great Salt Lake is just below 4,167 feet (1,270 meters) in the area just north of the Union Pacific railroad causeway halfway between Saline and the western edge of the lake. The north part of Great Salt Lake generally grades gradually to the west and north and is bounded by steep scarps along its eastern border. Calculations for area and volume are based on a low altitude of 4,167 feet (1,270 meters) to a high altitude of 4,200 feet (1,280 meters).

  13. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Hans, Ackerman; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  14. Frontier areas and resource assessment: case of the 1002 area of the Alaska North Slope

    USGS Publications Warehouse

    Attanasi, E.D.; Schuenemeyer, John H.

    2002-01-01

    The U.S. Geological Survey's 1998 assessment of the 1002 Area of the Arctic National Wildlife Refuge significantly revised previous estimates of the area's petroleum supply potential. The mean (or expected) value of technically recoverable undiscovered oil for the Study Area (Federal 1002 Area, adjacent State waters, and Native Lands) is estimated at 10.4 billion barrels of oil (BBO) and for the Federal 1002 Area the mean is 7.7 BBO. Accumulation sizes containing the oil are expected to be sufficiently large to be of economic interest. At a market price of $21 per barrel, 6 BBO of oil in the Study area is expected to be economic. The Assessment's methodology, results, and the reasons for the significant change in assessments are reviewed. In the concluding section, policy issues raised by the assessment are discussed.

  15. Geothermal systems of northern Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Taylor, Bruce Edward

    1974-01-01

    Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to, boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252?C, although most are below 190?C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential, for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and. analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64?C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. We suggest that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

  16. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    PubMed

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  17. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the

  18. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  19. Tuscarora area, Nevada: geothermal reservoir assessment case history, northern basin and range. Final report, 1 October 1978-9 September 1980

    SciTech Connect

    Pilkington, H.D.

    1981-08-01

    The Tuscarora prospect is located at the north end of Independence Valley approximately 90 km north-northwest of Elko, Nevada. Geothermal exploration on the prospect consisted of an integrated program of geologic, hydrogeochemical and soil geochemistry studies. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, dipole-dipole resistivity and magnetotelluric surveys. Exploration drilling includes thirty-two shallow thermal gradient holes, six intermediate depth temperature gradient wells and one 5454 foot test for discovery well. Shallow low-temperature reservoirs were encountered in the Tertiary rocks and in the Paleozoic rocks immediately beneath the Tertiary. Drilling problems forced the deep well to be stopped before the high-temperature reservoir was reached.

  20. Geothermal direct-heat utilization assistance

    NASA Astrophysics Data System (ADS)

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  1. Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory

    SciTech Connect

    Ashwood, T.L.; Marsh, J.D. Jr.

    1994-04-01

    This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

  2. Analysis of potential geothermal resources and their use: Lebanon Springs area, New York

    SciTech Connect

    Not Available

    1981-04-01

    The feasibility of using thermal waters at Lebanon Springs or elsewhere in the Capital District of New York as an energy source was studied. To evaluate the area, geologic mapping of the Lebanon Springs, New York, to Williamstown, Massachusetts, area was conducted, and efforts made to locate additional thermal waters besides those already known. In addition to mapping, thermal gradients where measured in twenty-five abandoned water wells, and the silica contents and water temperatures of seventy-eight active domestic water wells were determined. Based on the results of that work, Lebanon Springs appears to be the first choice for a demonstration project, but further exploration may confirm that other areas with good potential exist. A preliminary economic analysis of possible uses in the Town of Lebanon Springs was made, and it was determined that a system combining groundwater heat pumps and a microhydroelectric plant could be applied to heating the town hall, town garage, and high school with significant savings.

  3. Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, cassia county, idaho; box elder county, Utah

    USGS Publications Warehouse

    Nathenson, M.; Nehring, N.L.; Crosthwaite, E.G.; Harmon, R.S.; Janik, C.; Borthwick, J.

    1982-01-01

    Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. The non-mixed waters have essentially a constant value of light-stable isotopes but show a large variation in chloride content. The variation of chloride composition is not the usual pattern for deep geothermal waters, where it is normally assumed that the deep water has a single chloride composition. Different mixed waters also have hot-water sources of varying chloride composition. Plots of chloride values on cross-sections show that water circulation patterns are confused, with non-mixed waters having different chloride concentrations located in close proximity. Three models can explain the characteristics of the deep geothermal water: (1) in addition to near-surface mixing of cold and hot water, there is deep mixing of two hot waters with the same enthalpy and isotopic composition but differing chloride concentrations to produce the range of chloride concentrations found in the deep geothermal water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in the sedimentary section above the basement) in which waters have different residence times or slightly different circulation paths; (3) the varying chloride concentrations in space have been caused by varying chloride concentrations in the deep feed water through time. Some of this older water has not been flushed from the system by the natural discharge. Although one model may seem more plausible than the others, the available data do not rule out any of them. Data for water samples from the Raft River and Jim Sage Mountains show that water from

  4. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Li, Chun-Feng

    2015-01-01

    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  5. Geothermal resources of southern Idaho

    USGS Publications Warehouse

    Mabey, Don R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150?C. Water from many of these systems is valuable for direct heat applications, but is lower than the temperature of interest for commercial generation of electricity at the present time. Most of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. By far the largest hydrothermal system in Idaho is in the Bruneau-Grand View area of the western Snake River Plain with a calculated reservoir temperature of 107?C and an energy of 4.5? 10 20 joules. No evidence of higher temperature water associated with this system has been found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures has not been found. Large volumes of water at temperatures between 90? and 150?C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain. Areas that appear particularly promising for the occurrence of large high-temperature hydrothermal systems are: the area north of the Snake River Plain and west of the Idaho batholith, the Island Park area, segments of the margins of the eastern Snake River Plain, and the Blackfoot lava field.

  6. Water in the Elizabethtown area; a study of a limestone terrane in North Central Kentucky

    USGS Publications Warehouse

    Lambert, T.W.

    1979-01-01

    An inventory of the water resources of a 240-square-mile area in north-central Kentucky is reported. It includes water distribution, chemical quality, water use, and principles of water occurrence and availability, and references. Nolin River is the only major stream in the area. Two of its tributaries, Valley Creek and North Fork Nolin River, have water withdrawn for public supply by Elizabethtown and Hodgenville. The quality of the water from the streams is typical of a limestone terrane. Ground water is also used for public supplies by Elizabethtown and Hodgenville and by two industrial plants. Many springs have flows of more than 0.25 cubic foot per second. Except for stock water, only three springs serve as a water source. Water from wells and springs is typical of limestone terrane. (USGS)

  7. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    SciTech Connect

    Attanasi, E.D.; Root, D.H.

    1988-10-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%.

  8. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1988-01-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%. ?? 1988 International Association for Mathematical Geology.

  9. Exploring for hydrocarbons in geothermally and hydrothermally complex areas -- a southern Nevada example

    SciTech Connect

    Harris, A.G.; Repetski, J.E.; Grow, J.A.

    1995-06-01

    Time-based isograd maps using conodont color alteration indices (CAI) have been compiled and interpreted for a large area in southern Nevada that includes Yucca Mountain, the Nevada Test Site, and the Nellis Air Force Bombing and Gunnery Range. These maps were produced to evaluate the controversy about possible important mineral and (or) energy resources near Yucca Mountain, the potential burial site for high-level nuclear waste. The hydrocarbon potential of the Yucca Mountain area has been likened to that of the Railroad and Pine Valley areas, 200 km to the northeast where 35 million barrels of oil have been produced from Paleozoic and lower Tertiary strata. In 1991, two companies with no previous drilling experience in Nevada drilled three oil exploration wells within 20 km of Yucca Mountain and within or close to the Timber Mountain caldera system. No shows of oil or gas were found in these wells. The deepest well was drilled to 5,000 feet and penetrated 2,200 feet of upper Tertiary valley-fill deposits and volcanic rocks overlying an overturned sequence of Upper Cambrian and Lower Ordovician rocks having conodonts with CAI values of 5. Our new conodont sampling, however, has targeted some thermally favorable areas for hydrocarbons east of Yucca mountain, but their maturation history suggests that the potential for oil is substantially lower than in the Railroad and Pine Valley areas. Cambrian through Triassic rocks in the vicinity of Yucca Mountain have experienced temperatures too high for oil to be preserved, except for a narrow zone (20 x 100 km) northeast of Yucca Mountain, where Mississippian through Triassic rocks are just within the upper limit of the oil generating window. Most of this zone, however, lies on Federal lands that are, for now, inaccessible for a variety of security and environmental reasons.

  10. A revised 5 minute gravimetric geoid and associated errors for the North Atlantic calibration area

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1979-01-01

    A revised 5 minute gravimetric geoid and its errors were computed for the North Atlantic calibration area using GEM-8 potential coefficients and the latest gravity data available from the Defense Mapping Agency. This effort was prompted by a number of inconsistencies and small errors found in previous calculations of this geoid. The computational method and constants used are given in detail to serve as a reference for future work.

  11. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations. (USGS)

  12. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  13. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin.

    PubMed

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2016-04-01

    The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation. PMID:26610802

  14. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin.

    PubMed

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2016-04-01

    The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation.

  15. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1981-10-01

    Three areas in the Texas Gulf Coast region with different depositional settings, structural styles, and sandstone distribution were studied with well log and seismic data to evaluate some of the controls on subsurface conditions in geopressured aquifers. Structural and stratigraphic interpretations were made primarily on the basis of well log correlations. Seismic data confirm the log interpretations but also are useful in structure mapping at depths below well control.

  16. North African petroleum geology: regional structure and stratigraphic overview of a hydrocarbon-rich cratonic area

    SciTech Connect

    O'Connor, T.E.; Kanes, W.H.

    1985-02-01

    North Africa, including Sinai, contains some of the most important hydrocarbon-producing basins in the world. The North African Symposium is devoted to examining the exploration potential of the North African margin in light of the most recent and promising exploration discoveries. The geologic variety of the region is extraordinary and can challenge any exploration philosophy. Of primary interest are the Sirte basin of Libya, which has produced several billion barrels of oil, and the Gulf of Suez, a narrow, evaporite-capped trough with five fields that will produce more than 5 billion bbl. Both are extensional basins with minimal lateral movement and with good source rocks in direct proximity to reservoirs. Structural models of these basins give firm leads for future exploration. More difficult to evaluate are the Tethyan realm basins of the northern Sinai, and the Western Desert of Egypt, the Cyrenaican Platform of Libya, and the Tunisia-Sicily shelf area, where there are only limited subsurface data. These basins are extensional in origin also, but have been influenced by lateral tectonics. Favorable reservoirs exist, but source rocks have been a problem locally. Structural models with strong stratigraphic response offer several favorable play concepts. The Paleozoic Ghadames basin in Libya, Tunisia, and Algeria has the least complex structural history, and production appears to be limited to small structures. A series of stratigraphic models indicates additional areas with exploration potential. The Paleozoic megabasin of Morocco, with its downfaulted Triassic grabens, remains an untested but attractive area.

  17. Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters

    USGS Publications Warehouse

    White, Donald E.

    1969-01-01

    Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.

  18. Abnormal P-wave delays in the geysers-clear lake Geothermal Area, California

    USGS Publications Warehouse

    Iyer, H.M.; Oppenheimer, D.H.; Hitchcock, T.

    1979-01-01

    Large teleseismic delays, exceeding 1 second, are found near Mount Hannah in the Clear Lake volcanic field and in the steam-production area at The Geysers. The delays are superimposed on a general delay field of about 0.5 second extending over the volcanic rocks and the steam reservoir. It is postulated that a magma chamber under the surface volcanic rocks with a core of severely molten rock beneath Mount Hannah and a highly fractured steam reservoir probably underlain by partially molten rock at The Geysers are responsible for the observed delays. Both zones extend to depths of 20 kilometers or more. Copyright ?? 1979 AAAS.

  19. Abnormal p-wave delays in the geysers--clear lake geothermal area, california.

    PubMed

    Iyer, H M; Oppenheimer, D H; Hitchcock, T

    1979-05-01

    Large teleseismic delays, exceeding 1 second, are found near Mount Hannah in the Clear Lake volcanic field and in the steam-production area at The Geysers. The delays are superimposed on a general delay field of about 0.5 second extending over the volcanic rocks and the steam reservoir. It is postulated that a magma chamber under the surface volcanic rocks with a core of severely molten rock beneath Mount Hannah and a highly fractured steam reservoir probably underlain by partially molten rock at The Geysers are responsible for the observed delays. Both zones extend to depths of 20 kilometers or more. PMID:17819952

  20. Transport of tracers and pollutants from the Geysers Geothermal Resource Area

    SciTech Connect

    Orgill, M.M.; Lee, R.N.; Schreck, R.I.

    1983-08-01

    An initial analysis of both surface and aerial SF/sub 6/ tracer data from the Geysers illustrates the importance that terrain, vertical wind shear, time-varying winds and stability have on the downwind distribution of cooling tower effluents during the daytime. Atmospheric stability and near surface winds above 3 m/s results in fumigation and surface impaction of a portion of cooling tower plumes on downwind surfaces and terrain. Vertical wind shear and possible gravity waves in upper-levels (approx. 1800 to 2000 m m.s.l), in addition, to terrain influences assist in distributing plumes horizontally and in the vertical at relative short (approx. 10 to 20 km) distances from the source. Small quantities of gaseous sulfur, primarily H/sub 2/S, are transported up to 20 km or more from the Geysers area. A variety of trace materials such as sulfate, copper, zinc, arsenic, bromine, lead, antimony, selenium and barium appear to be enriched over background levels and transported downwind from the Geysers Area at times.

  1. Protected areas in the North Sea: An absolute need for future marine research

    NASA Astrophysics Data System (ADS)

    Lindeboom, H. J.

    1995-03-01

    There are many signals that different human activities affect the marine ecosystem on local and sometimes regional scales. There is evidence that in the Dutch sector of the North Sea at least 25 species have decreased tremendously in numbers or have totally disappeared. But what has caused their disappearance: fisheries, pollution, eutrophication, climatic changes, or a combination of causes? On the Dutch Continental Shelf, the fisheries are now so intensive that every square metre is trawled, on an average, once to twice a year. Furthermore, it has been shown that trawling causes direct damage to the marine ecosystem. This indicates that the “natural” North Sea ecosystem we are studying is already a heavily influenced system. And what is the value of data on the diversity and production of benthic animals, if the research area has been raked by beamtrawl gear an unknown amount of times before sampling? To be able to study the natural trends in the marine ecosystem, or to answer the question which human activity has most influenced the ecosystem, there is an absolute and immediate need for protected areas to be established. The size of the protected areas must be determined by the behaviour of that species characteristic for the area. In such areas, where fisheries and local pollution would be forbidden or very limited, scientific research into the species composition and age distribution of different populations should be carried out and trends should be established.

  2. Non-shear focal mechanisms of earthquakes at The Geysers, California and Hengill, Iceland, geothermal areas

    USGS Publications Warehouse

    Julian, B.R.; Miller, A.D.; Foulger, G.R.; ,

    1993-01-01

    Several thousand earthquakes were recorded in each area. We report an initial investigation of the focal mechanisms based on P-wave polarities. Distortion by complicated three-dimensional crustal structure was minimized using tomographically derived three-dimensional crustal models. Events with explosive and implosive source mechanisms, suggesting cavity opening and collapse, have been tentatively identified at The Geysers. The new data show that some of these events do not fit the model of tensile cracking accompanied by isotropic pore pressure decreases that was suggested in earlier studies, but that they may instead involve combination of explosive and shear processes. However, the confirmation of earthquakes dominated by explosive components supports the model that the event are caused by crack opening induced by thermal contraction of the heat source.

  3. Boise Geothermal Aquifer Study

    SciTech Connect

    Not Available

    1990-01-01

    This report is the final product of a detailed review and quantitative evaluation of existing data for the Boise Front Geothermal Aquifer. Upon review of the many publications, and raw data for the Boise geothermal aquifer, it became clear that adequate data only exists for analysis of current and proposed development within a limited area. This region extends approximately 1.5 miles southeast of the State Capitol to 0.5 mile northwest. Though there are geothermal wells located along the Boise Front outside of this area, the lack of production and water level data preclude any detailed discussions and analysis of their relationship to the central resource. As a result, discussion will concentrate on major users such as the Capitol Mall (CM) Boise Geothermal LTD. (BGL), Veterans Administration (VA) and Boise Warm Springs Water District (BWSWD). The objectives of this study are: Define the inter-relationship of the existing wells and/or portions of the geothermal aquifer; evaluate the effects of current and proposed development on the geothermal aquifer; estimate longevity of the geothermal resource; and make recommendations for an on-going monitoring program. 44 refs., 40 figs., 9 tabs.

  4. Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

  5. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    PubMed

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  6. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China

    PubMed Central

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73–0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41–95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs. PMID:26761709

  7. Shallow subsurface temperature surveys in the basin and range province-II. Ground temperatures in the upsal hogback geothermal area, West-Central Nevada, U.S.A.

    USGS Publications Warehouse

    Olmsted, F.H.; Ingebritsen, S.E.

    1986-01-01

    Numerous temperature surveys at a depth of 1 m were made in 1973-1985 in the Upsal Hogback and Soda Lakes geothermal areas in west-central Nevada. Whereas the surveys effectively delineated temperature at depth and heat flow within the relatively intense Soda Lakes thermal anomaly, they were not effective at the diffuse Upsal Hogback anomaly, where several perturbing factors that affect shallow subsurface temperatures are exceedingly variable. Albedo is the most important factor in the Upsal Hogback area, even at a depth of 30 m. All possible perturbing factors should be considered when designing a shallow temperature-based prospecting scheme. ?? 1986.

  8. Shallow hydrothermal regime of the East Brawley and Glamis known geothermal resource areas, Salton Trough, California

    SciTech Connect

    Mase, C.W.; Sass, J.H.; Brook, C.A.; Munroe, R.J.

    1981-01-01

    Thermal gradients and thermal conductivities were obtained in real time using an in situ heat-flow technique in 15 shallow (90 to 150 m) wells drilled between Brawley and Glamis in the Imperial Valley, Southern California. The in situ measurements were supplemented by follow-up conventional temperature logs in seven of the wells and by laboratory measurements of thermal conductivity on drill cuttings. The deltaic sedimentary material comprising the upper approx. 100 m of the Salton Trough generally is poorly sorted and high in quartz resulting in quite high thermal conductivities (averaging 2.0 Wm/sup -1/ K/sup -1/ as opposed to 1.2 to 1.7 for typical alluvium). A broad heat-flow anomaly with maximum of about 200 mWm/sup -2/ (approx. 5 HFU) is centered between Glamis and East Brawley and is superimposed on a regional heat-flow high in excess of 100 mWm/sup -2/ (> 2.5 HFU). The heat-flow high corresponds with a gravity maximum and partially with a minimum in electrical resistivity, suggesting the presence of a hydrothermal system at depth in this area.

  9. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  10. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  11. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  12. An Aerial Radiological Survey of Selected Areas of the City of North Las Vegas

    SciTech Connect

    Piotr Wasiolek

    2008-06-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of the city of North Las Vegas for the purpose of mapping natural radiation background and locating any man-made radioactive sources. Survey areas were selected in collaboration with the City Manager's office and included four separate areas: (1) Las Vegas Motor Speedway (10.6 square miles); (2) North Las Vegas Downtown Area (9.2 square miles); (3) I-15 Industrial Corridor (7.4 square miles); and (4) Future site of University of Nevada Las Vegas campus (17.4 square miles). The survey was conducted in three phases: Phase 1 on December 11-12, 2007 (Areas 1 and 2), Phase 2 on February 28, 2008 (Area 3), and Phase 3 on March 19, 2008 (Area 4). The total completed survey covered a total of 44.6 square miles. The flight lines (without the turns) over the surveyed areas are presented in Figures 1, 2, 3, and 4. A total of eight 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 feet of flight-line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service, with

  13. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area.

    PubMed

    Ming, Hong; Yin, Yi-Rui; Li, Shuai; Nie, Guo-Xing; Yu, Tian-Tian; Zhou, En-Min; Liu, Lan; Dong, Lei; Li, Wen-Jun

    2014-02-01

    Two thermophilic bacterial strains, designated YIM 77925(T) and YIM 77777, were isolated from two hot springs, one in the Hydrothermal Explosion (Shuirebaozhaqu) area and Frog Mouth Spring in Tengchong county, Yunnan province, south-western China. The taxonomic positions of the two isolates were investigated by a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 50-70 °C, pH 6.0-8.0 and with a NaCl tolerance up to 0.5% (w/v). Colonies are circular, convex, non-transparent and produce yellow pigment. Phylogenetic analyses based on 16S rRNA gene sequences comparison clearly demonstrated that strains YIM 77925(T) and YIM 77777 represent members of the genus Thermus, and they also detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. Their predominant menaquinone was MK-8. The genomic DNA G+C contents of strains YIM 77925(T) and YIM 77777 were 65.6 mol% and 67.2 mol%, respectively. Based on the results of physiological and biochemical tests and phylogenetic analyses, strains YIM 77925(T) and YIM 77777 could not be classified as representing any species of the genus Thermus with a validly published name. Thus the two strains are considered to represent a novel species of the genus Thermus, for which the name Thermus caliditerrae sp. nov. is proposed. The type strain is YIM 77925(T) ( = DSM 25901(T) = CCTCC 2012061(T)).

  14. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska

    SciTech Connect

    Collett, T.S. )

    1993-05-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances commonly have been regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic, including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is a really extensive beneath most of the coastal plain province and has thicknesses greater than 1000 m in the Prudhoe Bay area. Gas hydrates have been inferred to occur in 50 North Slope exploratory and production wells on the basis of well-log responses calibrated to the response of an interval in a well where gas hydrates were recovered in a core by ARCO and Exxon. Most North Slope gas hydrates occur in six laterally continuous lower Tertiary sandstones and conglomerates; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River oil field and the western part of the Prudhoe Bay oil field. The volume of gas within these gas hydrates is estimated to be about 1.0 [times] 10[sup 12] to 1.2 [times] 10[sup 12] m[sup 3] (37 to 44 tcf), or about twice the volume of conventional gas in the Prudhoe Bay field. 52 refs., 13 figs., 2 tabs.

  15. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  16. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  17. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  18. Primary Analysis of Shear-Wave Splitting Aroundbohai Sea Area in North China

    NASA Astrophysics Data System (ADS)

    Tai, L.; Gao, Y.; Shi, Y.; Sun, J.

    2012-12-01

    Bohai Sea area locates at eastern China, including 3 provinces ( Hebei, Liaoning and Shandong ) and 2 metropolitan cities ( Beijing and Tianjin ). There are 5 tectonic units (Yanshan uplift, Taihang uplift, Liaodong uplift, Luxi uplift and Jizhong depression), where is within North China (in short, NC). Zhangjiakou-Bohai seismic belt, an important seismotectonic zone in eastern China and Tanlu fault, the largest fault in eastern China, intersect in this zone, so that the tectonics are complicated. Earthquake activity is very strong in this zone, which is famous of earthquakes with large magnitude and high frequency. This study used a system analysis method of shear-wave splitting, namely SAM method (GAO et al, 2004). It includes mainly three aspects, i.e., calculation of cross-correlation function, elimination of time delay and check of polarization analysis. Preliminarily, we obtained the 378 seismic data within shear-wave window recorded by 27 stations around Bohai Sea area. The polarizations of fast shear-waves show different local features so that we divide the studied zone into 3 different areas, west of Bohai Sea gulf (including Beijing, Tianjin and Hebei province), north of Bohai Sea gulf (Liaoning province) and south of Bohai Sea gulf (Shandong province). In the west of Bohai Sea gulf, we divided the area into 3 parts. In south of Zhangjiakou-Bohai seismic belt, the predominant polarizations of fast shear-waves are a little scattered, lots of stations strike to nearly E-W, consistent with the direction of the in situ principal stress, consistent with the direction of regional tectonic stress in north part of NC, which strikes to nearly WNW or E-W, while some stations strike to NNE or NW, different from the direction of the regional principal stress field. It may be influenced by local tectonics or shallow crust structure. Within Zhangjiakou-Bohai seismic belt, the predominant polarizations of fast shear-waves are in direction of nearly E-W, consistent with

  19. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  20. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  1. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    USGS Publications Warehouse

    Horton, J. Wright; Geddes, Donald J.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural

  2. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  3. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  4. Geothermal reservoir technology

    SciTech Connect

    Lippmann, M.J.

    1985-09-01

    A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

  5. Ambient Seismic Noise Tomography of a Deep Geothermal Area in the Upper Rhine Graben from the EstOF Dense Regional Array

    NASA Astrophysics Data System (ADS)

    Vergne, J.; LE Chenadec, A.; Lehujeur, M.; Schmittbuhl, J.

    2015-12-01

    Passive imaging from ambient noise correlation has proven to be a robust tool to probe the internal structure of the Earth. Assessing the potential of this technique for the exploration of deep geothermal reservoirs was the main motivation of the EstOF project. In September 2014, we deployed a regular grid of 288 Zland nodes over a 30km wide disc (1.5km inter-node spacing) in the Outre-Forêt region (Bas-Rhin, France) encompassing the geothermal sites of Soultz-sous-Forêts and Rittershoffen. The correlation of one month of ambient noise data provides thousands of usable correlations in the 0.2-5Hz frequency range. We clearly observe body waves as well as the fundamental and first harmonic modes of the Rayleigh wave. The latter phases have been used to retrieve group and phase velocity maps using the Eikonal tomography thanks to the high density of the array. Depth inversion of these maps for various frequencies allows us to construct a 3D model of shear wave velocities of the region down to 5km depth. This model, having a lateral resolution of about 2km, appears to be in good agreement with our geological knowledge of the region. This case study validates the use of ambient noise recorded by spatially dense arrays at regional scale as a cheap and robust technique for the exploration of geothermal areas.

  6. An oilspill risk analysis for the North Atlantic outer continental shelf lease area

    USGS Publications Warehouse

    Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.

    1976-01-01

    The Federal Government has proposed to lease 1,172,795 acres of Outer Continental Shelf (OCS) lands on Georges Bank off the New England Coast for oil and gas development. Estimated recoverable petroleum resources for the proposed 206 tract sale area range from 180 to 650 million barrels. Contingent upon actual discovery of this quantity of oil, production is expected to span a period of about 20 years. An oilspill risk analysis was conducted to determine relative environmental hazards of developing oil in the North Atlantic Outer Continental Shelf lease area. The study analyzed probability of spill occurrence, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)

  7. Base of Principal Aquifer for the Elkhorn-Loup Model Area, North-Central Nebraska

    USGS Publications Warehouse

    McGuire, V.L.; Peterson, Sean M.

    2008-01-01

    In Nebraska, the water managers in the Natural Resources Districts and the Nebraska Department of Natural Resources are concerned with the effect of ground-water withdrawal on the availability of surface water and the long-term effects of ground-water withdrawal on ground- and surface-water resources. In north-central Nebraska, in the Elkhorn and Loup River Basins, ground water is used for irrigation, domestic supply, and public supply; surface water is used in this area for irrigation, recreation, and hydropower production. In recognition of these sometimes competing ground- and surface-water uses in the Elkhorn and Loup River Basins, the U.S. Geological Survey, the Lewis and Clark Natural Resources District, the Lower Elkhorn Natural Resources District, the Lower Loup Natural Resources District, the Lower Niobrara Natural Resources District, the Lower Platte North Natural Resources District, the Middle Niobrara Natural Resources District, the Upper Elkhorn Natural Resources District, and the Upper Loup Natural Resources District agreed to cooperatively study water resources in the Elkhorn and Loup River Basins. The goals of the overall study were to construct and calibrate a regional ground-water flow model of the area and to use that flow model as a tool to assess current and future effects of ground-water irrigation on stream base flow and to help develop long-term water-resource management strategies for this area, hereafter referred to as the Elkhorn-Loup model area. The Elkhorn-Loup model area covers approximately 30,800 square miles, and extends from the Niobrara River in the north to the Platte River in the south. The western boundary of the Elkhorn-Loup model area coincides with the western boundary of the Middle Niobrara, Twin Platte, and Upper Loup Natural Resources Districts; the eastern boundary coincides with the approximate location of the western extent of glacial till in eastern Nebraska. The principal aquifer in most of the Elkhorn-Loup model

  8. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    SciTech Connect

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  9. Hydrogeologic framework of the North Fork and surrounding areas, Long Island, New York

    USGS Publications Warehouse

    Schubert, Christopher E.; Bova, Richard G.; Misut, Paul E.

    2004-01-01

    Ground water on the North Fork of Long Island is the sole source of drinking water, but the supply is vulnerable to saltwater intrusion and upconing in response to heavy pumping. Information on the area?s hydrogeologic framework is needed to analyze the effects of pumping and drought on ground-water levels and the position of the freshwater-saltwater interface. This will enable water-resource managers and water-supply purveyors to evaluate a wide range of water-supply scenarios to safely meet water-use demands. The extent and thickness of hydrogeologic units and position of the freshwater-saltwater interface were interpreted from previous work and from exploratory drilling during this study. The fresh ground-water reservoir on the North Fork consists of four principal freshwater flow systems (referred to as Long Island mainland, Cutchogue, Greenport, and Orient) within a sequence of unconsolidated Pleistocene and Late Cretaceous deposits. A thick glacial-lake-clay unit appears to truncate underlying deposits in three buried valleys beneath the northern shore of the North Fork. Similar glacial-lake deposits beneath eastern and east-central Long Island Sound previously were inferred to be younger than the surficial glacial deposits exposed along the northern shore of Long Island. Close similarities in thickness and upper-surface altitude between the glacial-lake-clay unit on the North Fork and the glacial-lake deposits in Long Island Sound indicate, however, that the two are correlated at least along the North Fork shore. The Matawan Group and Magothy Formation, undifferentiated, is the uppermost Cretaceous unit on the North Fork and constitutes the Magothy aquifer. The upper surface of this unit contains a series of prominent erosional features that can be traced beneath Long Island Sound and the North Fork. Northwest-trending buried ridges extend several miles offshore from areas southeast of Rocky Point and Horton Point. A promontory in the irregular, north

  10. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    NASA Astrophysics Data System (ADS)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  11. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  12. 33 CFR 334.762 - Naval Support Activity Panama City; North Bay and West Bay; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... City; North Bay and West Bay; restricted areas. 334.762 Section 334.762 Navigation and Navigable Waters... REGULATIONS § 334.762 Naval Support Activity Panama City; North Bay and West Bay; restricted areas. (a) The..., 085°45′34″ W; East point—30°14′56″ N, 085°43′45″ W; South point—30°14′01″ N, 085°44′59″ W; West...

  13. Development of concepts for the management of shallow geothermal resources in urban areas - Experience gained from the Basel and Zaragoza case studies

    NASA Astrophysics Data System (ADS)

    García-Gil, Alejandro; Epting, Jannis; Mueller, Matthias H.; Huggenberger, Peter; Vázquez-Suñé, Enric

    2015-04-01

    In urban areas the shallow subsurface often is used as a heat resource (shallow geothermal energy), i.e. for the installation and operation of a broad variety of geothermal systems. Increasingly, groundwater is used as a low-cost heat sink, e.g. for building acclimatization. Together with other shallow geothermal exploitation systems significantly increased groundwater temperatures have been observed in many urban areas (urban heat island effect). The experience obtained from two selected case study cities in Basel (CH) and Zaragoza (ES) has allowed developing concepts and methods for the management of thermal resources in urban areas. Both case study cities already have a comprehensive monitoring network operating (hydraulics and temperature) as well as calibrated high-resolution numerical groundwater flow and heat-transport models. The existing datasets and models have allowed to compile and compare the different hydraulic and thermal boundary conditions for both groundwater bodies, including: (1) River boundaries (River Rhine and Ebro), (2) Regional hydraulic and thermal settings, (3) Interaction with the atmosphere under consideration of urbanization and (4) Anthropogenic quantitative and thermal groundwater use. The potential natural states of the considered groundwater bodies also have been investigated for different urban settings and varying processes concerning groundwater flow and thermal regimes. Moreover, concepts for the management of thermal resources in urban areas and the transferability of the applied methods to other urban areas are discussed. The methods used provide an appropriate selection of parameters (spatiotemporal resolution) that have to be measured for representative interpretations of groundwater flow and thermal regimes of specific groundwater bodies. From the experience acquired from the case studies it is shown that understanding the variable influences of the specific geological and hydrogeological as well as hydraulic and thermal

  14. Climatic patterns in the establishment of wintering areas by North American migratory birds.

    PubMed

    Pérez-Moreno, Heidi; Martínez-Meyer, Enrique; Soberón Mainero, Jorge; Rojas-Soto, Octavio

    2016-04-01

    Long-distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have

  15. Climatic patterns in the establishment of wintering areas by North American migratory birds.

    PubMed

    Pérez-Moreno, Heidi; Martínez-Meyer, Enrique; Soberón Mainero, Jorge; Rojas-Soto, Octavio

    2016-04-01

    Long-distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have

  16. Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?

    SciTech Connect

    van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

    2002-04-30

    Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

  17. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2012-12-03

    Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks and the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west

  18. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    USGS Publications Warehouse

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  19. Geothermal Energy Development in China

    SciTech Connect

    Kuide, Xin; Qilong, Yang

    1983-12-15

    China's geothermal resources are mainly of low - medium temperature. More than 30 geothermal areas have been or are being explorated. According to the geology, economy and technology of geothermal energy development main efforts are concentrated in some places with better conditions and can be exploited effectively in the near future, such as low temperature geothermal fields in Beijing and Tianjin, Yangbajain and Dengchong high temperature geothermal fields respectively in Tibet and Ynnan province. In Beijing and Tianjin the geothermal water is used for space heating, bathing, medical treatment, greenhouse, raising tropical fish, industry and so on. In Beijing now more than 200 thousand sq. m. of indoor floor is being heated with geothermal water and about 50 thousand persons per day use it to take bath. In future, the low temperature geothermal water utilization in these big citites would flourish. In 1970 the first experimental geothermal power plant using the flashing method was built in Dengwu, Guangdong province. In 1977 one MW experimental wet steam power plant was built in Yangbajain, Tibet, a 6 MW power plant in 1981, and another 3 MW generator is expected to complete in 1985. This paper is intended to summarize some important results of exploration, particularly in the geothermal reservoir engineering.

  20. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  1. Meager Creek Geothermal Prospect, British Columbia 1979 Progress Report

    SciTech Connect

    Stauder, J.

    1980-12-01

    The Meager Mountain Volcanic Complex, 150 km north of Vancouver, B.C. has been a target of geothermal exploration since 1974. The study has been carried out jointly by B.C. Hydro, Energy, Mines and Resources Canada and co-funded by the Provincial Ministry of Energy, Mines and Petroleum Resources. Results indicate presence of two geothermal reservoirs approximately 12 km apart (South - North) within permeable fractured quartz diorite basement complex at depths between 1000-2000 m. Three diamond-drilled holes were completed in the South Reservoir area during 1979 and drilling results are compatible with earlier electrical resistivity surveys. The highest temperature recorded was 202 C at 367 m.

  2. Area-wide seafloor mapping in the SE North Sea using hydroacoustics

    NASA Astrophysics Data System (ADS)

    Mielck, Finn; Hass, H. Christian

    2013-04-01

    Mapping seafloor properties has become increasingly important for understanding marine ecosystems and providing basic data for sustainable management. However, the knowledge regarding the distribution of seabed environments in the German part of the North Sea is still fragmentary. It is mainly derived from single case studies and from a 1:250,000 scale map based on grab samples published in 1981. In recent years, hydroacoustic devices became a powerful tool to quickly obtain reliable information of the seafloor. In the years 2007-2012 various hydroacoustic surveys were performed in order to map the seafloor in the coastal zone of the NE German Bight comprising an area of approximately 1,500 km². Measurements were carried out with a sidescan sonar (Imagenex YellowFin, 330 kHz) at a resolution of 25 cm. For ground truthing several hundred sediment samples were taken. The seafloor in the investigation area is mainly characterized by fine and medium sand. West off Sylt relics of former Pleistocene moraines stretch perpendicular to the coast in westerly directions. These relics consist of wide bands of coarse to medium sand and are basically linked to the morphological structures such as ridges and channels. The truncated push moraines from the Saalian glacial represent the seaward extension of the recent moraine core ('Geest') of Sylt. In addition a great number of smaller scaled structures, generally known as sorted bedforms were detected. Sidescan sonography of the same area carried out in two consecutive years reveals that these bedforms are dynamic and therefore subject to flow-directed movement across the seafloor. They are linked with large-scale sediment transport that occurs in this highly dynamic area as a result of vigorous tidal currents. Ongoing investigations aim at relating the occurrence of different bedforms to current speed and net sediment transport direction to calculate sediment budget. These govern erosion and accumulation processes that are

  3. The flora of the Cottonwood Lake Study Area, Stutsman County, North Dakota

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H.; Lane, S.P.; Goldade, C.M.

    2004-01-01

    The 92 ha Cottonwood Lake Study Area is located in south-central North Dakota along the eastern edge of a glacial stagnation moraine known as the Missouri Coteau. The study area has been the focus of biologic and hydrologic research since the U.S. Fish and Wildlife Service purchased the site in 1963. We studied the plant communities of the Cottonwood Lake Study Area from 1992 to 2001. During this time period, the vascular flora of the study area consisted of 220 species representing 51 families. Over half of the species were perennial forbs (117 species). Perennial grasses (26 species) and annual forbs (22 species) made up the next two largest physiognomic groupings. The flora, having a mean Coefficient of Conservatism of 4.6 and a Floristic Quality Index of 62, consisted of 187 native species. Thirty-three species were non-natives. Our annotated list should provide information useful to researchers, graduate students, and others as they design and implement future studies in wetlands and uplands both in and around the Cottonwood Lake Study Area.

  4. Low-temperature geothermal assessment of the Jordan Valley Salt Lake County, Utah

    SciTech Connect

    Klauk, R.H.

    1984-07-01

    Two known low-temperature areas (Warm Springs fault and Crystal Hot Springs) are located in the Jordan Valley, but the primary purpose of this report is to locate other low-temperature resources not previously identified. Geothermal reconnaissance techniques utilized in this study include a temperature survey and chemical analysis of wells and springs, and temperature-depth measurements in holes of opportunity. Also, further site specific gravity modelling for the Warm Springs fault geothermal area and initial modelling for the entire valley were also conducted. Areas identified as having potential low-temperature geothermal resources at depth are: (1) the north-central valley area; (2) an east-west portion of the central valley; and (3) a north-south oriented area extending from Draper to Midvale. Each of these areas exhibits ground-water temperatures 20/sup 0/C or greater. Each area has thermal wells with common ion characteristics similar to both Crystal Hot Springs and the Warm Springs fault geothermal systems. Significant concentrations of Sr, Li, B, and F are present in many of these wells.

  5. Geothermal development plan: Maricopa county

    SciTech Connect

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  6. Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report

    SciTech Connect

    Icerman, L.; Lohse, R.L.

    1983-04-01

    Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

  7. Microbial Diversity of Acidic Hot Spring (Kawah Hujan B) in Geothermal Field of Kamojang Area, West Java-Indonesia

    PubMed Central

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria. PMID:19440252

  8. Geothermal Energy Development annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  9. Boise geothermal system, western Snake River plain, Idaho

    SciTech Connect

    Wood, S.H.; Burnham, W.L.

    1984-07-01

    The Boise geothermal system lies in an area of high heat flow along the northern margin of the western Snake River plain. Exploratory drilling for petroleum and geothermal water, seismic reflection profiling, and regional gravity data permit construction of a detailed structure section across the western plain. A faulted acoustic basement of volcanic rocks lies at depths of 2400 to 6000 ft (730-1830 m) beneath late Cenozoic lacustrine and fluvial deposits in the center of the plain. Volcanic rocks of the acoustic basement are typically basalt out in the plain, but the acoustic basement along the north margin in the vicinity of Boise is largely silicic volcanic rock. Geologic mapping and geothermal well data have provided information on the late Cenozoic geologic units and structures important to the understanding of the Boise geothermal system. The main geothermal aquifer is a sequence of rhyolite layers and minor arkosic and tuffaceous sediment of the Miocene Idavada Volcanics. The aquifer is confined by a sequence of impermeable basaltic tuffs. The aquifer has sufficient fracture permeability to yield 150/sup 0/-170/sup 0/F (65/sup 0/-76.6/sup 0/C) hot water for space heating at a rate of 600 to 1200 gpm from wells drilled in the metropolitan area, north of the Boise River. In this area the rhyolite lies at a depth of 900-2000 ft (274-610 m). Artesian pressure typically lifts water to an elevation of about 2760 ft (840 m). A conceptual model of recharge assumes percolation driven by the topographic head to a depth of more than 7000 ft (2135 m) beneath the granitic highlands northeast of the city. Heated water convects upward through northwest-trending range-front faults.

  10. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  11. Miocene structural features of north and south Padre Island and OCS areas, offshore south Texas

    SciTech Connect

    Al-Ghamdi, A.M.; Watkins, J.S.

    1996-12-31

    Integration of 2-D seismic reflection data, paleontological reports, velocity analysis, and well logs has provided a new structural model for North and South Padre Island OCS areas. The Clemente-Tomas fault system (Late Oligocene-Early Miocene) is located above overpressured shale ridges. Sediment loading initiated the faulting over the compacted shale. The Corsair fault system (Early-Middle Miocene) is located seaward of Clemente-Tomas and was formed due to a huge sediment influx that forced the salt to withdraw basinward. The Wanda fault system formed during the Late Miocene because of the further salt withdrawal. Study area is dominated by shale ridges and the salt are only formed beneath the present shelf edge as salt diapirs. Overpressured shale was mapped throughout the study area. Well logs show overpressured shale between 8,800 to 12,000 feet. Berg and Avery suggested that growth faults can seal the faults sheared zones which may cause a structural hydrocarbon trap. We examined most of the responses of the dip logs in the study area and we found that the seal general trend is the drag (non seal) type.

  12. Miocene structural features of north and south Padre Island and OCS areas, offshore south Texas

    SciTech Connect

    Al-Ghamdi, A.M.; Watkins, J.S. )

    1996-01-01

    Integration of 2-D seismic reflection data, paleontological reports, velocity analysis, and well logs has provided a new structural model for North and South Padre Island OCS areas. The Clemente-Tomas fault system (Late Oligocene-Early Miocene) is located above overpressured shale ridges. Sediment loading initiated the faulting over the compacted shale. The Corsair fault system (Early-Middle Miocene) is located seaward of Clemente-Tomas and was formed due to a huge sediment influx that forced the salt to withdraw basinward. The Wanda fault system formed during the Late Miocene because of the further salt withdrawal. Study area is dominated by shale ridges and the salt are only formed beneath the present shelf edge as salt diapirs. Overpressured shale was mapped throughout the study area. Well logs show overpressured shale between 8,800 to 12,000 feet. Berg and Avery suggested that growth faults can seal the faults sheared zones which may cause a structural hydrocarbon trap. We examined most of the responses of the dip logs in the study area and we found that the seal general trend is the drag (non seal) type.

  13. Inventory of coastal protected areas and historical heritage sites (North Bulgarian coast)

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Stancheva, Margarita; Stanchev, Hristo; Krastev, Anton; Peev, Preslav

    2015-04-01

    Coastal protected areas and historical heritage sites in Bulgaria are established by national policy instruments/laws and EU Directives to protect a wide range of natural and cultural resources along the coast. Within the framework of HERAS Project (Submarine Archaeological Heritage of the Western Black Sea Shelf), financed by European Union under the CBC Program Romania-Bulgaria, we made an inventory and identification of protected areas, nature reserves, monuments, parks and onshore historical sites along the North Bulgarian coast (NUTS III level). The adjacent coastline is 96 km long between cape Sivriburun to the border of Romania on the north and cape Ekrene on the south. Coastal zone here is mostly undeveloped and low urbanized compared to other coastal regions in Bulgaria. It comprises of large sand beaches, vast sand dunes, up to 70 m spectacular high limestone cliffs, coastal fresh-water lakes, wetlands etc. This coastal section includes also one of the most important wetlands and it is migration corridor for many protected birds in Bulgaria, that host one of the rarest ecosystem types with national and international conservational value. Added to ecosystem values, the region is also an archeologically important area, where numerous underwater and coastal archaeological sites from different periods have been discovered - Prehistory, Antiquity (ancient Greek, Hellenistic, Roman), Mediaeval (Early Byzantium, Bulgarian). Research was made within 2100 m zone from the coastline (in accordance with zones defined by the Black Sea Coastal Development Act) for territories with protected status in the framework of many national laws and EU Directives. The total area of this strip zone is 182, 6 km2 and around 67% is under protection. There are 11 unique NATURA 2000 protected areas (6 Special Protection Areas (SPAs) and 5 Sites of Communities Importance (SCI), 2 nature reserves and 1 Nature Park. Some of them are also onshore historical sites. In Bulgaria such sites

  14. Colorado Potential Geothermal Pathways

    SciTech Connect

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  15. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  16. 3-D Seismic Tomographic Modelling of the North-Western Spitsbergen Area

    NASA Astrophysics Data System (ADS)

    Czuba, W.

    2015-12-01

    Deep seismic sounding measurements were performed in the continent-ocean transition zone of the north-western Svalbard continental margin in 1976 - 1999 in an international co-operation. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone systems (OBH). Data from archival and modern seismic profiles were altogether used for 3-D tomographic inversion using JIVE3D software. The modelling area was chosen to be a rectangle of 420 x 330 km (Fig.). The results are similar to the earlier 2-D modelling, supplemented by off-line information from the profiles and the SPITS permanent station, giving a 3-D image of the crustal structure and Moho interface shape. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep and in the Knipovich Ridge. The Moho interface deepens to about 30 km beneath the continental crust of Spitsbergen.

  17. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  18. GIS Representation of Coal-Bearing Areas in North, Central, and South America

    USGS Publications Warehouse

    Tewalt, Susan J.; Kinney, Scott A.; Merrill, Matthew D.

    2008-01-01

    Worldwide coal consumption and international coal trade are projected to increase in the next several decades (Energy Information Administration, 2007). A search of existing literature indicates that in the Western Hemisphere, coal resources are known to occur in about 30 countries. The need exists to be able to depict these areas in a digital format for use in Geographic Information System (GIS) applications at small scales (large areas) and in visual presentations. Existing surficial geology GIS layers of the appropriate geologic age have been used as an approximation to depict the extent of coal-bearing areas in North, Central, and South America, as well as Greenland (fig. 1). Global surficial geology GIS data were created by the U.S. Geological Survey (USGS) for use in world petroleum assessments (Hearn and others, 2003). These USGS publications served as the major sources for the selection and creation of polygons to represent coal-bearing areas. Additional publications and maps by various countries and agencies were also used as sources of coal locations. GIS geologic polygons were truncated where literature or hardcopy maps did not indicate the presence of coal. The depicted areas are not adequate for use in coal resource calculations, as they were not adjusted for geologic structure and do not include coal at depth. Additionally, some coal areas in Central America could not be represented by the mapped surficial geology and are shown only as points based on descriptions or depictions from scientific publications or available maps. The provided GIS files are intended to serve as a backdrop for display of coal information. Three attributes of the coal that are represented by the polygons or points include geologic age (or range of ages), published rank (or range of ranks), and information source (published sources for age, rank, or physical location, or GIS geology base).

  19. NORTH ABSAROKA WILDERNESS, WYOMING.

    USGS Publications Warehouse

    Nelson, Willis H.; Williams, Frank E.

    1984-01-01

    The North Absaroka Wilderness in Wyoming was studied to evaluate the resource potential of the area. The results of geologic field mapping, field inspection of claims and prospects, analyses of bedrock and stream-sediment samples, and an aeromagnetic survey indicate that a small area of geologic terrane with probable mineral-resource potential for silver, lead, and zinc is present on the northern edge of the wilderness. Bentonite, low-quality coal, and localized deposits of uranium and chromite have been produced from surrounding areas; but such deposits, if present in the wilderness, are probably too deeply buried, too small, or too sporadically distributed to be classed as resources. Copper and gold mines and prospects are present on the fringes of the wilderness, but otherwise the area seems to be devoid of concentrations of metallic minerals. No surface evidence of geothermal energy resources was found.

  20. Assessment of Pharmacists' Perception of Patient Care Competence and Need for Training in Rural and Urban Areas in North Dakota

    ERIC Educational Resources Information Center

    Scott, David M.

    2010-01-01

    Context: Few studies have examined pharmacists' level of patient care competence and need for continuous professional development in rural areas. Purpose: To assess North Dakota pharmacists' practice setting, perceived level of patient care competencies, and the need for professional development in urban and rural areas. Methods: A survey was…

  1. Hydrodynamic trapping in the Cretaceous Nahr Umr lower sand of the North Area, Offshore Qatar

    SciTech Connect

    Wells, P.R.A.

    1988-03-01

    A hydrodynamic model is described to account for oil and gas occurrences in the Cretaceous of offshore Qatar, in the Arabian Gulf. Variable and inconsistent fluid levels and variable formation water potentials and salinities cannot be explained by combinations of stratigraphic and structural trapping. Indeed, there is no structural closure to the southwest of the oil and gas accumulations. The water-potential and salinity data and oil distribution are consistent with this model and indicate that a vigorous hydrodynamic system pervades the Cretaceous of the Arabian Gulf region. Extensive upward cross-formational discharge is taking place in the North Area. This cross-formation water flow could be partly responsible for localized leaching and reservoir enhancement in the chalky limestones.

  2. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  3. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  4. Natural groundwater recharge in an upland area of central North Dakota, U.S.A.

    USGS Publications Warehouse

    Rehm, B.W.; Moran, S.R.; Groenewold, G.H.

    1982-01-01

    The magnitude of groundwater recharge to coal aquifers in a 150-km2 area in west-central North Dakota was determined using three separate approaches: (1) the net water level rise in water-table wells; (2) calculations of the fluid flux between nested piezometers, using the Darcy equation and measured values of hydraulic conductivity and vertical gradients; and (3) evaluation of the inputs to and outputs from the coal aquifer, using a steady-state control volume approach in which the aquifer was divided into semi-rectangular cells bounded by equipotential lines and flow lines. Measurements of potential gradients and hydraulic conductivity permitted indirect determination of all components of flow into and out of the cell except the recharge input, which was determined by difference. All methods yielded consistent results on the order of 0.04-0.01 m yr.-1 These values, which represent 2-9% of the annual precipitation, are consistent with results of other studies on recharge throughout the prairies of North America. Evaluation of site hydrology and stable-isotope data indicates that recharge is restricted in both time and place. Most recharge occurs in late spring and in the fall following heavy rainfall events. During these seasons the ground is not frozen and vegetation is not transpiring large amounts of water. Some recharge may occur during very heavy localized summer storms, but it is not considered volumetrically significant. Major permanent depressions on the site are a source of significant recharge. In addition, the extensive area of ephemeral standing water bodies that result from snowmelt can produce significant amounts of infiltration over the entire site. ?? 1982.

  5. Impact of Heat Waves on Urban Areas in the North Eastern United States

    NASA Astrophysics Data System (ADS)

    Ramamurthy, P.; Li, D.; Bou-Zeid, E.

    2014-12-01

    We utilize high-resolution numerical simulations to understand the interaction between heat waves and urban heat islands in the North Eastern United States. Urban areas, due to their dense built-surface cover that efficiently stores and dissipate heat and reduced evapotranspiration, experience elevated near surface temperatures compared to surrounding rural areas. This difference between urban and nearby rural temperature is commonly known as the Urban Heat island Intensity (UHI), which amplifies the effects of heat waves in cities. In this work, the Weather Research and Forecasting (WRF) model is significantly modified in two major ways to study two heat wave episodes in the North East during the Summer of 2006. First, the single layer urban canopy model in WRF is replaced by the Princeton Urban Canopy Model (PUCM), which includes representation for sub-facet scale heterogeneity. Second, the dominant land use approach used in the default land surface scheme is substituted with a tile-based approach to suitably capture the variability in the urban surface cover. Our preliminary results show that the magnitude of the UHI increased in New York City by more than 1°C during both the nighttime and daytime periods during the heat wave episodes. In Baltimore and Washington D. C, while the UHI increased during the nighttime period, the daytime UHI was mostly unchanged. This ongoing work will further focus on the role played by moisture availability, available energy, wind direction and magnitude and urban characteristics like population density and urban cover in modulating the UHI during these intense heat wave periods.

  6. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  7. [Food security in 'Grain for Green Project' area of North Shaanxi based on households].

    PubMed

    Li, Wen-Zhuo; Xie, Yong-Sheng

    2011-02-01

    This paper analyzed the food production by the households in the counties with high population (Mizhi County) and low population (Wuqi County) in North Shaanxi, and studied the food security and its affecting factors in the two counties by using minimum cropland area per capita and Cobb-Douglass production function methods. The results demonstrated that the food production in low population county could meet the basic standard of food security, while that in high population county could not. Cultivated area and investment in agricultural technology were the major factors affecting food security; labor force, labor quality, and grain subsidy also had positive effects on food production. The current technology and labor quality did not reach their potential for food production. This region needed to increase grain production area to reach the minimum standard of 0.14 bm2 per capita, put much stress on labor force training, and formulate appropriate following policies for 'Grain for Green' to realize the food security strategy.

  8. Geologic map of the Sasquatch Steps area, north flank of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hausback, Brian P.

    2000-01-01

    The 1980 eruption of Mount St. Helens resulted in both new volcanic deposits and deeply incised exposures into pre-1980 deposits. These exposures were produced by excavation of the crater by the 1980 landslides and lateral explosion as well as the subsequent erosion of Step and Loowit creeks by northerly stream flow out of the horseshoe-shaped crater. The map covers the area known as the Sasquatch Steps (commonly called the Steps), which lies between the Pumice Plain on the north and the lowermost portion of the crater on the south. Rapid alluvial aggradation at the base of the Steps is presently burying some of the lowest exposures, and erosion is stripping many of the upland deposits. The stratigraphic sequence exposed in the map area includes deposits from the eruptive periods listed in table 1 (Crandell, 1987). Assignment of deposits to the various eruptive periods is based on lithology and ferromagnesian-mineral suites typical for each of the eruptive periods (Mullineaux and Crandell, 1981; Mullineaux, 1986), as well as three 14 C dates from wood found in the deposits. Faults displayed on the map are largely confined to the older part of the stratigraphic section. These older units are highly shattered, with an extremely complicated fracture pattern, and it is only possible to show the largest and most distinctive of these structures at the map scale. Interpretation of the stratigraphy and structure of this area is given in Hausback and Swanson (1990).

  9. Carbon storages in plantation ecosystems in sand source areas of north Beijing, China.

    PubMed

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0-100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.

  10. Geothermal development plan: northern Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  11. Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan

    NASA Astrophysics Data System (ADS)

    Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

    2012-12-01

    1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount

  12. The Characteristic and Classification of Thermal Spring in Ramsar area, North of Iran

    NASA Astrophysics Data System (ADS)

    Abedsoltan, Farnaz; Ansari, Mohammad Reza; Gafari, Mohammad Reza

    2010-05-01

    Ramsar area is located across and between Alborze Mountain and Caspine Sea in North of Iran. About 30 spas are located south of the Ramsar and Sadatshar town. They are almost in between 20 to 70 m elevation. Paleozoic, Mesozoic and Tertiary rocks and alluvial deposit are exposed around the Ramsar area. In tertiary, acidic Plutonism was active and intrusion into the Paleozoic and Mesozoic formations. Quaternary and Alluvium deposits are exposed and extending on the Jurassic formations in Ramsar plain and have thickness lower than 10 m in show springs. The annual precipitation in the Ramsar region is 976 mm. There has not any proper Thermal spring management in Ramsar area yet. This could post some serious problem on improper management of Thermal spring sites, where its environment has been put into jeopardy. This study aims to provide a way to classify the Thermal springs in Ramsar area. The result of this study help in the classification of Thermal spring sites for official planning improvement of administration and sustainable development of natural resources of the area. The study makes use of the Department Applied Geosciences in Islamic Azad University and GIS data of a total of 9 Thermal springs in the attempt to set up a classification system of Thermal springs in Ramsar area. These data include surface temperature, conductivity, alkalinity, acidity, TDS, pH values, Ca, Cl, Fe, K, Mg, Mn, Na, SiO2, SO4 contents, their locations, usages and other relevant information. The surface temperature of Thermal springs are between 19oC - 65oC and SiO2 geothermometer shows estimated reservoir temperature range from 86 o C - 96 o C. Most of the water from these Thermal springs is relatively turbidness and their composition is sodium choloride. The Thermal springs in this area generally exhibit high SiO2 and Na content; strong smell of sulfur. In addition, there are 30 Thermal springs located in Ramsar area and that show high concentration of Cl, Ca, Na, K and Mg. There

  13. The Philippines geothermal success story

    NASA Astrophysics Data System (ADS)

    Birsic, R. J.

    1980-09-01

    Geothermal electrical plants currently in operation in the Philippines are presented. Following a brief review of the geographical and energy situation of the nation, attention is given to the first 55,000-kW unit of the Tiwi Geothermal Electric Plant, which commenced operation in January 1979, the portable 3,000-kE Leyte Geothermal Pilot Plant, which commenced operation in July, 1977 as the first geothermal power plant in the country, the Makiling-Banahaw (Mak-Ban) Geothermal Power Plant, the first 55,000-kW unit of which began operation in May, 1979 and the second 55,000-kW unit of the Tiwi plant, which came into service in June, 1979, thus making the Philippines the fourth largest producer of geothermal electricity in the world. Factors favoring the use of geothermal plants in developing nations are pointed out, including low capital costs, no foreign exchange costs for fuel, small units, and little environmental impact, and the start-up of two more plants, the second 55,000-kW unit at Mak-Ban in September 1979 and the third Tiwi unit in January 1980, are noted. It is predicted that in 1981, when the Philippines is expected to become the largest user of geothermal energy from hot-water fields, it will have a total capacity of 552 MW from the Mak-Ban, Tiwi and Leyte sites. Further areas with geothermal potential are also pointed out.

  14. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    SciTech Connect

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  15. Simulation of groundwater flow and saltwater movement in the Onslow County area, North Carolina: predevelopment-2010

    USGS Publications Warehouse

    Fine, Jason M.; Kuniansky, Eve L.

    2014-01-01

    Onslow County, North Carolina, is located within the designated Central Coastal Plain Capacity Use Area (CCPCUA). The CCPCUA was designated by law as a result of groundwater level declines of as much as 200 feet during the past four decades within aquifers in rocks of Cretaceous age in the central Coastal Plain of North Carolina and a depletion of water in storage from increased groundwater withdrawals in the area. The declines and depletion of water in storage within the Cretaceous aquifers increase the potential for saltwater migration—both lateral encroachment and upward leakage of brackish water. Within the CCPCUA, a reduction in groundwater withdrawals over a period of 16 years from 2003 to 2018 is mandated. Under the CCPCUA rules, withdrawals in excess of 100,000 gallons per day from any of the Cretaceous aquifer well systems are subject to water-use reductions of as much as 75 percent. To assess the effects of the CCPCUA rules and to assist with groundwater-management decisions, a numerical model was developed to simulate the groundwater flow and chloride concentrations in the surficial Castle Hayne, Beaufort, Peedee, and Black Creek aquifers in the Onslow County area. The model was used to (1) simulate groundwater flow from 1900 to 2010; (2) assess chloride movement throughout the aquifer system; and (3) create hypothetical scenarios of future groundwater development. After calibration of a groundwater flow model and conversion to a variable-density model, five scenarios were created to simulate future groundwater conditions in the Onslow County area: (1) full implementation of the CCPCUA rules with three phases of withdrawal reductions simulated through 2028; (2) implementation of only phase 1 withdrawal reductions of the CCPCUA rules and simulated through 2028; (3) implementation of only phases 1 and 2 withdrawal reductions of the CCPCUA rules and simulated through 2028; (4) full implementation of the CCPCUA rules with the addition of withdrawals from

  16. Flood of April 1989 in the Wahpeton-Breckenridge and Fargo-Moorhead areas, Red River of the North Basin, North Dakota and Minnesota

    USGS Publications Warehouse

    Ryan, Gerald L.; Harkness, R.E.

    1994-01-01

    The most severe flooding during the April 1989 flood in the Red River of the North Basin in North Dakota and Minnesota occurred in the Wahpeton-Breckenridge area. Flood stage on April 5, 1989, was the highest stage that has been reported in almost 100 years. The 1989 peak flow was not as large as that of the 1969 flood, which had the largest peak flow since the Wahpeton gage was installed in 1942. The 1989 peak stage, however, was more than 1 foot higher than during the 1969 flood because of backwater from ice. Cooler weather subsequent to the peak at Wahpeton slowed the snowmelt and allowed the peak to attenuate as it moved downstream; thus, the severity of flooding in the Fargo-Moorhead area and in areas farther downstream was reduced. Advance flood warning allowed communities downstream from the Wahpeton-Breckenridge area to prepare for the flood and was instrumental in reducing flood damage. Aerial photographs were used to delineate the extent of the April 1989 flood in the Wahpeton-Breckenridge and the Fargo-Moorhead areas on topographic maps. The aerial photographs of the Wahpeton-Breckenridge area were taken during the flood peak on April 5 and those of the Fargo-Moorhead area were taken during the flood peak on April 9.

  17. Reducing the Geothermal Exploration Risk by Carbon Dioxide Soil Flux Investigations

    NASA Astrophysics Data System (ADS)

    Carapezza, Maria Luisa; Barberi, Franco; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca; De Simone, Gabriele; Gattuso, Alessandro; Silvestri, Mario

    2013-04-01

    In the exploration of medium to high enthalpy geothermal resources it happens rather frequently that deep wells find high temperatures but are not productive because they don't cross any permeable fractured reservoir. Because of the high cost of deep drillings, this aspect represents one of the main economic risks of geothermal exploration. A detailed survey of diffuse CO2 soil flux may allow to identify from the surface the permeable portions of a deep-seated actively degassing geothermal reservoir, drastically reducing this risk. In order to test the effectiveness of CO2 soil flux as a geothermal exploration tool we selected two volcanic areas north of Rome, Latera caldera and Marta zone near lake Bolsena, both hosting a geothermal reservoir with T>200 °C and where productive and non-productive wells had been drilled in the past. We proved that in both zones productive wells are located on high CO2 soil flux zones, whereas the not-productive wells are sited on low flux areas. In addition the surveys allowed to identify some as yet unexplored portions of the geothermal reservoirs where future wells should be conveniently located. Use of the same technique in the medium enthalpy geothermal system of Torre Alfina, Central Italy (T=140°C) showed that the presence of a thick impervious rock cover may be very effective in preventing gas leakages from the reservoir to the surface. Promising results have been obtained also by CO2 soil flux surveys in some geothermal areas of Honduras (Platanares, Azacualpa) and Costa Rica (Las Pailas). Obviously, CO2 flux cannot provide any estimate of temperature at depth, which has to be assessed with other geochemical or geophysical exploration techniques.

  18. Geothermal development plan: Yuma County

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  19. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  20. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  1. Reconstruction of a pavement geothermal deicing system

    SciTech Connect

    Lund, J.W.

    1999-03-01

    In 1948, US 97 in Klamath Falls, Oregon was routed over Esplanade Street to Main Street and through the downtown area. In order to widen the bridge across the US Bureau of Reclamation A Canal and to have the road cross under the Southern Pacific Railroad main north-south line, a new bridge and roadway were constructed at the beginning of this urban route. Because the approach and stop where this roadway intersected Alameda Ave (now Hwy 50 -- Eastside Bypass) caused problems with traffic getting traction in the winter on an adverse 8% grade, a geothermal experiment in pavement de-icing was incorporated into the project. A grid system within the pavement was connected to a nearby geothermal well using a downhole heat exchanger (DHE). The 419-foot well provided heat to a 50-50 ethylene glycol-water solution that ran through the grid system at about 50 gpm. This energy could provide a relatively snow free pavement at an outside temperature of {minus}10 F and snowfall up to 3 inches per hour, at a heat requirement of 41 Btu/hr/ft{sup 2}. Over time, the well temperature dropped from 143 to 98 F at the surface. The bridge and surface pavement, geothermal well, and associated equipment were modified. This paper describes the modifications.

  2. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  3. Three dimensional conductivity model of the Tendaho High Enthalpy Geothermal Field, NE Ethiopia

    NASA Astrophysics Data System (ADS)

    Didana, Y. L.; Thiel, S.; Heinson, G.

    2015-01-01

    Tendaho is one of the high enthalpy geothermal fields at advanced stage of exploration which is located in the Afar Depression in north eastern Ethiopia. Six deep and shallow geothermal wells were drilled in the field between 1993 and 1998. Here we present the first 3D conductivity model of the Tendaho high enthalpy geothermal field obtained from 3D inversion of magnetotelluric (MT) data. MT data from 116 sites at 24 selected periods in the period range from 0.003 s to 1000 s were used for the 3D inversion. The 3D conductivity model reveals three main resistivity structures to a depth of 20 km. The surface conductive structure (≤ 10 Ωm and > 1 km thick) is interpreted as sediments, geothermal fluids or hydrothermally altered clay cap. The underlying high resistivity structure in the Afar Stratiod basalts is associated with the deep geothermal reservoir. At a depth > 5 km, a high conductivity is observed across the whole of the Tendaho geothermal field. This structure is inferred to be the partial melt (heat source) of the geothermal system. The most striking feature in the 3D model is a fracture zone (upflow zone) in the Afar Stratoid basalts at the Dubti area, which acts as a pathway for geothermal fluids. Targeting the inferred fracture zone by directional drilling will likely increase the permeability and temperature of the deep reservoir in the basalts. Hence, the inferred presence of a fracture zone and shallow magma reservoir suggest that there is a huge potential (with temperature exceeding 270 °C at 2 km depth) at Tendaho for conventional hydrothermal geothermal energy development.

  4. Geothermal investigations in Idaho, Part IV, Isotopic and geochemical analyses of water from the Bruneau-Grand View and Weiser areas, Southwest Idaho

    USGS Publications Warehouse

    Rightmire, Craig T.; Young, H.W.; Whitehead, R.L.

    1976-01-01

    Variations of deuterium and oxygen-18 concentrations in thermal ground waters and local nonthermal springs have been used to aid in describing the source of recharge in the Bruneau-Grand View and Weiser areas, southwest Idaho. Isotope and geochemical data for the Bruneau-Grand View area suggest that recharge to the area may not be entirely from sources within the local surface-drainage area, but possibly from the areas of higher altitude of the Bruneau River drainage to the southeast; or that the hot water that wells and springs are discharging is water that was recharged at a time when the regional climate was much colder than the present climate. Recharge to the Weiser area is probably from areas of higher altitude to the north and northeast of the local drainage area However, local precipitation does influence both the chemical and isotopic compositions of the waters in each area.

  5. Methane emission and consumption at a North Sea gas seep (Tommeliten area)

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Elvert, M.; Hovland, M.; Orcutt, B.; Judd, A.; Suck, I.; Gutt, J.; Joye, S.; Damm, E.; Finster, K.; Boetius, A.

    2005-11-01

    The North Sea hosts large coal, oil and gas reservoirs of commercial value. Natural leakage pathways of subsurface gas to the hydrosphere have been recognized during geological surveys (Hovland and Judd, 1988). The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea. In this study, we report of an active seep site (56°29.90'N, 2°59.80'E) located in the Tommeliten area, Norwegian Block 1/9, at 75 m water depth. Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere during deep mixing situations. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the Sulphate-Methane Transition Zone (SMTZ). The SMTZ of Tommeliten is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses give evidence that AOM at the Tommeliten SMTZ is mediated by archaea belonging to the ANME-1b

  6. Survey of feline visceral leishmaniasis in Azarshahr area, north west of Iran, 2013.

    PubMed

    Fatollahzadeh, Mohammad; Khanmohammadi, Majid; Bazmani, Ahad; Mirsamadi, Nasrin; Jafari, Rasool; Mohebali, Mehdi; Nemati, Taher; Fallah, Esmail

    2016-09-01

    Leishmania infantum is a causative agent of visceral leishmaniasis or kala-azar, which is endemic in some part of Iran. Azarshahr city located in East Azerbaijan province, North West of Iran, which is endemic for visceral leishmaniasis. This study aimed to investigate the possible reservoir role of cats for visceral leishmaniasis in the Azarshahr area. Totally 65 cats have been trapped alive from villages of Azarshahr county and their serum samples subjected to direct agglutination test (DAT) for L. infantum antibodies. Giemsa stained impression smears have been prepared for parasitological examination of spleen and liver tissue. Also liver and spleen samples of the cats have been cultured in Novy-MacNeal-Nicolle (NNN) medium and also used for PCR. None from 65 samples was positive in NNN culture, PCR and microscopic examination. Fifteen (23.07 %) out of 65 serum samples showed Leishmania specific antibody agglutination at 1:320 dilution or above, but all considered as negative because none of them confirmed by Giemsa stained smears, PCR and NNN culture. According to the findings of the present study, cats are not a reservoir for visceral leishmaniasis in the Azarshahr area. PMID:27605767

  7. Contribution of Gulf Area natural sulfur to the North American sulfur budget

    SciTech Connect

    Luria, M.; Van Valin, C.C.; Wellman, D.L.; Pueschel, R.F.

    1986-01-01

    To evaluate the contribution of natural sulfur compounds from the Gulf of Mexico to the overall North American sulfur budget two series of air sampling flights were performed over the gulf area. Total aerosol mass load and sulfate concentration data indicate, in agreement with our previous findings on gas-phase products, that these observations can be divided into two categories. One group of measurements was taken under offshore airflow and the other under onshore flow conditions. From the measurements performed under clean (onshore) flow, average inside boundary layer SO/sub 4//sup 2 -/ concentrations were evaluated. Using these data, together with our previously reported dimethyl sulfide levels, a simple model was developed to estimate the sulfur flux transported northward from the gulf area. Upper and lower limits of this contribution are estimated at 0.25 and 0.04 Tg (S) year/sup -1/, respectively. Although this quantity is relatively low compared with the national US anthropogenic emission, it has significance for the global sulfur cycle, and it can cause a significant acidification of cloud water. 24 references, 5 figures, 3 tables.

  8. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.

    1981-01-01

    Progress is reported on the following: the legislative and institutional program, cities program, outreach, the integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, and area development plans. (MHR)

  9. Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America

    SciTech Connect

    Vaught, T.L.

    1980-08-01

    Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermal gradients. Explanations for elevated gradients are reviewed. (MHR)

  10. Spring and summer contrast in new particle formation over nine forest areas in North America

    DOE PAGESBeta

    Yu, F.; Luo, G.; Pryor, S. C.; Pillai, P. R.; Lee, S. H.; Ortega, J.; Schwab, J. J.; Hallar, A. G.; Leaitch, W. R.; Aneja, V. P.; et al

    2015-12-18

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  11. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  12. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    SciTech Connect

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  13. Geothermal energy development in the eastern United States. Papers presented: Geothermal Resources Council Annual Meeting

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Topic areas covered include: technical assistance (hydrothermal resource application in the eastern United States); GRITS - a computer model for economic evaluation of direct-uses of geothermal energy; geothermal market penetration in the residential sector - capital stock impediments and compensatory incentives; an analysis of benefits and costs of accelerated market penetration by a geothermal community heating system.

  14. Geothermal access to federal and tribal lands: A progress report (Preprint)

    SciTech Connect

    Farhar, Barbara C.

    2002-09-01

    This paper traces the progress to date in resolving key barriers to geothermal energy use. It focuses primarily on two areas: improving geothermal access to federal lands and increasing understanding of the tribal aspects of geothermal energy use.

  15. Human-Modified Permafrost Complexes in Urbanized Areas of the Russian North

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Streletskiy, D. A.

    2013-12-01

    ) are formed in the urban territories, which are characterized by modified permafrost characteristics, by the new set of cryogenic processes, and by modified temperature trends. NTGC classification depends on initial natural settings and on type, intensity and duration of technogenic pressure. For instance, field reconnaissance of permafrost and geological conditions resulted in characterization of 17 NTGC types in Norilsk industrial area, 11 types in Yamburg Gas Condensate Field, Tazovsky Peninsula, and 32 types along gas and oil pipelines in the north of Western Siberia. Particular interest presents the dynamics of NTGC depending on the scale of urban system, on the set of its elements and on duration of technogenic impacts on permafrost. Important aspect is assessment of climate change impacts on structures and environment in various areas on permafrost

  16. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  17. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    SciTech Connect

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  18. Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10

    SciTech Connect

    D. L. Eaton

    2007-01-18

    This Explanation of Significant Differences (ESD) applies to the remedial actions performed under the Final Record of Decision for Test Area North, Operable Unit 1-1 0, Idaho National Engineering and Environmental Laboratory (DOE-ID 1999) as amended by the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2003), the Record of Decision Amendment for the V-Tanks (TSF-09 and TSF-18) and Explanation of Significant Differences for the PM-2A Tanks (TSF-26) and TSF-06, Area IO, at Test Area North, Operable Unit 1-1 0 (DOE-ID 2004a), and the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2005). The U.S. Department of Energy (DOE) Idaho Operations Office; U.S. Environmental Protection Agency (EPA), Region 10; and the Idaho Department of Health and Welfare-now identified as the Idaho Department of Environmental Quality (DEQ)-signed the Record of Decision (ROD) in December 1999, the 2003 ESD in April 2003, the ROD Amendment/ESD in February 2004, and the 2005 ESD in January 2005. The EPA and DEQ support the need for this ESD.

  19. Geothermal Technologies Program: Direct Use

    SciTech Connect

    Not Available

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  20. Geothermal Program Review IV: proceedings

    SciTech Connect

    Not Available

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  1. Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).

  2. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  3. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  4. Reconnaissance evaluation of Honduran geothermal sites. Una evaluacion por medio de reconocimiento de seis areas geotermicas en Honduras

    SciTech Connect

    Eppler, D.; Fakundiny, R.; Ritchie, A.

    1986-12-01

    Six geothermal spring sites were selected on the basis of preliminary investigations conducted in Honduras over the last decade and were evaluated in terms of their development potential. Of the six, the Platanares and San Ignacio sites have high base temperatures and high surface fluid discharge rates and appear to have the best potential for further development as sources of electrical power. A third site, Azacualpa, has a high enough base temperature and discharge rate to be considered as a back-up, but the logistical problems involved in geophysical surveys make it less attractive than the two primary sites. Of the remaining three sites, Pavana may be a source of direct-use heat for local agricultural processing. Sambo Creek and El Olivar have either severe logistical problems that would impede further investigation and development or base temperatures and flow rates that are too low to warrant detailed investigation at this time.

  5. Geothermal development in the Philippines

    SciTech Connect

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985, additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)

  6. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  7. Strategies for steam handling and H/sub 2/S abatement at geothermal power plants in The Geysers area of northern California

    SciTech Connect

    Morris, W.F.; Stephens, F.B.

    1981-08-05

    Strict limitations on the emission of H/sub 2/S from new geothermal power plants in The Geysers area of northern California have been imposed by Lake and Northern Sonoma County Air Pollution Control Districts. Lake County, under new source review rules, has stipulated that specific technologies shall be utilized to limit H/sub 2/S emissions to 5 lb/h as a condition for determination of compliance. The status of these technologies as well as other ongoing technology development efforts to conserve steam and abate H/sub 2/S are evaluated. Although projections indicate that it may be possible to meet the 5 lb/h limit, there is no firm assurance of achievement at this time because of the unproven, full-scale performance status of some key technologies specified by the air pollution control districts.

  8. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal - industrial area (Tuscany-Central Italy)

    NASA Astrophysics Data System (ADS)

    Grassi, Sergio; Amadori, Michele; Pennisi, Maddalena; Cortecci, Gianni

    2014-02-01

    A study on the upper reaches of the Cecina River (Tuscany-Central Italy) and the associated unconfined aquifer was carried out from September 2007 to August 2008. The study aimed to identify the sources of B and As contamination in stream water and groundwater, and record contamination levels. The study area, which comprises a northern sector of the Larderello geothermal field, has in time been contaminated by both surface geothermal manifestations (now thought to have ceased) and anthropogenic activity. The latter refers to the disposal of spent geothermal fluids and borogypsum sludge, by-product of colemanite treatment with sulphuric acid, which until the late '70s were discharged in the Larderello area into the Possera Creek, a southern tributary of the Cecina River. A network of 22 stream sections and 9 observation wells was defined. Stream discharge (16 sites), well water levels and chemical concentrations (mainly B, As and anions) in water were measured monthly. Together, discharge and chemical concentrations were used to define the source of contamination by calculating the contaminant load in successive sections of the river network. Due to the stream's intermittent flow, only 50% of the performed monthly surveys could be used in comparing the contaminant load at different sections. Both contaminant loads (referring to median to high flow conditions) and chemical concentrations suggest that B mainly derives from the leakage of a concentrated Na-SO4 water rich in B, SO4, NO3 likely from a small aquitard located in the Larderello area. The B load from this area is about 2 kg/h and increases to approximately 2.7 kg/h in the final section of the study area, likely due to contribution of groundwater. As mainly derives from dissolution and adsorption-desorption processes involving water and As-rich stream bed sediments. Of the total 15 g/h As load measured at the end section, only about 3 g/h derive from the Larderello area. Further to stream bed, As

  9. Geothermal development plan: Pima County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. Four potential geothermal resource areas with temperatures less than 1000 C (2120 F) were identified. In addition, one area is identified as having a temperature of 1470 F (2970 F). Geothermal resources are found to occur in Tecson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraing to projected growth. A regional energy analysis, future predictions for energy consumption, and energy prices are given. Potential geothermal users in Pima County are identified and projections of maximum economic geothermal utilization are given. One hundred fifteen firms in 32 industrial classes have some potential for geothermal use are identified. In addition, 26 agribusiness firms were found in the county.

  10. The identification of geothermal with geographic information system and remote sensing in distric of Dolok Marawa

    NASA Astrophysics Data System (ADS)

    Tampubolon, Togi; Abdullah, Khiruddin; San, Lim Hwee; Yanti, Jeddah

    2016-02-01

    The potency of the Indonesian geothermal resources able to supply 40% of world's demand on the geothermal resources. These resources are spread over 251 locations at 33 provinces having the total potential energy of 27.149 MW. One of these geothermal resources is Tinggi Raja located at Distric of Dolok Marawa, Simalungun Regency, North Sumatera 449385 E - 473025 E and 324105 N - 349545 N. This paper reports the study on mapping of the prospect of geothermal resource area by utilizing a remote sensing. The remote sensing consisted of Landsat 8 OLI which was published on February 8th 2015 and June 29th 2015 with Path 129 Row 58 as input data for ENVI 4.7 and ArcGIS 10 as mapping tools. Calculated land surface temperature (LST) was essential for mapping and calculating a geothermal resources. In this study, land surface temperature was used as the Thermal Infrared images obtained from the thermal infrared remote sensor. The highest achieved LST was 310.889587 K. The obtained LST distribution indicated the location of the geothermal potential.

  11. Modeling of a deep-seated geothermal system near Tianjin, China.

    PubMed

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area. PMID:11341010

  12. Modeling of a deep-seated geothermal system near Tianjin, China.

    PubMed

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.

  13. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  14. Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Sonja; Tett, Paul; Mills, David; van der Molen, Johan

    2015-07-01

    The European Unions' Marine Strategy Framework Directive aims to limit anthropogenic influences in the marine environment. But marine ecosystems are characterized by high variability, and it is not trivial to define its natural state. Here, we use the physical environment as a basis for marine classification, as it determines the conditions in which organisms must operate to survive and thrive locally. We present a delineation of the North Sea into five distinct regimes, based on multidecadal stratification characteristics. Results are based on a 51 year simulation of the region using the coupled hydrobiogeochemical model GETM-ERSEM-BFM. The five identified regimes are: permanently stratified, seasonally stratified, intermittently stratified, permanently mixed, and Region Of Freshwater Influence (ROFI). The areas characterized by these regimes show some interannual variation in geographical coverage, but are overall remarkable stable features within the North Sea. Results also show that 29% of North Sea waters fail to classify as one of the defined stratification regimes, due to high interannual variability. Biological characteristics of these regimes differ from diatom-based food webs in areas with prolonged stratification to Phaeocystis-dominated food webs in areas experiencing short-lived or no stratification. The spatial stability of the identified regimes indicates that carefully selected monitoring locations can be used to represent a substantive area of the North Sea.

  15. The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, North of China.

    PubMed

    Li, Jia-Le; Wang, Yan-Xin; Zhang, Cai-Xiang; Dong, Yi-Hui; Du, Bin; Liao, Xiao-Ping

    2014-12-01

    31 topsoil samples were collected by grid method in Xiaodian sewage irrigation area, Taiyuan City, North of China. The concentrations of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatograph coupled with mass spectrum. Generally speaking, the distribution order of PAHs in the area is: those with five and six rings > those with four rings > those with two and three rings. Source apportionment shows a significant zonation of the source of PAHs: the civil coal pollution occurred in the north part, the local and far factory pollution happened in the middle area and the mixed pollution sources from coal and wood combustion, automotive emission, presented in the south area. The distribution of PAHs has a definite relationship with the sewage water flow and soil adsorption. The related coefficient between PAHs and physicochemical property showed there was a negative correlation between pH, silt, clay and PAHs while there was a positive correlation between total organic carbon, sand and PAHs.

  16. Profile of Skin Disorders in Unreached Hilly Areas of North India

    PubMed Central

    Kumar Singh, Amit

    2016-01-01

    Background. The pattern of skin morbidity in an area depends on climate, geography, socioeconomic status, nutrition, genetics, and habits of the community. Objective. The objective of the present study was to describe the morbidity profile of patients attending dermatology outpatient department in a tertiary care centre of Garhwal hills, North India. Methodology. This is a record based study carried out using the morbidity registers. Patient details, diagnosis, and treatment provided by physicians were documented in the morbidity register. ICD coding was done to categorize the patients. Results. The total number of new episodes of illnesses treated in the skin outpatient department during 2009–2014 was 47465. Adults (>18 years) constituted about 80.9%. Among adults, about 59.9% were males. Overall the infections of the skin and subcutaneous tissue were the most common (32.6%) followed by the disorders of skin appendages (19.8%), and dermatitis and eczema (18.8%). Of the total patients 16.9% were affected by dermatitis and 16.7% by acne. Psoriasis, urticaria, melasma, and vitiligo were present in 3.4%, 3.4%, 3.6%, and 3.3% patients, respectively. Conclusion. This knowledge will help in planning appropriate range services to meet the patients' needs and help in training of health staff to meet these needs. PMID:27738425

  17. Effects of the catastrophic flood of December 1966, north rim area, eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Cooley, Maurice E.; Aldridge, B.N.; Euler, Robert C.

    1977-01-01

    Precipitation from the unusual storm of December 1966 was concentrated on highlands in northern Arizona, southwestern Utah , southern Nevada, and south-central California and caused widely scattered major floods in the four States. In Arizona the largest amount of precipitation was in the north rim area of eastern Grand Canyon, where about 14 inches was measured. The largest flows occurred along Bright Angel Creek and the MilK Creek-Dragon Creek part of the Crystal Creek drainage basin. The maximum effects of the flood were along Milk Creek-Dragon Creek, where a mudflow caused extensive channel modification. Floods that occurred in the Bright Angel and Crystal Creek basins have a recurrence interval of only once in several centuries. The streamflow that resulted from the storm on the Kaibab Plateau caused considerable local scouring and deepening of channels, including some renewed arroyo cutting. The most catastrophic effects of the 1966 floods were caused by two mudflows that extended from the edge of the Kaibab Plateau along Dragon Creek in the Crystal Creek basin and Lava Creek in the Chuar Creek basin to the Colorado River. More than 10 other large mudflows occurred in Nankoweap, Kwagunt, Crystal, and Shinumo Creek basins. About 80 large debris slides left conspicuous scars in the amphitheaters at the heads of the side gorges, and at least 10 small slides occurred on the Kaibab Plateau. (Woodard-USGS)

  18. Emergency Mosquito Control on a Selected Area in Eastern North Carolina After Hurricane Irene

    PubMed Central

    Harris, Jonathan W; Richards, Stephanie L; Anderson, Alice

    2014-01-01

    Natural disasters such as hurricanes may contribute to mosquito abundance and, consequently, arbovirus transmission risk. In 2011, flooding from Hurricane Irene in eastern North Carolina (NC) resulted in increased mosquito populations that hindered recovery efforts. Budget shortfalls in NC have reduced the functionality of long-term mosquito surveillance and control programs; hence, many counties rely on the Federal Emergency Management Agency for post-disaster mosquito control. This pilot study examines mosquito abundance pre- and post-aerial insecticide spraying at eight study sites in Washington and Tyrrell Counties in rural eastern NC after Hurricane Irene. Percent change was calculated and compared for traps in areas that received aerial pesticide application and those that did not. Traps in spray zones show decreases in mosquito abundance when compared to control traps (treatment: −52.93%; control: 3.55%), although no significant differences (P = 0.286) were found in mosquito abundance between groups. Implications of reactive rather than proactive mosquito control responses are discussed. PMID:25574141

  19. Legacy data for a northern prairie grassland: Woodworth Study Area, North Dakota, 1963-89

    USGS Publications Warehouse

    Williams, Shelby H.; Austin, Jane E.

    2014-01-01

    Ecological data commonly become more valuable through time. Such legacy data provide baseline records of past biological, physical, and social information that provide historical perspective and are necessary for assessment of stasis or change. Legacy data collected at the Woodworth Study Area (WSA), a contiguous block of grasslands, croplands, and wetlands covering more than 1,000 hectares of the Prairie Pothole Region of North Dakota, are cataloged and summarized in this study. The WSA is one of the longest researched grassland sites in the Upper Midwest. It has an extensive history of settlement, land use, and management that provides a deeper context for future research. The WSA data include long-term vegetation transect records, land use history, habitat management records, geologic information, wetland hydrology and chemistry information, and spatial images. Substantial parts of these data have not been previously reported. The WSA is representative of many other lands purchased by the U.S. Fish and Wildlife Service in the Prairie Pothole Region from the 1930s to the 1970s; therefore, synthesized data from the WSA are broadly applicable to topics of concern in northern grasslands, such as increases in non-native plants, managing for biodiversity, and long-term effects of habitat management. New techniques are also described that were used to preserve these data for future analyses. The data preservation techniques are applicable to any project with data that should be preserved for 100 years or more.

  20. Emergency mosquito control on a selected area in eastern north Carolina after hurricane irene.

    PubMed

    Harris, Jonathan W; Richards, Stephanie L; Anderson, Alice

    2014-01-01

    Natural disasters such as hurricanes may contribute to mosquito abundance and, consequently, arbovirus transmission risk. In 2011, flooding from Hurricane Irene in eastern North Carolina (NC) resulted in increased mosquito populations that hindered recovery efforts. Budget shortfalls in NC have reduced the functionality of long-term mosquito surveillance and control programs; hence, many counties rely on the Federal Emergency Management Agency for post-disaster mosquito control. This pilot study examines mosquito abundance pre- and post-aerial insecticide spraying at eight study sites in Washington and Tyrrell Counties in rural eastern NC after Hurricane Irene. Percent change was calculated and compared for traps in areas that received aerial pesticide application and those that did not. Traps in spray zones show decreases in mosquito abundance when compared to control traps (treatment: -52.93%; control: 3.55%), although no significant differences (P = 0.286) were found in mosquito abundance between groups. Implications of reactive rather than proactive mosquito control responses are discussed.