Science.gov

Sample records for geothermal development quarterly

  1. Imperial County geothermal development. Quarterly report, April 1-June 30, 1982

    SciTech Connect

    Not Available

    1982-06-30

    The activities of the Geothermal Office during the quarter are discussed, including: important geothermal events, geothermal waste disposal, a grant award by the California Energy Commission, the geothermal development meeting, and the current status of geothermal development in Imperial County. Activities of the Geothermal Planner are addressed, including permits, processing of EIR's, and other planning activities. Progress on the direct heat study is reported.

  2. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  3. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  4. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect

    Kelsey, J.R.

    1981-06-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  5. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  6. Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979

    SciTech Connect

    Varnado, S.G.

    1980-01-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  7. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    SciTech Connect

    Varnado, S.G.

    1980-04-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  8. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  9. Imperial County, geothermal development. Quarterly report, October 1-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Geothermal development activities have increased during the October to December period. Nine power plant projects are proceeding, this includes two constructed facilities, one facility under construction, three facilities scheduled to begin construction in 1982, and three facilities in the planning or permitting stage. Geothermal exploration activities are continuing with activities in East Brawley, Truckhaven, and near the Superstition Mountains. Interest in direct heat development seems to be increasing. The City of El Centro project is under construction and there are several direct heat projects in preliminary planning stages. Permitting, planning, and waste disposal activities are reviewed.

  10. Geothermal Research and Development Program. Quarterly technical report, September--December 1992

    SciTech Connect

    Not Available

    1993-01-25

    Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

  11. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  12. Geothermal development attitudes surveyed

    SciTech Connect

    Not Available

    1986-01-01

    The State of Hawaii has conducted several surveys on public opinion towards the development of geothermal energy. The latest poll was designed to: measure public opinion in the County of Hawaii relevant to geothermal development for electrical power supplied to Island of Hawaii residents only; measure public opinion in the County of Hawaii relevant to geothermal development of electricity to be exported for use on Oahu; and identify barriers to, and opportunities for energy conservation programs, including geothermal development. In general, the residents of the County of Hawaii favor some form of geothermal development. Issues on geothermal development of concern to the public were similar to those mentioned in the 1982 study. Basically, the issues amount to a trade-off between the economic advantages and the environmental problems of geothermal development. The strong points in favor of development include a perceived need for more energy, a strong preference for alternate energy forms over petroleum, perceived benefits for the local economy and the employment rates, and the possibility that development may reduce or contain utility bills. On the other hand, it appears that geothermal development will cause health problems for those who live near the wells, be hazardous to flora and fauna in the Puna area, and create noise and odor above tolerable levels. These are oversimplified statements of the reasons behind both support and opposition for geothermal development.

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  14. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  15. Geothermal materials development

    SciTech Connect

    Kukacka, L.E.

    1982-01-01

    Among the most pressing problems constraining the development of geothermal energy is the lack of satisfactory component and system reliability. This is due to the unavailability, on a commercial scale, of cost-effective materials that can function in a wide range of geothermal environments and to the unavailability of a comprehensive body of directly relevant test data or materials selection experience. Suitable materials are needed for service in geothermal wells and in process plant equipment. For both situations, this requires materials that can withstand high-temperature, highly-corrosive, and scale-forming geothermal fluids. In addition to requiring a high degree of chemical and thermal resistance, the downhole environment places demands on the physical/mechanical properties of materials for components utilized in well drilling, completion, pumping, and logging. Technical and managerial assistance provided by Brookhaven in the program for studying these materials problems is described.

  16. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    SciTech Connect

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  17. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  18. Geothermal materials development activities

    SciTech Connect

    Kukacka, L.E.

    1993-06-01

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  19. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  20. Geothermal: Energy for development - The World Bank and geothermal development

    SciTech Connect

    Bertelsmeier, W.

    1986-01-01

    The World Bank views geothermal energy as one of a variety of natural resources which can be developed to supply the energy needs of a country. Since the World Bank Group finances projects in developing countries. This paper discusses geothermal energy only in that context. Geothermal power is generated in nine developing countries today, which represent nearly 40% of worldwide geothermal generating capacity. The World Bank has helped finance geothermal investments in six of these countries-the Phillippines, Mexico, El Salvador, Nicaragua, Indonesia and Kenya.

  1. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  2. Geothermal policy project. Quarterly report, March 1-May 30, 1980

    SciTech Connect

    Connor, T.D.

    1980-06-01

    Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

  3. Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

  4. Human Resources in Geothermal Development

    SciTech Connect

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  5. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  6. Geothermal materials development

    SciTech Connect

    Kukacka, L.E.

    1991-02-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

  7. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    SciTech Connect

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.

    1981-01-01

    Progress is reported on the following: the legislative and institutional program, cities program, outreach, the integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, and area development plans. (MHR)

  9. Geothermal development plan: Yuma county

    SciTech Connect

    White, D.H.

    1981-01-01

    One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

  10. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect

    Not Available

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  11. Geothermal energy in Nevada: development and utilization

    SciTech Connect

    Not Available

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    SciTech Connect

    Not Available

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  13. Geothermal development in Australia

    NASA Astrophysics Data System (ADS)

    Burns, K. L.; Creelman, R. A.; Buckingham, N. W.; Harrington, H. J.

    In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 sq m, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

  14. Geothermal development in Australia

    SciTech Connect

    Burns, K.L.; Creelman, R.A.; Buckingham, N.W.; Harrington, H.J. |

    1995-03-01

    In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

  15. Geothermal energy research and development

    SciTech Connect

    Fridleifsson, I.B. ); Freeston, D.H. . Geothermal Inst.)

    1994-04-01

    Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 US cents/kWh. Direct utilization of geothermal water is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion US$. During the two decades, 30 countries invested each over 20 million US$, 12 countries over 200 million US$, and 5 countries over 1 billion US$. During the first decade, 1973--1982, public funding amounted to 4.6 billion US$ and private funding to 3 billion US$. During the second decade, 1983--1992, public funding amounted to 6.6 billion US$ and private funding to 7.7 billion US$. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centers are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2,000 members in all parts of the world.

  16. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. First quarter progress report

    SciTech Connect

    Swenson, D.

    1997-08-15

    The objective of this project is to both transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling, while a primary focus of current modeling technology is multi-phase flow.

  17. Geothermal development plan: Yuma County

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  18. Geothermal development plan: northern Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  19. Geothermal development plan: Pima County

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

  20. Geothermal development plan: Pima County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. Four potential geothermal resource areas with temperatures less than 1000 C (2120 F) were identified. In addition, one area is identified as having a temperature of 1470 F (2970 F). Geothermal resources are found to occur in Tecson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraing to projected growth. A regional energy analysis, future predictions for energy consumption, and energy prices are given. Potential geothermal users in Pima County are identified and projections of maximum economic geothermal utilization are given. One hundred fifteen firms in 32 industrial classes have some potential for geothermal use are identified. In addition, 26 agribusiness firms were found in the county.

  1. Geothermal development opportunities in developing countries

    SciTech Connect

    Kenkeremath, D.C.

    1989-11-16

    This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

  2. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    SciTech Connect

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  3. Geothermal development plan: Graham-Greenlee counties

    SciTech Connect

    White, D.H.

    1981-01-01

    Geothermal potential in Graham and Greenlee counties both of which contain significant quantities of geothermal energy that could be used for industrial, agricultural or residential use, is described. Projections are made of geothermal heat on line under both private and city-owned utility development. Potential users of geothermal energy, however, are limited since this area is sparsely populated and lacks an industrial base. Only a couple of industries were identified which could use geothermal energy for their process heat needs.

  4. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  5. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  6. Imperial County geothermal development annual meeting: summary

    SciTech Connect

    Not Available

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  7. Advanced seismic imaging for geothermal development

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Honjas, Bill

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  8. Geothermal direct-heat utilization assistance. Quarterly progress report, January--March 1993

    SciTech Connect

    Lienau, P.

    1993-03-30

    CHC (Geo-Heated Center) staff provided assistance to 103 requests from 26 states, and from Canada, Egypt, Mexico, China, Poland and Greece. A breakdown of the requests according to application include: space and district heating (19), geothermal heat pumps (24), greenhouses (10), aquaculture (4), industrial (4), equipment (3), resources (27), electric power (2) and other (20). Progress is reported on: (1) evaluation of lineshaft turbine pump problems, (2) pilot fruit drier and (3) geothermal district heating marketing tools and equipment investigation. Four presentations and two tours were conducted during the quarter, GHC Quarterly Bulletin Vol. 14, No. 4 was prepared, 14 volumes were added to the library and information was disseminated to 45 requests. Progress reports are on: (1) GHP Teleconference 93, (2) California Energy Buys Glass Mountain Prospect from Unocal and Makes Deal for Newberry Caldera, (3) New Power Plant Planned, (4) Vale to Get Power Plant, (5) BPA Approves Geothermal Project, (6) Update: San Bernardino Reservoir Study, (7) Twenty-nine Palms Geothermal Resources, (8) Geo-Ag Heat Center, Lake County, and (9) Update: Geothermal Wells at Alturas.

  9. Stanford Geothermal Program [quarterly technical report, January--March 1991

    SciTech Connect

    Not Available

    1991-05-13

    Progress was reported on adsorption work in experimental, theoretical and field projects. The reinjection task is now nearing completion of the work on optimizing injection into the Palinpinon geothermal field in the Philippines. Well test analysis research has been expanded with the initiation of a new project on multiwell interference test interpretation.

  10. Stanford Geothermal Program (quarterly technical report, January--March 1991)

    SciTech Connect

    Not Available

    1991-05-13

    Progress was reported on adsorption work in experimental, theoretical and field projects. The reinjection task is now nearing completion of the work on optimizing injection into the Palinpinon geothermal field in the Philippines. Well test analysis research has been expanded with the initiation of a new project on multiwell interference test interpretation.

  11. Mexican geothermal development and the future

    SciTech Connect

    Serrano, J.M.E.V.

    1998-10-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth.

  12. Geothermal direct-heat utilization assistance. Quarterly report, July--September 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report details activities from July through September 1993, Topics addressed are: Technical Assistance; Research and Development Activities; Technology Transfer; Geothermal Progress Monitor; and Personnel.

  13. Geothermal policy project. Quarterly report, September 1, 1980-November 30, 1980

    SciTech Connect

    Not Available

    1981-01-01

    Efforts continued to carry forward policy development in existing project states. Follow-up contacts were made with most project states, and state visits and meetings occurred in eight project states. Several state-specific documents and one background document, geothermal Policies in Selected States, were prepared during this reporting period. In Yakima, Washington, the project cosponsored a geothermal symposium with the Washington State Energy Office, in addition to attending several other geothermal meetings and conferences.

  14. Utilization of geothermal energy in the mining and processing of tungsten ore. 2nd quarterly report

    SciTech Connect

    Erickson, M.V.; Willens, C.A.; Walter, K.M.; Carrico, R.L.; Lowe, G.D.; Lacy, S.B.

    1980-06-01

    The completed geochemical analysis of groundwater in the Pine Creek area for evaluation of the geothermal potential of this location is presented. Also included is an environmental constraints analysis of Pine Creek noting any potential environmental problems if a geothermal system was developed onsite. Design of a geothermal system is discussed for site-specific applications and is discussed in detail with equipment recommendations and material specifications. A preliminary financial, economic, and institutional assessment of geothermal system located totally on Union Carbide property at Pine Creek is included. (MHR)

  15. Geothermal Power Development in the Phillippines

    SciTech Connect

    Jovellanos, Jose U.; Alcaraz, Arturo; Datuin, Rogelio

    1980-12-01

    The generation of electric power to meet the needs of industrial growth and dispersal in the Philippines is aimed at attaining self-reliance through availment of indigenous energy resources. The Philippines by virtue of her position in the high-heat flow region has in abundance a number of exploitable geothermal fields located all over the country. Results indicate that the geothermal areas of the Philippines presently in various stages of exploration and development are of such magnitude that they can be relied on to meet a significant portion of the country's power need. Large scale geothermal energy for electric power generation was put into operation last year with the inauguration of two 55-MW geothermal generating units at Tiwi, Albay in Southern Luzon. Another two 55-MW units were added to the Luzon Grid in the same year from Makiling-Banahaw field about 70 kilometers south of Manila. For 1979 alone, therefore, 220-MW of generating capacity was added to the power supply coming from geothermal energy. This year a total of 220-MW power is programmed for both areas. This will bring to 443-MW of installed generating capacity from geothermal energy with 3-MW contributed by the Tongonan Geothermal pilot plant in Tongonan, Leyte, Central Philippines in operation since July 1977. Financial consideration of Philippine experience showed that electric power derived from geothermal energy is competitive with other sources of energy and is a viable source of baseload electric power. Findings have proven the technical and economic acceptability of geothermal energy resources development. To realize the benefits that stem from the utilization of indigenous geothermal resources and in the light of the country's ever increasing electric power demand and in the absence of large commercial oil discovery in the Philippines, geothermal energy resource development has been accelerated anew. The program includes development of eight fields by 1989 by adding five more fields to the

  16. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Quarterly report, January--March 1998

    SciTech Connect

    Swenson, D.

    1998-01-01

    The objective of this project is to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. The project start date was May 22, 1997 and it runs through May 21, 1998. This is the quarterly progress report for January through March of 1998. In this quarter, the primary focus has been on development of the Geocrack3D model, presenting initial results to the industry, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on the user interface, flow in fractured rock, and the coupled effect of thermal cooling changing fracture aperture.

  17. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, April 1, 1981-June 30, 1981

    SciTech Connect

    White, D.H.

    1981-01-01

    Activities included the identification and delineation of geothermal prospects, the comparison of conventional energy use patterns with geothermal sources, the preparation of area development plans and the compilation of detailed economic and energy data for each area. Current emphasis is on commercialization. (MHR)

  18. Overview of worldwide geothermal power development

    NASA Astrophysics Data System (ADS)

    Dipippo, R.

    1982-12-01

    The progress in geothermal power plant development around the world is reviewed. From an installed capacity of about 150 MW, the worldwide geothermal electric capacity now stands at roughly 2550 MW. The status of geothermal installed capacity is given. Over 120 individual power units (i.e., turbo-generator sets) are now in operation. It is interesting to note that one third of these are in Italy, the country that began the commercial generation of electricity from geothermal energy. The recent growth pattern is shown. These has been an increase of 45%, and the installed capacity is expected to exceed 4400 MW, a 150% increase.

  19. Geothermal development issues: Recommendations to Deschutes County

    SciTech Connect

    Gebhard, C.

    1982-07-01

    This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

  20. Fiscal 1991 geothermal development promotion energy

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The paper surveys the spouting of geothermal fluids in test boring wells, the well logging, and the status of geothermal fluids, as a part of the geothermal development promotion survey in the Mizuwake-Toge south area. In the spouting test of N3-MW-6 well, the 53rd swabbing led successfully to spouting. The spouting amounted to 3.6 tons/h in steam and geothermal water, but stopped spontaneously in 100 minutes. Results of the logging are hardly different between before and after the spouting indicating a maximum temperature of 200 C, barometric pressure of 75, and water levels of a 250-300m section. The geothermal water is a neutral Cl deep-area type. N2-MW-2 well spouted immediately after the 10th swabbing, indicating steam of 3 tons/h at the stable time, geothermal water of 7.3 tons/h, pH9, Cl of 1500ppm, and the total spouting time of 4029 minutes. The place where the geothermal fluid flows in is 635m deep, and when the well head pressure was 1.7-3.9 barometric pressure, the spouted fluid temperature was 199-198 C. The geothermal water is a Cl-HCO3 type. In both wells geothermal water is ground water originated from meteoric water which reacted with peripheral rocks by volcanic heating and was formed in the deep area.

  1. Geothermal Field Development in Mexico

    SciTech Connect

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  2. Geothermal development plan: Maricopa county

    SciTech Connect

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  3. Geothermal Development Plan: Pima County

    SciTech Connect

    White, D.H.

    1981-01-01

    Pima County is located entirely within the Basin and Range physiographic province in which geothermal resources are known to occur. Continued growth as indicated by such factors as population growth, employment and income will require large amounts of energy. It is believed that geothermal energy could provide some of the energy that will be needed. Potential users of geothermal energy within the county are identified.

  4. Session 19: Geothermal Materials Development

    SciTech Connect

    van Rooyen, Daniel

    1983-12-01

    Among the most pressing problems constraining the development of geothermal energy is the lack of satisfactory component and system reliability. This is due to the unavailability, on a commercial scale, of cost-effective materials that can function in a wide range of geothermal environments and to the unavailability of a comprehensive body of directly related test data or materials selection experience. In 1976, the GHTD started the Geothermal Materials Program to address materials-related problems, and since 1978 Brookhaven National Laboratory has provided technical and managerial assistance in the implementation of the effort. Major successes have been attained in the development of elastomers for high-temperature applications and in the use of polymer concrete liners for corrosion protection. Both technologies have been successfully transferred to industry. Current efforts in metallic and nonmetallic materials development and corrosion protection will be summarized. In the metals area, testing of a series of experimental stainless steels has led to compositions which show a very remarkable resistance to pitting corrosion in hot chloride electrolytes. Combinations of molybdenum and nitrogen are very beneficial. Alternate materials for line shaft pump bearings have been identified through tests in simulated hot brine. Cermets and carbides show promise of extending pump life. A series of drill bit steels has been examined for fatigue and hot fracture toughness. The work has indicated alloys with properties that exceed those of materials now in use. A major finding in the nonmetallic materials area has been the development of fluorinated elastomers for use in statis seals at temperatures greater than 300 C. Field testing has just commenced, but based upon laboratory results, the work is very promising. Commercialization of this material is underway. Technology transfer of a 240 C EPDM was completed earlier. Field testing of polymer concrete-lined pipe has been

  5. Environmental overview of geothermal development: northern Nevada

    SciTech Connect

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A.

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  6. Geothermal development plan: Pinal county

    SciTech Connect

    White, D.H.

    1981-01-01

    Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

  7. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    SciTech Connect

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  8. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, January 1, 1980-March 31, 1981

    SciTech Connect

    White, D.H.; Goldstone, L.A.; Malysa, L.

    1981-03-31

    The tasks, objectives and completed work are discussed for the legislative and institutional program, cities program, geothermal applications utilization technology, and outreach. The work on the Maryvale Terrace development and the New Mexico Energy Institute are described. (MHR)

  9. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  10. Alaska: a guide to geothermal energy development

    SciTech Connect

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  11. Oregon: a guide to geothermal energy development

    SciTech Connect

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    SciTech Connect

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  13. Geothermal policy development program: expediting the local geothermal permitting process

    SciTech Connect

    Not Available

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  14. Projected Geothermal Energy Development in Canada

    SciTech Connect

    Souther, Jack G.

    1980-12-01

    A systematic evaluation of geothermal energy resources in Canada was begun in 1973 with the compilation of an inventory of thermal springs and young igneous centres (11) and a study of the thermal regime of the Central Canada Plains (15). The status of this work is still very preliminary. The nature, distribution and grade of the geothermal resource-base can be estimated within reasonable limits but the impact of future economic and political constraints, and the rate of development of new conversion technologies are more difficult to forecast. Thus, projections of geothermal energy development in Canada are necessarily less precise than estimate of the resource-base.

  15. Utility company views of geothermal development

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    The views of geothermal development from a utility company standpoint are presented. The impediments associated with such developments as required reliability and identification of risks are discussed. The utility industry historically is not a risk-taking industry. Support of rapid geothermal development by the utility industry requires identification and elimination of risks or absorption of the risks by other agencies. Suggestions as to the identification and minimization of risks are made.

  16. Heber geothermal binary demonstration project quarterly technical progress report, July 1, 1981--September 30, 1981

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of July 1, 1981, through September 30, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the US Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  17. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1982--December 31, 1982

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Dixon, J.R.; Hsiao, W.P.; Liparidis, G.S.; Lombard, G.L.; Nelson, T.T.; Van De Mark, G.D.

    1983-05-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1982--December 31, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  18. Regulation of geothermal energy development in Colorado

    SciTech Connect

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  19. Geothermal Energy Research Development and Demonstration Program

    SciTech Connect

    Not Available

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  20. Current Status of Geothermal Well Cement Development

    SciTech Connect

    Kukacka, L. E.

    1981-01-01

    The results of a study made in 1976 indicated that the cements used for well completion deteriorate in the geothermal environments and that the life expectancy of a well, and therefore the economics of geothermal processes, could be improved significantly if better materials were developed. On the basis of this assessment, Brookhaven National Laboratory (BNL) helped the Department of Energy, Division of Geothermal Energy to organize a program to develop materials that meet the estimated design criteria for geothermal well cements. The BNL work involves research on polymer cements and full management of an integrated program involving contract research and industrial participation. The program consists of the following phases: (1) problem definition, (2) cement research and development, (3) property verification, (4) downhole testing, and (5) cementing of demonstration wells.

  1. Geothermal Workforce Education, Development, and Retention

    SciTech Connect

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators, technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.

  2. [Geothermal resource/reservoir investigations based on heat flow and thermal gradient data for the US]. 6. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-08-18

    During the second quarter of the second year of the contract activity has focused on the task of implementing the exploration well data base. In addition the author has continued to work on the tasks of the maintenance of the WWW site with the heat flow and gradient data base, and development of a modeling capability for analysis of the geothermal system exploration data. He is implementing the data base template for geothermal system temperature-depth/gradient/heat flow data to be used in conjunction with the regional temperature-depth/gradient/heat flow data base that he had already developed. The implementation this quarter has focused on the state of Nevada as the most number of wells are there and few of the wells have been previously available in a data base. A map is enclosed that updates the state of Nevada from the preliminary map in the first quarterly report. They presently are entering data into the geothermal data base. They now have over 1,000 sites in Nevada with data from the sources that they have access to at this time. The breakdown based on the data now entered into the data base is shown in a table.

  3. Developments in geothermal resources in 1981

    SciTech Connect

    Combs, J.; Berge, C.W.; Lund, J.W.; Anderson, D.N.

    1982-11-01

    Drilling of geothermal exploration and development wells in 1981 showed a slight increase over 1980. In 1981, 99 wells accounted for 64,781 ft of hole. A total of 203,673 ft of hole was cut during the drilling of 37 geothermal exploratory wells. California again had the largest number of wildcats at 16, followed by Nevada with 10. Eight successful wildcats accounted for 34,862 ft of hole, with an average total depth of 4358 ft. These include wells capable of producing dry and wet steam, as well as ones intended for direct-use applications. Of the 62 geothermal development wells in 1981, representing 471,108 ft of hole, 56 were considered capable of production. Also, there has been a significant increase in average depth, from 5997 ft in 1980 to 7901 ft in 1981. Although there have been no new geothermal electrical power plants brought on-line in The Geysers during 1981, construction continued on 6 plants, with a combined capacity of 537 MWe, scheduled to become operational during 1982 through 1984. A strong trend is emerging in the area of power generation from geothermal resources: the development of small power plants (i.e., those of 1.5 to 20 MWe capacity). Two small facilities, 1 of 3 MWe at the Puna District in Hawaii and 1 of 1.6 MWe at the Roosevelt Hot Springs KGRA in Utah, became operational in 1981. This movement toward smaller, semiportable, less expensive power plants is healthy, and is indicative of the desire of utilities and geothermal operators to solve their mutual problems. With the approval for 2 new electrical transmission lines, a major impediment to the eventual development of geothermal resources in The Geysers and the Imperial Valley has been removed. The construction of district heating projects highlights direct-use applications of geothermal energy in 1981.

  4. Development of a geothermal acoustic borehole televiewer

    SciTech Connect

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  5. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  6. Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 - Second Half 2011

    SciTech Connect

    Lowder, T.; Hubbell, R.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.

  7. Geothermal Research and Development Program

    SciTech Connect

    Not Available

    1993-01-25

    Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

  8. Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.

    SciTech Connect

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  9. Geothermal power developments in the Third World

    SciTech Connect

    Koenig, J.B.; McNitt, J.R.; Gardner, M.C.

    1981-10-01

    Emphasis on geothermal energy development in Third World countries is on electric power rather than non-electric direct uses, with some exceptions in Kenya, Viet Nam and China. Eastern European nations will continue to pursue non-electric uses and western nations will attempt to span both sets of uses. Multiple-source funding, including the United Nations Development Programme, bilateral and/or private investment funds and joint ventures are required by Third World countries to avoid long and costly delays and project abandonment. Fruitful geothermal energy developments have taken place in the Latin American Cordillera and the Philippines while less progress has been made in Africa. Indonesia appears to be on the threshold of significant growth of the geothermal power industry. Private investment funds are being used there. Shortages of trained technical staff continue to slow development in many Third World countries; US institutions have not yet established comprehensive training programs.

  10. Honduras geothermal development: Regulations and opportunities

    SciTech Connect

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx of private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.

  11. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  12. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  13. Geothermal power development in Hawaii. Volume 1. Review and analysis

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  14. Geothermal development plan: Graham/Greenlee Counties

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Graham/Greenlee County Area Development Plan evaluated the region-wide market potential for utilizing geothermal energy. The study identified five potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F). In addition, seven areas are inferred to contain higher temperature resources with the Clifton Hot Springs area having electrical potential. Geothermal resources are found to occur near Safford and Clifton, the two major population centers. Future population growth in the two counties is expected to average less than two percent per year over the next 40 years. Growth in the mining, trade and services economic sectors provide opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate for urban needs, though agricultural and mineral water use may be limited in the future. The study also contains a preliminary economic analysis for two district heating systems as well as a section matching geothermal resources to potential users.

  15. Epidemiological monitoring plan for geothermal developments.

    PubMed

    Deane, M

    1984-01-27

    In order to assure that geothermal developments in the Imperial Valley of California proceeded on an environmentally sound basis, The U.S. Energy Research and Development Administration contracted with the Lawrence Livermore Laboratory to conduct a comprehensive study of six aspects of the region and its potential problems: Air Quality Water Quality, Ecosystem Quality (Soil, Plants, Animals, etc.) Subsidence and Induced Seismicity, Health Effects, and Socio-Economic Effects which may result from the proposed development. This report of the possible health effects is designed to be repeated as geothermal developments progress. It includes both general health attributes and attributes which may be likely to be adversely affected by such developments and is focussed on two different populations, one likely to be affected and a second which is less likely to be affected. Such a design permits the easier identification of possible effects against a background of time-dependent processes in later phases of the study. This baseline study documents that before such developments, there were differences in health status of the two areas, which were chosen to maximize demographic comparability. It further identifies that odor, a possible problem associated with geothermal development, is currently present, and at times intense. Without such baseline monitoring, the likelihood is great that such effects in the future might be falsely ascribed to the geothermal development.

  16. Development of drilling foams for geothermal applications

    SciTech Connect

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  17. Fiscal 1990 geothermal development promotion survey

    NASA Astrophysics Data System (ADS)

    1992-03-01

    The development of a geothermal reservoir evaluation method is mentioned for the purpose of reducing the risk of the geothermal development and drawing up an appropriate power generation plan. As for simulators, a geothermal reservoir simulator (SING-I,II) and a geothermal well two-phase simulator (WENG) are developed. For SING-II, an evaluation is made of fracture effects in the pressure interference test, production predicting simulation using fracture models, development of a multicomponent gas-liquid two-phase simulator and a tracer simulation function. As to WENG, verification on fluids containing CO2 and survey on fluids containing NaCl are made. In the Mori area which is a model field, continued observation on reservoir pressure is conducted as well as temperature/pressure logging and chemical analysis of spouted fluids. By three-dimensional grid models of reservoirs, reappearance of natural conditions of temperature/pressure distribution and discharge into the ground surface can roughly be made, and history matching is tried to be made. Newly also in Oguni area, reappearance of natural conditions is simulated using SING-I.

  18. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, April 1-June 30, 1980

    SciTech Connect

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-06-30

    Progress is reported on the following: geothermal prospect identification, area development plans, site specific development analysis, time phased project plans, institutional analysis, hydrothermal commercialization baseline report, and the public outreach program. (MHR)

  19. Deep geothermal resources and energy: Current research and developments

    NASA Astrophysics Data System (ADS)

    Manzella, A.; Milsch, H.; Hahne, B.; van Wees, J. D.; Bruhn, D.

    2012-04-01

    Energy from deep geothermal resources plays an increasing role in many European countries in their efforts to increase the proportion of renewables in their energy portfolio. Deep geothermal heat and electric power have a high load factor, are sustainable and environmentally friendly. However, the safe, sustainable, and economic development of deep geothermal resources, also in less favourable regions, faces a number of issues requiring substantial research efforts: (1) The probability of finding an unknown geothermal reservoir has to be improved. (2) Drilling methods have to be better adapted and developed to the specific needs of geothermal development. (3) The assessment of the geothermal potential should provide more reliable and clear guidelines for the development. (4) Stimulation methods for enhanced geothermal systems (EGS) have to be refined to increase the success rate and reduce the risk associated with induced seismicity. (5) Operation and maintenance in aggressive geothermal environments require specific solutions for corrosion and scaling problems. (6) Last but not least, emerging activities to harness energy from supercritical reservoirs would make significant progress with qualified input from research. In particular, sedimentary basins like e.g. the North German and Polish Basin, the Pannonian Basin, the Po Valley, the Bavarian Molasse Basin or the Upper Rhine Graben have a high geothermal potential, even if geothermal gradients are moderate. We will highlight projects that aim at optimizing exploration, characterization, and modeling prior to drilling and at a better understanding of physical, hydraulic and chemical processes during operation of a geothermal power plant. This includes geophysical, geological and geochemical investigations regarding potential geothermal reservoirs in sedimentary basins, as well as modelling of geothermally relevant reservoir parameters that influence the potential performance and long-term behavior of a future

  20. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    SciTech Connect

    Young, Katherine R.

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  1. Geothermal pipeline: Progress and development update from the geothermal progress monitor

    SciTech Connect

    1996-11-01

    This document is a progress and development update from the Geothermal Progress Monitor prepared by the Geo-Heat Center at the Oregon Institute of Technology in Klamath Falls, Oregon. Several upcoming meetings and workshops in the field of geothermal energy and resource development are announced. Geothermal exploration and development projects in several areas are described in this document: New San Luis Valley Training Program, Fish and Alligator Ranching in Idaho, the geothermal drilling operation at Newberry Volcanic Crater near Bend, Oregon, and Australian Red Claw Lobster raised in aquaculture ponds at Belmont Hot Springs, Utah.

  2. Geothermal development plan: northern Arizona counties

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

  3. Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.

    SciTech Connect

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  4. United Nations geothermal activities in developing countries

    SciTech Connect

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  5. Recent Developments in Geothermal Drilling Fluids

    SciTech Connect

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  6. Developments in Geothermal Waste Treatment Biotechnology

    SciTech Connect

    Premuzic, Eugene T.; Lin, Mow S.

    1989-03-21

    Extensive laboratory studies have indicated that the application of biochemical processes in the development of biotechnology suitable for conversion of geothermal wastes from hazardous to non-hazardous materials is technically and economically feasible. These studies have also shown that such biotechnology may require bioreactors capable of handling different amounts and types of residual sludges. Particular attention has to be paid to the duration of treatment, efficiency of cycling, and maintenance of biomass. Laboratory studies addressing these parameters are described.

  7. Developments in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.

    1989-01-01

    Extensive laboratory studies have indicated that the application of biochemical processes in the development of biotechnology suitable for conversion of geothermal wastes from hazardous to nonhazardous materials is technically and economically feasible. These studies have also shown that such biotechnology may require bioreactors capable of handling different amounts and types of residual sludges. Particular attention has to be paid to the duration of treatment, efficiency of cycling, and maintenance of biomass. Laboratory studies addressing these parameters are described. 7 refs., 8 figs.

  8. Geothermal Development and the Use of Categorical Exclusions (Poster)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  9. Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  11. "The Career Development Quarterly": A Centennial Retrospective

    ERIC Educational Resources Information Center

    Savickas, Mark L.; Pope, Mark; Niles, Spencer G.

    2011-01-01

    "The Career Development Quarterly" has been the premier journal in the field of vocational guidance and career intervention since its inception 100 years ago. To celebrate its centennial, 3 former editors trace its evolution from a modest and occasional newsletter to its current status as a major professional journal. They recount its history of…

  12. "The Career Development Quarterly": A Centennial Retrospective

    ERIC Educational Resources Information Center

    Savickas, Mark L.; Pope, Mark; Niles, Spencer G.

    2011-01-01

    "The Career Development Quarterly" has been the premier journal in the field of vocational guidance and career intervention since its inception 100 years ago. To celebrate its centennial, 3 former editors trace its evolution from a modest and occasional newsletter to its current status as a major professional journal. They recount its history of…

  13. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect

    Kukacka, L.E.

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  14. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  15. Program planner's guide to geothermal development in California

    SciTech Connect

    Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

    1980-09-30

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  16. Program planner's guide to geothermal development in California

    NASA Astrophysics Data System (ADS)

    Yen, W. W. S.; Chambers, D. M.; Elliott, J. F.; Whittier, J. P.; Schnoor, J. J.; Blachman, S.

    1980-09-01

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  17. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  18. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    SciTech Connect

    Phillips, Benjamin R.; Ziagos, John; Thorsteinsson, Hildigunnur; Hass, Eric

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  19. Time frames for geothermal project development

    SciTech Connect

    McClain, David W.

    2001-04-17

    Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

  20. Environmental impact of geothermal power development and utilization

    SciTech Connect

    Bond, M.A.

    1980-09-01

    The development and utilization of geothermal resources to generate energy is not without its significant impacts upon the environment. Air pollution, thermal pollution, surface and groundwater pollution, soil erosion, land subsidence, increased seismicity, and disruption of existing land uses are all potential hazards associated with the development of a geothermal field. Geothermal operations and activities generally follow a sequence of exploration, testing, development, and production. Each phase has differing impacts on the environment depending upon the potential and locality of the geothermal field, with the chief impacts occurring during the developmental period.

  1. Geothermal Energy Development annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  2. Geothermal development in Alaska: an engineering and geologic analysis

    SciTech Connect

    Economides, M.J.; Arce, G.N.

    1984-01-01

    In spite of the vast geothermal potential within the state of Alaska, the economic feasibility is tenuous. Of the five sites examined in this paper, only Tenakee and Summer Bay have even marginal attractiveness for direct utilization. The geothermal reservoirs located at Copper Valley and Makushin Volcano may be feasible for power generation in the near and intermediate future. To make geothermal development feasible, an increase in the population/industrial base would be required, or a consolidation of the present power users. In general, the economic prospects of geothermal power development in Alaska are not attractive at this time, with the exception of Unalaska Island.

  3. Small scale geothermal development strategy framework

    SciTech Connect

    Ciptomulyono, U.

    1995-12-31

    With request to the promotion for diversification of energy resources geothermal energy is an alternative energy, renewable, relatively clean and nonexportable resource; the maximum utilization of these resources therefore has a first priority as Indonesia is one of the world prominent volcanics countries with many active volcanic phenomena. Most of the geothermal prospects are located in rural areas, which have limited small diesel generating plants or no electricity at all; under the energy sector policy of the Government of Indonesia which stressed rural electrification, taking into account the equity of development for ail Indonesia`s regions and with the goal of National benefits. To ensure that small scale geothermal power plants for rural electrification can be implemented most effectively and efficiently, a strategy framework needs to include appropriate arrangement for project planning; from scientific study to construction periods, which are currently a constraint on both cost and time domains. This paper discusses the strategy framework approaches, including a possible combining of a serial plural activities and streamlining of contract packages. Indonesia as a country which is made up more than 16,000 islands of varying sizes, located between 6{degrees} N-11{degrees} S Lat and 95{degrees}-141{degrees} E Long. The Government of Indonesia stresses a guideline for the energy policy, namely: intensification on the survey and exploration of resources; diversification of energy by means of reducing oil depency utilization and promoting through development, utilization and customary use of substitute fuels; conservation of natural resources with goals to economize and efficiently use energy utilization; and indexation of each energy need with the most appropriate energy resources available in the country.

  4. Geothermal policy development program. Geothermal issues that cross county lines

    SciTech Connect

    Not Available

    1981-07-01

    The principal issues related to geothermal resources for the production of electricity, which cross county lines, as well as issues which may not cross county lines but which are of common concern to the four counties in The Geysers-Calistoga KGRA are identified and described briefly. As this compilation makes clear, the generation of electricity at The Geysers does not occur in a trouble-free environment - rather, it occurs under difficult circumstances componded by jurisdictional fragmentation. These factors are recognized by grouping the issues according to whether they are Environmental, Administrative, or Planning in nature.

  5. Binary Cycle Geothermal Demonstration Power Plant New Developments

    SciTech Connect

    Lacy, Robert G.; Jacobson, William O.

    1980-12-01

    San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

  6. Promotion of geothermal energy development in 1991

    NASA Astrophysics Data System (ADS)

    1993-01-01

    The paper investigates hot springs in fumarolic gas in the Iwatesan west area and evaluates effects of regional development on the neighboring environment. Details of each spring--PH, total evaporation residue, and spring quality--are as follows: 7.8, 2190mg/l, and Ca(center dot)Mg-HCO3(center dot)SO4 spring for Water well No. 18; 7.4, 1285mg/l, and Na-HCO3(center dot) Cl spring for Genbu hot spring; 7.6, 471mg/l, and Na(center dot)Ca-HCO3 type simple spring for Nukumori hot spring; and 2.9, 461mg/l, and acidity-Ca-SO4 type simple spring for Matsukawa hot spring. Variations are smaller than those in fiscal 1989. Only the Matsukawa hot spring has a large variation in its output of hot water, but a coefficient of its correlation with precipitation is 0.38. When installing a geothermal power plant, it is necessary to investigate the injection of geothermal water into the ground, hydrologic structures, etc. and to give careful consideration to the effect of the development on the sources of the hot spring.

  7. International Space Station USOS Crew Quarters Development

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.

  8. Overview of Proposed Geothermal Development in Hawaii

    SciTech Connect

    1990-02-15

    During the four hours of the public meeting held by the State Department of Business and Economic Development (DBED) in Maui in November 1989, not one of the 200 persons present spoke in favor of geothermal development on the Big Island to supply power to Oahu. However, we were all sure after the meeting that the State would proceed on its course to develop the project in spite of any public concerns. This situation we find incredible considering there are many unanswered questions on a subject of paramount importance to the economic and environmental well being of all of us. Our concerns are well expressed in the editorial of The Maui News, December 10, 1989 . We wish to set the record straight with some facts from an economic, financial and utility planning viewpoint, recognizing also the potentially serious social, health and other environmental impacts.

  9. Engineering approach to the development of geothermal power stations

    NASA Astrophysics Data System (ADS)

    Iwamizu, T.

    Measurements are studied for a hot-water type geothermal discharge, and the well characteristics are defined. These investigations, it is pointed out, formed the basis for an engineering approach to the development of the world's first 50 MW geothermal power station with a double-flash-cycle system.

  10. The Impact of Taxation on the Development of Geothermal Resources

    SciTech Connect

    Gaffen, Michael; Baker, James

    1992-09-01

    This contractor report reviews past and current tax mechanisms for the development and operation of geothermal power facilities. A 50 MW binary plant is featured as the case study. The report demonstrates that tax credits with windows of availability of greater than one year are essential to allow enough time for siting and design of geothermal power systems. (DJE 2005)

  11. Status of geothermal electrical power development in Mexico

    SciTech Connect

    Alonso E.H.; Manon M.A.

    1983-09-01

    A review of geothermal power generation in Mexico is given. The status of power plants on-line and under construction at Cerro Prieto, Los Azufres, and Los Humeros is presented. A forecast of generating capacity for the future is given along with the obstacles to geothermal energy development in Mexico.

  12. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  13. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field

    SciTech Connect

    Steven Enedy

    2001-12-14

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

  14. High Temperature Geothermal Elastomer Compund Development

    SciTech Connect

    Hirasuna, A. R.

    1981-01-01

    Reliable casting packer seal elastomers for the unusually severe geothermal environment at 260 C (500 F) did not exist in 1976. L'Garde, Inc., was awarded a contract to fulfill this need by the US Department of Energy. Successful development was completed in 1979. Compounds based on four different polymer systems were developed, all of which exceed the contract requirements. Successful laboratory tests above 300 C (575 F) have been performed with packer seals. Field tests to temperatures as high as 317 C (603 F) have been performed on static O-rings in a cablehead. Successful, dynamic, drill bit seal tests were run with a presoak temperature of 288 C (550 F). The successful compounds are based on the following polymer systems: EPDM; FKM; EPDM/FKM blend, and propylene-TFE.

  15. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    SciTech Connect

    Not Available

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  16. Institutional and environmental problems in geothermal resource development

    NASA Technical Reports Server (NTRS)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  17. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  18. Geothermal Developments at San Diego Gas & Electric

    SciTech Connect

    Anastas, George; Hoaglin, Gregory J.

    1980-12-01

    accomplished, a test program was developed to provide additional basic information necessary for the design of a commercial flash/binary geothermal plant. The primary objective of the program was to develop binary heat exchanger heat design data under a variety of conditions.

  19. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  20. Geothermal development plan: Graham/Greenlee Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The region wide market potential for utilizing geothermal energy was evaluated. Five potential geothermal resource areas with temperature less than 1000C were identified. Seven areas are inferred to contain higher temperature resources and the Clifton Hot Springs have electrical potential. Geothermal resources occur near Safford and Clifton, the two major population centers. Future population growth in the two counties is expected to average less than 2% per year over the next 40 years. Growth in the mining, trade and services economic sectors provide opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate for urban needs, through agricultural and mineral water use may be limited in the future. A preliminary economic analysis for two district heating systems and a section matching geothermal resources to potential users is presented.

  1. Geothermal resource development in Alturas, Modoc County, northeastern California

    SciTech Connect

    Bohm, B.

    1995-06-01

    The small rural town of Alturas, California is located in Modoc County in the northeastern part of the state. Due to a diminishing of the traditional economic base of ranching, mining, and timber harvesting, other possible economic opportunities were investigated. In 1986, Modoc County and the Modoc Joint Unified School District received state funds under the geothermal loan program to study the geothermal resource potential of the Alturas area. As a result of this and further study in the area, a major part of the Modoc High School building has been heated using geothermal energy since 1990. Present efforts are being made to geothermally heat other public buildings as well. This paper summarizes the highlights of geothermal resource development in the Alturas area.

  2. Geothermal policy project. Quarterly report, November 1, 1979-January 31, 1980

    SciTech Connect

    Sacarto, D.M.

    1980-02-01

    Solicitation letters for geothermal and ground water heat-pump energy were sent to ten new states, and initial contact was made in two other states, Arizona and Nevada, concerning 1980 project activities. Follow-up contacts were made with several existing project states, and state meetings and workshops were held in five project states. The Preliminary Geothermal Profile for the state of Nevada as well as other project materials were prepared.

  3. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  4. Stanford Geothermal Program (quarterly technical progress reports, July--September 1990 and October--December 1990)

    SciTech Connect

    Not Available

    1991-02-18

    For the summer quarter, progress is summarized and data are presented on the following: well test analysis of finite-conductivity fractures, theoretical investigation of adsorption phenomena, and optimization of reinjection strategy. For the fall quarter, activity focused on the adsorption and well testing projects. A new project investigating reinjection at the Geysers was initiated. (MHR)

  5. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  6. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  7. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  8. Investigation on effective promotion of geothermal energy development

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.

  9. Novel approaches for an enhanced geothermal development of residential sites

    NASA Astrophysics Data System (ADS)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  10. Geothermal development plan: Cochise/Santa Cruz Counties

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Cochise/Santa Cruz Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. The study identified three potential geothermal resource areas with potential for resource temperatures less than 90/sup 0/C (194/sup 0/F). Geothermal resources are found to occur near the towns of Willcox, San Simon, and Bowier. Population growth rates are expected to average three percent per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy-use analysis is also included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan also contains a section identifying potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  11. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    SciTech Connect

    Culp, Elzie Lynn

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  12. Protection policy for Hawaii's native wildlife during geothermal energy development

    NASA Astrophysics Data System (ADS)

    Hannah, Lee

    1986-09-01

    Hawaii possesses abundant geothermal resources and rare native wildlife. Geothermal energy development has not posed a threat to native wildlife in the past, but development potential has recently reached a level at which concern for native wildlife is warranted. Potential geothermal resource areas in Hawaii intersect important native forest and endangered species habitat. The ability of existing laws to constrain development in these areas is in question. State and federal endangered species and environmental reporting laws have little ability to constrain geothermal development on private land. Hawaii's Land Use Law had been viewed by conservationists as protecting natural areas important to native wildlife, but recent decisions of the state Land Board sharply challenge this view. While this dispute was being resolved in the courts, the state legislature passed the Geothermal Subzone Act of 1983. Wildlife value was assessed in the geothermal subzone designation process mandated by this act, but the subzones designated primarily reflected inappropriate developer influence. All areas in which there was developer interest received subzone designation, and no area in which there was no developer interest was subzoned. This overriding emphasis on developer interest violated the intent of the sub-zone act, and trivialized the importance of other assessment criteria, among them native wildlife values.

  13. Recent developments in geothermal drilling fluids

    SciTech Connect

    Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

    1981-01-01

    Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

  14. Worldwide geothermal power development: an overview and update

    SciTech Connect

    DiPippo, R.

    1984-01-01

    During the past year, geothermal electric generating capacity has increased by 616.4 MW or 24%. The bulk of this growth has come from new units in the US (344.9 MW) and the Philippines (147.5 MW). Progress is continuing in Japan, Mexico, Indonesia, Italy, and Kenya. In spite of generally poor worldwide economic conditions and political unrest in several regions, geothermal developments are nevertheless taking place albeit at a slower pace than was anticipated a decade ago. In this paper the authors present the state of affairs in geothermal power and offer a glimpse at some of the trends that may be emerging for the future.

  15. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  16. US energy industry financial developments, 1993 third quarter

    SciTech Connect

    Not Available

    1993-12-01

    Based on information provided in 1993 third quarter financial disclosures, the average net income for 112 petroleum companies -- including 18 majors -- rose 13 percent between the third quarter of 1992 and the third quarter of 1993. The gain in overall petroleum income was derived from increases in refined product consumption and margins, which improved the profitability of downstream petroleum (refining, marketing and transport) operations. A 17-percent decline in crude oil prices led to reduced income for upstream (oil and gas exploration, development and production) operations. A 16-percent rise in natural gas wellhead prices only partially offset the negative effects of low crude oil prices. Electric utilities also reported improved financial results for the third quarter of 1993 as hotter summer temperatures relative to the year-earlier quarter helped boost air conditioning demand and overall electricity usage. The following points highlight third-quarter energy industry financial developments: (1) Refined product demand and margins lift downstream earnings. Petroleum product consumption rose 2 percent between the third quarter of 1992 and the third quarter of 1993. Although petroleum product prices declined in the most recent reporting period, they did not decline as much as crude oil input prices. As a consequence, refined product margins widened. (2) Lower crude oil prices reduce upstream earnings. Crude oil prices fell 17 percent between the third quarter of 1992 and the third quarter of 1993 leading to a substantial reduction in income for the major petroleum companies` upstream operations. (3) Drilling income rises with increased North American exploratory activity.

  17. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  18. Economic Impacts of Geothermal Development in Malheur County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance.

  19. US energy industry financial developments, 1993 second quarter

    SciTech Connect

    Not Available

    1993-09-29

    US Energy Industry Financial Developments, 1993 Second Quarter provides information on the financial performance of energy companies during the most recent reporting period. The data are taken from public sources such as the Wall Street Journal, Energy Information Administration publications, corporate press releases, and other public sources. Based on information provided in 1993 second quarter financial disclosures, net income for 114 petroleum companies--including 19 majors--rose 33 percent between the second quarter of 1992 and the second quarter of 1993. Both upstream (oil and gas exploration, development and production) operations and downstream (petroleum refining, marketing, and transport) contributed to the improved financial Performance of petroleum companies consolidated operations. Rate-regulated industries also showed positive income growth between the second quarter of 1992 and the second quarter of 1993 due to higher natural gas prices and increased electricity consumption.

  20. Prospects of the complex development of highly parameter geothermal brines

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2015-06-01

    The high efficiency of complex processing of high-temperature hydrothermal brines with utilization of heat energy in a binary geothermal power plant and subsequent extraction of solved chemical compounds is shown. Promising technological schemes are given, where electric power, which is generated in the binary geothermal power plant, is used in a block to recover chemistry components. The technology for integrated processing of geothermal brines of the chloride-sodium-calcium type is developed, which provides the manufacture not only of marketable products but also of practically overall reagents of processed water that are necessary to realize the technology. Priority areas for development are indicated, and the preliminary estimates for a Berikey geothermal deposit are given. It is shown that only established resources of thermal brines of the Berikey deposit make it possible to produce more than 2000 t of lithium carbonate and, thereby, to completely provide Russian industry requirements for it.

  1. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  2. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    SciTech Connect

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  3. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.

  4. Economic Impacts of Geothermal Development in Harney County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  5. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  6. Philippine geothermal resources: General geological setting and development

    SciTech Connect

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal field in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.

  7. Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado

    SciTech Connect

    Coe, B.A.

    1980-01-01

    A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

  8. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  9. Geothermal energy development in the Philippines: An overview

    SciTech Connect

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity has been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.

  10. Geothermal power development: 1984 overview and update

    SciTech Connect

    DiPippo, R.

    1984-10-01

    The status of geothermal power plants as of mid-1984 is given. There are 15 countries with active plants, and France (Guadeloupe) is expected to join the roster in the near future. The total number of operating units (defined as individual turbo-generator sets) is 145; the total installed capacity is somewhat less than 3770 MW. If plans for additional plants are met, the total could jump by more than 200 MW over the next two years. Recent growth is presented and the worldwide installed capacity is traced. A graphic portrayal of the growth pattern is presented. The countries that will be most responsible for sustaining this growth are the US, the Philippines, Mexico, and Indonesia. Other countries that will contribute significantly include Italy, Japan, Kenya, Nicaragua, and Turkey. The following countries do not now have any geothermal plants but may bring some online by 1990: Guatemala, Costa Rica, Greece, St. Lucia, Thailand, and Ethiopia.

  11. Impact of geothermal development on stockraising homestead landowners

    SciTech Connect

    Not Available

    1981-04-16

    Surface use and compensation conflicts have developed at the Geysers in California between owners of surface lands acquired under the Stockraising Homestead Act of 1916 and geothermal lessees with the right to develop the mineral interests reserved to the Federal Government. Several recommendations are made to the Secretary of the Interior concerning the problems identified. The following are discussed: conditions at the Geysers concerning geothermal development on stockraising lands that could be considered in regard to compensation, existence or potential for similar conflicts on this land outside the Geysers, protection and compensation provided surface owners in existence of legislation and the need for amendments, and alternative methods for paying compensation.

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    SciTech Connect

    Doris, Elizabeth; Kreycik, Claire; Young, Katherine

    2009-09-01

    This research explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

  14. Protection of Hawaii's native wildlife during geothermal energy development

    SciTech Connect

    Hannah, L.J.

    1985-01-01

    Hawaii possesses unique wildlife and unique geothermal energy resources, and these attributes have recently come into conflict. In 1983, the Hawaii State Legislature passed the Geothermal Subzone Act, which specified that geothermal development in the state would be restricted to subzones demonstrating minimum adverse impacts. Assessment of native wildlife value was undertaken as part of the subzone designation process. Endangered species presence was used as an index of the value of areas to native fauna, and a forest categorized system was developed as an index of native flora importance. Large biologically unimportant areas were identified, but one subzone was placed in prime native forest and endangered species habitat, an apparent violation of the intent of the legislature.

  15. Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos

    SciTech Connect

    Robinson, Bruce A.; Birdsell, Stephen A.

    1989-03-21

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

  16. Hot Dry Rock geothermal reservoir model development at Los Alamos

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1989-01-01

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

  17. Status of Environmental Controls for Geothermal Energy Development

    SciTech Connect

    Caskey, John F.

    1980-05-01

    This report presents the initial findings and recommendations of the Environmental Controls Panel to the Interagency Geothermal Coordinating Council (IGCC). The Panel has been charged to assess the adequacy of existing environmental controls for geothermal energy systems, to review ongoing programs to develop environmental controls, and to identify controls-related research areas where redirection of federal efforts are appropriate to assure the availability of controls on a timely basis. In its deliberations, the Panel placed greatest emphasis on the use of geothermal resources for electricity generation, the application of geothermal energy receiving greatest attention today. The Panel discussed major known environmental concerns and their potential impact on the commercialization of geothermal resources, control options, regulatory considerations, and ongoing and planned research programs. The environmental concerns reviewed in this report include: air emissions, liquid discharges, solid wastes, noise, subsidence, seismicity, and hydrological alterations. For each of these concerns a brief description of the concern, associated legislation and regulations, control approaches, federal funding trend, and the Panel's recommendations and priorities are presented. In short, the Panel recommends that controls-related research efforts be rebalanced and enhanced, with the greatest emphasis placed on controls for hydrogen sulfide (H{sub 2}S) and non-H{sub 2}S gaseous emissions, injection monitoring methods, systems to treat and use nongeothermal waters for environmental control purposes, solid waste characterization and management methods evaluation, and subsidence controls.

  18. Development and evaluation of elastomeric materials for geothermal applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Ingham, J. D.

    1978-01-01

    A material for a casing packer for service for 24 hours in a geothermal environment was developed by synthesis of new elastomers and formulation of available materials. Formulation included use of commercial elastomer gumstocks and also crosslinking of plastic (high Tg) materials. Fibrous reinforcement of fluorocarbon rubbers was emphasized. Organic fiber reinforcement did not increase hot properties significantly. Glass fiber reinforcement gave significant increase in tensile properties. Elongation was reduced, and the glass-reinforced composition examined so far did not hold up well in the geothermal environment. Colloidal asbestos fibers were also investigated. A few experiments with polyphenyl ether gave material with low tensile and high compression set. Available high styrene SBR compositions were studied. Work to date suggests that new synthetic polymers will be required for service in geothermal environments.

  19. Geothermal development plan: Cochise-Santa Cruz counties

    SciTech Connect

    White, D.H.

    1981-01-01

    A total of five hot springs and 25 thermal wells are located within the combined counties. The water discharged from these hot springs and wells may be suitable for applications such as process heat and space heating and cooling. Within Cochise county there are two large firms which are capable of using 70/sup 0/C (158/sup 0/F) geothermal water for their process heat requirements but the potential use of geothermal energy in Santa Cruz county is limited due to the absence of industry within the county. The amount of geothermal energy on line as a function of time under both private and city-owned utility development is also predicted using a computer simulation model.

  20. Klamath Falls downtown development geothermal sidewalk snowmelt

    SciTech Connect

    Brown, B.

    1995-10-01

    The Klamuth Falls, Oregon, downtown has seen a period of decline over the past 20 years as businesses have moved to new suburban shopping centers. Downtown business owners and the Klamuth Falls Downtown Redevelopment Agency are working to reverse that trend with a Downtown Streetscape Project intended to make the downtown a more pleasant place to work and do business. The visible elements of the project include new crosswalks with brick pavers, wheelchair ramps at sidewalk corners, new concrete sidewalks with a consistent decorative grid pattern, sidewalk planters for trees and flowers, and antique-style park benches and lighting fixtures. A less visible, but equally valuable feature of the project is the plastic tubing installed under the sidewalks, wheelchair ramps and crosswalks, designed to keep them snow and ice free in the winter. A unique feature of the snowmelt system is the use of geothermal heated water on the return side of the Klamath Falls Geothermal District Heating System, made possible by the recent expansion of the district heating system.

  1. World Geothermal Development: The Present Situation and Opportunities for the Future.

    ERIC Educational Resources Information Center

    Cataldi, Raffaele

    1987-01-01

    Claims that the exploration of geothermal energy has a somewhat marginal role to play today in the overall world energy budget. Discusses the applicability, however, of geothermal heat to some national and local energy developments. (TW)

  2. World Geothermal Development: The Present Situation and Opportunities for the Future.

    ERIC Educational Resources Information Center

    Cataldi, Raffaele

    1987-01-01

    Claims that the exploration of geothermal energy has a somewhat marginal role to play today in the overall world energy budget. Discusses the applicability, however, of geothermal heat to some national and local energy developments. (TW)

  3. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  4. Ocean thermal energy. Quarterly report, October-December 1981

    SciTech Connect

    Not Available

    1981-12-30

    This quarterly report summarizes work on the following tasks: OTEC methanol; approaches for financing OTEC proof-of-concept experimental vessels; investigation of OTEC-ammonia as an alternative fuel; review of electrolyzer development programs and requirements; hybrid geothermal-OTEC power plants: single-cycle performance; estimates; and hybrid geothermal-OTEC power plants: dual-cycle performance estimates.

  5. US energy industry financial developments, 1993 first quarter

    SciTech Connect

    Not Available

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  6. Imperial County geothermal development. Summary report, 1979-1982

    SciTech Connect

    Not Available

    1982-10-01

    The progress of geothermal development during the past three years, county activities in support of geothermal development, and current challenges and future needs of the geothermal industry and the county are summarized. Exploration activities have resulted in the identification and definition of three additional Known Geothermal Resource Areas (KGRAs) during the grant period: the Westmorland KGRA, the East Brawley KGRA, both in 1980, and the South Brawley KGRA in 1982. Exploration is continuing in other areas of the county as well. Three 10 megawatt power plants have begun operations during the grant period: the Magma East Mesa 10 Megawatt Binary Power Plant, the Union/Southern California Edison 10 Megawatt Flash Power Plant in Brawley, both beginning operations in 1980, and the Union/Southern California Edison 10 Megawatt Flash Power Plant at the Salton Sea, initiating operations in 1982. Three commercial power plants are scheduled to begin construction during late 1982 or early 1983. Groundbreaking for the Heber Binary Project is scheduled for November 1982. Site work has already begun for the Heber Flash Power Plant. The Magma 28 megawatt power plant at the Salton Sea is to begin construction in early 1983. Two commercial power plants are in planning stages. (MHR)

  7. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  8. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  9. Expanded resource base - the key to future geothermal development

    SciTech Connect

    Mock, John E.; Beeland, Gene V.

    1994-01-20

    According to analyses by the Department of Energy’s Energy Information Administration (EIA), geothermal electric power capacity could nearly quadruple over the next 20 years, and there is a tremendous potential for growth in the direct uses of geothermal energy. However, for a high rate of development to occur in either of these applications, the identified resource base must be expanded. To this end, the Department is supporting R&D efforts to 1) share with industry the costs and risks of evaluating promising new resource prospects with power potential; 2) reduce the costs of exploration to enhance industry’s cost-competitive posture; and 3) assess the location and characteristics of low-temperature resources. This paper describes DOE’s new cost-shared industry-coupled exploratory drilling program to be initiated with a solicitation by the Idaho National Engineering Laboratory, field manager of DOE’s reservoir technology activities. Proposals will be requested for drilling either core holes or full-size wells on prospects from which some information had already been gathered, such as surface geophysics or shallow heat flow. The paper also discusses the status of the project designed to demonstrate whether a geothermal reservoir can be identified and adequately evaluated to meet investment requirements with slimholes rather than the much more costly production-size wells. Results to date of testing at the Far West 24 MWe plant site at Steam Boat Hills, Nevada, are reported, and plans for related technology development to make slimhole exploration accessible even to small developers are described. In addition, the paper describes the components of a Low-Temperature Assessment Program and its objectives and identifies the state resource assessment teams. It is concluded that the successful execution of each of these projects will help to ensure a secure future for geothermal energy in this country, thus enhancing the environment wherever geothermal energy

  10. Quarterly report [ARPA TRP turboalternator development

    SciTech Connect

    1998-05-01

    This is a quarterly report of CALSTART's progress with their programs. For the last quarter, CALSTART has performed the following work in support of the AlliedSignal turbogenerator project: We have taken prime turbogenerator marketing information, in the form of data sheets, posters and a new touchscreen computer interactive information program to two industry conferences that provided significant visibility and outreach for the AlliedSignal product. The first conference was EVS-13 (Electric Vehicle Symposium 13) October 11-18 in Osaka, Japan, the world's largest conference dedicated solely to electric vehicles and technology. AlliedSignal's turbogenerator display and information occupied the premier front location in the APU (auxiliary power unit) tower of the CALSTART industry exhibit and received substantial notice at a focused conference of more than 1,600 attendees. The exhibit was heavily attended and the turbogenerator received much interest. The second industry conference where CALSTART showcased the turbogenerator for marketing support was the NAEVI (North American Electric Vehicle and Infrastructure) Conference in San Diego, California, December 11-13. In addition to holding the premier spot in the display exhibit, CALSTART transported the turbogenerator itself to augment the display location. This conference represented the biggest American conference on EVS in 1996 and was well attended. The AlliedSignal display and information were utilized by several hundred people directly and by several hundred more as a central part of the exhibit they visited, creating a favorable impression of the technology.

  11. Preliminary plan for the development of geothermal energy in the town of Hawthorne, Nevada

    SciTech Connect

    Not Available

    1981-11-04

    Site characteristics pertinent to the geothermal development are described, including: physiography, demography, economy, and goals and objectives of the citizens as they relate to geothermal development. The geothermal reservoir is characterized on the basis of available information. The probable drilling depth to the reservoir, anticipated water production rates, water quality, and resource temperature are indicated. Uses of the energy that seem appropriate to the situation both now and in the near future at Hawthorne are described. The essential institutional requirements for geothermal energy development are discussed, including the financial, environmental, and legal and regulatory aspects. The various steps that are necessary to accomplish the construction of the geothermal district heating system are described.

  12. Preliminary plan for the development of geothermal energy in the town of Gabbs, Nevada

    SciTech Connect

    Not Available

    1981-11-09

    Characteristics of the site significant to the prospect for geothermal development are described, including: physiography, demography, economy, and the goals and objectives of the citizens as they relate to geothermal development. The geothermal resource evaluation is described, including the depth to reservoir, production rates of existing water wells, water quality, and the resource temperature. Uses of the energy that seem appropriate to the situation both now and in the foreseeable future at Gabbs are described. The essential institutional requirements for geothermal energy development are discussed, including the financial, environmental, legal, and regulatory requirements. The main resource, engineering and institutional considerations involved in a geothermal district heating system for Gabbs are summarized.

  13. Montana Geothermal Handbook: a guide to agencies, regulations, permits and financial aids for geothermal development

    SciTech Connect

    Perlmutter, S.; Birkby, J.

    1980-10-01

    The handbook is divided into three parts: a list of the permits required for various thermal projects, and an estimate of time needed to obtain them; a brief discussion of the statutes and regulations referred to; (This information was gathered in a survey of state and federal regulations, as well as in conversations with numerous state and federal officials); and a description of the state and federal grant and loan funding available to a prospective geothermal developer. The names and addresses of the relevant state and federal agencies and legal citations are listed in appendices.

  14. Recent developments in the hot dry rock geothermal energy program

    SciTech Connect

    Franke, P.R.; Nunz, G.J.

    1985-01-01

    In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

  15. A 20-Year Retrospective of the Career Development Quarterly.

    ERIC Educational Resources Information Center

    Duboltz, Walter C., Jr.; Savickas, Mark L.

    1994-01-01

    Reviews volumes 23-42 of "Career Development Quarterly," classifying 791 articles into 14 substantive areas of career research and practice devised by Fitzgerald and Rounds. Life-span perspectives on career development and career development interventions were noted as principle areas of research activity and publication. (Author/CRR)

  16. Geothermal drilling and completion research and development program

    SciTech Connect

    Kelsey, J.R.; Allen, A.D.

    1983-12-01

    Current activities include development of high temperature drilling fluids, methods for plugging lost circulation zones, advanced rock cutting techniques, and borehole instrumentation. Three specific projects which are being pursued include: a method for locating fractures which do not intersect the wellbore, a laboratory for simulating lost circulation zones - to be used for development of new materials and techniques, and the understanding of the capabilities and limitations of polycrystalline diamond cutter bits in the geothermal environment.

  17. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  18. USA program in geothermal drilling and completion research and development

    SciTech Connect

    Carson, C.C.; Caskey, B.C.

    1982-01-01

    The program objective is to conduct long-range R and D aimed at developing advanced geothermal drilling and completion systems to expand resource utilization. The program is organized into four broad categories: (1) rock penetration mechanics, (2) drilling fluids, (3) borehole mechanics, and (4) diagnostics technology. Although much effort has been concentrated on bit development under rock penetration mechanics, current work focuses on understanding the limitations of drag bits as they apply to hard rock drilling systems. Fluid technology R and D addresses the high temperature, high corrosion and abnormal pressure problems found in geothermal areas. A high-temperature clay-based mud has been developed. The R and D in borehole mechanics addresses the problems of lost circulation and lining and cementing the well, as well as problems of production maintenance such as perforating and scale removal. Well logging and downhole instrumentation R and D activities are organized under the diagnostics technology program element.

  19. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  20. Geothermal materials development: FY 1990 accomplishments and current activities

    SciTech Connect

    Kukacka, L.E.

    1991-01-01

    Advances in the development of hydrothermally stable materials, the commercial availabilities of which are considered essential for the attainment of the Geothermal Division's (GD) Hydrothermal Category Objectives, continue to be made. Fiscal year 1990 R D was focused on reducing well drilling and completion costs, energy conversion costs, and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}-resistant lightweight cements and thermally conductive corrosion and scale-resistant linear systems have reached the final development stages. In addition, field tests to determine the feasibility for the use of polymer cement liners to mitigate HCl-induced corrosion at the Geysers were performed. Technology transfer efforts on high temperature elastomers for use in drilling tools such as drillpipe protectors and rotating head seals were continued under Geothermal Drilling Organization sponsorship. Recent accomplishments and ongoing work on each of these activities are described in the paper. 8 refs.

  1. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  2. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  3. Geothermal Energy Development in the Eastern United States. Final Report

    SciTech Connect

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a ''bellwether'' installation for entrepreneurs to see, touch, and

  4. Geothermal development of the Madison group aquifer: a case study

    SciTech Connect

    Martinez, J.A.

    1981-01-01

    A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

  5. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  6. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  7. Potential effects of environmental regulatory procedures on geothermal development

    SciTech Connect

    Beeland, G.V.; Boies, D.B.

    1981-01-01

    The potential effects of several types of applicable environmental regulatory procedures on geothermal development were assessed, and particular problem areas were identified. The possible impact of procedures adopted pursuant to the following Federal statutes were analyzed: Clean Air Act; Clean Water Act; Safe Drinking Water Act; and Resource Conservation and Recovery Act. State regulations applicable, or potentially applicable, to geothermal facilities were also reviewed to determine: permit information requirements; pre-permit air or water quality monitoring requirements; effect of mandated time frames for permit approval; and potential for exemption of small facilities. The regulations of the following states were covered in the review: Alaska; Arizona; California; Colorado; Hawaii; Idaho; Montana; Nevada; New Mexico; Oregon; Utah; Washington; and Wyoming. (MHR)

  8. Geothermal direct use developments in the United States

    SciTech Connect

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1988-08-01

    Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

  9. Development of Exploration Methods for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Iovenitti, J. L.; Tibuleac, I. M.; Hopkins, D.; Cladouhos, T.; Karlin, R. E.; Wannamaker, P. E.; Kennedy, B. M.; Blackwell, D. D.; Clyne, M.

    2010-12-01

    The principle objective of an exploration program is to identify exploration drilling targets that will advance a prospect towards development and full-scale production or relinquish interest in the prospect. Engineered Geothermal Systems (EGS) exploration key geoscience parameters are temperature, lithology, and stress state at an economically feasible target depth. Our project tests the hypothesis that our proposed exploration methodology will identify potential EGS drilling targets at Dixie Valley. Dixie Valley was chosen as the test calibration site because it is a highly characterized geothermal resource was a sufficiently large database in the public domain. U.S. Department of Energy Geothermal Technologies Program under the American Recovery and Reinvestment Act has awarded funding to AltaRock to develop exploration methods for EGS by integrating geophysical, geological, and geochemical data sets. New seismic, gravity, magnetotellurics (MT), and geochemical data will be collected and integrated into the model to improve model coverage and resolution. Other model inputs will include geology, fault-kinematics, fracture-characterization, and earthquake fault-plane solutions to provide information on stress state. Where appropriate, additional geochemical measurements will be made to model geo-thermal temperatures at depth. The resulting integrated data model will be used to predict the EGS parameters of interest (temperature, lithology and stress state) with greater certainty and a "higher degree of non-uniqueness” across the test area. We hypothesize that successful EGS drilling targets will be identifiable through integration of existing and new geoscience data coupled with geostatictical and Subject Matter Expertise. Both the existing and the existing plus new data will be integrated into separate data models on a 5x5km grid with 1 km depth slices. The results of each data model will be evaluated for the degree of improvement relative to the parameters of

  10. Illinois Association for Counseling and Development (IACD) Quarterly, 1989.

    ERIC Educational Resources Information Center

    Illovsky, Michael E., Ed.

    1989-01-01

    This document consists of the four issues of the "IACD Quarterly" published in 1989. Articles in this volume include: (1) "Supervisor and Team: Catalysts-in-Training" (Lori Reinke and Clare Powers); (2) "On Being Supervised as a Supervisor" (Jeffrey Edwards); (3) "Approaches to Supervision: Expectations for Doctoral Students' Skill Development,…

  11. Geopressured-geothermal development and coastal subsidence in Louisiana

    SciTech Connect

    Trahan, D.B.

    1985-01-01

    Elevation changes at the Parcperdue geopressured-geothermal test site in southwestern Louisiana range from 0.8 to 0.16 in/y (+2 to -4 mm/y) and reflect natural base-line movements associated with salt dome growth and the compaction of thick, recent sediments. Natural variation is the primary cause of greater movement at the nearby Rockefeller Refuge geopressured-geothermal test site where base-line movement rates range from -0.43 to -0.55 in/y (-12 to -14 mm/y). Holocene sediments in the coastal marshlands at Rockefeller Refuge are more susceptible to compactional subsidence than upland Pleistocene formations at Parcperdue. Anomalous subsidence at both test sites coincided with site preparation and well drilling and may have been related to loading of surficial soils by the weight of drilling equipment. Elevation changes monitored after drilling and during formation testing were consistent with base-line subsidence rates, indicating that loading was temporary. Anomalous base-line subsidence rates coinciding with areas of historical fluid withdrawal indicate that these effects may outweigh the effects of present geopressured-geothermal development.

  12. Contracting for success: Developing geothermal resources on military lands. Volume 1. Final report

    SciTech Connect

    Salthouse, R.W.; Stewart, W.G.; Tang, L.J.; Hassrick, H.L.

    1993-10-01

    This report presents findings on ways to contract for geothermal development on military lands. The report concludes that the Federal Acquisition Regulation is inapplicable and inappropriate for private geothermal development because such development does not use appropriated funds nor does it procure a supply or service. It recommends that the Navy develop a new legal instrument called a 'license agreement,' establish a demonstration project to test it, and reassign responsibility for geothermal contracting to a contracting office with the experience to respond flexibly and rapidly to geothermal development's unique requirements.

  13. Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy

    SciTech Connect

    Kane, S.M.; Kroll, P.; Nilo, B.

    1982-12-01

    The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

  14. Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area

    SciTech Connect

    Not Available

    1980-07-01

    Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

  15. A sustainability analysis of geothermal energy development on the island of Dominica

    NASA Astrophysics Data System (ADS)

    Edwards, Kiyana Marie-Jose

    Dominica is heavily dependent on fossil fuels to meet its electricity generation needs. Dominica's volcanic origin and current volcanic activity allow the island to be an ideal place for the production of geothermal energy. Once geothermal exploration and development has begun in Dominica, it is uncertain whether the efforts will produce an environmentally, economically and socially feasible exploitation of the resource. Using content analysis and cost benefit analysis, this study examined the impacts of geothermal energy development based on the triple bottom line of sustainability for the Wotten Waven community, as well as the island as a whole. The results indicate that this project will have an overall positive impact on the triple bottom line of sustainability for Dominica. Therefore, geothermal energy may provide substantial net benefits to economic and sustainable development of the island. Assessing the sustainability of geothermal development is important as Dominica begins to produce geothermal energy.

  16. Geothermal energy development in Washington State. A guide to the federal, state and local regulatory process

    SciTech Connect

    Bloomquist, R.G.; Simpson, S.J.

    1986-03-01

    Washington State's geothermal potential is wide spread. Hot springs and five strato volcanoes existing throughout the Cascade Range, limited hot spring activity on the Olympic Peninsula, and broad reaching, low temperature geothermal resources found in the Columbia Basin comprise the extent of Washington's known geothermal resources. Determination of resource ownership is the first step in proceeding with geothermal exploration and development activities. The federal and state processes are examined from pre-lease activity through leasing and post-lease development concerns. Plans, permits, licenses, and other requirements are addressed for the federal, state, and local level. Lease, permit, and other forms for a number of geothermal exploration and development activities are included. A map of public lands and another displaying the measured geothermal resources throughout the state are provided.

  17. Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.

    SciTech Connect

    Taranik, James V.; Oppliger, Gary; Sawatsky, Don

    2002-04-10

    The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

  18. Development of geothermal logging systems in the United States

    SciTech Connect

    Lysne, P.

    1994-04-01

    Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of (potassium, uranium and thorium) is in the calibration phase, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A fluid sampling tool is in the design phase. All tools are designed for operation at conditions exceeding 400 C, and for deployment in the slim holes produced by mining-coring operations. Partnerships are being formed between the geothermal industry and scientific drilling programs to define and develop inversion algorithms relating raw tool data to more pertinent information. These cooperative efforts depend upon quality guidelines such as those under development within the international Ocean Drilling Program.

  19. Geothermal resource area 3: Elko County. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

  20. Development of a quarterly referral productivity report.

    PubMed

    Wu, Cai; Sandoval, Alex; Hicks, Katrina N; Edwards, Tim J; Green, Lyle D

    2007-10-11

    The Office of Physician Relations at The University of Texas M. D. Anderson Cancer Center (MDACC) has developed a dynamic referral productivity reporting tool for its Multidisciplinary Care Centers (MCC). The tool leverages information within the institution's Enterprise Information Warehouse (EIW) using business intelligent software Hyperion Intelligent Explorer Suite 8.3. the referral productivity reports are intended to provide each MCC with detailed referral and registration data outlining how, and from where, patients arrive here for treatment. The reports supports operational and strategic initiatives aimed at improving referral processes and market related program development.

  1. Overview of Geothermal Development at Olkaria in Kenya

    SciTech Connect

    Svanbjornsson, Andres; Matthiasson, Jonas; Frimannsson, Hreinn; Arnorsson, Stefan; Rjornsson, Sveinbjorn; Stefansson, Valqarour; Samundsson, Kristjan

    1983-12-15

    The Olkaria geothermal field has been under continuous development since 1970. A feasibility study, completed in 1976, after six wells had been drilled and tested, indicated that development of the Olkaria field was feasible. The feasibility study was followed by production drilling and the construction of three 15 MW generating units. The first unit was brought on stream in July 1981, the second in December, 1982, and the third is scheduled to be completed in early 1985. The current output of 19 productive wells is equivalent to 46 MWe. Distribution of fumaroles and resistivity surveys indicate an areal extent of some 80 km{sup 2} for the Olkaria geothermal field. Gas chemistry of fumaroles indicates comparable underground temperatures over the whole field, 200-250{degrees}C. The capacity of the resource has been estimated to be 500-1000 MW electric for a production period of 25 years. Most of the drilling has been confined to a small part of the geothermal field. Here maximum recorded downhole temperature is 339{degrees}C and temperatures follow the boiling point curve with depth. A thin steam zone at 240{degrees}C is observed in the top of the reservoir at approximately 600-700 m depth. The reservoir fluid is dilute, of the sodium chloride type, contains chloride in the range of 200-700 ppm. The reservoir rocks consist of a sequence of near horizontal lavas and tuffs of trachytic composition, but basaltic andesites have also beenidentified. The drilled rocks at Olkaria are of relatively low permeability, the average yield of wells being equivalent to about 2.5 MWe. Exploratory drilling is presently in porgress in the Olkaria field, the aim being to locate new production areas withing the field. Three holes have been completed and the forth and last hole under the present plan is being drilled.

  2. Cumulative biological impacts of The Geysers geothermal development

    SciTech Connect

    Brownell, J.A.

    1981-10-01

    The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

  3. Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect

    Not Available

    1981-03-31

    Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

  4. Development potential of the Dauin geothermal prospect, Negros Oriental, Philippines

    SciTech Connect

    Bayrante, L.F.; Hermoso, D.Z.; Candelaria, M.R.

    1997-12-31

    The Dauin geothermal prospect, situated 5 km southeast of the Palinpinon I and II sectors, was drilled between 1982 and 1983 to test its viability for development. Drilling results indicated that DN-1 was drilled closer to the source region than DN-2 where permeability, temperature, and alteration mineralogy were generally unpromising. DN-1 encountered temperatures of at least 240{degrees}C and a neutral-pH fluid with reservoir chloride of 3000 mg/kg. In particular, the presence of sulphur in the DN-1 discharge provoked debates and many speculation on the nature of the fluid in the area. The area was re-evaluated in 1996 for the following reasons: (1) Renewed interests on other geothermal prospects within Negros Island from an economic point of view and the success of modular plant developments are Pal II and other areas in the Philippines; (2) Reinterpretation of the genesis of sulphur contained in the DN-1 discharge fluid; (3) Encouraging temperature, permeability and neutral-pH alterations at depth and the neutral character of DN-1 discharge fluid; and (4) Reinterpretation of the hydrological model from a geochemical and geological point of view. The study indicates good potential for modular power development.

  5. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    SciTech Connect

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    2015-09-02

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.

  6. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  7. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    SciTech Connect

    Not Available

    1982-01-01

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  8. Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements

    DTIC Science & Technology

    2011-09-19

    Report No. D-2011-108 September 19, 2011 Geothermal Energy Development Project at Naval Air Station Fallon, Nevada...COMMANDING OFFICER, NAVAL FACILITIES ENGINEERING COMMAND SOUTHWEST DIRECTOR, NAVY SHORE ENERGY PROGRAM OFFICE COMMANDING OFFICER, NAVAL AIR SYSTEMS ...COMMAND SUBJECT: Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements (Report No. D

  9. Report to the Legislature on the California Energy Commission's Geothermal Development Grant Program for Local Governments

    SciTech Connect

    Not Available

    1983-04-01

    This report documents the California Energy Commission's administration of its Geothermal Development Grant Program for Local Governments. The Energy Commission established this program as a result of the passage of Assembly Bill 1905 (Bosco) in 1980. This legislation established the mechanism to distribute the state's share of revenues received from the leasing of federal mineral reserves for geothermal development. The federal government deposits these revenues in the Geothermal Resources Development Account (GRDA) created by AB 1905. The state allocates funds from the GRDA to the California Parklands and Renewable Resources Investment Fund, the counties of origin where the federal leases are located, and the Energy Commission. The legislation further directs the Energy Commission to disburse its share as grants to local governments to assist with the planning and development of geothermal resources. Activities which are eligible for funding under the Energy Commission's grant program include resource development projects, planning and feasibility studies, and activities to mitigate the impacts of existing geothermal development.

  10. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    SciTech Connect

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.; Bennett, Mitchell; Segneri, Brittany

    2015-04-25

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectors provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.

  11. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  12. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  13. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  14. Materials Advances to Enhance Development of Geothermal Power

    SciTech Connect

    Kukacka, Lawrence E.

    1989-03-21

    In order to assure the continued development of geothermal resources, many advances in materials technology are required so that high costs resulting from the severe environments encountered during drilling, well completion and energy extraction can be reduced. These needs will become more acute as higher temperature and chemically aggressive fluids are encountered. High priority needs are for lost circulation control and lightweight well completion materials, and tools such as drill pipe protectors, rotating head seals, blow-out preventers, and downhole drill motors. The lack of suitable hydrolytically stable chemical systems that can bond previously developed elastomers to metal reinforcement is a critical but as yet unaddressed impediment to the development of these tools. In addition, the availability of low cost corrosion and scale-resistant tubular lining materials would greatly enhance transport and energy extraction processes utilizing hypersaline brines. Work to address these materials needs is underway at Brookhaven National Laboratory (BNL), and recent accomplishments are summarized in the paper.

  15. Materials advances to enhance development of geothermal power

    SciTech Connect

    Kukacka, L.E.

    1989-03-01

    In order to assure the continued development of geothermal resources, many advances in materials technology are required so that high costs resulting from the severe environments encountered during drilling, well completion and energy extraction can be reduced. These needs will become more acute as higher temperature and chemically aggressive fluids are encountered. High priority needs are for lost circulation control and lightweight well completion materials, and tools such as drill pipe protectors, rotating head seals, blow-out preventers, and downhole drill motors. The lack of suitable hydrolytically stable chemical systems that can bond previously developed elastomers to metal reinforcement is a critical but as yet unaddressed impediment to the development of these tools. In addition, the availability of low cost corrosion and scale-resistant tubular lining materials would greatly enhance transport and energy extraction processes utilizing hypersaline brines. Work to address these materials needs is underway at Brookhaven National Laboratory (BNL), and recent accomplishments are summarized in the paper. 15 refs.

  16. Stanford Geothermal Program (quarterly technical report, April--June 1991; topical report, July 1, 1990--June 30, 1991)

    SciTech Connect

    Not Available

    1991-07-16

    The reinjection task on optimizing injection into the Palinpinon geothermal field in the Philippines was completed. Progress is summarized on experimental investigation of absorption, estimation of adsorption parameters from experimental and field data, the theoretical study of adsorption isotherms, and interpreting pressure data. (MHR)

  17. Stanford Geothermal Program [quarterly technical report, April--June 1991; topical report, July 1, 1990--June 30, 1991

    SciTech Connect

    Not Available

    1991-07-16

    The reinjection task on optimizing injection into the Palinpinon geothermal field in the Philippines was completed. Progress is summarized on experimental investigation of absorption, estimation of adsorption parameters from experimental and field data, the theoretical study of adsorption isotherms, and interpreting pressure data. (MHR)

  18. Geothermal publications list for Geopowering the West States

    SciTech Connect

    2004-12-01

    A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

  19. Oregon: a guide to geothermal energy development. [Includes glossary

    SciTech Connect

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    The following subjects are covered: Oregons' geothermal potential, exploration methods and costs, drilling, utilization methods, economic factors of direct use projects, and legal and institutional setting. (MHR)

  20. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  1. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    .g. map of contaminated areas) was gathered in order to produce the admissibility maps. For one area, a more detailed study has been performed and a complete 3D geological model has been constructed using an in-house modelling software called GeoShape. The model was then imported into a geographical information system which has been used to realize the admissibility map. Resulting maps were judged to be consistent and satisfying. In a second part of the project, this method will be applied at a larger scale. An admissibility map of the canton of Vaud (3200 km2) will be created. Considering the fast growth of the number of implanted GSHP and GWSHP throughout the world, it is clear that admissibility maps will play a major role in developing shallow geothermal energy as an environmentally friendly and sustainable resource.

  2. Developing a Process for Commercial Silica Production from Geothermal Brines

    SciTech Connect

    Bourcier, W; Martin, S; Viani, B; Bruton, C

    2001-04-11

    Useful mineral by-products can be produced from geothermal brines. Although silica has many commercial uses, problems remain in producing a marketable product. We are conducting laboratory and modeling studies aimed at optimizing for rubber additive use, the properties of silica precipitates from Salton Sea and Coso-like geothermal fluids, Our goal is to develop a robust technique for producing silicas that have desirable physical and chemical properties for commercial use, while developing a generic understanding of silica precipitation that will allow extraction to be extended to additional fluid types, and to be easily modified to produce new types of marketable silica. Our experiments start with an acidified geothermal fluid similar to those treated by pH modification technology. Silica precipitation is induced by adding base and/or adding Mg or Ca salts to affect the nature of the precipitate. For the analog Salton Sea fluids, adding base alone caused silica to precipitate fairly rapidly. To date, we have characterized precipitates from experiments in which the final pH varied from 4 to 8, where NaOH and Na{sub 2}C0{sub 3} were added as bases, and CaCl{sub 2} and MgCl{sub 2} were added as salts. SEM photos of the silica precipitates from the Salton Sea and Cos0 fluids show that the silica particles are clusters of smaller silica particles down to the resolution of the SEM (about 80-100 nm in diameter). The particle sizes and surface areas of silicas from the Salton Sea and Coso analog brines are similar to the properties of the Degussa silica commonly used as a rubber additive. An evaluation of the strength of the silica-organic bond as tested by dispersion in oil (polybutadiene) was inconclusive. Neither the Degussa materials nor our laboratory precipitates dispersed readily in nor dispersed down to the fundamental particle size. Preliminary NMR data indicates that the Degussa silica has a smaller degree of silica polymerization (a slightly smaller average

  3. Development of seals for a geothermal downhole intensifier. Progress report

    SciTech Connect

    Captain, K.M.; Harvey, A.C.; Caskey, B.C.

    1985-08-01

    A system using high-velocity fluid jets in conjunction with a rotary diamond bit is currently considered as the best candidate for reducing the cost of drilling geothermal wells. Technical, safety and cost considerations indicate that the required jet supply pressure can best be established by a downhole pressure intensifier. Key intensifier components are the check valve and plunger seals, which must prevent leakage of the high-pressure, high-temperature abrasive fluid (drilling mud). To achieve the required performance, novel ceramic seals are currently being developed. The check valve seal includes a tapered polymeric plug and ceramic stop acting against a ceramic seat. The ceramic plunger seal is a variant of the ''stepped-joint'' piston ring and is designed to minimize contact pressure and abrasive wear. Initial testing of these seals in the laboratory shows encouraging results; design refinement and further testing is in progress. 2 refs., 6 figs., 3 tabs.

  4. {open_quotes}Full steam ahead{close_quotes} (a historical review of geothermal power development in the Philippines)

    SciTech Connect

    Gazo, F.M.

    1997-12-31

    The Philippine geothermal energy development is now considered in a state of maturity. After more than 20 years of geothermal experience, the total geothermal installed capacity in the Philippines reached 1,455 MW (1996) or about 12% of the total installed power plant capacity. This also enabled the Philippines to become the second largest producer of geothermal energy in the world. The country`s track record in harnessing geothermal energy is considered a revelation, as it continues with its vision of {open_quotes}full steam ahead{close_quotes}, originally conceived when commercial geothermal operation started in 1973. It is thus proper and timely to refer to historical highlights and experiences in geothermal energy development for planning and implementation of the country`s geothermal energy program.

  5. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  6. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  7. Development of polymer concrete liners and coatings for use in geothermal applications

    SciTech Connect

    Webster, R.P.; Reams, W.; Kukacka, L.E.

    1993-09-01

    The results of a research and field testing program conducted by Brookhaven National Laboratory for the Geothermal Division of the US Department of Energy to develop polymer concrete (PC) liners and coatings for use in geothermal applications are presented. Whenever possible, carbon steel is used in geothermal facilities for components such as piping, well casings, and containment vessels. However carbon steel is subject to severe corrosion when exposed to some geothermal fluids and brines, leading to the use, in some cases, of very expensive high alloy steels. Results of laboratory tests done in simulated geothermal environments (pH 2 hydrochloric acid steam at 200{degree}C) have shown that PC materials can be used as liners and coatings to protect carbon steel surfaces from corrosion. In situ field testing of 8-in. (203-mm) inside diameter (ID) by 12-in. (305-mm) long spool sections and 12in. ID (305-mm) wellhead tee sections in operational geothermal facilities is currently being done to verify the laboratory test data. Economic studies have shown that the capital cost of the vessels and piping in a typical geothermal facility can be significantly reduced through the use of protective PC linings and coatings. As a result PC lined components are currently being used commercially at two geothermal sites.

  8. Geothermal research and development program of the US Atomic Energy Commission

    NASA Technical Reports Server (NTRS)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  9. Geothermal technology development program. Annual progress report, October 1980-September 1981

    SciTech Connect

    Kelsey, J.R.

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  10. Geothermal technology development program. Annual progress report, October 1981-September 1982

    SciTech Connect

    Kelsey, J.R.

    1983-08-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

  11. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    SciTech Connect

    Not Available

    2006-03-01

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  12. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  13. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  14. Geothermal Direct-Heat Utilization Assistance - Final Report

    SciTech Connect

    J. W. Lund

    1999-07-14

    The Geo-Heat Center provided (1) direct-use technical assistance, (2) research, and (3) information dissemination on geothermal energy over an 8 1/2 year period. The center published a quarterly bulletin, developed a web site and maintained a technical library. Staff members made 145 oral presentations, published 170 technical papers, completed 28 applied research projects, and gave 108 tours of local geothermal installations to 500 persons.

  15. DOE Research and Development for the Geothermal Marketplace

    SciTech Connect

    Mock, John E.

    1989-03-21

    This audience is well aware that the major goal of all geothermal R&D is the successful application of advanced technology in the marketplace. In support of that goal, the Geothermal Technology Division has forged a close link between its research objectives and potentially competitive market applications. Our technical objectives are all expressed in quantified reductions in the cost of geothermal power; these cost reductions are the force that will drive the geothermal industry for the foreseeable future. I agree with the recent statement of Stephen Fye of Unocal that without a legislated incentive for geothermal or disincentive for competing fuels-such as mandated carbon dioxide reductions--any premium the public is willing to pay for the use of this premium fuel will be too small to greatly impact geothermal economics. His conclusion is that the geothermal industry must be fully competitive in the marketplace at current prices. His further conclusion--with which I fully concur--is that the avenue to competitiveness is through research, by both industry and government.

  16. Federal Assistance Program Quarterly Project Progress Report. Geothermal Energy Program: Information Dissemination, Public Outreach, and Technical Analysis Activities. Reporting Period: January 1 - March 31, 2001 [Final report

    SciTech Connect

    Lund, John W.

    2002-03-22

    The final report of the accomplishments of the geothermal energy program: information dissemination, public outreach and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association and the Washington State University Energy Program.

  17. Geothermal resource areas database for monitoring the progress of development in the United States

    SciTech Connect

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  18. Geothermal resource areas database for monitoring the progress of development in the United States

    NASA Astrophysics Data System (ADS)

    Lawrence, J. D.; Lepman, S. R.; Leung, K. N.; Phillips, S. L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described as well as the structure of the database.

  19. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  20. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    SciTech Connect

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  1. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  2. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969

    SciTech Connect

    Levine, Aaron; Young, Katherine

    2014-10-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration.

  3. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  4. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  5. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    SciTech Connect

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  6. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    SciTech Connect

    Doris, E.; Kreycik, C.; Young, K.

    2009-09-01

    Geothermal electricity production capacity has grown over time because of multiple factors, including its renewable, baseload, and domestic attributes; volatile and high prices for competing technologies; and policy intervention. Overarching federal policies, namely the Public Utilities Regulatory Policies Act (PURPA), provided certainty to project investors in the 1980s, leading to a boom in geothermal development. In addition to market expansion through PURPA, research and development policies provided an investment of public dollars toward developing technologies and reducing costs over time to increase the market competitiveness of geothermal electricity. Together, these efforts are cited as the primary policy drivers for the currently installed capacity. Informing policy decisions depends on the combined impacts of policies at the federal and state level on geothermal development. Identifying high-impact suites of policies for different contexts, and the government levels best equipped to implement them, would provide a wealth of information to both policy makers and project developers.

  7. Geothermal Information Dissemination and Outreach

    SciTech Connect

    Ted J. Clutter

    2005-02-18

    station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the

  8. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  9. Geothermal development in Cerro Prieto Baja California, Mexico (1983)

    SciTech Connect

    Manon M.A.

    1983-09-01

    The actual stage of the expansion program and some of the main characteristics of the Cerro Prieto Geothermal Field are presented. This is similar to the one presented in this same conference back in 1981, but it has been updated.

  10. An assessment of leadership in geothermal energy technology research and development

    SciTech Connect

    Bruch, V.L.

    1994-03-01

    Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

  11. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    SciTech Connect

    Layton, D.

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  12. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley

    SciTech Connect

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-03-02

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

  13. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  14. Geothermal Technology Development Program. Annual progress report, October 1983-September 1984

    SciTech Connect

    Kelsey, J.R.

    1985-08-01

    This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

  15. Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development

    SciTech Connect

    Matthews, K.M.

    1982-05-01

    Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

  16. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    SciTech Connect

    Toksoz, M. Nafi

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  17. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  18. US energy industry financial developments, First quarter 1995

    SciTech Connect

    1995-06-19

    This report traces key developments in US energy companies` financial performance for the first quarter of 1995. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated utilities. All financial data are taken from public sources such as corporate reports and press releases, energy trade publications, and The Wall Street Journal`s Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area, these data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

  19. Preliminary plan for the development of geothermal energy in the town of Gabbs, Nevada

    SciTech Connect

    Not Available

    1981-11-09

    The results of the analyses as well as a plan for geothermal development are described. The major findings and specific barriers to development that would have to be addressed are identified. Characteristics of the site significant to the prospect for geothermal development are described. These characteristics include physiography, demography, economy, and the goals and objectives of the citizens as they would relate to geothermal development. The geothermal resource evaluation is described. Based on available information, the reservoir is generally described, defining the depth to the reservoir, production rates of the existing water wells, water quality, and the resource temperature. Uses of the energy that seem appropriate to the situation both now and in the foreseeable future at Gabbs are described. The amounts and types of energy currently consumed, by end-user, are estimated. From this information, a conceptual engineering design and cost estimates are presented. Finally, the results of a life cycle analysis of the economic feasibility are discussed. A time-line chart shows the tasks, the time estimated to be required for each and the interrelatioships among the activities. The essential institutional requirements for geothermal energy development are discussed. These include the financial, environmental, legal and regulatory requirements. The main resource, engineering, and institutional considerations involved in a geothermal district heating system for Gabbs are summarized.

  20. Development of Active Seismic Vector-Wavefield Imaging Technology for Geothermal Applications

    SciTech Connect

    B. A. Hardage; J. L. Simmons, Jr.; M. DeAngelo

    1999-10-01

    This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves. The first was an explosive package that generates a strong, azimuth-oriented, horizontal force vector when deployed in a conventional shot hole. This vector-explosive source has never been available to industry before. The second source was a dipole formed by operating two vertical vibrators in either a force or phase imbalance. Field data are shown that document the strong S-wave modes generated by these sources.

  1. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  2. Preliminary plan for the development of geothermal energy in the town of Hawthorne, Nevada

    SciTech Connect

    Not Available

    1981-11-04

    The results of the analyses as well as a plan for the development of the geothermal resource are described. Site characteristics pertinent to the geothermal development are described. These characteristics include physiography, demography, economy, and goals and ojectives of the citizens as they would relate to geothermal development. The geothermal resource is described. The reservoir is characterized on the basis of available information. The probable drilling depth to the reservoir, anticipated water production rates, water quality, and resource temperatures ae indicated. Uses of the energy that seem appropriate to the situation both now and in the near future at Hawthorne are described. The amounts and types of energy currently consumed by end users are estimated. Using this data base, conceptual engineering designs and cost estimates for three alternative district heating systems are presented. In addition, the results of a life cycle cost analysis for these alternatives are discussed. The essential institutional requirements for geothermal energy development, including the financial, environmental, and legal and regulatory aspects are discussed. The various steps that are necessary to accomplish the construction of the geothermal district heating system at Hawthorne are described. A time-line chart shows the tasks, the time estimated to be required for each, and the interrelationships among the activities.

  3. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  4. An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project

    SciTech Connect

    1990-03-01

    A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an

  5. Contracting for success: Developing geothermal resources on military lands. Volume 2. Appendices C through F. Final report

    SciTech Connect

    Salthouse, R.W.; Stewart, W.G.; Tang, L.J.; Hassrick, H.L.

    1993-10-01

    This report presents findings on ways to contract for geothermal development on military lands. The report concludes that the Federal Acquisition Regulation is inapplicable and inappropriate for private geothermal development because such development does not use appropriated funds nor does it procure a supply or service. It recommends that the Navy develop a new legal instrument called a license agreement,' establish a demonstration project to test it, and reassign responsibility for geothermal contracting to a contracting office with the experience to respond flexibly and rapidly to geothermal development requirements.

  6. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  7. Development of San Kamphaeng Geothermal Energy Project in Thailand

    SciTech Connect

    Ramingwong, T.; Praserdvigai, S.

    1984-06-01

    San Kamphaeng Geothermal Field located in northern Thailand, has been selected for a case study and exploration drilling program due to relevant geologic data obtained from the area and favorable sociological conditions. The first geothermal exploration well in Thailand, GTE-1, was commenced at the end of 1981. At present, six geothermal exploration wells (GTE-1 to GTE-6), with an average maximum depth of 500 m., have been drilled. Two wells encountered hot water while the rest are dry. GTE-2 is now discharging hot water of 85C with a very small discharge. GTE-6 encountered hot water of 120C at a depth of 489 m. It is now discharging hot water of 104SC at 3.6 bars pressure and at approximately 4 1/s at the well head. A number of shallow wells, with depths of less than 50 m., were drilled in the thermal manifestation area. Here, resistivity surveys showed relatively low values at shallow depths, suggesting possible zones of thermal water accumulation. Five shallow wells encountered hot water with temperatures ranging from 100C to 130C. A reservoir model of the San Kamphaeng geothermal system is proposed. Under the joint technical program between the governments of Thailand and Japan, a deep exploration well of 1500 m. is scheduled to start in July of 1984.

  8. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  9. Geothermal Development and Resource Management in the Yakima Valley : A Guidebook for Local Governments.

    SciTech Connect

    Creager, Kurt

    1984-03-01

    The guidebook defines the barriers to geothermal energy development at all levels of government and proposes ways to overcome these various barriers. In recognition that wholesale development of the region's geothermal resources could create a series of environmental problems and possible conflicts between groundwater users, resource management options are identified as possible ways to ensure the quality and quantity of the resource for future generations. It is important for local governments to get beyond the discussion of the merits of geothermal energy and take positive actions to develop or to encourage the development of the resource. To this end, several sources of technical and financial assistance are described. These sources of assistance can enable local governments and others to take action should they choose to do so. Even though the Yakima Valley is the setting for the analysis of local issues that could hamper geothermal development, this guidebook could be used by any locale with geothermal energy resources. The guidebook is not a scientific manual, but rather a policy document written especially for local government staff and officials who do not have technical backgrounds in geology or hydrology.

  10. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  11. Power Systems Development Facility. Quarterly report, January--March 1996

    SciTech Connect

    1996-05-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particular control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the Foster Wheeler portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter.

  12. MHD electrode development. Quarterly report, April-June 30, 1980

    SciTech Connect

    Sadler, J W; Dietrick, D L; Frantti, E W

    1980-08-01

    Emphasis within this program is now being directed towards the engineering development of cold metallic electrodes, and in particular the identification and evaluation of alternatives to platinum for use as anodes. A literature search, concentrating on hot corrosion resistant alloys, has been undertaken and results are presented. In addition, results of platinum-copper diffusion studies and a preliminary evaluation of sputter coated specimens of TiB/sub 2/ clad copper are reported. Laboratory anode arc erosion studies have continued. A number of modifications incorporated in the test setup are described. This modified test arrangement has been used to obtain comparative data on a number of potential anode metal alloys. Further work is required to refine the test, particularly to provide a reliable method of applying corrodent to the specimens under test. No significant laboratory electrochemical corrosion tests were completed during this reporting period. Facility test operations were suspended upon completion of WESTF Test 49 during the prior quarter to permit basic facility modifications in support of the addition of a 3 Tesla magnet. The status of design, procurement and modification activities is presented.

  13. Program status 3. quarter -- FY 1989: Fusion technology development

    SciTech Connect

    1989-07-17

    The cold support concept for the ARIES TF coil design was developed further. This concept not only works for aspect ratio 6 and 4.5 machines, but it also works for ITER. Beryllium was added to the two blanket concepts to improve energy multiplication and reduce COE. During the quarter a US-Japan steering committee meeting was held to discuss the US-Japan ICRH tube tests. They reviewed and approved the proposed X2242 ICRH tube improvements. Ed Cheng attended IAEA meeting on the International Fusion Evaluated Nuclear Data Library (FENDL). The first version of FENDL should be ready for use by mid-1990. Exposure of 12 well-characterized graphite tiles in the divertor region of DIII-D continues. Work has been initiated on the laser ellipsometry technique to be used for in situ on-line measurement of erosion and redeposition in the DIII-D divertor. A Neutron Interaction materials (NIM) report has been drafted compiling published and unpublished data on manganese-stabilized austenitic steels. These steels are being considered for the ITER.

  14. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  15. Geothermal Technologies Program: Washington

    SciTech Connect

    Not Available

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  16. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    SciTech Connect

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  17. Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering

    SciTech Connect

    Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

    1983-12-15

    This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

  18. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  19. Energy programs. Quarterly report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    The Johns Hopkins University Applied Physics Laboratory, is engaged in developing energy resource, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the US Naval Air Station, Norfolk, Va.

  20. Power Systems Development Facility. Quarterly report, July--September 1995

    SciTech Connect

    1995-11-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a fimction of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and hot gas cleanup units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is nearing completion. Nearly all equipment are set in its place and the FW equipment and the PCDs are being set in the structure.

  1. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    SciTech Connect

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  2. Hawaii Energy Resource Overviews. Volume 1. Potential noise issues with geothermal development in Hawaii

    SciTech Connect

    Burgess, J.C.

    1980-06-01

    This report concerns primarily the environmental noise expected to arise from construction and operation at HGP-A. A brief discussion of expected noise effects if the geothermal field is developed is included. Some of this discussion is applicable to noise problems that may arise if other geothermal fields are found and developed, but site-specific discussion of other fields can be formulated only when exact locations are identified. There is information concerning noise at other geothermal fields, especially the Geysers. This report includes only second-hand references to such information. No measurements of ambient sound levels near the HGP-A are available, no reliable and carefully checked sound level measurements from the HGP-A well operation are available.

  3. Illinois Association for Counseling and Development (IACD) Quarterly, 1991.

    ERIC Educational Resources Information Center

    Illovsky, M., Ed.

    1991-01-01

    This document consists of the four issues of the "IACD Quarterly" published in 1991. Articles in the 1991 volume include: (1) "The History, Current Status and Future of Counselor Preparation in Illinois: Background and Overview" (William Gorman); (2) "Counselor Education in Illinois Prior to 1958" (John Storey); (3) "The Golden Book and Counselor…

  4. Illinois Association for Counseling and Development (IACD) Quarterly, 1990.

    ERIC Educational Resources Information Center

    Illovsky, Michael E., Ed.

    1990-01-01

    This document consists of the four issues of the "IACD Quarterly" published in 1990. Articles in this volume include: (1) "A Comprehensive Program for Reducing School Anxieties in College Students" (David Ross); (2) "Issues in Child Custody Determination in Illinois" (Amy Jo Buwick); (3) "Finding Meaning in the Here and Now Through Gestalt Therapy…

  5. Develop aerocylinder assembly. Second quarter report, March 31, 1997

    SciTech Connect

    1997-09-10

    This report gives a brief summary of the work accomplished during this period on the hydraulic cylinder. The efforts in this quarter centered on two areas: (1) upgrading and enhancing the data logging system and (2) continuing field trials to evaluation improvements made to the Aerodraulic system.

  6. Illinois Association for Counseling and Development (IACD) Quarterly, 1992.

    ERIC Educational Resources Information Center

    Illovsky, M., Ed.

    1992-01-01

    This document consists of the four issues of the "IACD Quarterly" published in 1992. Articles in this volume include: (1) "A Multicultural Approach to Assertiveness Training" (Wilma Henry and Mary Ann Jones); (2) "Life-Skills: Research and Application" (Michael Illovsky); (3) "'A Model for Grief Counseling: Combining the Ideals of Robert Carkhuff…

  7. US Energy Industry Financial Developments, 1993 fourth quarter, April 1994

    SciTech Connect

    Not Available

    1994-04-14

    This report traces key financial trends in the US energy industry for the fourth quarter of 1993. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s Earnings Digest; return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area, these data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations. Based on information provided in 1993 fourth quarter financial disclosures, the net income for 82 petroleum companies -- including 18 majors -- was unchanged between the fourth quarter of 1992 and the fourth quarter of 1993. An 18-percent decline in crude oil prices resulted in a deterioration of the performance of upstream (oil and gas production) petroleum companies during the final quarter of 1993. However, prices for refined products fell much less than the price of crude oil, resulting in higher refined product margins and downstream (refining, marketing and transport) petroleum earnings. An increase in refined product demand also contributed to the rise in downstream income.

  8. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    SciTech Connect

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  9. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    SciTech Connect

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  10. Geothermal resource area 6: Lander and Eureka Counties. Area development plan

    SciTech Connect

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

  11. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    SciTech Connect

    Einstein, Herbert; Vecchiarelli, Alessandra

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.

  12. Study of the influential leaders, power structure, community decisions, and geothermal energy development in Imperial County, California

    SciTech Connect

    Butler, E.W.; Hall, C.H.; Pick, J.B.

    1980-04-01

    The economy of Imperial County, California, is now dominated by agriculture, but economic studies indicate that the emerging geothermal sector could grow to a size comparable to that of agriculture. The purpose of this study is to discover the kind of power structure operating in Imperial County, the influential leaders, the source of their power, their probable reactions to geothermal development, and the possible effects geothermal development will have on the power structure. Several social science research methods are used to identify the influential leaders and to describe the power structure in Imperial County. An analysis of the opinions of leadership and the public shows the likely response to geothermal development. The power structure analysis, combined with forecasts of the economic effects of geothermal development, indicates the ways in which the power structure itself may change.

  13. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    SciTech Connect

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and

  14. Geothermal energy in Nevada

    SciTech Connect

    Not Available

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  15. South Dakota geothermal handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  16. Problem definition study of subsidence caused by geopressured geothermal resource development

    SciTech Connect

    Not Available

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  17. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  18. Geothermal direct applications hardware systems development and testing. 1979 summary report

    SciTech Connect

    Keller, J.G.

    1980-03-01

    Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

  19. Review and analysis of the adequacy of the legal and institutional framework for geothermal development in Washington State

    SciTech Connect

    Bloomquist, R.G.

    1985-12-01

    The legal and institutional framework within which geothermal energy must develop has its origin in the early 1970s. In 1970, the Federal Geothermal Steam Act was passed into law and in 1974 the Washington State Geothermal Act was passed. The legal and institutional framework thus established by the state and federal governments differed substantially in format, content, and direction. In many instances, the legal and institutional framework established left as many questions unanswered as answered, and in some cases, the framework has proven to be more of an obstacle to development than an aid. From an examination of how the state and federal governments have addressed the varying needs of geothermal development and how the courts have interpreted some of their decisions, it is clear that in order to ensure that the legal and institutional framework is adequate to serve the needs of geothermal development, it must address, at a minimum, the following topics: (1) providing developers with access and a priority right to carry out exploration and development activities; (2) characterization of the resource so as to minimize conflicts with other natural resources; (3) establishing ownership; and (4) giving careful consideration to such lease terms as rentals and royalties, lease renewals, and diligence requirements. In addition, the framework must address groundwater law and its implications for geothermal development and how geothermal development will be considered in terms of establishing utility law. At the local level, it is imperative that geothermal be given careful consideration when decisions on resource management, zoning, and regulation are made. Local governments also have the power to establish programs which can provide substantial incentives for geothermal development and, by so doing, ensure that geothermal energy contributes to economic stability and growth.

  20. Engineering and economic studies for direct applications of geothermal energy in an industrial park in Pahoa, Hawaii. Quarterly technical progress report number 4

    SciTech Connect

    Not Available

    1980-10-15

    That portion of the Hawaiian energy self-sufficiency program which is related to a conceptual use of geothermal heat for industrial and agricultural applications is discussed. It is concluded that a direct heat geothermal industrial park located near Pahoa, Hawaii appears feasible. (MHR)

  1. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    SciTech Connect

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests.

  2. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  3. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  4. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  5. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  6. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  7. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  8. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  9. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  10. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  11. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  12. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  13. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  14. Exploration and development of the Cerro Prieto geothermal field

    SciTech Connect

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-10-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of U.S. organizations sponsored by the U.S. Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; geochemical surveys help to define zones of recharge and paths of fluid migration; and reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  15. Exploration and development of the Cerro Prieto geothermal field

    SciTech Connect

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  16. Federal assistance program. Quarterly project progress report, January 1998--March 1998

    SciTech Connect

    1998-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-98-98 (January-March, 1998). It describes 268 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers and a comprehensive aquaculture developer package. The revised Geothermal Direct Use Engineering and Design Guidebooks was completed, published and is available for distribution. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 1) which was devoted entirely to geothermal equipment, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  17. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  18. Reservoir Engineering Aspects of the Philippines Geothermal Developments in Leyte and Southern Negros

    SciTech Connect

    Kingston, R.; Watson, A.

    1983-12-15

    The current state of development of the Tongonan and Puhagan geothermal fields in the Philippines is presented and the nature of the reservoirs is described. In the latter part of the paper, reservoir engineering techniques which have been found to be particularly valuable are discussed and some aspects which give rise to problems are identified.

  19. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  20. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    SciTech Connect

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N.; Karlin, R.; Baskin, R.; Louie, J.; Pullammanappallil, S.

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  1. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  2. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A; Johnson, Christi R; Collins, Case; Bouman, Charles; Abdulrahman, Hani; Foster, Benjamin

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measured reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.

  3. Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    SciTech Connect

    STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

    1999-10-01

    Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

  4. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  5. Cooperative efforts by industry and government to develop geothermal resources

    NASA Technical Reports Server (NTRS)

    Butler, D. R.

    1974-01-01

    The Federal government's current plans for participation in the geothermal field appear to affect four major areas of interest: (1) resources exploration and assessment, (2) resources utilization projects, (3) advanced research and technology, and (4) environmental, legal, and institutional research. Private industry is also actively involved in these same areas of interest. Because of lack of coordination and communication between the private and public sector, it appears that there will be considerable duplication of effort, and, in some cases, serious conflict. It is also likely that this lack of coordination and communication may result in lack of effort in some key areas. Close coordination and communication between government and industry may resolve some of the major problems that are clearly evident.

  6. Center for Supercomputing Research and Development: Quarterly report, First quarter, 1987

    SciTech Connect

    Not Available

    1987-06-01

    This paper discusses progress on hardware and applications of superconducting design. The topic titles covered are: hardware development, architecture research, operating system research and development, Cedar Fortran, symbolic processing, compiler research, scientific workstation environment, and numerical library. (LSP)

  7. Environmental Considerations for a Geothermal Development in the Jemez Mountains of Central New Mexico

    SciTech Connect

    Sabo, David G.

    1980-12-01

    The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitor them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.

  8. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  9. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  10. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  11. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  12. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  13. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  14. US energy industry financial developments, 1994 first quarter

    SciTech Connect

    Not Available

    1994-06-23

    This report traces key financial trends in the US energy industry for the first quarter of 1994. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s, Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area. These data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

  15. Development of BEACON technology. Quarterly report, October-December 1981

    SciTech Connect

    Not Available

    1982-09-01

    The BEACON process involves the catalytic deposition of a highly reactive carbon from a gas stream containing carbon monoxide. The carbon-depleted gas is combusted with air to produce power, and the carbon is reacted with steam to produce methane. Laboratory multicycle tests with K1 and K2 catalysts were completed this quarter. Both catalysts were cycled through 40 deposition and steaming cycles. Both catalysts showed good stability. The K1-based material was found to be more active than the K2-based material, both for carbon deposition and for steaming. Gas conversion proceeded to near-equilibrium levels for both catalysts. Investigation of the effects of multicycle operation and carbon loading levels on catalyst C77-K2 stability continued this quarter. Testing in a 1-inch quartz fluid bed reactor showed no significant catalyst deterioration after 40 cycles at low carbon loadings. However, significant morphology changes occurred at higher carbon loadings. During testing in a new 1-1/2 inch diameter fluid bed reactor, there was evidence of inadequate mixing: large variations in carbon loading within the bed were observed, and the bed plugged at the higher carbon loadings. Multicycle testing of K1 and K2 catalysts continued in the 4-inch diameter fluid bed reactor. The K1 catalyst showed no decrease in catalytic activity after 9-1/2 of the planned 30 cycles. The K2 catalyst showed evidence of contamination from an undetermined source, and testing was discontinued after 9 cycles. A tandem reactor system which will circulate solids between a carbon deposition reactor and a carbon steaming reactor is now being designed for future catalyst testing. 19 figures, 21 tables.

  16. Development of BEACON technology. Quarterly report, April-June 1982

    SciTech Connect

    Not Available

    1983-03-01

    The BEACON process involves the catalytic deposition of a highly reactive form of carbon from a gas stream which contains carbon monoxide. The carbon-depleted gas is combusted with air to produce power, and the carbon is reacted with steam to produce methane or hydrogen. Experiments were continued this quarter with the objective of improving the carbon deposition efficiency using a Paraho retort off-gas mixture. Analysis has shown that the use of the Paraho off-gas to make hydrogen would be attractive if the ratio of the heat content of the feedgas to the heat content of the hydrogen produced is less than 3. Experimental conditions to achieve this ratio have been established. Recent work had shown that the volume of a BEACON supported catalyst bed increased with an increase in carbon loading level. Four series of experiments were performed where sieve analyses were made after one or more BEACON process cycles. These tests showed that the volume expansion is due to an increase in the number and size of the larger catalyst particles. The bench-scale testing of unsupported catalysts concentrated in two areas: (a) the completion of batch testing in the 4-inch reactor, and (b) the construction of the Tandem Reactor Unit which will permit the transfer of solids between the carbon deposition and steam gasification reactors during testing. It was found that a second stage of steaming enhanced the methane yield. Approximately 80% of the construction and instrumentation of the Tandem Reactor Unit was completed during the quarter. A conceptual design was completed for an Integrated Test Facility (ITF) which would permit research on the BEACON process at a scale sufficient for scale-up. 17 figures, 14 tables.

  17. Development of BEACON technology. Quarterly report, February-April 1984

    SciTech Connect

    Not Available

    1984-08-01

    This document summarizes the work performed from February through April 1984 on the SELOX technology for the selective oxidation of natural gas (or other methane streams) predominantly to carbon monoxide and hydrogen. The apparatus built during the previous quarter for the bench scale testing of the two or three most promising candidate SELOX catalysts, selected during laboratory scale screening, was subjected to an extensive shakedown during the current quarter. Shakedown was practically uneventful until oxygen and natural gas were fed to the reactor at reaction conditions. Two runs were attempted and both were aborted because of problem related to inadequate design of the gas feed system. The rest of the apparatus operated very well. A new gas feed system has been designed which is expected to correct the probelms experienced to date. Operation with reactive gases is expected to start again during the first week of June. The first catalyst to be tested in the SELOX apparatus is C-77. This catalyst was extensively tested at laboratory scale and found to be both active and stable. Conceptual process design cases were completed to determine the optimum operating pressure for commercial SELOX plants and for testing at bench scale; is was assumed that the SELOX Process product gas will be used as feed to methanol plants. Three operating pressures (150 psig, 300 psia, and 500 psia) were compared at 1900 F. On the basis of captial cost and thermal efficiency the three cases were very nearly equivalent. Thus, based on this preliminary analysis, there is little incentive to operate SELOX plants much above 150 psia. Experimental data and more accurate costs analyses may alter this conclusion. 8 figs., 12 tabs.

  18. An economic prefeasibility study of geothermal energy development at Platonares, Honduras

    SciTech Connect

    Trocki, L.K.

    1989-01-01

    The expected economic benefits from development of a geothermal power plant at Plantanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. The existence of the shallow reservoir is relatively well-characterized, and much indirect scientific evidence indicate the existence of the deeper reservoir. Based on probability distributions estimated by geologists of temperature, areal extent, depth, and porosity, the expected size of power plant that the deep reservoir can support was estimated with the following results: O-MW -- 16% (i.e., there is a 16% chance that the deep reservoir will not support a power plant); 20-MW -- 38%; 30-MW -- 25%; 55-MW -- 19%; and 110-MW -- 2%. When the cost savings from each size of plant are weighted by the probability that the reservoir will support a plant of that size, the expected monetary value of the deep reservoir can be computed. It is $42 million in present value 1987 dollars -- a cost savings of 10%. The expected savings from the 10-MW plant in the shallow reservoir are expected to be close to the computed value of $25 million, i.e., the probability that the shallow reservoir can support the plant is high. 4 refs., 3 figs., 2 tabs.

  19. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  20. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  1. Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7

    SciTech Connect

    Siegel, B.Z.

    1980-06-01

    Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

  2. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  3. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  4. Mono County geothermal activity

    SciTech Connect

    Lyster, D.L.

    1986-01-01

    Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

  5. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  6. Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling

    SciTech Connect

    Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

    1999-04-01

    Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

  7. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L.; Combs, J.

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  8. NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)

    SciTech Connect

    Not Available

    2010-10-01

    This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

  9. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  10. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    SciTech Connect

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  11. Preliminary study of the potential environmental concerns associated with surface waters and geothermal development of the Valles Caldera

    SciTech Connect

    Langhorst, G.J.

    1980-06-01

    A preliminary evaluation is presented of possible and probable problems that may be associated with hydrothermal development of the Valles Caldera Known Geothermal Resource Area (KGRA), with specific reference to surface waters. Because of the history of geothermal development and its associated environmental impacts, this preliminary evaluation indicates the Valles Caldera KGRA will be subject to these concerns. Although the exact nature and size of any problem that may occur is not predictable, the baseline data accumulated so far have delineated existing conditions in the streams of the Valles Caldera KGRA. Continued monitoring will be necessary with the development of geothermal resources. Further studies are also needed to establish guidelines for geothermal effluents and emissions.

  12. Program status 2. quarter -- FY 1990: Fusion technology development

    SciTech Connect

    1990-05-01

    During this period, the ARIES-I blanket design team has concentrated its efforts on preparation of the final report. For the ARIES-II blanket design, two concepts are being evaluated. They are the Li self-cooled and the helium-cooled lithium breeder designs. The scoping design of the second concept has been completed. Varian EIMAC has had two tube failures in trying to assemble the X2274 tetrodes for the tests in Japan. Despite the failures it is still possible for the tubes to be ready as scheduled. Also during this quarter, the joint US/PRC integral experiment on beryllium was completed in March and the analysis of results has begun. Finally, the final design of DIII-D Divertor Material Exposure System (DiMES) was completed. Preliminary analysis by ANL of DIII-D divertor erosion, using measured plasma conditions, predicts maximum net erosion of 50 {micro}m and maximum net deposition of 23 {micro}m. Measurement by SNL-L of the 12 tiles removed in December 1989 is still pending.

  13. Program status 4. quarter -- FY 1989: Fusion technology development

    SciTech Connect

    1989-10-18

    The ARIES-I design is nearing completion. The ARIES-II design work will begin soon and will be based on an advanced physics DT tokamak operating in the second stability regime. The ARIES-I blanket design team has selected the 5 MPa helium-cooled design as the reference blanket for study. Beryllium neutron multiplier will be used together with an advanced super-critical steam cycle for power conversion. Model ICRF tetrode tube anodes demonstrated the equivalent of plate dissipation, exceeding expectations. Full size tubes are being constructed for testing at JAERI. International fusion nuclear data cooperation activities continued to expand. The exposure of 12 well-characterized graphite tiles in the divertor region of DIII-D continues. The conceptual design of a mechanism to insert material samples into the DIII-D divertor is nearing completion. Finally, the data on manganese-stabilized austenitic steels that was obtained and compiled last quarter was prepared for presentation to the ITER team.

  14. Development of Beacon technology. Quarterly report, July-September 1981

    SciTech Connect

    Not Available

    1982-06-01

    The BEACON process involves the catalytic deposition of carbon from a gas stream containing carbon monoxide, and subsequent exposure of this carbon to a gas stream containing hydrogen or steam at elevated temperature and pressure to produce methane. The steam gasification route currently is receiving the most attention. Multiple-cycle tests with K1 and K2 catalysts showed sustained activity and stable performance through thirty of the planned forty cycles. The tests will be completed next quarter. Steaming temperature screening tests on K2-based BEACON carbon supported the conclusion based on earlier testing with K1-based BEACON carbon that steam gasification at two temperature levels has significant advantages over steam gasification at a single temperature in terms of gasification rates and methane yields. Multiple-cycle testing of K2-based BEACON carbon was started in the 4-inch bench-scale fluid bed reactor. Catalyst C77 continued to have problems during multiple-cycle testing - loss of catalytic activity, possibly due to overheating, and poor fluidizability. Further modifications of the C77 catalyst preparation technique were tested. Catalyst C77-K2 showed no change in performance, and results with catalyst C77-K1 were generally disappointing. Laboratory experiments continued with catalyst C78. A variable differential pressure concept which does not require gas/solids separtion is now being considered for the transfer of BEACON solids between carbon deposition and carbon gasification reactors.

  15. New Mexico handbook for geothermal resource development state and local government regulations

    SciTech Connect

    Not Available

    1980-07-01

    The regulatory aspects of a wide range of potential projects and sequences within the projects are covered, such as: exploration, demonstration, construction, commercialization, and operation. Such topics as environmental studies, water rights, district heating, taxation archaeological clearances, and construction permits are addressed. Other general information is provided which may assist a prospective geothermal developer in understanding which state and local agencies have review responsibilities, their review procedures, and the appropriate time frame necessary to complete their review process. (MHR)

  16. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    SciTech Connect

    Goff, S.J.

    2000-05-28

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  17. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    NASA Astrophysics Data System (ADS)

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  18. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  19. Water use in the development and operation of geothermal power plants.

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q.

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir

  20. Enhanced Geothermal Systems Project Development Solicitation - Final Report - 09/30/2000 - 02/01/2001

    SciTech Connect

    Nielson, Dennis L.

    2001-05-07

    The Enhanced Geothermal System concept is to develop the technology required to extract energy from the reduced permeability zones that underlie all high-temperature geothermal systems. Our concept is that injection wells will be drilled into the high temperature zone. The wells will identify fractures that are only poorly connected to the overlying reservoir. Water injected into these fractures will cause them to propagate through thermal contraction, increase in hydrostatic pressure, and reduction of effective stress. The fractures will connect with the overlying normal temperature reservoir, and steam will be produced from existing production wells. The injection water will generate high thermal quality steam while mitigating problems relating to high gas and chloride.

  1. Development of BEACON technology. Quarterly report, October-December 1982

    SciTech Connect

    Not Available

    1983-04-01

    The BEACON process involves the catalytic deposition of a highly reactive form of carbon from a gas stream which contains carbon monoxide. The carbon-depleted gas is combusted with air to produce power, and the carbon is reacted with steam to produce methane or hydrogen. During the quarter both SOHIO and TRW worked on catalysts which would suppress methane formation during steaming thus increasing the amount of hydrogen formed. At SOHIO a C77-K2 catalyst promoted with a Class II compound showed promise in laboratory tests for suppressing methane. At TRW a K-1 unsupported catalyst promoted with 10% of Additive F maintained methane suppression over 30 cycles in laboratory scale tests. Shakedown of the Tandem Reactor Apparatus was completed and testing was initiated under quasi-continuous transfer of solids between reactors. Nine short term tests were performed with K-1 based BEACON solids. The data from these tests indicate that the Tandem Reactor concept is valid and BEACON solids can be transferred efficiently in the fluidized state between the deposition and gasification reactors. A preliminary analysis of the potential of a BEACON combined cycle/hydrogen system with a hydrogen fuel cell has been performed. The BEACON process can be used to coproduce hydrogen and electric power, and the efficiency of the overall system is quite high when the electricity is produced by a combined cycle power system. If fuel cells are used to convert the hydrogen to electricity then a system for making only electricity results, and such a system gives an overall efficiency of 54%. 7 figures, 14 tables.

  2. 3-D fault development in a geothermal system in the German Molasse Basin

    NASA Astrophysics Data System (ADS)

    Ziesch, Jennifer; Tanner, David C.; Wawerzinek, Britta; Lüschen, Ewald; Krawczyk, Charlotte M.; Buness, Hermann; Thomas, Rüdiger

    2016-04-01

    The southern German Molasse Basin is one of the most promising areas for geothermal exploration in Germany. We aim for an optimized reservoir exploration for deep geothermal facilities in the Bavarian realm. To do this, we analyse seismic faults to characterise potential pathways between the Malm and its overburden, which consists of Molasse sediments. A 3-D seismic survey (27 km_2) was interpreted as part of the research project GeoParaMoL (Geophysical Parameters for facies interpretation and Modelling of Long-term behaviour), in the study area at Unterhaching, Munich, Germany. GeoParaMoL is a partner project of GRAME, which aims to explore the hydrothermal Malm carbonate reservoir (at a depth of ca. 3 km) as a source for deep geothermal energy. First, we interpreted five seismic horizons and over 20 major faults. Here we present preliminary results of the derived 3-D structural model. We determined fault geometries and displacement profiles using isopach and juxtaposition maps. We observe two different tectonic events: The faults within the Molasse sediments are unrelated to the faults of the underlying Malm carbonate platform. The faults within the Malm carbonate platform propagated up to the Top Eocene horizon (Lithothamien carbonates). The faults within the younger Miocene sediments developed subsequently. They dip, in part, with opposing dip direction, but mostly with the same strike. This basic information will be further used to predict fluid pathways by carrying out retro-deformation in the study area to help understand the structural development and regional tectonics. This work will support exploration of geothermal reservoirs in general. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi).

  3. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  4. A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. Quarterly report for Sep-Dec 1998

    SciTech Connect

    Malin, Peter E.; Shalev, Eylon

    1999-03-31

    We start organizing the computer programs needed for crack density inversion into an easy to follow scripts. These programs were collection of bits and pieces from many sources and we want to organize those separate programs into coherent product. We also gave a presentation (enclosed) in the Twenty-Fourth Workshop on Geothermal Reservoir Engineering in Stanford University on our Geyser and Mammoth results.

  5. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  6. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  7. Evaluation of noise associated with geothermal-development activities. Final report, July 31, 1979-April 30, 1982

    SciTech Connect

    Long, M.; Stern, R.

    1982-01-01

    This report was prepared for the purpose of ascertaining the current state of noise generation, suppression, and mitigation techniques associated with geothermal development. A description of the geothermal drilling process is included as well as an overview of geothermal development activities in the United States. Noise sources at the well site, along geothermal pipelines, and at the power plants are considered. All data presented are measured values by workers in the field and by Marshall Long/Acoustics. One particular well site was monitored for a period of 55 continuous days, and includes all sources of noise from the time that the drilling rig was brought in until the time that it was moved off site. A complete log of events associated with the drilling process is correlated with the noise measurements including production testing of the completed well. Data are also presented which compare measured values of geothermal noise with federal, state, county, and local standards. A section on control of geothermal noise is also given. Volume I of this document presents summary information.

  8. The geothermal power organization

    SciTech Connect

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  9. Geothermal power development in the Philippines: an update of progress at Tongonan and Palinpinon (Okoy)

    SciTech Connect

    Firth, N.W.; Elizagaque, R.F.

    1983-09-01

    Development of the geothermal fields at Tongonan (Leyte) and Okoy (Negros) is being carried out by the Ministry of Energy of the Philippines Government. A number of papers have been published previously on a variety of aspects of the work being done at Tongonan and Palinpinon. An update of progress at a time when both projects are well advanced and have commenced, or are about to commence, commercial operation is presented. The setting within which the projects are being developed is first described, and this is followed by a brief discussion of issues of interest which have arisen as development has progressed.

  10. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  11. Geothermal Energy Development in the Eastern United States. A Program for Capital Recovery Assessment for the HP-97 and Other Desk Calculators

    SciTech Connect

    Yu, Kwang; Briesen, Roy Von

    1980-08-07

    The Johns Hopkins University Applied Physics Laboratory and the Center for Metropolitan Planning and Research support the Division of Geothermal Energy, U.S. Department of Energy, in the development of geothermal energy in the Eastern United States. In this role, many tools have been developed to assist in the analysis of the economics of the application of geothermal energy. This report documents one computer program that has proved useful.

  12. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G.

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  13. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  14. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect

    Karstensen, K.W.

    1995-07-01

    This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

  15. Geothermal Today - 2001

    SciTech Connect

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  16. Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy (Presentation)

    SciTech Connect

    Levine, A.; Young, K.; Witherbee, K.

    2013-10-01

    Permitting is a major component of the geothermal development process. Better coordination across government agencies could reduce uncertainty of the process and the actual time of permitting. This presentation highlights various forms of coordinating permit offices at the state and federal level in the western United States, discusses inefficiencies and mitigation techniques for permitting natural resource projects, analyzes whether various approaches are easily adaptable to utility-scale geothermal development, and addresses advantages and challenges for coordinating permit offices. Key successful strategies identified include: 1. Flexibility in implementing the approach (i.e. less statutory requirements for the approach); 2. Less dependence on a final environmental review for information sharing and permit coordination; 3. State and federal partnerships developed through memorandum of understanding to define roles and share data and/or developer information. A few of the most helpful techniques include: 1. A central point of contact for the developer to ask questions surrounding the project; 2. Pre-application meetings to assist the developer in identifying all of the permits, regulatory approvals, and associated information or data required; 3. A permit schedule or timeline to set expectations for the developer and agencies; 4. Consolidating the public notice, comment, and hearing period into fewer hearings held concurrently.

  17. Development and Exploitation of Low Enthalpy Geothermal Systems, Example of "The Dogger" in the Paris Basin, France

    SciTech Connect

    Rojas, J.; Menjoz, A.; Martin, J.C.; Criaud, A.; Fouillac, C.

    1987-01-20

    A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers. The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.

  18. South Dakota Geothermal Energy Handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  19. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    SciTech Connect

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    2013-04-01

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (all available at Geothermal">http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).

  20. [Paste deposition and chip bonding process development]. IBM, Endicott tenth quarterly report

    SciTech Connect

    1997-05-01

    The scope of Endicott activity during this quarter includes: paste deposition process development and chip bonding process development. It was discovered that small voids exist in the photobumps. These are typically at the base of the bump and are believed to have always been present. Although the reliability test results have been positive and no failure is attributed to voids, the process development work during the last quarter has focused on understanding how these form and how to reduce them. High feed pressure, slow nozzle speed and lower viscosity reduce void formation. Nozzle design changes have been identified. One change will increase the shearing of the paste during feed, thus reducing the viscosity, a second change will allow higher feed pressures. Chip bonding process development has focused on correlating bonding results between the IBM in-house chip bonder made by Research Devices, Inc. and the Universal development bond tool. Two variables have been identified that correlate with poor bond results. The report describes more detail of the activity during the tenth quarter for paste deposition and chip bonding in each of these areas.

  1. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  2. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  3. Survey of environmental regulations applying to geothermal exploration, development, and use.

    SciTech Connect

    Beeland, G.V.

    1984-03-01

    Federal, State, and local environmental laws and regulations that apply to geothermal energy development are summarized. Most attention is given to those regulations which deal with air pollution, water pollution, solid wastes and impact assessments. Analyses are made of the regulations with respect to resource definition, pollutants currently not controlled, duplicity and overlap in permit and impact assessment requirements, the lack of uniformity of regulations between states, and the probable future approaches to the regulatory problems. This project updates a similar document (EPA/600/7-78-014) dated February 1978.

  4. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  5. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  6. Biomass power for rural development. Quarterly report, April 2, 1997--July 2, 1997

    SciTech Connect

    Cooper, J.T.

    1997-10-01

    The information in this report summarizes the major areas of project activities accomplished during the last quarter. Activities concerning conversion technologies have continued to be focused on gaining information and comparing similar systems world wide with project needs. One major effort was a trip to Denmark and Finland; the first section of the report details some of the trip highlights. The second section is a writeup of a previous trip. Additional conversion work undertaken at Iowa State University on the development of material handling, gas sampling, and gas analysis equipment is detailed. An update on the installation of field trial plots is also included. Very brief summaries are provided of quarterly activities, briquette production from switchgrass, and the development of geographical information systems are also included. 8 figs., 1 tab.

  7. Research and development for the declassification productivity initiative. Quarterly report No. 3, July 1996--September 1996

    SciTech Connect

    1996-11-01

    The third quarter began with a full-day workshop on declassification by Mr. Scott R. Lowery referred by the Technical Officer, Tom Curtis. This workshop, at Southern University, Baton Rouge, was attended by all the principal investigators. Various degrees of program have been observed for this period in all sub-areas of the DPI project. An initial evaluation of TIPSTER has revealed that its relevance to declassification would depend on a set of questions identified for further investigation. Progress is reported in developing a segment of a representation language that could be sued to enable classifiers to classify and enter information and ask questions. A prototype test suite with approximately 145 pages is being finalized to be forwarded to UNLV for testing and analysis. The progress on the computer programs developed f or the logical analysis approval is also reported along with a timeline of specific tasks for the fourth quarter.

  8. Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995

    SciTech Connect

    1995-12-31

    The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

  9. Development of vanidum-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report, 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-06-01

    Activities this past quarter, focused on acquisition of kinetic data for oxidation of formaldehyde and methanol on these catalysts. In the next quarter these results will be used to propose a simple reaction network and kinetic model. To date we have completed Task 1: Laboratory Setup and Task 2: Process Variable Study. Activities in the current quarter focused on finalizing these tasks and on Task 3: Promoters and Supports, this task is approximately 50% completed. Task 4: Advanced Catalysts is to be initiated in the next quarter. Specific accomplishments this quarter include: finalizing and calibrating a new reaction product analytical system with markedly improved precision and accuracy relative to older. approaches; development of procedures for accurately feeding formaldehyde to the reactor; examination of formaldehyde and methanol oxidation kinetics over vanadyl pyrophosphate at a range of temperatures; and preliminary studies of methane oxidation over a silica support.

  10. Power Systems Development Facility. First quarterly report, 1997

    SciTech Connect

    1997-07-01

    The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies using coal derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  11. Development and Evaluation of Elastomeric Materials for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Yavrouian, A. H.; Mosesman, I. D.; Ingham, J. D.

    1979-01-01

    A material was formulated having about 250-350 psi tensile strength and 30-80 percent elongation at 260 C for at least 24 hours in simulated brine. The relationship between these laboratory test results and sealing performance in actual or simulated test conditions is not entirely clear; however, it is believed that no conventional formation or casing packer design is likely to perform well using these materials. The synthetic effort focused on high temperature block copolymers and development of curable polystyrene. Procedures were worked out for synthesizing these new materials. Initial results with heat-cured unfilled polystyrene 'gum' at 260 C indicate a tensile strength of about 50 psi. Cast films of the first sample of polyphenyl quinoxaline-polystyrene block copolymer, which has 'graft-block' structure consisting of a polystyrene chain with pendant polyphenyl quinoxaline groups, show elastomeric behavior in the required temperature range. Its tensile strength and elongation at 260 C were 220-350 psi and 18-36 percent, respectively. All of these materials also showed satisfactory hydrolytic stability.

  12. Using estimated risk to develop stimulation strategies for induced seismicity in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Douglas, John; Aochi, Hideo

    2014-05-01

    Enhanced Geothermal Systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the shearing of pre-existing factures or fault segments, and hence by the generation of microseismicity. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir by injecting fluids against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. Douglas and Aochi (Pageoph, 2014) propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity rate of the previous six hours, with a (potentially site-specific) ground-motion prediction equation to obtain a real-time seismic hazard curve, and then the convolution of this with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds the injection is: increased (if the risk is below the amber level), decreased (if the risk is between amber

  13. Using Estimated Risk to Develop Stimulation Strategies for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Douglas, John; Aochi, Hideo

    2014-08-01

    Enhanced geothermal systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades, and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the generation of microseismicity through the shearing of pre-existing fractures or fault segments. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir through fluid injection against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. In this article we propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity of the previous 6 h with a (potentially site-specific) ground motion prediction equation to obtain a real-time seismic hazard curve; this is then convolved with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds, the injection is increased if the risk is below the amber level, decreased if the risk is between the amber and red levels, or stopped

  14. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  15. Power systems development facility. Quarterly report, January 1995--March 1995

    SciTech Connect

    1995-05-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs.

  16. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  17. Up-to-date state and prospects for the development of geothermal resources of the North Caucasus region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2014-06-01

    The modern state of production and use of geothermal resources of the region is evaluated and the low efficiency of their development is shown. Promising developmental technologies of hydrogeothermal resources of various energy potentials with attachment to concrete geothermal deposits are presented. Technologies on the complex development of hydrogeothermal resources with the use of water for drinking or industrial water supply, the thermal potential for various energy needs, and the extraction of the gas and mineral components dissolved in water are highly efficient technologies, which make it possible to solve important environmental, economical, and social problems of the region.

  18. Geotherm: the U.S. geological survey geothermal information system

    NASA Astrophysics Data System (ADS)

    Bliss, J. D.; Rapport, A.

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request.

  19. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  20. Measurement of attitudes toward commercial development of geothermal energy in Federal Region IX. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers, and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.

  1. Geothermal resource evaluation of the Yuma area

    SciTech Connect

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  2. The Pawsey Supercomputer geothermal cooling project

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  3. Protection of food crops during rapid development of the Palinpinon Geothermal Project

    SciTech Connect

    Darby, d'E.C.; de Jesus, A.C.

    1981-10-01

    A tropical water plant known as kangkong is cultivated in the Okoy River. Many hundreds of people are involved in growing this important green vegetable which is harvested up to 12 times per year, hence the need to avert major damage to crops is clear. Trials suggest that kangkong is sensitive to lower levels of arsenic than boron, but because of the relative amounts of these elements in geothermal waters boron is likely to be the limiting element in regard to surface waste-water discharges. Arsenic or boron toxicity symptoms were more severe in the presence of sulphate, while high calcium levels delayed the onset or reduced the severity of the symptoms. Plants tolerated thermal shocks up to about 50/sup 0/C for 30 minutes. Under the test conditions the maximum continuously tolerable level of geothermal fluid was about 8% and of As and B about 3 mg/kg and 5 mg/kg, respectively. For purposes of crop protection during project development, however, wastewater discharges from wells under test are normally regulated so that the level of B upstream of the cropping area does not normally exceed about 3 mg/kg.

  4. Biomass power for rural development. Quarterly report, October 3, 1998--January 1, 1999

    SciTech Connect

    Cooper, J.T.

    1999-02-01

    Information and education activities for this quarter include both the monthly progress activities with some copies of materials developed and a copy of the annual report prepared for the Leopold Center for Sustainable Agriculture. The Leopold Center is a project partner and the primary sponsor of the information and education activities. The Leopold annual report references many prepared documents and assorted presentation materials. The Energy and Geological Resources Division of the Iowa Department of Natural Resources sponsors a meeting four times a year in order to bring members of the Iowa biomass energy community together to share information. In this quarter the Stakeholders meeting was held on October 21, 1998, in Des Moines Iowa. The first phase of the Geographic Information System (GIS) efforts have been completed and a final report with a map presentation of materials will be included in the next Quarterly Report. A meeting with Ed Gray of The Antares Group and project staff/cooperators was held October 23, 1998. The authors discussed the Niagara Project and the efforts to value the biomass material and partner contributions. Niagara has identified a value to the grid support capabilities of the dispersed generation.

  5. Geothermal energy survey and technology

    NASA Astrophysics Data System (ADS)

    This is an FY-1990 Annual Report on 'geothermal energy survey and technology' by New Energy and Industrial Technology Development Organization (NEDO). First, concerning geothermal resources exploration project in which surveys have been executed throughout Japan since 1980, outlines of surveys in 1990 and objectives for FY-1992 are summarized. As for surveys for promoting development of geothermal energy, surveys in 8 areas conducted for three years from 1988 to 1990 as well as future plans are also described. Then, the verification investigation for geothermal survey technologies, which has been executed since 1980 for the purpose of establishing geothermal survey technologies to promote the development of geothermal resources in Japan, is introduced with outlines of surveys in 1990 and objectives for FY-1992. Furthermore, development conditions of power generation technologies utilizing geothermal energy such as binary-cycle power generation and hot dry rock power generation are described.

  6. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  7. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  8. The National Energy Strategy - The role of geothermal technology development: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  9. Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981

    SciTech Connect

    Smith, M.C.; Ponder, G.M.

    1981-01-01

    During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

  10. Geothermal Field Development in the European Community Objectives, Achievements and Problem Areas

    SciTech Connect

    Ungemach, Pierre

    1983-12-15

    Achievements and problem areas are reviewed with respect to various engineering implications of geothermal field development in the European Community (EC). Current and furture development goals address three resource settings. (a) low enthalpy sources (30-150{degrees}C), an outlook common to all Member states as a result of hot water aquifers flowing in large sedimentary units with normal heat flow, widespread thoughout the EC; (b) high enthalpy sources (<150{degrees}C) in areas of high heat flow which, as a consequence of the geodynamics of the Eurasian plate, are limited to Central and South-West Italy and to Eastern Greece; (c) hot dry rocks (HDR), whose potential for Europe, and also the difficulties in implementing the heat mining concept, are enormous. A large scale experiment conducted at medium depth in Cornwall (UK) proves encouraging though. It has provided the right sort of scientific inputs to the understanding of the mechanics of anisotropic brittle basement rocks.

  11. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  12. Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  16. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  17. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  18. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    NASA Astrophysics Data System (ADS)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project

  19. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  20. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  1. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  2. 2008 Geothermal Technologies Market Report

    SciTech Connect

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  3. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    SciTech Connect

    Cremer, G.M.

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  4. Development of ultra efficient electric motors. Quarterly report, January--March 1998

    SciTech Connect

    Driscoll, D.I.

    1998-04-01

    In the quarter from January 1 through March 31, 1998 American Superconductor continued to concentrate on tasks in the following areas: cryogenic systems including the continued fabrication of the baseline refrigeration system, conductor fabrication addressing the conductor requirements for the 1,000 HP full pole-sets and specification of the wire for the 5,000 HP motor pole-sets, coil development tasks addressing fabrication and performance issues, and the fabrication of the subcoils for the full pole set and the support structures. This non-proprietary report is a brief summary of progress against the tasks addressed during this reporting period.

  5. Biomass power for rural development. Quarterly report, July 1--September 30, 1998

    SciTech Connect

    Cooper, J.T.

    1998-10-01

    In this quarter a large amount of time was spent doing project planning and budget preparation for the fiscal years 1998 and 1999. Many issues of long-term strategic planning and budgeting depend on the availability of Federal support, including financial, technical and political. It has become increasingly obvious that several significant barriers must be overcome in order to reach the final project goal of commercial replication of the technology. This report describes switchgrass conversion development, production activities, environmental analysis planning, and information and education. Appendices discuss the biomass project, sediment delivery, successful establishment of switchgrass, and legislative support for the biomass project.

  6. Fracture Development within the Karaha-Telaga Bodas Geothermal Field, Indonesia

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.

    2002-01-01

    Karaha-Telaga Bodas is a partially vapor-dominated geothermal system located in an active volcano in western Java. More than 2 dozen geothermal wells have been drilled to depths of 3 km. Detailed paragenetic and fluid-inclusion studies have defined liquid-dominated, transitional and vapor-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by shallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures were filled with carbonates at shallow depths and by quartz, epidote and actinolite at depths and temperatures over 1km and 300??C. The system underwent numerous local cycles of overpressuring, which are marked by subhorizontal tensile fractures, anastomosing tensile fractures and implosion breccias. The development of the liquid system was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were deposited in fractures having the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapor-dominated conditions were initiated within a vertical chimney over the still hot intrusion. As pressures declined these conditions spread outward. Downward migration of the chimney occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. Condensate that formed at the top of the vapor-dominated zone percolated downward and lowsalinity meteoric water entered the marginal parts of the system. Calcite, anhydrite, and fluorite precipitated in fractures upon heating. A progressive sealing of the fractures occurred, resulting in the downward migration of the cap rock. In response to

  7. Hot dry rock geothermal energy -- a renewable energy resource that is ready for development now

    SciTech Connect

    Brown, D.W.; Potter, R.M.; Myers, C.W.

    1990-01-01

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States, Great Britain, Japan, and several other countries. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow- tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  8. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  9. Power systems development facility. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    1997-05-01

    This quarterly technical progress report summarizes the work completed during the fourth ID quarter, October 1 through December 31, 1996, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled {open_quotes}Hot Gas Cleanup Test Facility for ID Gasification and Pressurized Combustion.{close_quotes} The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies Using coal-derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic Gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. During this quarter considerable effort was expended in finalizing drawings and technical information for bid packages in support of the Request for Quotation (RFQ) for the fixed-price construction of the Foster Wheeler train. The packages were finalized and released for bids from seven companies at the beginning of November. A prebid meeting as held in mid-November when representatives from the interested companies toured the site and sought clarification on certain issues. Six bids were received by the end of December. Discussions were also held with a number of labor brokers to provide construction Support. Their bids are being evaluated in conjunction with those for the RFQ.

  10. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  11. Biomass power for rural development. Quarterly report, April 3--July 1, 1998

    SciTech Connect

    Cooper, J.T.

    1998-10-01

    In this quarter a large amount of time was spent doing project planning and budget preparation for the fiscal years 1998 and 1999. Many issues of long-term strategic planning and budgeting depend on the availability of Federal support, including financial, technical and political. It has become increasingly obvious that several significant barriers must be overcome in order to reach the final goal of commercial replication of the technology. Technical barriers include the designing of a cost effective harvest, storage, transport, process and conversion system. While farmers in this region have many decades of experience in harvest, storage and transport of grass, switchgrass presents new challenges due to the harvest requirements and the switchgrass yield potential. The author has identified two locations in the United States that have similar material handling situations, one site in Minnesota the other in Oregon. He has visited the Minnesota site in order to learn from their experience and they may visit the Oregon site in the future. The processing technology remains in a stage of development. As he grows closer to the time for a test co-fire he is beginning to include additional test objectives which individually seem minor, but when taken together provide drivers which impact overall machinery requirement decisions. The next quarter will provide additional levels of detail. This report describes progress in switchgrass conversion development, production activities, environmental analysis planning, and information and education activities.

  12. [Development of the Selective Hydrophobic Coagulation process]. [Quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-08-01

    A novel technique for selectively coagulating and separating mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the US Department of Energy since 1986 (Contracts DE-AC22-86PC91221 and DE-AC22-90PC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the last quarter, work was completed on the collection of the surface force and hydrophobicity data required for the estimation of the parameters in the hydrophobic interaction energy function. The estimation of these parameters will be completed in May, and the development of the extended DLVO equation for coal should be completed by the end of the next quarter. In Task 3, the mixing/coagulation characteristics of in-line mixers have been established and work with the ultrasonic horn has begun. The study of the recovery of coagula by column flotation will be completed in early May, and work on the remaining sub-tasks of Advanced Separation Methods has been accelerated in an effort to complete this task on schedule.

  13. Boise Geothermal Aquifer Study

    SciTech Connect

    Not Available

    1990-01-01

    This report is the final product of a detailed review and quantitative evaluation of existing data for the Boise Front Geothermal Aquifer. Upon review of the many publications, and raw data for the Boise geothermal aquifer, it became clear that adequate data only exists for analysis of current and proposed development within a limited area. This region extends approximately 1.5 miles southeast of the State Capitol to 0.5 mile northwest. Though there are geothermal wells located along the Boise Front outside of this area, the lack of production and water level data preclude any detailed discussions and analysis of their relationship to the central resource. As a result, discussion will concentrate on major users such as the Capitol Mall (CM) Boise Geothermal LTD. (BGL), Veterans Administration (VA) and Boise Warm Springs Water District (BWSWD). The objectives of this study are: Define the inter-relationship of the existing wells and/or portions of the geothermal aquifer; evaluate the effects of current and proposed development on the geothermal aquifer; estimate longevity of the geothermal resource; and make recommendations for an on-going monitoring program. 44 refs., 40 figs., 9 tabs.

  14. Modern geothermal power: GeoPP with geothermal steam turbines

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  15. Coal-feeder development. Second quarterly technical progress report, January-March 1980

    SciTech Connect

    Mistry, D.K.

    1981-04-01

    The pilot-scale piston-feeder development is progressing satisfactorily and should proceed as planned. The bench scale testing of components, sub-system and critical areas continued to provide very useful information in support of the development of the complete feeder. The K30M seals and polyurethane scrapers are showing very promising results. The components development facility is being upgraded and testing at the bench scale level should be vigorously perused. The upgrading of the pilot scale feeder and its system will be emphasized during the next quarter to perform feeder capabilities and limitations testing. No progress on the 5.5-in. diameter pilot scale screw feeder has been made because IRRI is waiting decision from METC as to when the feeder can be installed on the 42-in. gas producer.

  16. Navy Geothermal Plan

    SciTech Connect

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  17. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  18. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  19. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    SciTech Connect

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  20. Industrial advanced turbine systems: Development and demonstration. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The US Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace, and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. As of the end of the reporting period work on the program is 29.1% complete (24.7% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 48.9% complete (41.6% last quarter). Estimates of percent complete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variance information is provided in Section 4.0 Program Management.

  1. Industrial advanced turbine systems: Development and demonstration. Quarterly report, October 1--December 31, 1997

    SciTech Connect

    1998-06-01

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 24.7% complete (22.8% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 41.6% complete. Although a great amount of work occurred in the quarter, a significant amount of this work entailed the revision and rerelease of several Mercury 50 drawings. Estimates of percent compete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variation information is provided in Section 4.0 Program Management.

  2. Scaleup of mild gasification to be a process development. Quarterly report, February 1995--May 1995

    SciTech Connect

    Doane, E.P.; Carty, R.H.; Foster, H.

    1995-06-01

    The work performed during the Fourteenth quarterly reporting period (February 21 through May 20, 1995) on the research program, {open_quotes}Scale-Up of Mild Gasification to a Process Development Unit{close_quotes} is presented in this report. The overall objective of this project is to develop the IGT Mild-Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program are to: (1) design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scaleup; (2) obtain large batches of coal-derived co-products for industrial evaluation; (3) prepare a detailed design of a demonstration unit; and (4) develop technical and economic plans for commercialization of the MILDGAS process. The project team that is performing the initial phases of the PDU development are: Kerr-McGee Coal Corporation (K-M Coal), the Institute of Gas Technology (IGT), Bechtel Corporation (Bechtel), and Southern Illinois University at Carbondale (SIUC). The MILDGAS process is a continuous closed system for producing liquid and solid (char) co-products at mild operating conditions up to 50 psig and 1300{degrees}F. It is capable of processing a wide range of both eastern caking and western noncaking coals. The 1 ton/hr PDU facility that is to be constructed is comprised of a 2.5-ft ID adiabatic gasifier for the production of gases, coal liquids, and char; a three-stage condensation train to condense and store the liquid products; and coal feeding and char handling equipment. The facility will also incorporate support equipment for environmentally acceptable disposal of process waste. This quarter, the formal HAZOP review was completed and a report detailing action items for resolution by the parties responsible was prepared.

  3. Water-related constraints to the development of geothermal electric generating stations

    SciTech Connect

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  4. Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988

    SciTech Connect

    Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

    1988-01-01

    The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy

  5. Supernatant treatment technology development: Report for the second quarter FY 1994

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Adami, S.R.; Bryan, S.A.

    1996-04-01

    This report describes the experimental work conducted at the Pacific Northwest Laboratory during the Second Quarter FY 1994 under the Supernatant Treatment Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. The project goal is to remove enough cesium-137 from the tank waste so that the resulting low-level waste form will meet Nuclear Regulatory Commission requirements. Experiments were performed in the areas of batch equilibrium studies of ion exchangers, ion exchanger loading, ion exchanger elution, and radiation and chemical stability of selected ion exchangers. Column loading experiment results showed that cesium removal efficiency was lower than predicted. Elution experiments showed that BSC-210 material for cesium removal was superior to another material tested. Radiation and chemical stability studies were continued on Resorcinol-Formaldehyde resins. 10 refs., 11 figs., 3 tabs.

  6. (Development of advanced models of the MCC full expansion (quiet) engine): First quarterly report

    SciTech Connect

    Not Available

    1988-01-01

    This is the first quarterly report to the Department of Energy on the progress associated with the development of advanced models of the MCC full expansion (quiet) engine. These models will be evaluated in successive steps and eventually incorporated into a lawn mower for the purpose of commercializing the engine for small wheeled lawn and garden applications. During the first three months of the program (July 1 thru Sept 30), the Phase I design was basically completed with the exception of some engine/lawn mower interface hardware which will be completed during the final stages of the development program after we have selected a lawn mower deck. Rick Erickson, the design engineer for the program, completed the initial parts drawings utilizing the computer drafting system together with guidance from Fredrick Erickson, the program principal engineer and Jeff Erickson, who is in charge of manufacturing the engines. A miniature copy of these drawings is included in the appendix for your review.

  7. Geothermal Orientation Handbook

    SciTech Connect

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  8. Geothermal Heat Pump research and development studies at Sandia National Laboratories

    SciTech Connect

    Martinez, G.M.; Sullivan, W.N.

    1994-08-01

    The Geothermal Heat Pump (GHP) concept was originally developed in the 1940`s. Recently, because of increasing energy costs, utility interest, and the development of simple and durable ground source heat exchangers, GHP`s have gained international attention as a proven means of energy conservation and electrical peak power demand reduction. GHP systems require installation of a buried heat exchanger to utilize the nearly constant ground temperature making them more efficient than conventional air source heat pumps. However, the high installation cost for both residential and commercial applications is a major obstacle to their market penetration. Sandia National Laboratories (SNL) through its sponsors, the Department of Energy (DOE), and the Department of Defense (DOD), has embarked on a research program to find ways to reduce GHP installation costs and improve performance, thereby increasing their market penetration. The major elements of the program are: data acquisition to quantify the performance of GHP`S, research and development (R&D) of the ground source heat exchanger aimed at reducing, installation costs, and support of DOE efforts to market the GHP concept. This paper describes the current status of our program, some experimental and analytical results, and plans for future activities.

  9. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  10. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal System

    SciTech Connect

    Gutierrez, Marte

    2016-12-31

    The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  11. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    SciTech Connect

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  12. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    SciTech Connect

    Faulds, James

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  13. Initiating the Design and Development of a Western Interstate Bibliographic Network. Second Quarterly Report. October-December 1975.

    ERIC Educational Resources Information Center

    Montague, Eleanor A.; And Others

    The Western Interstate Commission for Higher Education (WICHE) received a year's grant from the Council on Library Resources to design and develop a library network for 17 western states. Major activities of the second quarter included: (1) hiring the project director; (2) continuing to acquire information on recent developments in networking; (3)…

  14. Geothermal reservoir technology

    SciTech Connect

    Lippmann, M.J.

    1985-09-01

    A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

  15. Fracture development within a stratovolcano: The Karaha-Telaga Bodas geothermal field, Java volcanic arc

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.

    2004-01-01

    Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low

  16. National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  17. Geothermal Energy Summary

    SciTech Connect

    J. L. Renner

    2007-08-01

    -traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  18. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  19. CSSEDC Quarterly. 1989.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1989-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1989. Articles in number 1 deal with professional development, and include: "Sharing Expertise within a Department" (Martha R. Dolly); "Empowerment Develops a Computer Writing Center" (Norman…

  20. Geothermal power generation in United States

    NASA Astrophysics Data System (ADS)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  1. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  2. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1981

    SciTech Connect

    1981-03-01

    The Johns Hopkins University Applied Laboratory, under contracts with several agencies of the federal government, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1981. The Energy Quarterly Report is divided into three sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Siting of Critical Facilities, supported by the Nuclear Regulatory Commission (NRC) and in-house funds, contains reports on geologic investigations in western Connecticut and areas in adjacent New York, development of seismotectonic domains, and fracture permeability in siting hazardous waste repositories. The third section, Energy Conservation and Storage Techniques, supported by the Argonne National Laboratory (ANL), reports on institutional barriers to landfill methane recovery and the need for state legislation.

  3. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, April-June 1980

    SciTech Connect

    1980-06-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 30 June 1980. The Energy Quarterly Report is divided into three sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Energy Conversion and Storage Techniques, contains three articles. The first is on data analysis of OTEC core unit condenser tests, and is supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The second is on the current status of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va., and is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division. The third is on utilization of landfill methane and is supported by Argonne National Laboratory.

  4. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, July-September 1980

    SciTech Connect

    1980-09-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 September 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigations, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC), reports on neotectonic investigations of the Manhattan Prong. The fourth section, Energy Conversion and Storage Techniques, contains three articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR&D funds. The second concerns OTEC pilot plant performance calculations, supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The third, describing a study of landfill methane recovery, is supported by the National Park Service.

  5. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980

    SciTech Connect

    Entingh, Daniel J.

    1980-03-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division.

  6. AE analysis in developing the Hot Fractured Rock geothermal power in Australia

    NASA Astrophysics Data System (ADS)

    Aoyagi, Y.; Kaieda, H.; Asanuma, H.; Wyborn, D.

    2004-12-01

    The hot fractured rock (HFR) geothermal power is being developed in Cooper Basin, South Australia since 2002. HFR geothermal power is one of natural energy acquiring systems, in which water is pumped into hot, crystalline rock via an injection well, becomes superheated as it flows through open joints in the hot rock reservoir, and is returned through production wells. At the surface, the useful heat is extracted by conventional processes, and the same water is re-circulated to mine more heat. Such hot granites are buried beneath 3.7 km of insulating sedimentary rocks at the site. The temperature of the granites reaches 250_E#381; or more. The first injection well Habanero#1 was drilled 720m into the granite, and a reservoir was made by the hydraulic fracturing in the vicinity of the well bottom (4421m in depth) in 2003. During the hydraulic fracturing many acoustic emissions (AE) were generated. We observed the AE activity using seismic network deployed in 8 wells around Habanero#1 to evaluate the reservoir. Total of 12000 or more AE were observed during the fracturing period from November to December, 2003. Although the AE hypocenters were located in the south side of the well at the initial stage, they finally distributed N-S to NE-SW direction at about 3km in diameter. The magnitude of the AE ranges M-2 to M1 for most events, but several felt earthquakes as maximum size of M3.7 were also generated. The hypocenters of the larger 12 events (> M2.5) were located by the seismic network of Geoscience Australia. The mechanism solution of these large events is basically E-W compression type, and it almost agrees to the regional stress estimated by borehole breakout in wells in the area. The AE generation property will help to understand earthquake dynamics and mechanics since it is controlled by hydraulic pressure. We will mainly discuss the relation between the generated regional energy and the mechanism solution of the events.

  7. Research and development for the declassification productivity initiative. Quarterly report, April 1996--June 1996

    SciTech Connect

    1996-08-01

    Highlights of the second quarter include a trip by one of the OCR investigators to UNLV to study preparation of test suites and to explore possible collaboration with ISRI. Results and recommendations are presented for Knowledge Representation and Inferencing. Methodological strategies have been identified for the Logical Analysis research component. Preliminary findings on Tipster Technology will be reported in the 3rd quarter.

  8. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  9. Design and development of a greenhouse growing system with a cooling facility using geothermal energy; Part 1

    SciTech Connect

    Tanaka, Shunichiro; Ishibashi, Sadato . Faculty of Agriculture); Kaieda, Masami )

    1994-03-01

    The purpose of the present work was to develop a greenhouse growing system with a night cooling facility using geothermal energy to grow fall and winter vegetables during high summer temperatures. In this paper, the authors first designed and constructed a greenhouse cooling facility using geothermal water for the driving energy, and then conducted a cooling performance test and growth experiment in the growing of vegetables. As a result of the investigation, first, the facility showed the cooling performance as designed, since the air in the greenhouse was cooled to the desired temperature of 15 C. Second, in the open division, almost all the spinach, lettuce, and Kinusaya peas died back during growing and there was therefore no yield. However, in the cooling division, all the vegetables grew normally and their yields were large. From the results mentioned above, the authors concluded that it is possible to grow vegetables during the high-temperature summer season in greenhouse cooled only at night.

  10. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  11. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    SciTech Connect

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  12. Geothermal energy for Hawaii: a prospectus

    SciTech Connect

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  13. Geothermal progress monitor. Progress report No. 7

    SciTech Connect

    Not Available

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  14. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    SciTech Connect

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  15. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  16. Development of analytical procedures for coprocessing. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Green, J.B.; Anderson, R.P.

    1991-07-01

    The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This and the prior quarterly report summarize work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. were subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). Separation of the resids into acid, base, saturate, and neutral-aromatic subtractions, separation of the neutral-aromatics by ring number and high temperature gas chromatography were discussed in the previous quarterly. This report includes results of nonaqueous titrations, elemental analyses and infrared spectroscopy. The hydrocarbon skeletons of saturated hydrocarbons in the coprocessing resids appear to be fundamentally different than those of aromatic species. Neutral-aromatic fractions contain minor levels of sulfur compounds, an unknown proportion of ether or other oxygen-containing species, and major concentrations of aromatic hydrocarbons containing from 3 to 7 aromatic rings. Base fractions contain predominantly single nitrogen compounds of azaarene or aminoaromatic type. Aminoaromatics (compounds analogous to aniline) are present in significant amounts in products made from New Mexico subbituminous coal but are nearly absent in the Texas lignite product. Acid fractions contain appreciable quantities of pyrrolic benzologs, but surprisingly low concentrations of compounds with a free OH group.

  17. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  18. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  19. Initiating the Design and Development of a Western Interstate Bibliographic Network. First Quarterly Report, July-September 1975.

    ERIC Educational Resources Information Center

    Duggan, Maryann; And Others

    The Western Interstate Commission for Higher Education (WICHE) received a year's grant from the Council on Library Resources to design and develop a library network for the 17 western states. Major activities of the first quarter included: (1) hiring a systems analyst, cost study investigator, research assistant, and secretary, and selecting a…

  20. Initiating the Design and Development of a Western Interstate Bibliographic Network. Third Quarterly Report. January-March 1976.

    ERIC Educational Resources Information Center

    Montague, Eleanor A.; And Others

    The Western Interstate Commission for Higher Education (WICHE) received a year's grant from the Council on Library Resources to design and develop a library network for 17 western states. During the third quarter, work centered around defining a legal basis, governance structure, role, and appropriate level of program activity for the network.…