Sample records for geothermal field developments

  1. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  2. Guidebook to Geothermal Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J. P.; Meurice, J.; Wobus, N.

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  3. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    NASA Astrophysics Data System (ADS)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  4. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  5. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  6. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  7. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  8. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  9. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  10. Use of high-resolution satellite images for characterization of geothermal reservoirs in the Tarapaca Region, Chile

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Montenegro A., C.

    2010-12-01

    The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.

  11. Use of high-resolution satellite images for detection of geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.

    2012-12-01

    Chile has an enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile and Puchuldiza geothermal field located in the Region of Tarapaca. It was done by applying the lineament extraction technique developed by author. These structures have been compared with the distribution of main geological structures obtained in the fields. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  12. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal experiments, our research goals are 1)Analysis and understanding of geothermal structure and geofluids in ductile condition of the Japanese Island arc, 2)Fundamental technologies of drilling under ductile region for geothermal reservoir, 3) Development of geothermal reservoir simulator of two phase and multiphase flow including supercritical state through rock fracture, 4) Lab scale support for ICDP-JBBP, 5) Application of new EGS technologies to conventional geothermal fields as recovery from the 2011 Great East Japan Earthquake and energy crisis in Japan. [Publications Relevant to the Research] Tsuchiya, N. and Hirano, N. (2007), ISLAND ARC, 16, 6-15. Okamoto, A., Saishu, H., Hirano, N. & Tsuchiya, N. (2010) Geochimica et Cosmochimica Acta, 74, 3692-3706. Majer, E.L., Baria, R., Stark, M., Oates, S., Bonner, J. Smith, B. & Asanuma H., (2007) Geothermics, 36, 185-222. Watanabe, N., Hirano, N. Tsuchiya, N. (2009) Journal of Geophysical Research B: Solid Earth, 114(4), B04208.

  13. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultantsmore » produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.« less

  15. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  16. Greider geothermal statement, based on testimony presented to Lt. Gov. Dymally Committee. [Development of geothermal industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greider, B.

    Factors that contribute to the delay of geothermal development by utilities are discussed. These include: the increasingly complex regulations on the Geysers field; low quality and sizes of hot water resources; economics of financing geothermal exploration; professional experience; and lack of faith in the technology of conversion of hot water into electricity. Key issues that must be resolved before geothermal development can significantly penetrate the electricity generation industry are presented. It is pointed out that legislation to stimulate development of California's geothermal resources should be based on consideration of the following items: streamlined controls which allow geothermal exploration and developmentmore » to proceed under a minimum of effective regulation; reasonable tax provisions encouraging exploration, research, development, and production of geothermal energy; and suitable economic incentives for utility companies that will encourage early commitment to construct generating plants. (LBS)« less

  17. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  18. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  19. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  20. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  1. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  2. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  3. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our next step is to collect mobile elements and magnetotelluric data to exam our initial model. Dissipative structure theory is one of the essential tools for understanding non-linear dynamic system. We will apply this method to other developed geothermal fields, and estimate the geothermal potential compared to the actual production.

  4. Use of high-resolution satellite images for detection of geological structures related to Calerias geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Urzua, L.

    2011-12-01

    Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  5. Geothermal resource development for electric power generation in Indonesia: results and future promises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumitramihardja, A.; Robert, D.; Ibrahim, K.

    1986-07-01

    Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less

  6. Geothermal energy development in the Philippines: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity hasmore » been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.« less

  7. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  8. Geothermal energy in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.; McEuen, R.B.; Roberts, A.

    1984-09-01

    During the fall of 1983, a American delegation of 14 geothermal experts visited the People's Republic of China. The three-week trip included visits to Beijing (Peking), Chengdu, Lhasa, Yangbajing, and Kunming. By far the highlight of the trip was the journey to Tibet where the geothermal field and power station at Yangbajing were toured. Technical exchanges with Chinese and Tibetan geothermal scientists and engineers were made at Beijing, Lhasa, Yangbajing and Kunming. At Kunming in Yunnan Province, the geothermal field in the western part of the province was discussed, but not visited. This latter field is in the process ofmore » extensive investigation, but only minor direct-use development such as sulfur collection and wool washing is being undertaken. The drilling of wells and power plant construction is anticipated in the Rehai and Ridian fields in the near future. In general, Yunnan has one of the largest geothermal potentials in China with over 600 sites identified so far. The sites are widespread throughout the province, but the high temperature sites are located in the western part, a very mountainous area.« less

  9. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  10. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  11. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  12. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.

  13. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  14. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C L; Bearden, Mark D; Horner, Jacob A

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  16. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have been still used only for spa tourism. Residential heating and greenhouse activities do not exist in the region yet. However, the only geothermal power plant which is settled in NW Turkey is located in Tuzla geothermal field (7.5 MW capacity). This area is both the most high-temperature area in the region and one of the most important geothermal fields in Turkey. Very little thermal centers in Turkey have thermal water potential of the coastal area like Çanakkale province. Climatic features of this area allows both thermal and sea tourism applications in all season of a year such as open-air curing, heliotherapy and thalassotherapy. Çanakkale province is located in "Troy North Aegean Culture and Thermal Tourism Development Zone". This area is being planned within the framework of health, thermal and rural tourism by the Republic of Turkey Ministry of Culture and Tourism. Keywords: Geothermal, Hydrogeochemistry, Çanakkale, Turkey

  17. Geothermal Progress Monitor, report No. 13

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  18. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayle, Phillip A., Jr.

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less

  19. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.

  20. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  1. Multi-usages of the Ilan geothermal field, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  2. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  3. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    NASA Astrophysics Data System (ADS)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  4. Structural controls of the Tuscarora geothermal field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, G.; Faulds, J. E.

    2012-12-01

    Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.

  5. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare earth elements (REEs) were also measured in this study. The results normalized by North America Shale REEs (NASC) show a flat pattern and a distinct europium positive anomaly. It possibly indicates a chemical interaction between meteoric water and sedimentary rock, which excludes the possibility of an igneous source.

  6. Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C. B.

    2011-12-01

    In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.

  7. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    PubMed

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  8. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the region and fully meet the needs of Russia in lithium carbonate and sodium chloride.

  9. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  10. Geothermal pilot study final report: creating an international geothermal energy community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less

  11. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, A.; Dennis, B.; Van Eeckhout, E.

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions weremore » conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.« less

  12. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  13. Geothermal energy from the Pannonian Basins System: An outcrop analogue study of exploration target horizons in Hungary

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.; Sass, Ingo; Török, Ákos

    2015-04-01

    The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.

  14. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are presented which will allow the Service to provide input to the federal leasing process. As an impact information source by which to judge the appropriateness of a specific activity at a specific site, a discussion of activities-impacts is provided on a phase by phase basis. Mitigation and possible enhancement techniques are also presented so that the impacts of the development can be dealt with and the fish and wildlife situation improved. The Service can achieve its objective only if biological input is made throughout the entire process of geothermal development, from exploration to testing to full field operation. A discussion of geothermal leasing procedures emphasizes the timing and nature of Service participation in current interagency lease processing, and there is a provision for the utilization of new knowledge, techniques, and responses as experience is accumulated.

  15. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development tomore » local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less

  17. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  18. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    NASA Astrophysics Data System (ADS)

    Haukwa, C.; Bodvarsson, G. S.; Lippmann, M. J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model, a two-dimensional exploitation model was developed. The field has a production area of about 10 km(exp 2), with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  19. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  20. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150more » MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  1. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  2. Determination of silica deposition rates and thresholds applied towards protection of injection reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geothermal Development Associates; Don Michels Associates

    1999-07-01

    This program was instituted to quantify certain aspects of silica scaling deposition processes at the Miravalles Geothermal Field, Costa Rica. The program objective was to identify the highest temperature at which silica scale will develop from partially evaporated and significantly cooled geothermal liquid under operating conditions. Integral to the study objective was the quantification of certain aspects of silica deposition processes at the Miravalles Geothermal Field, Costa Rica. There, the objective was to reduce the scaling risk associated with adding a bottoming-cycle to generate more electricity from the liquids already being produced.

  3. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less

  4. The Geysers Geothermal Field Update1990/2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, P.; Lippmann, M.; Dobson, P.F.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, butmore » not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.« less

  5. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  6. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  7. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  8. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  9. Geothermal energy: opportunities for California commerce. Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories weremore » found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.« less

  10. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  11. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  12. Symposium in the field of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must bemore » surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.« less

  13. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    USGS Publications Warehouse

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the local leveling networks spanning the well field and the bounding graben were analyzed for several 2-year periods (1993-1995, 1995-1997, and 1997-1999). Annual rates of change across the normal faults bounding the graben have steadily decreased for each 2-year period between 1993 and 1999, reflecting the slowing decline in geothermal reservoir pressure. Horizontal control data from a two-color electronic distance meter (EDM) defined the lateral extent of subsidence at Casa Diablo. The EDM and leveling data elucidate the localized effect of the shallow source of subsidence and the broader effect of the deeper magmatic inflation source. Data from bench marks common to both the vertical and the horizontal control networks were used to assess the effect of subsidence on the EDM base station (CASA). Modeling of geodetic data collected during periods of little or no magmatic inflation indicated that the CASA two-color EDM station is being drawn toward the well field at a rate of 3-5 mm/yr. ?? 2003 Elsevier B.V. All rights reserved.

  14. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.

    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field.more » In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.« less

  15. Philippine geothermal resources: General geological setting and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal fieldmore » in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.« less

  16. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity, including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.

  17. Effect of microporosity on the permeability of geothermal systems, case study of Los Humeros geothermal fie

    NASA Astrophysics Data System (ADS)

    Carrasco, Gerardo; Cid, Hector; Ortega, Dante

    2017-04-01

    Los Humeros is the largest silicic caldera complex of the Trans-Mexican Volcanic Belt (TMVB), with an active geothermal field, which is currently producing around 65 MW. It is located in the northern part of the eastern TMVB. Its evolution includes voluminous caldera-forming eruption producing two large caldera structures (Los Humeros and Los Potreros calderas) with alternated episodes of effusive and explosive activity until the Holocene. The geothermal reservoir is located at a depth of about 1,500 m comprising a thick succession of porphyritic andesitic lava flows, and perhaps which overlay in a highly discordant contact a meta-sedimentary basement sequence dominated by altered limestone and skarn rocks. A NW/N-S structural system seems to be the main control of geothermal field distribution within the central part of the youngest caldera. Permeability in the geothermal reservoir has been associated with that system observed on the surficial geology, but also to some hidden secondary faulting and associated fracturing. Primary porosity has been considered negligible due to the low macroporosity observed in the volcanic rocks. However, a detailed analysis of the microporosity determined by X-ray microtomography new developed techniques, allow us to determine precise values of microporosity that were using for numerical simulation to obtain values of effective porosity, which reveals an interesting alternative solution to the permeability of the subsurface of Los Humeros geothermal field that should be taking into account to the final permeability of the system.

  18. NV PFA Regional Data

    DOE Data Explorer

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

  20. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  1. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk factors at favorable sites enables an evaluation of project feasibility across sites based on tradeoffs in the risk factors. Uncertainties in each risk factor can also be considered to determine if the tradeoffs in risk factors between sites are meaningful.

  2. Third workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advancesmore » have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick Muffler (USGS-MP), and Mark Silverman (DOE-SAN); and to the rapporteurs: George Frye (Aminoil), Vasel Roberts (Electrical Power Research Institute), and Alexander Graf (LBL), whose Valuable summaries are included in the Proceedings. Special thanks are also due Roland Horne, Visiting Professor from New Zealand and Program Manager of the Stanford Geothermal Program, for his efforts with the Program graduate students in conducting the Workshop. Further thanks go to Marion Wachtel, who in spite of tremendous personal hardship, administered the Workshop and prepared the Proceedings in a timely and professional manner. Professor Ramey and I also express our appreciation to the Department of Energy, whose financial support of the Workshop made possible the program and these Proceedings. Paul Kruger Stanford University December 31, 1977« less

  3. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  4. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to: (a) review the extensive published and unpublished literature on the geochemistry, hydrology and geology of Lake Magadi, Kenya, and its associated hot springs; (b) based on this review of field visits, estimate the temperature in the geothermal reservoir beneath the lake; and (c) from this, develop a plan to determine the potential for the development of geothermal electric power at Lake Magadi. 6 refs., 9 figs., 2 tabs.

  6. The GEOTREF program, a new approach for geothermal investigation

    NASA Astrophysics Data System (ADS)

    Gérard, Frédéric; Viard, Simon; Garcia, Michel

    2017-04-01

    The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.

  7. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  8. High-temperature Y267 epdm elastomer - field and laboratory experiences, August 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, A.R.; Friese, G.J.; Stephens, G.A.

    1982-01-01

    During the period 1976 to 1979 L'Garde, Inc. developed geothermal elastomer compounds under a U.S. Department of Energy - Division of Geothermal Energy (DOE-DGE) contract. The resulting developments yielded compounds from 4 polymer systems which successfully exceeded the contract requirements. Since completion of the compound development, significant laboratory and down-hole experience occurred, primarily on the Y267 EPDM compound. This work summarizes those experiences. 11 references.

  9. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  10. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong; Turchi, Craig

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less

  11. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    DOE PAGES

    Zhu, Guangdong; Turchi, Craig

    2017-01-27

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less

  12. Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, Gregory M.

    Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.

  13. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  14. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  15. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  16. Geothermal areas in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuja, T.A.

    1986-01-01

    In this paper an attempt has been made to correlate the tectonic and geologic features with surface manifestations of geothermal activity in Pakistan to delineate prospective areas for exploration and development of geothermal energy. Underthrusting of the Arabian plate beneath the Eurasian plate has resulted in the formation of Chagai volcanic arc which extends into Iran. Quaternary volcanics in this environment, along with the presence of thermal springs, is an important geotectonic feature revealing the possible existence of geothermal fields. Geothermal activity in the northern areas of Pakistan, as evidenced by thermal springs, is the likely result of collision andmore » underthrusting of the Indian plate beneath the Eurasian plate. Numerous hot springs are found along the Main Mantle thrust and the Main Karakorum thrust in Chilas and Hunza areas respectively. The concentration of hot springs in Sind Province is also indicative of geothermal activity. A string of thermal seepages and springs following the alignment of the Syntaxial Bend in Punjab Province is also noteworthy from the geothermal viewpoint. In Baluchistan Province (southwest Pakistan), Hamun-e-Mushkel, a graben structure, also shows geothermal prospects on the basis of aeromagnetic studies.« less

  17. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  18. Expanding geothermal resource utilization through directed research, education, and public outreach: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree and contributed bridge money for four other students to finish their degrees. In total, eight graduate degrees were supported by this grant, either through the faculty seed grants or the fellowship program.« less

  19. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland,more » Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook« less

  20. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  1. Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, D.

    1996-12-31

    This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  2. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  3. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  4. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  5. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  6. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less

  7. Neutron imaging for geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence

    2013-03-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  8. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  9. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    NASA Astrophysics Data System (ADS)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Donald M.; Lienert, Barry R.; Wallin, Erin L.

    Our objectives for the current project were to develop an innovative inversion and analysis procedure for magnetotelluric field data and time variable self-potentials that will enable us to map not only the subsurface resistivity structure of a geothermal prospect but to also delineate the permeability distribution within the field. Hence, the ultimate objective were to provide better targeting information for exploratory and development drilling of a geothermal prospect. Field data were collected and analyzed from the Kilauea Summit, Kilauea East Rift Zone, and the Humuula Saddle between Mauna Loa and Mauna Kea volcanoes. All of these areas were known ormore » suspected to have geothermal activity of varying intensities. Our results provided evidence for significant long-term coordinated changes in spontaneous potential that could be associated with subsurface flows, significant interferences were encountered that arose from surface environmental changes (rainfall, temperature) that rendered it nearly impossible to unequivocally distinguish between deep fluid flow changes and environmental effects. Further, the analysis of the inferred spontaneous potential changes in the context of depth of the signals, and hence, permeability horizons, were unable to be completed in the time available.« less

  11. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  12. Geologic setting of the proposed West Flank Forge Site, California: Suitability for EGS research and development

    USGS Publications Warehouse

    Sabin, Andrew; Blake, Kelly; Lazaro, Mike; Blankenship, Douglas; Kennedy, Mack; McCullough, Jess; DeOreo, S.B.; Hickman, Stephen H.; Glen, Jonathan; Kaven, Joern; Williams, Colin F.; Phelps, Geoffrey; Faulds, James E.; Hinz, Nicholas H.; Calvin, Wendy M.; Siler, Drew; Robertson-Tait, Ann

    2017-01-01

    The proposed West Flank FORGE site is within the China Lake Naval Air Weapons Station (NAWS), China Lake, CA. The West Flank is west of the Coso geothermal field, an area of China Lake NAWS dominated by the Quaternary Coso volcanic field largely comprised of rhyolite domes and their volcaniclastic and epiclastic horizons. The largest dome flow complex, Sugarloaf Mountain, marks the northwestern margin of the geothermal field. The West Flank is situated due west of Sugarloaf. The geologic setting of the West Flank was determined from one deep well (83-11) drilled as a potential production hole in 2009. The bottom-hole temperature (BHT) of well 83-11 approaches 600 oF (315˚C), but flow tests demonstrate very low, non-commercial permeabilities. With the exception of the upper 600 feet of volcaniclastic alluvium, well 83-11 is completed in granitic basement. The West Flank possesses the primary attributes of a FORGE site: non-commercial permeability (<10-16m2), a 175˚ to 225˚C temperature range in crystalline rocks, and a location outside an existing geothermal fieldThe Coso Mountains host the Coso volcanic field and are within a right-releasing stepover between the dextral Airport Lake (ALF) and Little Lake fault zones (LLFZ) and the Wild Horse Mesa and Owens Valley faults. Two distinct fault populations have been identified at Coso: WNW-trending and antithetical, NE-trending strike-slip faults and N- to NNE-trending normal faults. These faults are both high permeability drilling targets at depth within the main (productive) geothermal field and they locally segment the field into distinct hydrothermal regimes. The West Flank may be segmented from the rest of the field by one such northerly trending fault. The overall minimum principal stress orientation in the main geothermal field varies from 103˚ to 108˚; however, the minimum horizontal principal stress in 83-11 is rotated to 081˚.

  13. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fieldsmore » of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.« less

  14. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  15. Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Darmanto, P. S.

    2016-09-01

    Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.

  16. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Herbert; Vecchiarelli, Alessandra

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reportedmore » in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.« less

  17. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  18. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.

  19. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  20. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7  kg by switching to the direct utilization of geothermal energy in Daming field.

  1. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    NASA Astrophysics Data System (ADS)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  2. Geyser decline and extinction in New Zealand: energy development impacts and implications for environmental management.

    PubMed

    Barrick, Kenneth A

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world's remaining geyser basins. The impacts on New Zealand's geysers are described in sequential "phases," including the following: the first use of geothermal resources by the indigenous people-the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa -- the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A.

  3. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  4. Recent trends in the development of heat exchangers for geothermal systems

    NASA Astrophysics Data System (ADS)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  5. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.

  6. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  7. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  8. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honggang; Liu, Xiaobing

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only amore » few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geologymore » at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.« less

  10. Research Coordination Network: Geothermal Biology and Geochemistry in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Young, M. J.; Jay, Z.

    2006-12-01

    The number and diversity of geothermal features in Yellowstone National Park (YNP) represent a fascinating array of high temperature geochemical environments that host a corresponding number of unique and potentially novel organisms in all of the three recognized domains of life: Bacteria, Archaea and Eukarya. The geothermal features of YNP have long been the subject of scientific inquiry, especially in the fields of microbiology, geochemistry, geothermal hydrology, microbial ecology, and population biology. However, there are no organized forums for scientists working in YNP geothermal areas to present research results, exchange ideas, discuss research priorities, and enhance synergism among research groups. The primary goal of the YNP Research Coordination Network (GEOTHERM) is to develop a more unified effort among scientists and resource agencies to characterize, describe, understand and inventory the diverse biota associated with geothermal habitats in YNP. The YNP RCN commenced in January 2005 as a collaborative effort among numerous university scientists, governmental agencies and private industry. The YNP RCN hosted a workshop in February 2006 to discuss research results and to form three working groups focused on (i) web-site and digital library content, (ii) metagenomics of thermophilic microbial communities and (iii) development of geochemical methods appropriate for geomicrobiological studies. The working groups represent one strategy for enhancing communication, collaboration and most importantly, productivity among the RCN participants. If you have an interest in the geomicrobiology of geothermal systems, please feel welcome to join and or participate in the YNP RCN.

  11. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  13. Geothermal NEPA Database on OpenEI (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K. R.; Levine, A.

    2014-09-01

    The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. Theymore » then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.« less

  14. A review of the hydrogeologic-geochemical model for Cerro Prieto

    USGS Publications Warehouse

    Lippmann, M.J.; Truesdell, A.H.; Halfman-Dooley, S. E.; Mañónm, A.

    1991-01-01

    With continued exploitation of the Cerro Prieto, Mexico, geothermal field, there is increasing evidence that the hydrogeologic model developed by Halfman and co-workers presents the basic features controlling the movement of geothermal fluids in the system. In mid-1987 the total installed capacity at Cerro Prieto reached 620 MWc, requiring a large rate of fluid production (more than 10,500 tonnes/hr of a brine-steam mixture; August 1988). This significant mass extraction has led to changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. Pressure drawdown has caused an increase in cold water recharge in the southern and western edges of the field, and local and general reservoir boiling in parts of the geothermal system. After reviewing the hydrogeologic and geochemical models of Cerro Prieto, the exploitation-induced cold water recharge and reservoir boiling (and plugging) observed in different areas of the field, are discussed and interpreted on the basis of these models and schematic flow models that describe the hydrogeology. ?? 1991.

  15. Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Osato, K.; Takasugi, S.

    1995-12-31

    As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less

  16. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  17. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studiesmore » indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.« less

  18. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.

  19. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  20. Geyser Decline and Extinction in New Zealand—Energy Development Impacts and Implications for Environmental Management

    NASA Astrophysics Data System (ADS)

    Barrick, Kenneth A.

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world’s remaining geyser basins. The impacts on New Zealand’s geysers are described in sequential “phases,” including the following: the first use of geothermal resources by the indigenous people—the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa—the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A.

  1. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  2. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  3. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  4. Geochemistry of hot springs in the Ie Seu’um hydrothermal areas at Aceh Besar district, Indonesia

    NASA Astrophysics Data System (ADS)

    Idroes, R.; Yusuf, M.; Alatas, M.; Subhan; Lala, A.; Saiful; Suhendra, R.; Idroes, G. M.; Marwan

    2018-03-01

    Indonesia geothermal resources are the largest in the world, about 40 percent of the total geothermal resources worldwide with a potential energy of 28,617 MW. Geothermal energy is one of the renewable energy in the world that can be developed sustainably. This kind of energy is not only environmentally friendly but also highly prospective compared to fossil energy. One of the potential geothermal energy in Indonesia is Seulawah Agam geothermal field with some manifestation areas. The fluid type of Ie Seu’um manifestation was chloride (Cl-) obtained from the ternary diagram Cl--SO4 2--HCO3 -, using UV-Vis spectrophotometry, argentometry and acidimetry method. The reservoir range temperature was 188,7 ± 9,3°C calculated using geothermometer Na-K-Ca, Na-K Fournier and Na-K Giggenbach by applying Atomic Absorption Spectroscopy method. This data processing was carried out using liquid chemistry plotting spreadsheet version 3 powell geoscience Ltd.3 September 2012 by Powell & Cumming. The potential in the geothermal manifestation of Ie Seu’um was estimated about 50-100 MW (medium enthalpy).

  5. Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M.; Ritchotte, G.; Viggiano, A.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediatelymore » adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.« less

  6. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  7. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samplesmore » from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.« less

  8. Investigation of ecosystems impacts from geothermal development in Imperial Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, J.H.; Ireland, R.R.; Kercher, J.R.

    1979-07-13

    A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirementsmore » of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.« less

  9. Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area

    NASA Astrophysics Data System (ADS)

    Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi

    2017-07-01

    Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.

  10. Review of subduction and its association with geothermal system in Sumatera-Java

    NASA Astrophysics Data System (ADS)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  11. Development situation and prospecting division of geothermal resources in Yangshan county, Guangdong Province

    NASA Astrophysics Data System (ADS)

    Yin, Lijun; Luo, Yizhen; Ma, Huiying; Xie, Yanxiao; Liu, Zhenzhen

    2017-03-01

    Yangshan County has abundant low-geothermal resources in its northeast, southwest, and midwest regions. These low-temperature geothermal resources in Yangshan County can prove to be beneficial for different purposes such as tourism, recuperation, sauna, and agriculture. Thirteen geothermal hot springs (spots) and seven geothermal anomalies have been discovered till now in this area. The geothermal resources are grouped on the basis of their conditions as follows: The Chengjia-Dianzhan and Dongguan-Jietan geothermal areas are classified as priority development zones, the Huangben-Mazishui and Qigongyuntankeng areas as sub-priority development zones, the Jiangying geothermal area as a general development zone, the Yangshan geothermal area as a potential development zone, and the Chengjia and Longfeng geothermal areas as restricted development zones.

  12. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  13. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  14. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  15. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  16. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field techniques will be developed to increase the signal-noise ratio and identify background noise. Firstly, surface noise will be filtered off by non-parametric approaches such as proper orthogonal decomposition. Secondly, the EM signal and newly acquired seismic data will be combined to obtain a multi-dimensional earth model via an inversion process. Typically, these identification procedures are non-unique, resulting in multiple possible scenarios that cannot be distinguished based on the information at hand. To this end standard approaches) use a regularisation term including an apriori model. Here, Bayesian approaches will also be used, in which expert knowledge is used to guide the outcome to reasonable solutions. We will assess the reduction in uncertainty and therefore risks that EM methods can provide when used in combination with seismic surveys for geothermal exploration prior to drilling. It may also be possible to use this technique for monitoring the evolution of geothermal systems. Such techniques may prove to be extremely valuable for the future development of geothermal energy resources.

  17. Research on Utilization of Geo-Energy

    NASA Astrophysics Data System (ADS)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.

  18. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  19. DARPA Workshop on Geothermal Energy for Military Operations

    DTIC Science & Technology

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  20. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  1. On calculation of a steam-water flow in a geothermal well

    NASA Astrophysics Data System (ADS)

    Shulyupin, A. N.; Chermoshentseva, A. A.

    2013-08-01

    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  2. JEDI Geothermal Model | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Geothermal Model JEDI Geothermal Model The Jobs and Economic Development Impacts (JEDI) Geothermal Model allows users to estimate economic development impacts from geothermal projects and includes

  3. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson

    ERIC Educational Resources Information Center

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben

    2015-01-01

    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  4. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  5. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  6. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    USGS Publications Warehouse

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  7. Spectral Correlation of Thermal and Magnetotelluric Responses in a 2D Geothermal System

    NASA Astrophysics Data System (ADS)

    Pacheco, M. A.

    2008-05-01

    A methodology of thermal response observations at regional scale in geothermal systems was implemented using magnetotelluric(MT) data that was analyzed by spectral correlation of EM anomalies. Local favorability indices were obtained enhancing the anomalies of thermal flow and their corresponding magnetotelluric responses related to a common source. A C++ code was developed to compute magnetotelluric and thermal responses using finite differences of a geothermal field model. The problem of thermal convection was solved numerically using the approach of Boussinesq and temperature and thermal flow profiles are obtained, also is solved to the equations of electromagnetic induction 2D that govern the wave equation for the H-polarization case in a two-dimensional model of the system. This methodology is useful to find thermal anomalies in conductive or resistive structures of a geothermal system, which is directly associated with the litology of the model such as magmatic chamber, basement and hydrothermal reservoir.

  8. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  9. Development of the Vertical Electro Magnetic Profiling (VEMP) method

    NASA Astrophysics Data System (ADS)

    Miura, Yasuo; Osato, Kazumi; Takasugi, Shinji; Muraoka, Hirofumi; Yasukawa, Kasumi

    1996-09-01

    As a part of the "Deep-Seated Geothermal Resources Survey (DSGR)" project being undertaken by the New Energy and Industrial Technology Development Organization (NEDO), the "Vertical Electro Magnetic Profiling (VEMP)" method is being developed to accurately obtain deep resistivity structures. The VEMP method takes multi-frequency three-component magnetic field data in an open hole well using controlled source transmitters emitted at the surface (either loop or grounded-wire sources). Numerical simulations using EM3D have demonstrated that phase data of the VEMP method is not only very sensitive to the general resistivity structure, but will also indicate the presence of deeper anomalies. Forward modelling was used to determine the required transmitter moments for various grounded-wire and loop sources for a field test using the WD-1 well in the Kakkonda geothermal area. VEMP logging of the WD-1 well was carried out in May 1994 and the processed field data matches the computer simulations quite well.

  10. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  11. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields

    NASA Astrophysics Data System (ADS)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping

    2018-02-01

    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  12. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    PubMed

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  13. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  14. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  15. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  16. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.

  17. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology ismore » viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.« less

  18. New Zealand geothermal: Wairakei -- 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  19. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  20. Geothermal injection treatment: Process chemistry, field experiences, and design options

    NASA Astrophysics Data System (ADS)

    Kindle, C. H.; Mercer, B. W.; Elmore, R. P.; Blair, S. C.; Myers, D. A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2,600,000 1/h) of heat depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion, and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  1. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  2. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  3. Technologies for the exploration of highly mineralized geothermal resources

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  4. Use of high-resolution satellite images for detection of geological structures related to Central Andes geothermal field, Chile.

    NASA Astrophysics Data System (ADS)

    Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2014-12-01

    Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.

  5. Adding Impacts and Mitigation Measures to OpenEI's RAPID Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Erin

    The Open Energy Information platform hosts the Regulatory and Permitting Information Desktop (RAPID) Toolkit to provide renewable energy permitting information on federal and state regulatory processes. One of the RAPID Toolkit's functions is to help streamline the geothermal permitting processes outlined in the National Environmental Policy Act (NEPA). This is particularly important in the geothermal energy sector since each development phase requires separate land analysis to acquire exploration, well field drilling, and power plant construction permits. Using the Environmental Assessment documents included in RAPID's NEPA Database, the RAPID team identified 37 resource categories that a geothermal project may impact. Examplesmore » include impacts to geology and minerals, nearby endangered species, or water quality standards. To provide federal regulators, project developers, consultants, and the public with typical impacts and mitigation measures for geothermal projects, the RAPID team has provided overview webpages of each of these 37 resource categories with a sidebar query to reference related NEPA documents in the NEPA Database. This project is an expansion of a previous project that analyzed the time to complete NEPA environmental review for various geothermal activities. The NEPA review not only focused on geothermal projects within the Bureau of Land Management and U.S. Forest Service managed lands, but also projects funded by the Department of Energy. Timeline barriers found were: extensive public comments and involvement; content overlap in NEPA documents, and discovery of impacted resources such as endangered species or cultural sites.« less

  6. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)

  7. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  8. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  9. Open Questions on the Origin of Life at Anoxic Geothermal Fields

    PubMed Central

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2014-01-01

    We have recently reconstructed the ‘hatcheries’ of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al.: Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 2012, 109:E821–830). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis as a tool, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy. PMID:23132762

  10. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan.more » The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The New Zealand Geothermal Workshop took place on 29th-31st October 1979 at the University of Auckland. Over 100 participants were present (a list is included in this volume) with 6 overseas visitors, bring the number of countries represented (including the Institute's Fellows) to 14. Forty papers were presented over the three days of the meeting, together with 23 poster papers presented by the students of the Institute. This second Proceedings volume has been prepared as a supplement to the volume of conference papers distributed at the meeting, and was produced subsequent to the Workshop. The fist section of this volumemore » includes additional papers presented at the meeting but not then available in printed form. The second part is a summary of the year's activities of the Geothermal Institute also presented in part at the meeting. These activities included some significant research contributions and original field investigations. Each fellow at the Institute was required as part of the course, to conduct an investigation and prepare a report which was presented at the Geothermal Workshop in a poster session. Abstracts of these project reports are included in this volume and five of the projects are reproduced in greater detail. Also included are outlines of the two original class projects conducted by the students and staff of the Institute, one a pre-feasibility study of the Ngawha Geothermal Field and the other an investigation of the Miranda Springs system. Finally, the lecture curriculum of the year's diploma course is presented in outline, together with the final examination papers. The two volumes of this document therefore include, as much as is possible within the restricted space, an overview of the Geothermal Institute's contribution to the development of geothermal energy together with a technical tribute to the many people involved in this very successful first year.« less

  12. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: GROUND WATER MONITORING GUIDELINES FOR GEOTHERMAL DEVELOPMENT

    EPA Science Inventory

    This report discusses potential ground water pollution from geothermal resource development, conversion, and waste disposal, and proposes guidelines for developing a ground water monitoring plan for any such development. Geothermal processes, borehole logging, and injection well ...

  13. Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016

    DOE Data Explorer

    Michelle Robertson

    2016-06-01

    List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.

  14. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  15. Montana geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkby, J.; Brown, K.; Chapman, M.

    1979-06-01

    Area development plans were prepared which describe geothermal resources and their potential use on a county or multicounty basis. Development plans for two areas are presented. Cost analyses show that the proximity of the geothermal resource to the end user is the most important criterion in geothermal energy development. Thirteen tentative site-specific plans are being revised. The analysis of institutional factors affecting geothermal development, the outreach, and the state geothermal are discussed briefly. (MHR)

  16. Deep geothermal resources in the Yangbajing Field, Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Ping; Jin Jian; Duo Ji

    1997-12-31

    Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less

  17. Simple interpretations of chemical transients in multi-feed, two-phase geothermal wells; Examples from Philippine Geothermal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruaya, J.R.; Solis, R.P.; Solana, R.R.

    1991-01-01

    This paper reports that the main process responsible for the extreme variations in chloride concentrations in the water discharged by selected multi-feed, two-phase geothermal wells in the Philippines is steam addition brought about by fluid flashing in the formation or by a shallow and distinct steam zone. Correlation of enthalpy with chloride data over a span of seven years for well 106, Tongonan field, revealed the entry of reservoir fluid from the hotter portion of the field as the well responded to exploitation. Using a plot of discharge enthalpy versus total chloride, the deep chloride near well OP-3D which ismore » drilled at the periphery of the Bacon-Manito field, has been determined at about 8700 mg/k. This is somewhat higher than the inferred chloride level of 7000 mg/kg in the postulated main geothermal reservoir. The competing effects of returns of reinjected water and flashing in the formation on the observed chloride concentrations in the discharge water of well PN-20D, Palinpinon field, have been segregated using the technique described above.« less

  18. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying onmore » natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.« less

  19. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  20. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    PubMed

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  1. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical exclusions coupled with the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices - could result in deployment of an additional 2,529 MW of geothermal capacity by 2030 and 6,917 MW of geothermal capacity by 2050 - an improvement of 116% when compared to the business as usual scenario. These results suggest that reducing development timelines could be a large driver in the deployment of geothermal resources.« less

  2. 75 FR 29361 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Competitive Geothermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ...In compliance with the National Environmental Policy Act of 1969 (NEPA), as amended, and the Federal Land Policy and Management Act of 1976 (FLPMA), as amended, the Bureau of Land Management (BLM) Gunnison Field Office, Gunnison, Colorado intends to prepare an Environmental Assessment (EA) to consider whether, and under what conditions, to issue geothermal leases under pending nominations, which may include an amendment to the Gunnison Resource Area Approved Resource Management Plan (RMP) of February 1993, as amended by the RMP Amendments for Geothermal Leasing in the Western United States (2008). While the area nominated for geothermal leasing is allocated as open to consideration for geothermal leasing under the amended Plan, and the proposed level of development contemplated in the amended Plan will not be exceeded by issuance of the proposed leases, the Reasonably Foreseeable Development scenario for the resource area has been refined and updated since that time, and additional stipulations to protect other resources and uses may be developed through this process and adopted into the Plan. The BLM proposes to amend the existing Gunnison Resource Area RMP using the NEPA analysis to support its decision. Review of the RMP is necessary due to recently updated information regarding the presence of Gunnison sage-grouse and Canada lynx habitat that was not analyzed in the existing RMP. The BLM, by this notice, is announcing the beginning of the scoping process to solicit public comments and identify issues.

  3. Characterising the Architecture of New Zealand's Geothermal Structural Fluid Flow Networks Using Borehole Images

    NASA Astrophysics Data System (ADS)

    McNamara, David; Milicich, Sarah; Massiot, Cécile

    2017-04-01

    Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.

  4. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  5. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  6. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  7. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    USGS Publications Warehouse

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a few days and are localized near the MCF system.

  8. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.

  9. Economic impact of corrosion and scaling problems in geothermal energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon, D.W.

    Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly solublemore » in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report which appears here, was done on AEC Special Studies Funds.« less

  10. Mushroom growing project at the Los Humeros, Mexico geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. Themore » mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.« less

  11. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, T HSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H 2-H 2S (HSH) gas equilibria reactions. A correction is made for H 2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H 2S after steam loss.

  12. Review of progress in understanding the fluid geochemistry of the Cerro Prieto Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.

    1982-08-10

    Fluid geochemistry has played a major role in the authors present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts, and gases, original subsurface temperature and fluid flow, fluid-production mechanims, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretation for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field.

  13. 43 CFR 3270.10 - What types of geothermal operations are governed by these utilization regulations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of geothermal resources. This includes: (1) Electrical generation facilities; (2) Direct use facilities; (3) Related utilization facility operations; (4) Actual and allocated well field production and injection; and (5) Related well field operations. (b) The utilization regulations in subparts 3270 through...

  14. Conductance Steamflow relationship

    DOE Data Explorer

    Whitney Trainor-Guitton

    2015-04-01

    These histograms represent our calibration of conductance of a volcanic geothermal field (with a clay cap) and the observed steam flow rates. See the following paper for further description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining new drilling locations. SEG Abstracts 2015.

  15. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.

  16. Geothermal power development in Hawaii. Volume 1. Review and analysis

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  17. Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, Alex; Young, Katherine R; Dobson, Patrick F.

    This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less

  18. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.

  19. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less

  20. The Geothermal Potential, Current and Opportunity in Taiwan

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base-load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.

  1. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer

    Dobson, Patrick

    2013-02-11

    Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  2. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    NASA Astrophysics Data System (ADS)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  3. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less

  4. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  5. {open_quotes}Full steam ahead{close_quotes} (a historical review of geothermal power development in the Philippines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazo, F.M.

    1997-12-31

    The Philippine geothermal energy development is now considered in a state of maturity. After more than 20 years of geothermal experience, the total geothermal installed capacity in the Philippines reached 1,455 MW (1996) or about 12% of the total installed power plant capacity. This also enabled the Philippines to become the second largest producer of geothermal energy in the world. The country`s track record in harnessing geothermal energy is considered a revelation, as it continues with its vision of {open_quotes}full steam ahead{close_quotes}, originally conceived when commercial geothermal operation started in 1973. It is thus proper and timely to refer tomore » historical highlights and experiences in geothermal energy development for planning and implementation of the country`s geothermal energy program.« less

  6. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    USGS Publications Warehouse

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt at large spatial coverage from remote sensing and LSM data series, and provide an innovative framework for future improvements.

  7. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: geology of the Tigre Lagoon Field, Planulina Basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The geology and hydrology of the Tigre Lagoon Gas Field and the structural and depositional basin in which it occurs, as described, define a hydrodynamic system which has been in operation for millions of years. Fluid entrapment and geopressuring of the deposits has resulted in steepened geothermal gradients, accelerated maturation and thermal degradation (cracking) of fluid hydrocarbons, thermal diagenesis of certain clay minerals with release of much bound and intracrystalline water as free pore water, and a systematic fluid migration history controlled by the sand-bed aquifers in the basin, and by upward leakage at growth faults wherever fluid pressures approachedmore » or exceeded rock pressures. Observed geotemperature, geopressure, water salinity, and natural gas occurrence in the study area conform with the conceptual model developed.« less

  8. The Geysers-Clear Lake geothermal area, California - an updated geophysical perspective of heat sources

    USGS Publications Warehouse

    Stanley, W.D.; Blakely, R.J.

    1995-01-01

    The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors

  9. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    USGS Publications Warehouse

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  10. Discriminating Characteristics of Tectonic and Human-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2015-12-01

    We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of "end-member" areas known to be dominated by human-induced earthquakes (the Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jacinto fault zone in southern California and Coso region excluding the Coso geothermal field in eastern central California) reveals several distinguishing characteristics. Induced seismicity is shown to have (i) higher rate of background events (both absolute and relative to the total rate), (ii) faster temporal offspring decay, (iii) higher intensity of repeating events, (iv) larger proportion of small clusters, and (v) larger spatial separation between parent and offspring, compared to regular tectonic activity. These differences also successfully discriminate seismicity within the Coso and Salton Sea geothermal fields in California before and after the expansion of geothermal production during the 1980s.

  11. Evaluating the Effect from Constructing Binary Geothermal Power Units Based on Spent Petroleum and Gas Boreholes in the South Regions of Russia

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2018-02-01

    The article substantiates the possibility of efficiently harnessing the geothermal resources available in the North Caucasian region through constructing binary geothermal power plants (GeoTPPs) using idle petroleum and gas wells. The power capacities of GeoTPPs are evaluated, and the basic characteristics of these power plants in case of constructing them in the promising areas are determined. The overall useful GeoTPP capacity equal to approximately 330 MW can be obtained from using the entire fleet of idle wells available in these areas. Diagrams confirming the possibility of reaching the optimal flowrate of geothermal heat carrier circulating in the geothermal circulation system loop are presented. This flowrate corresponds to a binary GeoTPP's maximal useful power output. The article shows, taking the Ternair geothermal field as an example, that it is inefficient to use medium-enthalpy thermal waters for generating energy at a binary GeoTPP involving reinjection of a spent heat carrier. It is shown that good prospects can be expected from applying a hybrid geothermal and combined-cycle technology, by means of which it is possible to use lowenthalpy (80-100°C) thermal waters for generating electricity in a highly efficient manner. In accordance with such technology, geothermal heat is used in the binary GeoTPP cycle for heating low-boiling working fluid to its evaporation temperature. The working fluid is evaporated and superheated by using the heat of exhaust gases from a gas turbine power unit. Owing to combined use of the thermal water heat potential and the heat of exhaust gases from a gas turbine power plant in a hybrid process system, it becomes possible to obtain high power performance indicators of hybrid geothermal and combined-cycle power plants. This conclusion is confirmed by the results from numerical evaluations carried out as applied to the Ternair geothermal field. With the fully harnessed resource potential of the Ternair field, the total capacity of hybrid geothermal and combined-cycle power plants may reach 60 MW, a level that would make it possible to relieve a significant part of energy, environmental, economic, and social problems faced by the city of Makhachkala.

  12. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill atmore » the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.« less

  13. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    NASA Astrophysics Data System (ADS)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  14. Thermal structure of Sikhote Alin and adjacent areas based on spectral analysis of the anomalous magnetic field

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Nosyrev, M. Yu.; Shevchenko, B. F.; Gilmanova, G. Z.

    2017-11-01

    The depth of the base of the magnetoactive layer and the geothermal gradient in the Sikhote Alin crust are estimated based on a method determining the Curie depth point of magnetoactive masses by using spectral analysis of the anomalous magnetic field. A detailed map of the geothermal gradient is constructed for the first time for the Sikhote Alin and adjacent areas of the Central Asian belt. Analysis of this map shows that the zones with a higher geothermal gradient geographically fit the areas with a higher level of seismicity.

  15. Twentieth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technicalmore » sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager« less

  16. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.

  17. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P.

    The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperaturemore » field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source, while As associated with bottom sediment travels {approx}3 km farther.« less

  18. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.

  19. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    NASA Astrophysics Data System (ADS)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the occurrence of hydrothermal fluids is controlled by fault-induced secondary permeability. The resurgence of the caldera floor could be induced by an inferred magmatic intrusion, representing the heat source of the geothermal system and feeding the simultaneous monogenetic volcanic activity around the deforming area. The operation of the geothermal field and the plans for further exploration should focus on, both, the active resurgence fault system and the new endogenous thermal anomalies mapped outside the known boundaries of the geothermal field.

  20. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  1. Configuration of the mudstones, gray- and coffee-colored shale lithologic units, zones of silica and epidote, and their relation to the tectonics of the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobo R, J.M.

    1981-01-01

    Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.

  2. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  3. Value of Information Evaluation using Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainor-Guitton, W.

    2015-06-15

    Value of information (VOI) provides the ability to identify and prioritize useful information gathering for a geothermal prospect, either hydrothermal or for enhanced geothermal systems. Useful information provides a value greater than the cost of the information; wasteful information costs more than the expected value of the information. In this project we applied and refined VOI methodologies on selected geothermal prospects.

  4. 76 FR 33270 - Cancellation of the Notice of Intent To Prepare a Programmatic Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... scale and stage of geothermal energy development at Superstition Mountain on Naval Air Facility El... geothermal energy program needs at Naval Air Facility El Centro. Should geothermal development be indicated... Programmatic Environmental Impact Statement for the Proposed Geothermal Development Program, Naval Air Facility...

  5. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  6. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallan, R; Wilt, M; Kirkendall, B

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less

  7. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    NASA Astrophysics Data System (ADS)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.

  8. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.

  9. Investigation on effective promotion of geothermal energy development

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.

  10. Integration of Full Tensor Gravity and Z-Axis Tipper Electromagnetic Passive Low Frequency EM Instruments for Simultaneous Data Acquisition - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieberg, Scott

    Ground gravity is a common and useful tool for geothermal exploration. Gravity surveys map density changes in the subsurface that may be caused by tectonic deformation such as faulting, fracturing, plutonism, volcanism, hydrothermal alteration, etc. Full Tensor Gravity Gradient (FTG) data has been used for over a decade in both petroleum and mining exploration to map changes in density associated with geologic structure. Measuring the gravity gradient, rather than the gravity field, provides significantly higher resolution data. Modeling studies have shown FTG data to be a viable tool for geothermal exploration, but no FTG data had been acquired for geothermalmore » applications to date. Electromagnetic methods have been used for geothermal exploration for some time. The Z-Axis Tipper Electromagnetic (ZTEM) was a newer technology that had found success in mapping deep conductivity changes for mining applications. ZTEM had also been used in limited tests for geothermal exploration. This newer technology provided the ability to cost effectively map large areas whilst detailing the electrical properties of the geological structures at depths. The ZTEM is passive and it uses naturally occurring audio frequency magnetic (AFMAG) signals as the electromagnetic triggering source. These geophysical methods were to be tested over a known geothermal site to determine whether or not the data provided the information required for accurately interpreting the subsurface geologic structure associated with a geothermal deposit. After successful acquisition and analysis of the known source area, an additional survey of a “greenfield” area was to be completed. The final step was to develop a combined interpretation model and determine if the combination produced a higher confident geophysical model compared to models developed using each of the technologies individually.« less

  11. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.« less

  12. Geothermal Development and the Use of Categorical Exclusions (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.« less

  13. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy in remote sensing data sets. Mapped by depth, we identified narrow zones of intense alteration that mark fluid circulation, and overall changes in metamorphic grade facies through clay type. Steamboat Hills is more highly altered than Hawthorne, thus the alteration assemblages reflect the pH and temperature differences.

  14. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservationmore » planning efforts, particularly at the Salton Sea.« less

  15. Geothermal energy abstract sets. Special report No. 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  16. NGA Industry Critique of the Exploration Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovanetti, J.L.

    1992-03-24

    The author critiques the Exploration component of the U.S. Department of Energy (DOE) Geothermal Program Review X. The comments focus principally on the hydrothermal portion of the DOE program, but he also makes some commentary on the Long Valley Exploratory Well and Geopressured-Geothermal components of the program, as well as some general comments. Before I do that, I would like to review the current state of geothermal exploration in the United States. According to Koenig (1989, 1990) who critiqued the DOE Geothermal Program in those years, geothermal exploration in the western U.S. has been conducted in virtually all of themore » apparent geothermal resource areas. Many of these areas which were under exploration in the 1960s and 1970s, and were explored in part under the U.S. DOE Industry Coupled Program have progressed to commercial status in the 80s. The DOE March (1992) Draft Multi-Year Program Plan for FY 1993-1997 states that 8 out of the 14 geothermal resource areas explored under this Industry Coupled Program in the late 1970s are currently under production. I do not think we will find anyone in this room, in the geothermal industry, or in the United States that will argue with the clear and outstanding success of that government program. When the prices of oil dropped in the 1980s, many geothermal operators left the industry, and with the dramatic decrease in activity, many of the service companies went by the wayside also. By and large, the domestic geothermal industry today is emaciated. As a result of the capital intensive nature of geothermal development, the historical long lead times to go from exploration to production, the highly entrepreneurial nature of the industry, and the lack of an economic market, virtually no new exploration has been conducted in the U.S. in about 10 years. The consequence of this lack of activity is an almost nonexistent geothermal reserve base, outside of known producing fields and their immediate surrounds. The U.S. DOE Deep Thermal Gradient Drilling Program in the Cascade Range is a notable exception to this stagnant condition. Like it's predecessor, the industry coupled program, the Thermal Gradient Drilling Program identified at least, one potentially viable geothermal resource: Newberry Volcano.« less

  17. The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.

    2016-12-01

    We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.

  18. Production data from five major geothermal fields in Nevada analysed using a physiostatistical algorithm developed for oil and gas: temperature decline forecasts and type curves

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Golubkova, A.; Eklund, C.

    2015-12-01

    Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.

  19. Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimac, J.; Goff, F.; Hearn, B.C. Jr.

    1992-01-01

    The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in themore » region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.« less

  20. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  1. Geothermal Data Collection and Interpretation in the State of Alabama: Early Results from the ARRA Geothermal Energy Initiative

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.

    2011-12-01

    The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.

  2. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  3. Hot Dry Rock; Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depthmore » originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005]« less

  4. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  5. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  6. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE PAGES

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas; ...

    2017-12-01

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  7. Geothermal Energy Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th« less

  8. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    NASA Astrophysics Data System (ADS)

    Semedi, Jarot M.; Willemen, Louise; Nurlambang, Triarko; van der Meer, Freek; Koestoer, Raldi H.

    2017-12-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic values, energy supply security, and the conservation of the environment. This has led to the prioritization of renewable energy sources. Geothermal energy a renewable energy source that produces low carbon emissions and is widely available in Indonesia due to the country’s location in the “volcanic arc”. The development of geothermal energy faces several problems related to its potential locations in Indonesia. The potential sites for geothermal energy are mostly located in the volcanic landscapes that have a high hazard risk and are often designated protected areas. Local community low knowledge of geothermal use also a challenge for geothermal development where sometimes strong local culture stand in the way. Each phase of geothermal energy development (exploration, construction, operation and maintenance, and decommissioning) will have an impact on the landscape and everyone living in it. Meanwhile, natural and other human-induced drivers will keep landscapes and environments changing. This conference paper addresses the development of an integrated assessment to spatially measure the impact of geothermal energy development phases on ecosystem services. Listing the effects on the ecosystem services induced by each geothermal development phases and estimating the spatial impact using Geographic Information System (GIS) will result in an overview on where and how much each geothermal development phase affects the ecosystem and how this information could be included to improve national spatial planning.

  9. Geysers advanced direct contact condenser research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less

  10. Federal Geothermal Research Program Update Fiscal Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less

  11. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  12. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-21

    This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid

  13. Characterization of Hydrologic and Thermal Properties at Brady Geothermal Field, NV

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Cardiff, M. A.; Lim, D.; Coleman, T.; Wang, H. F.; Feigl, K. L.

    2017-12-01

    Understanding and predicting the temperature evolution of geothermal reservoirs is a primary focus for geothermal power plant operators ensuring continued financial sustainability of the resource. Characterization of reservoir properties - such as thermal diffusivity and hydraulic conductivity - facilitates modeling efforts to develop a better understanding of temperature evolution. As part of the integrated "PoroTomo" experiment, borehole pressure measurements were collected in three monitoring wells of various depths under varying operational conditions at the Brady Geothermal Field near Reno, NV. During normal operational conditions, a vertical profile of borehole temperature to 330 m depth was collected using distributed temperature sensing (DTS) for a period of 5 days. Borehole pressure data indicates 2D flow and shows rapid responses to changes in pumping /injection rates, likely indicating fault-dominated flow. The temperature data show that borehole temperature recovery following cold water slug injection is variable with depth. Late time vertical temperature profiles show the borehole following a shallow geotherm to a depth of approximately 275 meters, below which the temperature declines until a depth of approximately 320 meters, with a stable zone of cold water forming below this, possibly indicating production-related thermal drawdown. A validated heat transfer model is used in conjunction with the temperature data to determine depth-dependent reservoir thermal properties. Hydraulic reservoir properties are determined through inversion of the collected pressure data using MODFLOW. These estimated thermal and hydraulic properties are synthesized with existing structural and stratigraphic datasets at Brady. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  14. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  15. Brady's Geothermal Field Nodal Seismometer Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC

  16. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  17. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    NASA Astrophysics Data System (ADS)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks consist of a thick (>1500 m) package of fine-grained altered basalts and interbedded sedimentary rocks. Within this package, in the central portion of the well field, a ~300-500 m thick marker of laminated siltstones + coarse-grained, porphyritic plagioclase basalt has been identified in cuttings. Variations in thickness within the marker suggest older faults with significant throw were primarily northwest striking. Large local variations in the thickness of the 5.11 Ma trachytic basalt body support this interpretation and indicate NW-striking faulting likely continued through ~5 Ma B.P. However, all evidence indicates near-surface (<1000 m depth) faults at the Soda Lake geothermal field strike NNE, perpendicular to the contemporary extension direction. Structural interpretation is in progress for the Soda Lake geothermal field. In conjunction with recently obtained 3D seismic and microgravity surveys, stratigraphic information obtained from cuttings broadly constrains the structural setting. These data may permit determination of the specific structural host environment and should allow for assessment of how the prevailing faults at the site correlate with regional scale trends.

  18. Crossing the Barriers: An Analysis of Market Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R; Levine, Aaron L; Cook, Jeffrey J

    Developers have identified many non-technical barriers to geothermal power development, including market barriers. Understanding the challenges to market deployment of geothermal power is important since obtaining power purchase agreements is often cited as one of the largest barriers to geothermal development. This paper discusses the impacts to deployment caused by market challenges, including market demand, price of electricity, policies and incentives.

  19. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.

    2017-12-01

    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water upflow is assumed to be the main driven factors that explain the occurrence of hot spring in regions with normal to slightly abnormal geothermal gradient. Actual thermal output of the captured fluid in the São Pedro do Sul Hydrothermal area is not fully used, namely in summer times. Thus the main focus for the concessionary includes the saturation of the actual Termas heat power capacity either in the SPA utilization and expansion for newer users in the district heating system. Further studies must be conducted in order to ascertain for possible source deep exploitation to refine quantitatively the São Pedro do Sul reservoir conceptual model in order to make sustainable wise management of this important natural resource, critical for the São Pedro do Sul municipality development and also contributing for the Portuguese sustainable economic growth. In this paper we give new insights for the knowledge of São Pedro do Sul Hydromineral and Geothermal Field, namely the geothermal reservoir, the concession hot water exploitation and future perspectives for upcoming sustainable developments of this valuable natural resource.

  20. Geothermal tomorrow 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  1. Session: Program Review X Wrap-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-01-01

    This wrap-up session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of Closing Remarks by Roland R. Kessler and six NGA Industry Critique Panel presentations: ''Summary of Comments on DOE-Industry Cooperation by Geothermal Industry Panel'' by James B. Koenig, GeothermEx, Inc.; ''NGA Industry Critique of the Exploration Component'' by Joe L. Iovenitti, Weiss Associates; ''Critique of Drilling Research'' by Jerry Hamblin, UNOCAL Geothermal; ''Critique Panel Comments on Reservoir Engineering, DOE Geothermal Technology Development'' by Dennis Kaspereit, California Energy Company, Inc.; ''DOE Geothermal Program Review - Critique on Production'' by Douglas B. Jung, Two-Phase Engineeringmore » and Research; ''Comments on the DOE Hydrothermal Energy Conversion R&D Program'' by David L. Mendive, Geothermal Development Associates.« less

  2. Are Geotehrmal Reservoirs Stressed Out?

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.

  3. 77 FR 68813 - Notice of Availability of the Draft Environmental Impact Statement and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... geothermal unit, which is currently providing energy sufficient to power three operating geothermal plants... the Casa Diablo IV Geothermal Development Project, CA AGENCY: Bureau of Land Management, Interior... Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development...

  4. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  5. Analysis and application of impedance polar diagram and zstrike rose diagram of magnetotellurics data in southern part of the Wayang Windu geothermal field

    NASA Astrophysics Data System (ADS)

    Rohayat, O. R.; Wicaksono, R. A.; Daud, Y.

    2018-03-01

    In this study, we determined the main direction of geoelectric strike in the southern part of the Wayang Windu geothermal field using magnetotellurics (MT) data. The strike direction was obtained by analyzing data using impedance polar and Zstrike rose diagram. We investigated 51 MT data at different sites of the southern part of the Wayang Windu geothermal field. Determination of geoelectric strike direction is important since the strike is the rotation references in MT data processing. Our findings had pointed out that the geoelectric strike direction in this study area is in accordance with the direction of geological structure and has a good correlation with structures delineated from 3D MT inversion model.

  6. Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy

    USGS Publications Warehouse

    Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.

    1985-01-01

    A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.

  7. Federal Geothermal Research Program Update Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  8. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Yarom; Anovitz, Lawrence; An, Ke

    2013-01-01

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had bothmore » the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.« less

  9. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  10. Final Report for Grant R021597

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konesky, Peter

    2012-12-07

    The program was under the supervision of the Nevada State Office of Energy (NSOE) with sub-contractors being the Nevada Division of Minerals (NDOM), the Great Basin Center for Geothermal Energy (GBCGE) and the Renewable Energy and Energy Conservation Taskforce (REECT). The NDOM grant was for $40,560 to develop a trade mission for Nevada Native American tribes. The trade mission was a two day workshop and field trip held on October 11 & 12, 2005 with 44 in attendance representing 12 tribes. Per-diem allowances were made so the tribal groups could attend the workshop. The format followed similar trade missions donemore » for Alaska, Idaho and Colorado. In addition to the trade mission, funding was used to allow 3 members of the geothermal working group to attend the Geothermal Research Council annual meeting and the Geopowering the West states meeting that followed.« less

  11. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  12. "Assistance to States on Geothermal Energy"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines« less

  13. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...

  14. Geothermal Exploration Case Studies on OpenEI (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developersmore » central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.« less

  15. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  16. DOE's Geothermal Program still in game

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.

  17. Hydrogeologic investigations of the southern Española Basin, NM

    NASA Astrophysics Data System (ADS)

    Earney, T.; Christensen, D.; Horton, A.; Folsom, M.; Kelley, S.

    2017-12-01

    For the past 5 years, students participating in the Summer of Applied Geophysical Experience (SAGE) have been studying groundwater conditions in the southern Española Basin, in northern New Mexico, with a goal of developing a better understanding of both regional and local scale geothermal anomalies. A regional geothermal gradient map constructed over the study area indicates that there are two regions with anomalously high geothermal gradients, one associated with the Buckman municipal wellfield (BMWF) and the other in the vicinity of the Cerros del Rio volcanic field. Overproduction at the BMWF was responsible for a 100 meter drop in groundwater levels between 1989 and 2003, leading to a significant amount of land subsidence. Repeat measurements of thermal profiles for several monitoring wells at Buckman reveal incremental warming over a 5 year period from 2013 to 2017. Additionally, land elevation recovery was documented between 2007 and 2010 using InSAR (Interferometric Synthetic Aperture Radar). These observations are inferred to be a response to decreased production rates in nearby wells Buckman 1 and 8. This suggests that the groundwater flow system at Buckman is still in a state of recovery from the years of overproduction. The proximity of the well field to a small mapped fault near Buckman 8 potentially explains why geothermal gradients are anomalously high at the BMWF. Monitoring well SF-2b received special attention in an attempt to explain a localized thermal anomaly between 200 and 230 meters down hole. Explanations including geology (faults and stratigraphy) and interference from nearby production wells do not seem to account for the anomaly. The anomaly is therefore interpreted as the result of a damaged casing. Elevated geothermal anomalies at the Cerros del Rio volcanic field could be explained by structural and textural changes to groundwater flow units that occurred when aligned plug and dikes feeding volcanic vents intruded along faults. A conceptual model illustrates that as basaltic dikes intruded rift fill sediments in the Española Basin, nearby sediments would be altered, thereby reducing pore space and permeability of the aquifers, hindering lateral flow and creating a forced convection system by which warm fluids can migrate towards the surface, thus increasing the geothermal gradient.

  18. Geothermal and volcanism in west Java

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  19. Proceedings of second geopressured geothermal energy conference, Austin, Texas, February 23--25, 1976. Volume V. Legal, institutional, and environmental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.

    Three separate abstracts were prepared for Volume V of the Proceedings of the Conference. Sections are entitled: Legal Issues in the Development of Geopressured--Geothermal Resources of Texas and Louisiana Gulf Coast; The Development of Geothermal Energy in the Gulf Coast; Socio-economic, Demographic, and Political Considerations; and Geothermal Resources of the Texas Gulf Coast--Environmental Concerns arising from the Production and Disposal of Geothermal waters. (MCW)

  20. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowda, Varun; Hogue, Michael

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less

  1. Geothermal direct use in the United States update: 1990-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.J.; Lund, J.W.; Culver, G.G.

    1995-02-01

    Geothermal energy is estimated to currently supply approximately 13,885 TJ/yr (13,180 x 10{sup 9} BTU/yr) of heat energy through direct heat applications in the United States. Table 1 summarizes the U.S. geothermal direct heat uses. It should be noted that Table 1 does not contain enhanced oil recovery, which was included in the 1990 update report. In the oil fields of the upper midwest (Montana, North Dakota and Wyoming), thermal waters are not being injected at higher temperatures than the oil producing zones. This means that there is no benefit to reducing oil viscosity, which would have increased production rates;more » therefore, resulting in this use being deleted from direct uses in the table. In the 1990 report two geothermal district heating systems were listed as under construction, Mammoth Lakes and Bridgeport, these systems have not been built although exploratory wells have been drilled. They are not included in the current summary of direct uses. There have been no new geothermal district heating systems started; however, San Bernardino and Klamath Falls have expanded their systems. Annual energy use of direct heat applications reported for both the 1990 and 1994 updates are shown. All of the categories experienced some increase in use, however the largest growth has been in geothermal heat pumps. From 1985 to 1990 the highest growth rate in geothermal heat pumps occurred, then tapered off some from 1990 to 1994. In the other five categories there has been a steady growth with the largest occurring in space heating, greenhouses and industrial plants. Greenhouse development has been significant in New Mexico and Utah and a new onion and garlic dehydration plant was built in Nevada.« less

  2. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  3. Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water.

    PubMed

    Okazaki, Takuya; Orii, Tatsuya; Ueda, Akira; Ozawa, Akiko; Kuramitz, Hideki

    2017-06-13

    We present a novel fiber optic sensor for real-time sensing of silica scale formation in geothermal water. The sensor is fabricated by removing the cladding of a multimode fiber to expose the core to detect the scale-formation-induced refractive index change. A simple experimental setup was constructed to measure the transmittance response using white light as a source and a spectroscopy detector. A field test was performed on geothermal water containing 980 mg/L dissolved silica at 93 °C in Sumikawa Geothermal Power Plant, Japan. The transmittance response of the fiber sensor decreased due to the formation of silica scale on the fiber core from geothermal water. An application of this sensor in the evaluation of scale inhibitors was demonstrated. In geothermal water containing a pH modifier, the change of transmittance response decreased with pH decrease. The effectiveness of a polyelectrolyte inhibitor in prevention of silica scale formation was easily detectable using the fiber sensor in geothermal water.

  4. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  5. A multidisciplinary approach for the characterisation of fault zones in geothermal areas in central Mexico

    NASA Astrophysics Data System (ADS)

    Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Vinciguerra, Sergio

    2017-04-01

    There are more than 500 geothermal areas in the Trans-Mexican Volcanic Belt of central Mexico. Of these, two are presently object of a transnational project between EU and Mexico (GEMex): Acoculco, where there is already a commercial exploitation, and Los Humeros, at present not developed yet. The GEMex project aims to improve the resource assessment and the reservoir characterization using novel geophysical and geological methods and interpretations. One of the main issues controlling the geothermal system is the presence of pervasive fracture systems affecting the carbonatic basements underlying the volcanic complex (basalts and andesites). We propose the characterization of rock masses (rock and fractures) using a multiscale analysis, from the field to the outcrop up to the micro scale integrating a number of techniques. In detail, the University of Torino unit will take care of: 1) Technical field studies aimed to the characterization of the mechanical transitions throughout brittle deformation zones, from the intact rock, to the damage zone to the shear/slip zone; moreover, key geophysical parameters (seismic and electrical properties) will be measured; 2) Petrophysical and minero-petrographic detailed studies on representative samples will be performed at room temperature; verification of the mechanical properties of the samples subjected to cycles of heating up to the temperatures of the reservoir (> 400 °C) will be done; measurements of the geophysical properties of the samples will be done in comparison with the measures in place. 3) Numerical modeling to estimate the petrophysical, geophysical and geomechanical properties of the rock mass under the P and T conditions of the reservoir (i.e., using Comsol, VGeST, UDEC, 3DEC, ...). Detailed geological field studies and photogrammetry/laser scanner imaging of studied outcrops are supposed to be available soon: multiscale analysis will benefis from these new data. Results will be shared between EU and Mexican partners to improve the general model of these two geothermal field.

  6. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  7. Geothermal FIT Design: International Experience and U.S. Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickerson, W.; Gifford, J.; Grace, R.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less

  8. Review of potential EGS sites and possible EGS demonstration scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1999-09-01

    Review of potential sites for Enhanced Geothermal Systems (EGS) and development of reference scenarios for EGS demonstration projects are two sub-tasks included in the FY 1999 EGS Research and Development (R&D) Management Task (DOE Task Order Number DE-AT07-99ID60365, included in the Appendix of this report). These sub-tasks are consistent with the EGS Strategic Plan, which includes milestones relating to EGS site selection (Milestone 4, to be completed in 2004) and development of a cost-shared, pilot-scale demonstration project (Milestone 5, to be completed in 2008). The purpose of the present work is to provide some reference points for discussing what typemore » of EGS projects might be undertaken, where they might be located, and what the associated benefits are likely to be. The review of potential EGS sites is presented in Chapter 2 of this report. It draws upon site-selection criteria (and potential project sites that were identified using those criteria) developed at a mini-workshop held at the April 1998 DOE Geothermal Program Review to discuss EGS R&D issues. The criteria and the sites were the focus of a paper presented at the 4th International Hot Dry Rock Forum in Strasbourg in September 1998 (Sass and Robertson-Tait, 1998). The selection criteria, project sites and possible EGS developments discussed in the workshop and paper are described in more detail herein. Input from geothermal operators is incorporated, and water availability and transmission-line access are emphasized. The reference scenarios for EGS demonstration projects are presented in Chapter 3. Three alternative scenarios are discussed: (1) a stand-alone demonstration plant in an area with no existing geothermal development; (2) a separate generating facility adjacent to an existing geothermal development; and (3) an EGS project that supplies an existing geothermal power plant with additional generating capacity. Furthermore, information potentially useful to DOE in framing solicitations and selecting projects for funding is discussed objectively. Although defined as separate sub-tasks, the EGS site review and reference scenarios are closely related. The incremental approach to EGS development that has recently been adopted could logically be expected to yield proposals for studies that lead up to and include production-enhancement experiments in producing geothermal fields in the very near future. However, the strategic plan clearly calls for the development of a more comprehensive demonstration project that can generate up to perhaps 10 MW (gross). It is anticipated that a series of small-scale experiments will define what realistically may be achieved in the near future, thus setting the stage for a successful pilot demonstration. This report continues the process of presenting information on EGS sites and experiments, and begins the process of defining what a demonstration project might be.« less

  9. Federal Geothermal Research Program Update Fiscal Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electricalmore » power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  10. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  11. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  12. Research and development of improved geothermal well logging techniques, tools and components (current projects, goals and status). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamers, M.D.

    One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.

  13. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  14. Performance analysis of mineral mapping method to delineate mineralization zones under tropical region

    NASA Astrophysics Data System (ADS)

    Wakila, M. H.; Saepuloh, A.; Heriawan, M. N.; Susanto, A.

    2016-09-01

    Geothermal explorations and productions are currently being intensively conducted at certain areas in Indonesia such as Wayang Windu Geothermal Field (WWGF) in West Java, Indonesia. The WWGF is located at wide area covering about 40 km2. An accurate method to map the distribution of heterogeneity minerals is necessary for wide areas such as WWGF. Mineral mapping is an important method in geothermal explorations to determine the distribution of minerals which indicate the surface manifestations of geothermal system. This study is aimed to determine the most precise and accurate methods for minerals mapping at geothermal field. Field measurements were performed to assess the accuracy of three proposed methods: 1) Minimum Noise Fraction (MNF), utilizing the linear transformation method to eliminate the correlation among the spectra bands and to reduce the noise in the data, 2) Pixel Purity Index (PPI), a designed method to find the most extreme spectrum pixels and their characteristics due to end-members mixing, 3) Spectral Angle Mapper (SAM), an image classification technique by measuring the spectral similarity between an unknown object with spectral reference in n- dimension. The output of those methods were mineral distribution occurrence. The performance of each mapping method was analyzed based on the ground truth data. Among the three proposed method, the SAM classification method is the most appropriate and accurate for mineral mapping related to spatial distribution of alteration minerals.

  15. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.

  16. The shallow seismic structure of the Larderello geothermal field (Italy) as seen from Receiver Function analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto

    2017-04-01

    The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.

  17. Protection policy for Hawaii's native wildlife during geothermal energy development

    NASA Astrophysics Data System (ADS)

    Hannah, Lee

    1986-09-01

    Hawaii possesses abundant geothermal resources and rare native wildlife. Geothermal energy development has not posed a threat to native wildlife in the past, but development potential has recently reached a level at which concern for native wildlife is warranted. Potential geothermal resource areas in Hawaii intersect important native forest and endangered species habitat. The ability of existing laws to constrain development in these areas is in question. State and federal endangered species and environmental reporting laws have little ability to constrain geothermal development on private land. Hawaii's Land Use Law had been viewed by conservationists as protecting natural areas important to native wildlife, but recent decisions of the state Land Board sharply challenge this view. While this dispute was being resolved in the courts, the state legislature passed the Geothermal Subzone Act of 1983. Wildlife value was assessed in the geothermal subzone designation process mandated by this act, but the subzones designated primarily reflected inappropriate developer influence. All areas in which there was developer interest received subzone designation, and no area in which there was no developer interest was subzoned. This overriding emphasis on developer interest violated the intent of the sub-zone act, and trivialized the importance of other assessment criteria, among them native wildlife values.

  18. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  19. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  20. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    NASA Astrophysics Data System (ADS)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  1. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  2. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer

    Richard Zehner

    2012-02-01

    These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  3. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: AN APPROACH TO GROUNDWATER IMPACTS FROM DEVELOPMENT, CONVERSION, AND WASTE DISPOSAL

    EPA Science Inventory

    Groundwater monitoring for the impacts of geothermal energy development, conversion and waste disposal is similar to groundwater monitoring for other purposes except that additional information is needed concerning the geothermal reservoir. The research described here developed a...

  4. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less

  5. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B; Faulds, James E

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that hasmore » a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.« less

  6. Assessing the Impact of the Installation of a Community-Scale Closed-Loop Ground-Source Geothermal System on Underlying Aquifers: Ball State University, Muncie, IN

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C.; Florea, L.; Dunn, M.; Samuelson, A. C.; Lowe, J.

    2013-12-01

    Ball State University (BSU), located within the city of Muncie, Indiana, began installing the nation's largest ground-source geothermal project in 2009. Currently, BSU is burning over 20,000 tons of coal annually to satisfy heating and cooling demands of the school and is one of the largest emitters of CO2, SO2 and mercury in the city of Muncie and surrounding Delaware County. The elimination of coal burning will reduce aerial pollution by an estimated 1400 tons of SO2 and 4 pounds of mercury annually, once the system is fully operational. Currently, the groundsource geothermal system is being installed in Phases. Phase 1 includes 1803 400-ft deep geothermal boreholes that were drilled in a 15x15 ft grid in two large fields (North and South) in the northern part of campus. Two geothermal exchange loops were installed in each borehole to add or remove heat from the ground. BSU students and faculty collected hydrogeologic and temperature data from a series of groundwater monitoring wells, beginning Summer 2010. The installation of the second phase in the southern part of campus has commenced.. Despite the rise in community-scale ground-source geothermal energy systems, there is very little empirical information on their effects upon the groundwater environment, or, vice versa, of the effects of the groundwater flow pattern on the geothermal field. Previous studies have triggered concern over the impact of large-scale geothermal systems where increases in groundwater temperatures were documented. We will demonstrate how, since BSU initiated Phase 1 in late November 2011 with cold-water circulation (adding heat to the ground), the temperature increased over 10 degrees Celsius in the center of the South Field, with temperatures rising in other surrounding monitoring wells depending on groundwater movement and their distance from the edge of the geothermal boreholes. The temperature increases are distinctively different in the upper highly hydraulically conductive aquifers (Quaternary till) and the underlying poorly conductive formations (Ordovician and Silurian limestone and shale). Maintaining a temperature differential between the exchange loops and the geologic substrate and/or groundwater is crucial to the long term efficiency of the system, and continued monitoring both of the hydrology and engineering aspects of the project will be necessary.

  7. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Science.gov Websites

    allow users to determine locations that are favorable to geothermal energy development. List of software Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to

  8. Geothermal Coproduction and Hybrid Systems | Geothermal Technologies | NREL

    Science.gov Websites

    systems. Geothermal and Oil and Gas NREL experts are working to find ways to effectively use renewable resources in combination with fossil energy. Geothermal and oil and gas hybrid systems make use of wells already drilled by oil and gas developers. Using coproduced geothermal fluids for power production from

  9. Report on a mission to the Philippines regarding the opportunities for private investment in geothermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal,more » oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs.« less

  10. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  11. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  12. Geothermal development in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less

  13. Development of Mine Explosion Ground Truth Smart Sensors

    DTIC Science & Technology

    2011-09-01

    interest. The two candidates are the GS11-D by Oyo Geospace that is used extensively in seismic monitoring of geothermal fields and the Sensor Nederland SM...Technologies 853 Figure 4. Our preferred sensors and processor for the GTMS. (a) Sensor Nederland SM-6 geophone with emplacement spike. (b

  14. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  15. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  16. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    NASA Astrophysics Data System (ADS)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  17. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    NASA Astrophysics Data System (ADS)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis. Results indicate that a sampling resolution of 10 μm is sufficient to resolve fracture morphology and mineral zonation (where multiple episodes of mineralization occurred), and enables relatively fast data acquisition (3 cm2 can be analyzed in approximately 3 hours). Finer resolutions (down to 2.5 μm) take significantly longer, but can be used to provide additional spatial detail in areas of interest after a low resolution (10 μm) scan. Use of XRD data in conjunction with QEMSCAN° data is sometimes needed to distinguish geothermal alteration minerals with similar chemical compositions (clay minerals, micas and chlorite), however overall the technique appears to have excellent potential for geothermal applications.

  18. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less

  19. World Geothermal Development: The Present Situation and Opportunities for the Future.

    ERIC Educational Resources Information Center

    Cataldi, Raffaele

    1987-01-01

    Claims that the exploration of geothermal energy has a somewhat marginal role to play today in the overall world energy budget. Discusses the applicability, however, of geothermal heat to some national and local energy developments. (TW)

  20. POLLUTION CONTROL GUIDANCE FOR GEOTHERMAL ENERGY DEVELOPMENT

    EPA Science Inventory

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pol...

  1. Brady's Geothermal Field Nodal Seismometer Active Source Data Sample

    DOE Data Explorer

    Kurt Feigl

    2016-03-25

    This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.

  2. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  3. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote somemore » relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.« less

  4. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in themore » study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.« less

  5. Snohomish County Public Utility District Geothermal Energy Exploration Study Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Adam; Collar, Craig W.

    2012-10-04

    Supported by funds from this award, the District thoroughly explored the feasibility of a hydrothermal geothermal development within its service territory. The District successfully planned and drilled six exploratory geothermal wells and added significantly to the knowledge of the geology of the area. The Straight Creek Fault region, which was the sole location that showed significant potential for hydrothermal development in the District's service territory, was determined not to be feasible for development. The District subsequently expanded its search for geothermal development locations to include all of Washington State. Mount Baker has been identified as the area of the statemore » with the greatest potential for geothermal development. Having gathered additional information about the Mount Baker region with support from this award, the District is actively pursuing exploration and development in the area.« less

  6. Geothermal Technologies News | Geothermal Technologies | NREL

    Science.gov Websites

    for this avid biker. The reason though is unusual. Passionate about geothermal energy research, he Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of

  7. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  8. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a variety of visualization software. Web services are ideal for the NGDS data for a number of reasons including that they preserve data ownership in that they are read only and new services can be deployed to meet new requirements without modifying existing applications.

  9. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual interpretation of the geological structures. The study shows that GIS and RS have great application potential in the geothermal exploration in volcanic areas and will promote the exploration of renewable energy resources of great potential.

  10. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  11. INEL Geothermal Environmental Program. 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  12. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  13. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  14. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Lee; Chickering, Cathy; Anderson, Arlene

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, themore » invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts (agencies, foundations, pri- vate sector), membership, fees for services (consulting, training, customization, ‘app’ development), repository services (data, services, apps, models, documents, multimedia), advertisements, fees for premier services or applications, subscriptions to value added services, licenses, contributions and donations, endow- ments, and sponsorships.« less

  15. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, Kim

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production.more » Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. Authors of this paper are Ryan Clark, Arizona Geological Survey (AZGS), Christoph Kuhmuench, Siemens Corporate Research, and Stephen Richard, AZGS.« less

  16. Geothermal Potential for China, Poland and Turkey with/Financing Workbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J G

    This collection of documents presents the results of assessments of the geothermal power potential in three countries: China, Poland, and Turkey. Also included is a Geothermal Financing Workbook, which is intended to provide a comprehensive package of information on financing, financing plans, financial analysis, and financial sources for smaller geothermal resource developers. All three countries are facing ever increasing demands for power in the coming decades, but each has some barriers to fully developing existing resources. For Poland and Turkey, it is important that legislation specific to geothermal resource development be enacted. For China, a crucial step is to developmore » more detailed and accurate estimates of resource potential. All three countries could benefit from the expertise of U.S. geothermal companies, and this collection of material provides crucial information for those interested companies.« less

  17. California energy flow in 1989

    NASA Astrophysics Data System (ADS)

    Borg, I. Y.; Briggs, C. K.

    1991-02-01

    California's energy use showed a modest increase (2.2 percent) in 1989 over 1988 which was in keeping with the steady increase in population that the state has experienced annually during the decade. All end-use sectors (residential, commercial, industrial, transportation, etc.) contributed to the growth. The larger demand was met by increased imports of all major fuels. Only electrical imports remained close to 1988 levels, in part due to increased output from Diablo Canyon nuclear plant whose performance exceeded expectations. California's per capita energy consumption has traditionally been below the national average due to the relatively benign climate associated with its centers of population. The largest single use for energy in the state was for transportation, which overtook industrial usage in the 60's. Use of highway fuels continued to grow and reached all time highs in 1989. Highway congestion, a major problem and concern in the state, is anticipated to grow as the number of licensed drivers increases; in 1989 the increase was 3.4 percent. Output from the The Geysers Geothermal fields, the largest in the world, continued to falter as the steam output fell. Nonetheless new resources at the Coso Geothermal Resource Area and at the Wendel Geothermal field came on line during the year, and other geothermal areas were under active development. Novel sources of renewable energy (solar, wind, etc.) grew; however, collectively they made only a small contribution to the overall energy supply. Cogenerated electricity sold to the utilities by small power producers inexplicably fell in 1989 although estimates of the total capacity available rose. Energy flow diagrams illustrate energy sources and energy consumption.

  18. Fracture propagation and fluid transport in palaeogeothermal fields and man-made reservoirs in limestone

    NASA Astrophysics Data System (ADS)

    Philipp, S. L.; Reyer, D.; Meier, S.

    2009-04-01

    Geothermal reservoirs are rock units from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In geothermal reservoirs in limestone (and similar in other rocks with low matrix permeability), fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites (the percolation threshold must be reached). In order to generate permeability in man-made reservoirs, interconnected fracture systems are formed either by creating hydraulic fractures or by massive hydraulic stimulation of the existing fracture system in the host rock. For effective stimulation, the geometry of the fracture system and the mechanical properties of the host rock (particularly rock stiffnesses and strengths) must be known. Here we present results of a study of fracture systems in rocks that could be used to host man-made geothermal reservoirs: the Muschelkalk (Middle Triassic) limestones in Germany. Studies of fracture systems in exposed palaeogeothermal fields can also help understand the permeability development in stimulated reservoirs. We therefore present data on the infrastructures of extinct fracture-controlled geothermal fields in fault zones in the Blue Lias (Lower Jurassic), Great Britain. In fault zones there are normally two main mechanical and hydrogeological units. The fault core, along which fault slip mostly occurs, consists mainly of breccia and other cataclastic rocks. The fault damage zone comprises numerous fractures of various sizes. During fault slip, the fault core may transport water (if its orientation is favourable to the hydraulic gradient in the area). In the damage zone, however, fluid transport through fracture networks depends particularly on the current local stress field. One reason for this is that fractures are sensitive to changes in the stress field and deform much more easily than circular pores. If the maximum horizontal compression is oriented perpendicular to the fault strike, its fractures (mainly in the damage zone) tend to be closed and lead less water than if the maximum horizontal compression is oriented parallel to the fault strike, in which case its fractures tend to open up and be favourable to fluid transport. In areas of potential geothermal reservoirs, fault zones must be studied, keeping in mind that the permeability structure of a fault zone depends partly on the mechanical units of the fault zone and partly on the local stress field. To explore stress fields affecting fracture propagation we have run numerical models using the finite-element and the boundary-element methods. We focus on the influence of changes in mechanical properties (particularly Young's modulus) between host rock layers in geothrmal reservoirs in limestone. The numerical models show that stresses commonly concentrate in stiff layers. Also, at the contacts between soft marl and stiffer limestone layers, the stress trajectories (directions of the principal stresses) may become rotated. Depending on the external loading conditions, certain layers may become stress barriers to fracture propagation. In a reservoir where most hydrofractures become stratabound (confined to individual layers), interconnected fracture systems are less likely to develop than in one with non-stratabound hydrofractures. Reservoirs with stratabound fractures may not reach the percolation threshold needed for significant permeability. We also used the field data to investigate the fracture-related permeability of fluid reservoirs in limestone with numerical models. We simulated different scenarios, in which potential fluid pathways were added successively (vertical extension fractures, inclined shear fractures and open layer contacts). Short and straight fluid pathways parallel to the flow direction lead to the highest permeabilities. The better the connectivity of the fracture system, the higher is the resulting permeability. Only in well-interconnected, continuous systems of fluid pathways there is a correlation between the apertures of the fractures and the permeability. Our results suggest that fluid transport along faults, and the propagation and aperture variation of hydrofractures, are important parameters in the permeability development of geothermal reservoirs. These studies provide a basis for models of fracture networks and fluid transport in future man-made reservoirs. We conclude that the likely permeability of a man-made geothermal reservoir can be inferred from field data, natural analogues, laboratory measurements, and numerical models.

  19. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer

    NASA Astrophysics Data System (ADS)

    Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo

    2018-01-01

    This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.

  20. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  1. Institutional and environmental problems in geothermal resource development

    NASA Technical Reports Server (NTRS)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  2. Realizing the geothermal electricity potential—water use and consequences

    NASA Astrophysics Data System (ADS)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  3. 25 CFR 212.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  4. 25 CFR 212.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  5. 25 CFR 211.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  6. 25 CFR 211.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  7. 76 FR 16806 - Notice of Intent To Prepare an Environmental Impact Statement and Environmental Impact Report for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... leases being developed are already part of a geothermal unit, which is currently producing energy... Proposed Casa Diablo IV Geothermal Development Project, Mammoth Lakes, Mono County, CA AGENCY: Bureau of... Report (EIR) to consider approval of the development of a proposed 33-megawatt (MW) geothermal power...

  8. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.

  9. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was conclude that the same hydrothermal fluid in geothermal system was reached to the surface and interacted with the surface rocks. Our conceptual geothermal model for Cappadocia Geothermal Province based on our geochemical and hydrogeochemical data in combination with geological and geophysical information suggest that the geothermal resources in this region are controlled by primary (active fault) and secondary (buried fault) tectonic belts. Further, our geochemical data indicate the Paleozoic-Mesozoic marble and gneiss being the reservoir rocks. Geogradient and impending heat fluxes to the surface with a possible crustal thinning, which was developed after regional tectonic activities during the Late Pliocene-Quaternary period, constitutes the heat sources. In addition, our study suggest that the Quaternary tuff and ignimbrites of Cappadocia Volcanics represent the seal rock of the geothermal system. In conclusion this study provide evidence for a significant geothermal potential in the Cappadocia region with well-defined seal rocks. However, further studies are needed to resolve the geothermal fluid source problem. Keywords: Cappadocia, geothermal systems, geochemistry, rare earth elements, hydrogeochemistry, hydrothermal alteration.

  10. Geothermal Energy Basics | NREL

    Science.gov Websites

    Geothermal Energy Basics Geothermal Energy Basics Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada

  11. Erkundung und Beweissicherung für eine geothermale Erschließung eines Alpinen Karstaquifers im Tuxertal, Österreich

    NASA Astrophysics Data System (ADS)

    Sass, Ingo; Heldmann, Claus-Dieter; Schäffer, Rafael

    2016-06-01

    Karst aquifers may on one hand improve the efficiency of geothermal systems due to increased permeabilities, but on the other hand, high groundwater velocities can reduce the efficiency of the underground heat storage capacity. The marble karst aquifer of the Hochstegen formation was explored and developed for the first time as an intermediate-depth geothermal energy storage system at Finkenberg, Tux valley (Tyrol, Austria). Geological field studies and a spring monitoring program for the project revealed characteristic hydro-chemical signatures related to the catchments in specific tectonic units depending on their lithology. Observations showed that the catchment area of the Hochstegen formation karst aquifer extends up to 2650 m a.s.l. southwest of Finkenberg. In the boreholes, karstification was detected to 400 m below surface (Sass et al., 2016). A monitoring program involving seven springs downgradient of the boreholes has shown that the geothermal project has had no long-term impact on groundwater quality.

  12. Geothermal Field Near Rotorua, New Zealand

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Historical sketches show the indigenous Maori cooking with natural hot waters and steam prior to the arrival of Europeans on North Island, New Zealand. Since the 1950s, geothermal heat and steam have been exploited for both heating and electrical power generation, and some excess electrical power is exported to South Island. The geothermal development can be identified by the unique patterns of infrastructure that look like tan beads on a string in the midst of otherwise green vegetation. This one near the town of Rotorua lies within a northeast-trending line of active volcanoes (Ruapehu, Tongariro, and White Island) that are the surface result of the Pacific tectonic plate descending beneath the Australian-Indian plate. Image STS110-726-10 was taken by space shuttle crewmembers in April 2002 using a Hasselblad film camera. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  13. Crafting regulations in emerging geothermal countries: The Peru example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, A.J.

    1996-12-31

    Conventional wisdom holds that no prudent investor or lender will ante up a penny of investment money in a geothermal project unless and until there is a geothermal resources law in place. Since every law depends on a regulatory regime to make the law work in actual practice, implemented regulations are equally important conditions precedent for geothermal development. In recognition of the importance of assisting geothermal regulatory development in the emerging geothermal countries of Latin America, during the 1995 to 1996 timeframe, the Geothermal Energy Association has acted in an advisory capacity to the Ministry of Energy and Mines ofmore » Peru, in the drafting of geothermal regulations for Peru. These regulations are designed to promote developmental investment in the geothermal resources of Peru, while simultaneously establishing reasonable standards for the protection of the people and the environment of the country. While these regulations are specific to Peru, they may well serve as a model for other countries of Latin America. Thus, the lessons learned in crafting the Peru regulatory regime may have applicability in other countries in which the geothermal industry is now working or may work in the future.« less

  14. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  15. Temporal changes in shear velocity from ambient noise at New Zealand geothermal fields

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.; Townend, J.

    2016-12-01

    We use ambient noise to compare shear velocity changes with geothermal production processes at the Ngatamariki and Rotokawa geothermal fields, located in the central North Island of New Zealand. We calculate shear velocity changes through an analysis of cross correlation functions of diffusive seismic wavefields between stations, which are proportional to Green's functions of the station path. Electricity production at Ngatamariki uses an 82 MW binary type power station manufactured by Ormat Technologies, which began operations in mid-2013 and is owned and operated by Mighty River Power. The "Nga Awa Purua" triple flash power plant at the Rotokawa geothermal field was established in 2010 with parnership between Mighty River Power and Tauhara North No. 2 trust and currently operates 174 MW of generation. The seismometers of both networks, deployed primarily to observe microseismicity within the field, were installed prior to well stimulation and the start of production. Although cultural noise dominates the energy spectrum, a strong natural ambient noise signal can be detected when filtering below 1 Hz. Despite similar noise settings, the signal-to-noise ratio of cross correlation stacks at Rotokawa was more than two times greater than at Ngatamariki. We use stacks of cross correlations between stations prior to the onset of production as references, and compare them with cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production.

  16. Geothermal Impact Analysis | Geothermal Technologies | NREL

    Science.gov Websites

    on potential geothermal growth scenarios, jobs and economic impacts, clean energy manufacturing geothermal resources. We: Perform resource analysis Develop techno-economic models Quantify environmental growth scenarios across multiple market sectors. Learn more about the GeoVision Study. Jobs and Economic

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.; Pruess, K.; Stefansson, V.

    A detailed three-dimensional well-by-well model of the East Olkaria geothermal field in Kenya has been developed. The model matches reasonably well the flow rate and enthalpy data from all wells, as well as the overall pressure decline in the reservoir. The model is used to predict the generating capacity of the field, well decline, enthalpy behavior, the number of make-up wells needed and the effects of injection on well performance and overall reservoir depletion. 26 refs., 10 figs.

  18. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  19. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less

  20. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  1. Fracture network topology and characterization of structural permeability

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.

  2. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  3. Towards a Geocognition of Geothermal Energy: an Evolving Research Partnership in South West England

    NASA Astrophysics Data System (ADS)

    Gibson, H.; Stewart, I. S.; Ledingham, P.

    2017-12-01

    The development and deployment of novel geological technologies in industry often raise anxiety in the public sphere. New technologies are intrinsically unfamiliar, not only to the public, but also to other technical specialists in the field. This can focus conflict and uncertainty around issues that may not actually be problematic, or obscure other issues that may actually warrant closer inspection. An example of an emergent geo-technology that has received little attention in the public or general technical spheres is the introduction of Enhanced Geothermal Power in the UK. In early 2018, a project testing the viability of deep geothermal heat and power will begin in Cornwall, England, and is likely to face contested issues of public perception that have confronted other novel geological technologies, such as Carbon Capture and Storage and hydraulic fracturing. To address concerns about how the UK public will conceptualise this new technology, the Cornish deep geothermal project has developed an innovative partnership between the industry partner operating the test drilling site and a geoscience cognition research partner. That research partner integrates geoscience, cognitive psychology and media communication specialists in a three-year project that will track evolving public perceptions of and community attitudes to geothermal energy; from initial community engagements to the drilling operations and, ultimately, to the operation of the facility. Key in this study will be an exploration of how the industrial partnership impacts and affects the research process as the site testing proceeds, but also how the research process can engage with issues of communication between the industrial partner and the public. Overall, the interdisciplinary research aims to better understand how public/industry partnerships develop and evolve over the lifetime of an active geo-energy project and thereby help inform and improve community-centred geo-communication around novel energy technologies in the future.

  4. Insights to Engineered Geothermal System Performance Using Gringarten-Witherspoon-Ohnishi Analytical Solutions and Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Doe, T.; McLaren, R.; Finilla, A.

    2017-12-01

    An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of fluid pressure and stress gradients, preferential growth and aperture enhancement may change with depth creating preferential pathways through rock this cooler than the injection depth.

  5. The multi-level perspective analysis: Indonesia geothermal energy transition study

    NASA Astrophysics Data System (ADS)

    Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  6. Study of the geothermal production potential in the Williston Basin, North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Min H.

    1991-09-10

    Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because ofmore » their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.« less

  7. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very consistent and also agree with previous stress estimates in the eastern part of the Coso Geothermal Field. In order to obtain a reliable estimation of the stress orientation in this setting, it is necessary to sample the stress field on an interval long to capture several of the dominant wavelengths.

  8. Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2006-01-01

    The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.

  9. Matched Filter Detection of Microseismicity at Ngatamariki and Rotokawa Geothermal Fields, Central North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.

    2016-12-01

    Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the production zone and the southern injection zone.

  10. Energy Security In Jordan

    DTIC Science & Technology

    2015-12-01

    GEOTHERMAL ......................................................................................53  H.  INSTITUTIONAL DEVELOPMENT...following body of text, I illustrate the characteristics of hydro, wind, solar, geothermal , and biological energies as well as discuss the...highly dispersed landfill sites to fewer sites that can allow bioenergy developers to take advantage of higher economies of scale.182 G. GEOTHERMAL

  11. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  12. Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field.

    PubMed

    Holtzman, Benjamin K; Paté, Arthur; Paisley, John; Waldhauser, Felix; Repetto, Douglas

    2018-05-01

    The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < M L < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.

  13. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  14. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martini, B; Silver, E; Pickles, W

    2004-03-25

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less

  15. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W L; Martini, B A; Silver, E A

    2004-03-03

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less

  16. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  17. Geophysical characterization of subaerial hydrothermal manifestations in Punta Banda, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, L.; Prol-Ledesma, R. M.; Arango, C.; Canet, C.

    2009-04-01

    Important growth of population in Baja California Peninsula has triggered the need for energy and fresh water. The most sustainable possibility for increasing the availability of fresh water is the use of renewable energy sources in desalination plants. The abundance of geothermal manifestations in the peninsula provides a reliable energy source for desalination purposes. Geothermal development of the Baja California Peninsula dates from the 70's, when the Cerro Prieto geothermal field started producing electricity. Two important cities, Tijuana and Ensenada, are located in the north-western area of Baja California. The city of Ensenada has a desalination plant that is due to be replaced and the geothermal resources of the area could be an option for the new desalination plant. Punta Banda, a region near Ensenada, was specially investigated to determine its geothermal potential. Subaerial springs and the submarine vents were sampled and studied in this work, also geological and geochemical studies were performed, moreover geoelectrical surveys were accomplished to characterize the hydrothermal system at depth. Even though saline intrusion is a severe problem in Ensenada (TDS higher than 3000), thermal springs away from the coast and coastal springs have salinities lower than sea water. According to the geoelectrical models obtained from profiles, the inferred conductive features can be related to thermal anomalies. The existence of hot springs located along a trend suggests that the dynamic of the thermal fluid is restricted by secondary faults.

  18. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the geothermal field, the carbon-isotopic composition of CO2 is consistent with derivation of carbon from Franciscan metasedimentary rocks. NH3 concentrations are high in most Geysers well fluids, and are 2-3 orders of magnitude greater than would be expected in a the gas phase exhibiting homogeneous equilibrium at normal reservoir temperatures and pressures. Evidently, NH3 is flushed from the Franciscan host rocks at a rate that exceeds the reaction rate for NH3 breakdown. Many wells show clear influence by fluids from reinjection wells where steam condensate has been pumped back into the geothermal reservoir. Six wells were resampled over the time period of this study. One of these six wells was strongly affected by a nearby injection well. Three of the six resampled wells showed some signs of decreasing liquid/ steam within the geothermal reservoir, consistent with 'drying out' of the reservoir due to steam withdrawal. However, two wells exhibited little change. Analyses of gases from five surface manifestations (fumaroles and bubbling pools) are roughly similar to the deeper geothermal samples in both chemical and isotopic composition, but are lower in soluble gases that dissolve in groundwater during transit toward the surface.

  19. Optimization of Geothermal Well Placement under Geological Uncertainty

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian

    2017-04-01

    Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.

  20. 2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields

    NASA Astrophysics Data System (ADS)

    Monteiro Santos, Fernando A.; Afonso, António R. Andrade; Dupis, André

    2007-03-01

    Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those methods. This paper presents results obtained from the two-dimensional joint inversion of dipole-dipole and scalar AMT data acquired in a low enthalpy geothermal field situated in a graben. The joint inverted models show a better definition of shallow and deep structures. The results show that the extension of the benefits using joint inversion depends on the number and spacing of the AMT sites. The models obtained from experimental data display a low resistivity zone (<20 Ω m) in the central part of the graben that was correlated with the geothermal reservoir. The resistivity distribution models were used to estimate the distribution of the porosity in the geothermal reservoir applying two different approaches and considering the clay minerals effect. The results suggest that the maximum porosity of the reservoir is not uniform and might be in the range of 12% to 24%.

  1. Execution of deep dipole geoelectrical soundings in areas of geothermal interest. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    It is suggested that deep geoelectrical problems may be resolved by carrying out dipole soundings in the field and applying a quantitative interpretation in the Schlumberger domain. The 'transformation' of original field dipole sounding curves into equivalent Schlumberger curves is outlined for the cases of layered structures and arbitrary underground structures. Theoretical apparent resistivity curves are derived for soundings over bidimensional structures. Following a summary of the geological features of the Travale-Radicondoli geothermal area of Italy, the dipole sounding method employed for this field study and the means of collecting and analyzing the data, are outlined.

  2. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze geothermal resource potential as well as integrate the decision support system with multi-touch interfaces which allow multiple stakeholders to view and interact with data. Beyond visual and tactile appeal, these interfaces also allow participants to dynamically update decision variables and decision preferences to create multiple scenarios and evaluate potential outcomes. Through this interactive scenario building, potential development sites can be targeted and stakeholders can interact with data to engage in substantive dialogue for related long-term planning or crisis response.

  3. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  5. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, A.G.

    The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of usingmore » geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.« less

  7. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.

  8. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Finger, John T.; Carrigan, Charles R.

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study canmore » be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.« less

  9. Geothermal energy in Washington: site data base and development status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number ofmore » serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)« less

  10. Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production

  11. Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, B.A.

    1980-01-01

    A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

  12. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    NASA Astrophysics Data System (ADS)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.

  13. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  14. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  15. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water frontmore » away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Bob; Laughlin, Darren

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less

  17. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. Themore » characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.« less

  18. Health and safety implications of alternative energy technologies. I. Geothermal and biomass

    NASA Astrophysics Data System (ADS)

    Watson, A. P.; Etnier, E. L.

    1981-07-01

    An evaluation of potential occupational and public health aspects of geopressure, hydrothermal, hot dry rock, silviculture, crop and animal residues, fermentable plant products, municipal waste, and plantation energy technologies has been performed. Future development of these energy options in the United States will contain hazards that could easily be eliminated by safer equipment design and common-sense attention to operation and maintenance. Occupational exposure to hydrogen sulfide gas occurs near all geothermal sites and wherever organic matter decomposes anaerobically. Respiratory damage has occurred to laborers in geothermal fields, while farm workers have been fatally overcome when employed near agitating liquid manure systems. However, the most frequent and severe of reported injuries to geothermal workers is dermal exposure to caustic sludges produced by H2S abatement systems. Principal health and safety considerations of biomass pathways are directly related to the diffuse nature of solar energy fixation by photosynthesis and subsequent transfer to animal food chains. Since the potential fuel is in an unconcentrated form, cultivation, harvest, and transport are necessarily laborintensive. Thus, a significant potential for occupational injuries and fatalities exists. Of all biomass systems evaluated, direct burning of solid fuels presents the greatest public health risk. Data are presented to characterize the population at risk and the frequency and severity of injuries.

  19. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less

  20. Work with Us | Geothermal Technologies | NREL

    Science.gov Websites

    work with us and leverage our geothermal research, facilities, and expertise. Contact Us Photo of develop, test, and evaluate geothermal technologies. Commercialize Your Technology Accelerate the transfer

  1. Utility company views of geothermal development

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    The views of geothermal development from a utility company standpoint are presented. The impediments associated with such developments as required reliability and identification of risks are discussed. The utility industry historically is not a risk-taking industry. Support of rapid geothermal development by the utility industry requires identification and elimination of risks or absorption of the risks by other agencies. Suggestions as to the identification and minimization of risks are made.

  2. Controls on hydrothermal fluid flow within the Rotokawa geothermal field, New Zealand: insights from 3D geological models

    NASA Astrophysics Data System (ADS)

    Bardsley, C.; Sewell, S.; Cumming, W. B.; Minnick, M.; Rowland, J. V.; O'Brien, J.; Price, L.

    2012-12-01

    Identifying permeable zones is essential for economically viable exploration and development of conventional geothermal reservoirs with naturally high permeability. Except very close to boreholes, the resolution of geological and geophysical tools is at a much larger scale than the centimetre aperture of most geothermal fluid pathways important to production. A case study from the >250°C Rotokawa Geothermal Field, currently producing 175 MWe within the Taupo Volcanic Zone in New Zealand, illustrates how a 3D visualization of a subset of available data that are conceptually relevant at the scales of interest has enhanced the understanding of fluid flow within this system. Geoscience data sets including subsurface formation geometry and permeable zones in wells; the natural state temperature pattern deduced from wells and MT resistivity; microearthquakes (MEQ) induced by injection, and surface geology have been integrated with engineering data including production pressure responses and injection rates to constrain the location and general hydraulic properties of one of the most influential faults in the field. Stratigraphic offsets of >500 m, recorded in core and cuttings from wells drilled on either side of the field, confirm the presence of this fault, initially suspected based on a surface lineation of eight young (<22 ka) hydrothermal eruption craters. The 3D visualization of the MEQ occurrence pattern in space and time helps constrain the mechanism of the MEQs themselves and, importantly, the confinement of most of the MEQs to the eastern side of the fault closest to the injection wells. Hosted within the Mesozoic meta-sedimentary basement formation, this has provided an important conceptual constraint that explains the lack of injection fluid on the western side of this fault. Further to this, if this fault is acting as a barrier at the Mesozoic meta-sedimentary level today, this could imply a switch in the behaviour of this structure as it is inferred, based on the alignment of the hydrothermal eruption vents, that these vents were triggered by a rupture along this fault, implying it was once a conduit to fluid flow.

  3. Novel approaches for an enhanced geothermal development of residential sites

    NASA Astrophysics Data System (ADS)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  4. Fourteenth workshop geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  5. Fourteenth workshop geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  6. Geothermal Technologies | NREL

    Science.gov Websites

    clean, renewable, domestic power source for the United States. Photo of a geothermal power plant in a technical barriers. GeoVision Study Photo of large gears on a drilling apparatus Technology Innovation We're of a woman in a hard hat with a large, drilling apparatus behind her in a grassy field Partnerships

  7. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  8. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.

  9. Geothermal energy - Ready for use

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-11-01

    The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.

  10. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  11. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  12. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    DOE PAGES

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-07-30

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templatesmore » that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2–M0.8. Here, the increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.« less

  13. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    USGS Publications Warehouse

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  14. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  15. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  16. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doris, E.; Kreycik, C.; Young, K.

    Geothermal electricity production capacity has grown over time because of multiple factors, including its renewable, baseload, and domestic attributes; volatile and high prices for competing technologies; and policy intervention. Overarching federal policies, namely the Public Utilities Regulatory Policies Act (PURPA), provided certainty to project investors in the 1980s, leading to a boom in geothermal development. In addition to market expansion through PURPA, research and development policies provided an investment of public dollars toward developing technologies and reducing costs over time to increase the market competitiveness of geothermal electricity. Together, these efforts are cited as the primary policy drivers for themore » currently installed capacity. Informing policy decisions depends on the combined impacts of policies at the federal and state level on geothermal development. Identifying high-impact suites of policies for different contexts, and the government levels best equipped to implement them, would provide a wealth of information to both policy makers and project developers.« less

  17. Cooperative efforts by industry and government to develop geothermal resources

    NASA Technical Reports Server (NTRS)

    Butler, D. R.

    1974-01-01

    The Federal government's current plans for participation in the geothermal field appear to affect four major areas of interest: (1) resources exploration and assessment, (2) resources utilization projects, (3) advanced research and technology, and (4) environmental, legal, and institutional research. Private industry is also actively involved in these same areas of interest. Because of lack of coordination and communication between the private and public sector, it appears that there will be considerable duplication of effort, and, in some cases, serious conflict. It is also likely that this lack of coordination and communication may result in lack of effort in some key areas. Close coordination and communication between government and industry may resolve some of the major problems that are clearly evident.

  18. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  19. Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a viable geothermal target? A preliminary analysis

    USGS Publications Warehouse

    Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole

    2016-01-01

    The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (<600 m depth) wells, indicating that sufficient temperatures for electricity generation occur at depths 5 km. The remaining consideration is evaluating the likelihood that naturally high permeability exists, or that it is possible to replicate the high average permeability (approximately 10-14 to 10-12 m2) characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths <600 m, some of them form highly permeable regional aquifers with connectivity over many tens of kilometers. Below depths of ~600 m, permeability reduction occurs in many interflow zones, caused by the formation of low-temperature hydrothermal alteration minerals (corresponding to temperatures above ~35 °C). However, some high permeability (>10-14 m2) interflows are documented at depths up to ~1,400 m. If the elevated permeability in these zones persists to greater depths, they may provide natural permeability of sufficient magnitude to allow their exploitation as conventional geothermal reservoirs. Alternatively, if the permeability in these interflow zones is less than 10-14 m2 at depth, it may be possible to use hydraulic and thermal stimulation to enhance the permeability of both the interflow zones and the natural jointing within the low-permeability interior portions of individual basalt flows in order to develop Enhanced/Engineered Geothermal System (EGS) reservoirs. The key challenge for an improved Columbia Plateau geothermal assessment is acquiring and interpreting comprehensive field data that can provide quantitative constraints on the recovery of heat from the Columbia River Basalts at depths greater than those currently tested by deep boreholes.

  20. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.

  1. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.

  2. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  3. Tongonani geothermal power development, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minson, A.A.C.; Fry, T.J.; Kivell, J.A.

    1985-01-01

    This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.

  4. A portable helium sniffer

    USGS Publications Warehouse

    Friedman, Irving; Denton, E.H.

    1976-01-01

    A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.

  5. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  6. Data assimilation for the investigation of deep temperature and geothermal energy in the Netherlands.

    NASA Astrophysics Data System (ADS)

    Bonté, Damien; Limberger, Jon; Lipsey, Lindsey; Cloetingh, Sierd; van Wees, Jan-Diederik

    2016-04-01

    Deep geothermal energy systems, mostly for the direct use of heat, have been attracting more and more interest in the past 10 years in Western Europe. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. To support the development of deep geothermal energy system, the scientific community has been working on tools that could be used to highlight area of potential interest for geothermal exploration. In the Netherlands, ThermoGIS is one such tool that has been developed to inform the general public, policy makers, and developers in the energy sector of the possibility of geothermal energy development. One major component incorporated in this tool is the temperature model. For the Netherlands, we created a thermal model at the lithospheric scale that focus on the sedimentary deposits for deep geothermal exploration. This regional thermal modelling concentrates on the variations of geological thermal conductivity and heat production both in the sediments and in the crust. In addition, we carried out special modelling in order to specifically understand convectivity in the basin, focusing on variations at a regional scale. These works, as well as recent improved of geological knowledge in the deeper part of the basin, show interesting evidence for geothermal energy development. At this scale, the aim of this work is to build on these models and, using data assimilation, to discriminate in the actual causes of the observed anomalies. The temperature results obtained for the Netherlands show some thermal patterns that relate to the variation of the thermal conductivity and the geometry of the sediments. There is also strong evidence to indicate that deep convective flows are responsible for thermal anomalies. The combination of conductive and local convective thermal patterns makes the deeper part of the Dutch sedimentary basin of great interest for the development of geothermal energy.

  7. Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

    PubMed Central

    Paisley, John

    2018-01-01

    The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < ML < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity. PMID:29806015

  8. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.

  9. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special Volume, 2010

  10. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  11. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less

  12. Development of scale deposit inhibition technology using turbine water-cooled nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, S.; Sakanashi, H.; Suzuki, T.

    1995-12-31

    The scale deposition onto turbines in geothermal power stations is usually regarded as unavoidable whereas this is one of the most serious concerns which can affect the interval of periodical inspections. In common practice, scale is removed manually and mechanically during periodical inspections of power stations, but there are some cases of geothermal power stations where scale is removed from the turbines without stopping turbines by practicing the turbine washing operation. The jointly developed technology by Tohoku Electric Power Co., Ltd. and Mitsubishi Heavy Industries, Ltd. in the present work, is a technique capable preventing scale deposition and precipitation bymore » water-cooling the turbine first stage nozzle subjected to the highest deposition of scale and its effect has been confirmed through its model in the field test. This paper presents these test processes and the test results.« less

  13. NGDS Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackman, Harold; Moore, Joseph

    2014-06-30

    The ultimate goal of the National Geothermal Data System (NGDS) is to support the discovery and generation of geothermal sources of energy. The NGDS was designed and has been implemented to provide online access to important geothermal-related data from a network of data providers in order to: • Increase the efficiency of exploration, development and usage of geothermal energy by providing a basis for financial risk analysis of potential sites • Assist state and federal agencies in making land and resource management assessments • Foster the discovery of new geothermal resources by supporting ongoing and future geothermal-related research • Increasemore » public awareness of geothermal energy It is through the implementation of this distributed data system and its subsequent use that substantial increases to the general access and understanding of geothermal related data will result. NGDS provides a mechanism for the sharing of data thereby fostering the discovery of new resources and supporting ongoing geothermal research.« less

  14. Modelling of Bouillante geothermal field (Guadeloupe, French West Indies)

    NASA Astrophysics Data System (ADS)

    Lakhssassi, Morad; Lopez, Simon; Calcagno, Philippe; Bouchot, Vincent

    2010-05-01

    The French islands of West Indies are experiencing rapid population growth. There is a consequent rise in energy demand with a high dependence on oil. In this context, and given their volcanic origin, the development of geothermal high energy in these islands is economically and environmentally interesting. Since the commissioning of the second production unit of the plant of Bouillante in 2005, geothermal energy provides 6 to 8% of electricity consumption energy of the Guadeloupe island. Yet, the geothermal fluid withdrawal was tripled which induced an increase in the quantity of separated brines which are cooled and mixed with sea water before disposal to the sea. It also caused a change in the Bouillante reservoir behavior and well head pressures evolution with a quick and steady pressure drop. Consequently, to optimize the exploitation of the geothermal resource, there was need to better characterize the reservoir, predict pressures evolution and plan reinjection of the separated brines. With this aim in view, available data were gathered to build a geological model integrating both regional and reservoir scale data. In parallel, a 3D hydrodynamic model using the computer code TOUGH 2 is developed to study and predict the behavior of pressure and temperature of Bouillante geothermal field during its exploitation and evaluate the contribution of reinjection to exploitation strategy. Both models should ultimately be linked. The hydrodynamic model is centered on neighboring wells BO-4, BO-5 and BO-6 which are the three producing wells at the moment. The old producing well BO-2 is now used to monitor pressure evolutions at the top of the reservoir. As a first step, model parameters were fitted to reproduce the pressure interference between the three wells recorded between July 2002 and April 2003 when well BO-5 was the only producing well. The model reproduces the hydrodynamic properties of the reservoir via the MINC method (Multiple INteracting Continua). (Pruess, 1992) which generalizes the "dual porosity" model (Warren and Root, 1963). The reservoir is conceptually decomposed into a "fracture" medium and a "matrix" one, each characterized by specific properties such as porosity, permeability and pore compressibility. Both media communicate with the possibility for the flow of matter or heat between fracture and matrix and between different fractures, possibly taking also into account the flow between matrix elements ("dual permeability"). Simulations were fitted to data both manually and automatically. Manual fit of parameters allowed the physical understanding of the influence of each parameter on the pressure curves. Yet, given the multitude of parameters and the large number of simulations to run, we also performed an automatic fit using optimization algorithms from the scipy optimization module. The resulting curves satisfactorily reproduce the measurement curves, especially the rapid pressure transients characterizing fractured media. The next step is to couple the hydrodynamic model to the 3D geological model incorporating information on the geothermal reservoir in terms of fracturation and the correlated distribution of petrophysical parameters…

  15. Development and Exploitation of Low Enthalpy Geothermal Systems, Example of "The Dogger" in the Paris Basin, France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, J.; Menjoz, A.; Martin, J.C.

    1987-01-20

    A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers.more » The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.« less

  16. High-temperature Y267 EPDM elastomer field and laboratory experiences, September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, Alan R.; Friese, Gilbert J.; Stephens, Clifford A.

    1982-10-08

    High performance elastomers were developed for hostile geothermal environments which clearly advance the state-of-the-art. The Y267 EPDM compound is eminently successful and has accumulated broad laboratory and field test experience. Over 15 separate tests are reviewed with about 95% performed independently by other organizations. The tests include a broad spectrum of environments with temperatures in excess of 320 C (608 F), differential pressures up to 138 MPa (20,000 psi) and in fluids including brine, oils, isobutane, and others.

  17. Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Alçiçek, Hülya; Bülbül, Ali; Brogi, Andrea; Liotta, Domenico; Ruggieri, Giovanni; Capezzuoli, Enrico; Meccheri, Marco; Yavuzer, İbrahim; Alçiçek, Mehmet Cihat

    2018-01-01

    The Gölemezli Geothermal Field (GGF) is one of the best known geothermal fields in western Anatolia (Turkey). The exploited fluids are of meteoric origin, mixed with deep magmatic fluids, which interacted with the metamorphic rocks of the Menderes Massif. The geothermal fluids are channeled along Quaternary faults belonging to the main normal faults system delimiting the northern side of the Denizli Basin and their associated transfer zones. In this study, hydrochemical and isotopic analyses of the thermal and cold waters allow us to determine water-rock interactions, fluid paths and mixing processes. Two groups of thermal waters have been distinguished: (i) Group 1A, comprising Na-SO4 type and Ca-SO4 type and (ii) Group 1B, only consisting Ca-HCO3 type waters. Differently, two groups were recognized in the cold waters: (i) Group 2A, corresponding to Ca-HCO3 type and (ii) Group 2B, including Mg-HCO3 type. Their geochemical characteristics indicate interactions with the Paleozoic metamorphic rocks of the Menderes Massif and with the Neogene lacustrine sedimentary rocks. Dissolution of host rock and ion-exchange reactions modify thermal water composition in the reservoir of the GGF. High correlation in some ionic ratios and high concentrations of some minor elements suggest an enhanced water-rock interaction. None of the thermal waters has been reached a complete chemical re-equilibrium, possibly as a result of mixing with cold water during their pathways. Geothermal reservoir temperatures are calculated in the range of 130-210°C for the Gölemezli field. Very negative δ18O and δ2H isotopic ratios are respectively between -8.37 and -8.13‰ and -61.09 and -59.34‰ for the SO4-rich thermal waters, and ca. - 8.40 and -8.32‰ and - 57.80 and -57.41‰ for the HCO3-rich thermal waters. Low tritium (< 1 TU) and low oxygen isotope values reflect a deep circuit and fluids of meteoric origin. Positive δ13CDIC ratios (+ 5.11 to + 7.54‰) of all thermal waters imply a contribution of metamorphic origin. Heating is guaranteed by a deep circuit within an overheated continental crust, mainly affected by damaged rock volumes. Volatile ascent from deep magmatic sources through crustal structures can explain the occurrence of mantle volatiles at shallow depth in the Denizli Basin. The NW- and NE-trending fault systems, associated with their related fractures, played as hydraulic conduits underlining the strict link existing between fractures and fluid convection in the extensional settings. In this view, the GGF is a very good example of geothermal field associated to active tectonic setting and magmatism, as it is the case of the other geothermal fields occurring in the Denizli Basin.

  18. How the Geothermal Community Upped the Game for Computer Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.

  19. Characterization of biosurfactant produced by petrofilic bacteria isolated from hydrocarbon impacted soil and its potential application in bioremediation

    NASA Astrophysics Data System (ADS)

    Arsyah, D. M.; Kardena, E.; Helmy, Q.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  20. Geothermal research and development program of the US Atomic Energy Commission

    NASA Technical Reports Server (NTRS)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  1. Reply to: Barazzuoli P., Bertini G., Brogi A., Capezzuoli E., Conticelli S., Doveri M., Ellero A., Gianelli G., La Felice S., Liotta D., Marroni M., Manzella A., Meccheri M., Montanari D., Pandeli E., Principe C., Ruggieri R., Sbrana A., Vaselli V., Vezzoli L., 2015. COMMENT ON: "Borgia, A., Mazzoldi, A., Brunori, C.A., Allocca, C., Delcroix, C., Micheli, L., Vercellino, A., Grieco, G., 2014. Volcanic spreading forcing and feedback in geothermal resorvoir development, Amiata Volcano, Italia. J. Volc. Geoth. Res. 284, 16-31". Journal of Volcanology and Geothermal Research, this issue

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2015-09-01

    The volcanic spreading model by Borgia et al. (2014) is accurate in describing the extensional structures found on the edifice and the radial compressional structures existing all around the base of Amiata Volcano. Volcanic conduits, extensional structures, and direct contact between the volcanic rocks and the Tuscan Units, constitute the hydraulic connection between the potable fresh-water aquifer contained in the volcanites and the underlying hydrothermal system. Therefore, gaseous phases tend to flow upward (particularly through faults) carrying pollutants into the freshwater aquifer, while the freshwater recharges (also through primary permeability) the exploited geothermal fields.

  2. Future Scenario Development from Disruptive Exploration Technologies and Business Models in the U.S. Geothermal Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Anna

    With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritizemore » and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.« less

  3. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductorymore » and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.« less

  4. Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong; McTigue, Joshua Dominic P; Turchi, Craig S

    Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine ismore » recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.« less

  5. Self-organizing maps in geothermal exploration-A new approach for understanding geochemical processes and fluid evolution

    NASA Astrophysics Data System (ADS)

    Brehme, Maren; Bauer, Klaus; Nukman, Mochamad; Regenspurg, Simona

    2017-04-01

    Understanding geochemical processes is an important part of geothermal exploration to get information about the source and evolution of geothermal fluids. However, in most cases knowledge of fluid properties is based on few parameters determined in samples from the shallow subsurface. This study presents a new approach that allows to conclude from the combination of a variety of these data on processes occurring at depth in a geothermal reservoir. The neural network clustering technique called "self-organizing maps" (SOMs) successfully distinguished two different geothermal settings based on a hydrochemical database and disclosed the source, evolution and flow pathways of geothermal fluids. Scatter plots, as shown in this study, are appropriate presentations of element concentrations and the chemical interaction of water and rock at depth. One geological setting presented here is marked by fault dominated fluid pathways and minor influence of volcanic affected fluids with high concentrations of HCO3, Ca and Sr. The second is a magmatically dominated setting showing strong alteration features in volcanic rocks and accommodates acidic fluids with high SO4 and Si concentrations. Former studies, i.e., Giggenbach (1988), suggested Cl, HCO3 and SO4 to be generally the most important elements for understanding hydrochemical processes in geothermal reservoirs. Their relation has been widely used to classify different water types in geothermal fields. However, this study showed that non-standard elements are at least of same importance to reveal different fluid types in geothermal systems. Therefore, this study is an extended water classification approach using SOM for element correlations. SOM have been proven to be a successful method for analyzing even relatively small hydrochemical datasets in geothermal applications.

  6. Development of exploration and monitoring techniques for the sustainable thermal use of the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Vienken, Thomas; Dietrich, Peter

    2013-04-01

    The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We will show that the development of new monitoring and exploration techniques is the prerequisite for the sustainable thermal use of the shallow subsurface in the framework of a geothermal resource management.

  7. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  8. The Public Utilities Regulatory Policy Act (PURPA) and US Geothermal Industry: Current controversies and trends in federal and state implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is an analysis of the issues confronting US energy policymakers and the US geothermal industry as the result of the implementation and interpretation of the 1978 Public Utility Regulatory Policies Act, commonly known as PURPA. It seeks to answer four sets of questions about PURPA: (1) What has the existence of PURPA meant to the US geothermal industry. (2) How has the interpretation of PURPA evolved over the past decade. (3) What particular portions of PURPA rule making have been most crucial to the growth and development of the geothermal industry. (4) What aspects of PURPA have beenmore » most troubling to utilities purchasing or developing geothermal energy.« less

  9. New Mexico statewide geothermal energy program. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Parker, S.K.

    1988-04-01

    This report summarizes the results of geothermal energy resource assessment work conducted by the New Mexico Statewide Geothermal Energy Program during the period September 7, 1984, through February 29, 1988, under the sponsorship of the US Dept. of Energy and the State of New Mexico Research and Development Institute. The research program was administered by the New Mexico Research and Development Institute and was conducted by professional staff members at New Mexico State University and Lightning Dock Geothermal, Inc. The report is divided into four chapters, which correspond to the principal tasks delineated in the above grant. This work extendsmore » the knowledge of the geothermal energy resource base in southern New Mexico with the potential for commercial applications.« less

  10. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  11. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    NASA Astrophysics Data System (ADS)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  12. National Geothermal Association Trade Mission to Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The United States (US) geothermal industry, the world's most technically proficient, has been unable to achieve penetration into the markets of the developing nations. This report details the findings of an industry Trade Mission to Central America, tasked with determining the reasons for this shortfall and with developing a US industry geothermal export strategy designed to achieve immediate and long-term export benefits.

  13. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  14. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  15. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  16. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  17. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less

  18. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  19. WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY

    EPA Science Inventory

    Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...

  20. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  1. Geothermal energy in Alaska: site data base and development status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  2. Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China

    NASA Astrophysics Data System (ADS)

    Huang, H. F.; Goff, Fraser

    1986-03-01

    Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.

  3. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  4. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    NASA Astrophysics Data System (ADS)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal water that the measurement of the permeability should be performed through a very careful process in order to guarantee a reliable simulation. As the fracture spacing became narrower, overall thermal distribution appeared to be similar to that from EPM model. This suggests that EPM model, which is easy to design and takes less time, can be replaced for the densely fractured medium. Change in fracture aperture within the range of that of actual rocks did not cause a remarkable difference in temperature distribution, which means that measuring accuracy of the actual aperture value in rocks is relatively less important. This demonstrates that the distribution and the structure of fracture system make a great contribution to the whole simulation for fluid and heat flow mechanisms in geologic medium, and thus require an intensive geologic investigation for the fractures including strike and dip information, permeability and connecting relation. In addition, the simulation results show that the heterogeneous model can include the description for the significant fracture flow and it can be a practical tool for a site-specific simulation for EGS sites. This preliminary simulation was useful to estimate the scale of the geothermal reservoir and the energy potential in Seokmodo and it can be further expanded to a long-term simulation to predict the evolution of the geothermal reservoir under the potential EGS operations. Acknowledgement: This study was financially supported by KIGAM, KETEP and BK21.

  5. The coso EGS project - Recent developments

    USGS Publications Warehouse

    Rose, P.; Sheridan, J.; McCulloch, J.; Moore, J.N.; Kovac, K.; Weidler, R.; Hickman, S.

    2005-01-01

    An Enhanced Geothermal System (EGS) field experiment will be conducted to hydraulically stimulate injection well 34-9RD2, located on the east flank of the Coso geothermal reservoir, with the objective of increasing the injection rate of this well to 750 gpm at a wellhead pressure of 100 psi or less. The stimulation of this well is expected to create hydraulic communication with the recently drilled production well 38C-9, which is directly south of 34-9RD2. We summarize the results of fracture and stress analyses based upon borehole image logs of 38C-9; petrographic and petrologic analyses of cuttings from both the injection well 34-9RD2 and the production well 38C-9; and plans for the redrilling and stimulation of 34-9RD2.

  6. The Coso EGS project - Recent developments

    USGS Publications Warehouse

    Rose, P.; Sheridan, J.; McCulloch, J.; Moore, J.N.; Kovac, K.; Spielman, P.; Weidler, R.; Hickman, S.

    2004-01-01

    An Engineered Geothermal System (EGS) field experiment will be conducted to hydraulically stimulate injection well 34-9RD2, located on the east flank of the Coso geothermal reservoir, with the objective of increasing the injection rate of this well to 750 gpm at a wellhead pressure of 100 psi or less. The stimulation of this well is expected to create hydraulic communication with the recently drilled production well 38C-9, which is directly south of 34-9RD2. We summarize the results of fracture and stress analyses based upon borehole image logs of 38C-9; petrographic and petrologic analyses of cuttings from both the injection well 34-9RD2 and the production well 38C-9; and plans for the redrilling and stimulation of 34-9RD2.

  7. Repeat Absolute and Relative Gravity Measurements for Geothermal Reservoir Monitoring in the Ogiri Geothermal Field, Southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Nishijima, J.; Umeda, C.; Fujimitsu, Y.; Takayama, J.; Hiraga, N.; Higuchi, S.

    2016-09-01

    Repeat hybrid microgravity measurements were conducted around the Ogiri Geothermal Field on the western slope of Kirishima volcano, southern Kyushu, Japan. This study was undertaken to detect the short-term gravity change caused by the temporary shutdown of production and reinjection wells for regular maintenance in 2011 and 2013. Repeat microgravity measurements were taken using an A-10 absolute gravimeter (Micro-g LaCoste) and CG-5 gravimeter (Scintrex) before and after regular maintenance. Both instruments had an accuracy of 10 μgal. The gravity stations were established at 27 stations (two stations for absolute measurements and 25 stations for relative measurements). After removal of noise effects (e.g., tidal movement, precipitation, shallow groundwater level changes), the residual gravity changes were subdivided into five types of response. We detected a gravity decrease (up to 20 μgal) in the reinjection area and a gravity increase (up to 30 μgal) in the production area 1 month after the temporary shutdown. Most of the gravity stations recovered after the maintenance. The temporal density changes in the geothermal reservoir were estimated based on these gravity changes.

  8. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less

  9. Status of GEA review of DOE geothermal research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.M.

    The Geothermal Energy Association (GEA) will be conducting a series of workshops related to the DOE Research and Development (R&D) program, the first of which will take place tomorrow and the next day. This workshop will be focussing on drilling research and development. The objective of these workshops is to provide information and recommendations to DOE on the R&D needs and priorities of the geothermal industry. As a GEA officer, I will be conducting these workshops and it is something you might guess I am interested in. I have been interested in geothermal R&D for 20 years now.

  10. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by allmore » geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.« less

  11. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  12. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  13. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.

  14. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  15. National Geothermal Association Trade Mission to Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The United States (US) geothermal industry, the world`s most technically proficient, has been unable to achieve penetration into the markets of the developing nations. This report details the findings of an industry Trade Mission to Central America, tasked with determining the reasons for this shortfall and with developing a US industry geothermal export strategy designed to achieve immediate and long-term export benefits.

  16. Summary: High Temperature Downhole Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less

  17. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  18. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  19. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less

  20. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

Top