Sample records for geothermal fields located

  1. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have been still used only for spa tourism. Residential heating and greenhouse activities do not exist in the region yet. However, the only geothermal power plant which is settled in NW Turkey is located in Tuzla geothermal field (7.5 MW capacity). This area is both the most high-temperature area in the region and one of the most important geothermal fields in Turkey. Very little thermal centers in Turkey have thermal water potential of the coastal area like Çanakkale province. Climatic features of this area allows both thermal and sea tourism applications in all season of a year such as open-air curing, heliotherapy and thalassotherapy. Çanakkale province is located in "Troy North Aegean Culture and Thermal Tourism Development Zone". This area is being planned within the framework of health, thermal and rural tourism by the Republic of Turkey Ministry of Culture and Tourism. Keywords: Geothermal, Hydrogeochemistry, Çanakkale, Turkey

  2. Use of high-resolution satellite images for detection of geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.

    2012-12-01

    Chile has an enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile and Puchuldiza geothermal field located in the Region of Tarapaca. It was done by applying the lineament extraction technique developed by author. These structures have been compared with the distribution of main geological structures obtained in the fields. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  3. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  4. Use of high-resolution satellite images for detection of geological structures related to Calerias geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Urzua, L.

    2011-12-01

    Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  5. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7  kg by switching to the direct utilization of geothermal energy in Daming field.

  6. Use of high-resolution satellite images for characterization of geothermal reservoirs in the Tarapaca Region, Chile

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Montenegro A., C.

    2010-12-01

    The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.

  7. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  8. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less

  9. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  10. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fieldsmore » of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.« less

  11. Conductance Steamflow relationship

    DOE Data Explorer

    Whitney Trainor-Guitton

    2015-04-01

    These histograms represent our calibration of conductance of a volcanic geothermal field (with a clay cap) and the observed steam flow rates. See the following paper for further description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining new drilling locations. SEG Abstracts 2015.

  12. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  13. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  14. Effect of microporosity on the permeability of geothermal systems, case study of Los Humeros geothermal fie

    NASA Astrophysics Data System (ADS)

    Carrasco, Gerardo; Cid, Hector; Ortega, Dante

    2017-04-01

    Los Humeros is the largest silicic caldera complex of the Trans-Mexican Volcanic Belt (TMVB), with an active geothermal field, which is currently producing around 65 MW. It is located in the northern part of the eastern TMVB. Its evolution includes voluminous caldera-forming eruption producing two large caldera structures (Los Humeros and Los Potreros calderas) with alternated episodes of effusive and explosive activity until the Holocene. The geothermal reservoir is located at a depth of about 1,500 m comprising a thick succession of porphyritic andesitic lava flows, and perhaps which overlay in a highly discordant contact a meta-sedimentary basement sequence dominated by altered limestone and skarn rocks. A NW/N-S structural system seems to be the main control of geothermal field distribution within the central part of the youngest caldera. Permeability in the geothermal reservoir has been associated with that system observed on the surficial geology, but also to some hidden secondary faulting and associated fracturing. Primary porosity has been considered negligible due to the low macroporosity observed in the volcanic rocks. However, a detailed analysis of the microporosity determined by X-ray microtomography new developed techniques, allow us to determine precise values of microporosity that were using for numerical simulation to obtain values of effective porosity, which reveals an interesting alternative solution to the permeability of the subsurface of Los Humeros geothermal field that should be taking into account to the final permeability of the system.

  15. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  16. Geothermal energy in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.; McEuen, R.B.; Roberts, A.

    1984-09-01

    During the fall of 1983, a American delegation of 14 geothermal experts visited the People's Republic of China. The three-week trip included visits to Beijing (Peking), Chengdu, Lhasa, Yangbajing, and Kunming. By far the highlight of the trip was the journey to Tibet where the geothermal field and power station at Yangbajing were toured. Technical exchanges with Chinese and Tibetan geothermal scientists and engineers were made at Beijing, Lhasa, Yangbajing and Kunming. At Kunming in Yunnan Province, the geothermal field in the western part of the province was discussed, but not visited. This latter field is in the process ofmore » extensive investigation, but only minor direct-use development such as sulfur collection and wool washing is being undertaken. The drilling of wells and power plant construction is anticipated in the Rehai and Ridian fields in the near future. In general, Yunnan has one of the largest geothermal potentials in China with over 600 sites identified so far. The sites are widespread throughout the province, but the high temperature sites are located in the western part, a very mountainous area.« less

  17. Brady's Geothermal Field Nodal Seismometer Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC

  18. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity, including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.

  19. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  20. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.

  1. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare earth elements (REEs) were also measured in this study. The results normalized by North America Shale REEs (NASC) show a flat pattern and a distinct europium positive anomaly. It possibly indicates a chemical interaction between meteoric water and sedimentary rock, which excludes the possibility of an igneous source.

  2. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    DOE PAGES

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-07-30

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templatesmore » that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2–M0.8. Here, the increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.« less

  3. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  4. Matched Filter Detection of Microseismicity at Ngatamariki and Rotokawa Geothermal Fields, Central North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.

    2016-12-01

    Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the production zone and the southern injection zone.

  5. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  6. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  7. The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data

    NASA Astrophysics Data System (ADS)

    Aziz, K. N.; Hartantyo, E.; Niasari, S. W.

    2018-04-01

    Lamongan Volcano located in Tiris, East Java, possesses geothermal potential energy. The geothermal potential was indicated by the presence of geothermal manifestations such as hot springs. We usedsecondary gravity data from GGMplus. The result of gravity anomaly map shows that there is the lowest gravity anomaly in the center of the study area coinciding with the hot spring location. Gravity data were analyzed using SVD method to identify fault structures. It controls the geothermal fluid pathways. The result of this research shows thatthe type of fault in hot springsisanormal fault with direction NW-SE. The fault lineament pattern along maaris NW-SE.Maar indicates anormal fault. As the result we know that gravity data from GGMplus which analyzed with SVD can be used to determine the type and trend of fault.

  8. Use of high-resolution satellite images for detection of geological structures related to Central Andes geothermal field, Chile.

    NASA Astrophysics Data System (ADS)

    Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2014-12-01

    Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.

  9. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  10. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    NASA Astrophysics Data System (ADS)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  11. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  12. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    NASA Astrophysics Data System (ADS)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  13. Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area

    NASA Astrophysics Data System (ADS)

    Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi

    2017-07-01

    Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.

  14. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  15. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  16. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  17. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  18. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Fowler

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  19. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.

  20. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.

  1. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  2. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  3. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  4. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer

    Richard Zehner

    2012-02-01

    These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  5. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    PubMed

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  6. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  7. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  8. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  9. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  10. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  11. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  12. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer

    Harto, Christopher

    2013-05-22

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  13. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  14. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  15. Structural controls of the Tuscarora geothermal field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, G.; Faulds, J. E.

    2012-12-01

    Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C L; Bearden, Mark D; Horner, Jacob A

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  17. Multi-usages of the Ilan geothermal field, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  18. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  19. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  20. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  1. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.

  2. Modeling of subsurface structures in Telomoyo Volcano geothermal area, Magelang using 1-D magnetotelluric method

    NASA Astrophysics Data System (ADS)

    Sarjan, Achmad Fajar Narotama; Niasari, Sintia Windhi

    2017-07-01

    There are some of geothermal prospects around Java Island. One of them are located in Telomoyo Volcano area, Magelang, Central Java. The existence of hot spring manifestations in Telomoyo Volcano area shows the presence of geothermal system. The upflow zone of this geothermal system was formed in the caldera of Telomoyo Volcano area, while the outflow zone was formed around Candi Umbul. In addition, from the geological map shows a geological structure assumed as a normal fault with southwest-northeast orientation that was caused by the volcanic activity. The aim of this research is to give a brief introduction about subsurface resistivity beneath Telomoyo Volcano area using 1-D magnetotelluric forward model. Thus, we can determine the possibility of data that will obtained during the acquisition process based on the geological model that was made. The apparent resistivity, phase, and period values were obtained from the forward modeling process. The result from this study is a 1-D resistivity section with synthetics curves of each geothermal model. In each model the presence of clay cap characterized by a low resistivity layer. A layer below the clay cap with a medium resistivity value interpreted as the reservoir of this geothermal system. The heat source of this geothermal area is characterized by a low resistivity that is located at depth 4000-5500m. This study is still in progress to acquire the exact values of resistivity from each layer from the field data acquisition in Telomoyo Volcano area, Magelang.

  3. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the mixed-type clusters and high b-value patches are spatially correlated with low stress drop earthquakes, indicating high-productivity microearthquakes within low differential stress region, potentially due to deeper injection activities.

  4. Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar

    2015-04-01

    Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or hydrothermal fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at <3 Km depth, associated to a zone where were generated larger magnitude events, suggesting a zone with more stress accumulation that well correlated with the deformation center detected by InSAR measurements. This zone could be interpreted as the magmatic source that interacts with the shallow hydrothermal system. Thus, in a very complex setting as a volcano sitting on top of a geothermal system, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/hydrothermal system.

  5. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  6. Continuous on-line steam quality monitoring system of the Bacman Geothermal Production Field, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, R.P.; Chavez, F.C.; Garcia, S.E.

    1997-12-31

    In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less

  7. A preliminary assessment of a medium-enthalpy geothermal resource in Nagu (Tibet) people's republic of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battistelli, A.; Rivera, R.J.; D'Amore, F.

    1991-01-01

    The Nagqu geothermal field is a single-phase, liquid-dominated system at reservoir conditions, having a high gas content. This field is located at an elevation of about 4,500 m (asl), in the vicinity of the City of Nagqu, which is one of the most important cities of Tibet.The reservoir rock is made of a highly fractured, low-permeability sedimentary sequence. During the implementation of the study described in this paper, fluid production was mainly obtained from two out of four possible productive wells. The main fault systems are located in a NE-SW and E-W directions, which seem to control fluid movement atmore » depth. The geothermal field is restricted to a small area where hydrothermal manifestations are located. Reservoir temperature is 114 C, gas content is in the range of 0.5 to 0.6% by mass, being mainly CO{sub 2}. Reservoir transmissivity in the area of the wells is very high. Reservoir response to changes in flow rate in any of the producing wells could be detected almost immediately in the observation wells, which were distant between 300 to 900 m, depending on the production-observation well arrangement. Calcium carbonate scaling was present in all producing wells. This deposition was controlled by the CO{sub 2} partial pressure. Description of well testing results is provided, as well as the thermodynamics and geochemistry of reservoir fluids.« less

  8. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.

    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field.more » In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.« less

  9. Performance analysis of mineral mapping method to delineate mineralization zones under tropical region

    NASA Astrophysics Data System (ADS)

    Wakila, M. H.; Saepuloh, A.; Heriawan, M. N.; Susanto, A.

    2016-09-01

    Geothermal explorations and productions are currently being intensively conducted at certain areas in Indonesia such as Wayang Windu Geothermal Field (WWGF) in West Java, Indonesia. The WWGF is located at wide area covering about 40 km2. An accurate method to map the distribution of heterogeneity minerals is necessary for wide areas such as WWGF. Mineral mapping is an important method in geothermal explorations to determine the distribution of minerals which indicate the surface manifestations of geothermal system. This study is aimed to determine the most precise and accurate methods for minerals mapping at geothermal field. Field measurements were performed to assess the accuracy of three proposed methods: 1) Minimum Noise Fraction (MNF), utilizing the linear transformation method to eliminate the correlation among the spectra bands and to reduce the noise in the data, 2) Pixel Purity Index (PPI), a designed method to find the most extreme spectrum pixels and their characteristics due to end-members mixing, 3) Spectral Angle Mapper (SAM), an image classification technique by measuring the spectral similarity between an unknown object with spectral reference in n- dimension. The output of those methods were mineral distribution occurrence. The performance of each mapping method was analyzed based on the ground truth data. Among the three proposed method, the SAM classification method is the most appropriate and accurate for mineral mapping related to spatial distribution of alteration minerals.

  10. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  11. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    USGS Publications Warehouse

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  12. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  13. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  14. Environmental impact of geothermal power plants in Aydın, Turkey

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ersel; Ali Kaptan, Mustafa

    2017-10-01

    Geothermal energy is classified as a clean and sustainable energy source, like all industrial activities, geothermal energy power plants (GEPP) technology has also some positive and negative effects on the environment. In this paper are presented by attent not only on environmental impacts of GEPP onto Büyük Menderes River and fresh water sources, which ere used for irrigation of agricultural fields from tousands of years in basin, but also on water quality contents like heavy metals and gases emition due to drilling and electricity producing technology of GEPP's. Aydın province is located in the southwestern part of the region and its city center has around 300000 population. The high geothermal potential of this region became from geographical location, which is held on active tectonic Alpine-Himalaya Orogen belt with active volcanoes and young faults. Since 1980's to 2016 there is about 70.97% (662.75 MW) of installed capacity by according to the Mineral Research and Exploration General Directorate, there are totally 290 well licensed (540 explore licenses and 76 business licenses), and 31 geothermal powerplants purposely installed. Topic is important because of number of GEPP increased rapidly after 2012 to now a days to 36 in whole basin.

  15. Identification of shallow geothermal anomalies in the Timanfaya National Park (Lanzarote, Canary Islands) through combined geophysical prospecting techniques

    NASA Astrophysics Data System (ADS)

    Gómez-Ortiz, David; Blanco-Montenegro, Isabel; Martín-Crespo, Tomás; Arnoso, José; Solla, Mercedes; Montesinos, Fuensanta G.; Vélez, Emilio; Calvo-Rathert, Manuel; Sánchez, Nieves; Lorenzo, Henrique; Soler, Vicente

    2017-04-01

    The Timanfaya National Park is a volcanic area in the southwest of Lanzarote Island (Canary Archipelago, Spain) resulting from the 1730-1736 eruption period. Several active geothermal anomalies have been identified from 1970's. Their location is important to prevent hazards in this restricted touristic area of the park. Presently, only some regional geophysical studies based on gravity, magnetic and seismic data have been undertaken to model the crustal structure of Lanzarote Island. This work presents a new study about the geothermal anomalies in the Timanfaya National Park by the analysis and joint interpretation of electrical resistivity tomography (ERT), magnetic anomalies and electromagnetic induction data (EMI). All analyzed data have been obtained over areas which had not been surveyed before. The studied geothermal field is located at the Islote de Hilario visitor's centre. One 50m-long GPR profile was carried out in May 2012 along the location of a known geothermal anomaly developed over pyroclastic deposits. The two main characteristics are: a) no continuous subhorizontal reflections are displayed up to 12 m depth and, b) the intensity of the reflections varies laterally in good agreement with the location of the geothermal anomalies (the higher the ground temperature, the greater the intensity of the GPR signal). Thus, an outline of the subsurface area with higher temperatures can be observed, indicating that the heat source is deeper at the beginning of the profile and extends laterally and progressively shallower towards the end. Temporal variation of the shallow temperature distribution was also investigated by repeating the same GPR profile in April 2015. Although both profiles look quite similar, subtle variations of the GPR signal intensity suggest a certain temporal variation of the ground temperature. In November 2012 a land magnetic survey was carried out in Timanfaya. In the Islote de Hilario area, total field magnetic data were acquired with an Overhauser magnetometer following a 75m-long profile which coincides in the first 50 m with the GPR profile. Three additional profiles (two of them parallel and one orthogonal to the first one) completed the survey, allowing the interpolation of the data into a regular grid. The resulting reduced-to-the-pole anomaly map displays some magnetic lows which could be related with high temperatures at shallow depths causing the loss of magnetic properties within the subsurface volcanic rocks. Forward modelling has been carried out to characterize the magnetic sources and to analyze the correlations with GPR data. These models have been constrained with NRM and susceptibility data measured in the laboratory for samples from the Timanfaya lava flows. Preliminary results of EMI data show high resistivity areas in good agreement with the location of the shallow geothermal anomalies, the magnetic lows and the high GPR signal intensity. The comparison of the results obtained from the different techniques reveals that the joint interpretation of ERT, magnetic anomalies and EMI methods provides reliable models useful for the location of shallow geothermal anomalies. These non-destructive geophysical techniques are of crucial importance in areas of special protection such as National Parks.

  16. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir

    USGS Publications Warehouse

    Bergfeld, D.; Goff, F.; Janik, C.J.

    2001-01-01

    In the later part of the 1990s, a large die-off of desert shrubs occurred over an approximately 1 km2 area in the northwestern section of the Dixie Valley (DV) geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids from fumaroles, shallow wells, and geothermal production wells within and adjacent to the dead zone. A cumulative probability plot shows three types of flux sites within the dead zone: Locations with a normal background CO2 flux (7 g m-2 day-1); moderate flux sites displaying "excess" geothermal flux; and high flux sites near young vents and fumaroles. A maximum CO2 flux of 570 g m-2 day-1 was measured at a location adjacent to a fumarole. Using statistical methods appropriate for lognormally distributed populations of data, estimates of the geothermal flux range from 7.5 t day-1 from a 0.14-km2 site near the Stillwater Fault to 0.1 t day-1 from a 0.01 -km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow temperature anomalies. The anomalous flux associated with the entire dead zone area declined about 35% over a 6-month period. The decline was most notable at a hot zone located on an alluvial fan and in the SG located on the valley floor. Gas geochemistry indicates that older established fumaroles along the Stillwater Fault and a 2-year-old vent in the lower section of the dead zone discharge a mixture of geothermal gases and air or gases from air-saturated meteoric water (ASMW). Stable isotope data indicate that steam from the smaller fumaroles is produced by ??? 100??C boiling of these mixed fluids and reservoir fluid. Steam from the Senator fumarole (SF) and from shallow wells penetrating the dead zone are probably derived by 140??C to 160??C boiling of reservoir fluid. Carbon-13 isotope data suggest that the reservoir CO2 is produced mainly by thermal decarbonation of hydrothermal calcite in veins that cut reservoir rocks. Formation of the dead zone is linked to the reservoir pressure decline caused by continuous reservoir drawdown from 1986 to present. These reservoir changes have restricted flow and induced boiling in a subsurface hydrothermal outflow plume extending from the Stillwater Fault southeast toward the DV floor. We estimate that maximum CO2 flux in the upflow zone along the Stillwater Fault in 1998 was roughly seven to eight times greater than the pre-production flux in 1986. The eventual decline in CO2 flux reflects the drying out of the outflow plume. Published by Elsevier Science B.V.

  17. Temperature distribution in the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal fieldmore » is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.« less

  18. Compendium of selected methods for sampling and analysis at geothermal facilities

    NASA Astrophysics Data System (ADS)

    Kindle, C. H.; Pool, K. H.; Ludwick, J. D.; Robertson, D. E.

    1984-06-01

    An independent study of the field has resulted in a compilation of the best methods for sampling, preservation and analysis of potential pollutants from geothermally fueled electric power plants. These methods are selected as the most usable over the range of application commonly experienced in the various geothermal plant sample locations. In addition to plant and well piping, techniques for sampling cooling towers, ambient gases, solids, surface and subsurface waters are described. Emphasis is placed on the use of sampling proves to extract samples from heterogeneous flows. Certain sampling points, constituents and phases of plant operation are more amenable to quality assurance improvement in the emission measurements than others and are so identified.

  19. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  20. The Lawrence Berkeley Laboratory geothermal program in northern Nevada

    NASA Technical Reports Server (NTRS)

    Mirk, K. F.; Wollenberg, H. A.

    1974-01-01

    The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.

  1. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment.more » We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.« less

  2. Geologic setting of the proposed West Flank Forge Site, California: Suitability for EGS research and development

    USGS Publications Warehouse

    Sabin, Andrew; Blake, Kelly; Lazaro, Mike; Blankenship, Douglas; Kennedy, Mack; McCullough, Jess; DeOreo, S.B.; Hickman, Stephen H.; Glen, Jonathan; Kaven, Joern; Williams, Colin F.; Phelps, Geoffrey; Faulds, James E.; Hinz, Nicholas H.; Calvin, Wendy M.; Siler, Drew; Robertson-Tait, Ann

    2017-01-01

    The proposed West Flank FORGE site is within the China Lake Naval Air Weapons Station (NAWS), China Lake, CA. The West Flank is west of the Coso geothermal field, an area of China Lake NAWS dominated by the Quaternary Coso volcanic field largely comprised of rhyolite domes and their volcaniclastic and epiclastic horizons. The largest dome flow complex, Sugarloaf Mountain, marks the northwestern margin of the geothermal field. The West Flank is situated due west of Sugarloaf. The geologic setting of the West Flank was determined from one deep well (83-11) drilled as a potential production hole in 2009. The bottom-hole temperature (BHT) of well 83-11 approaches 600 oF (315˚C), but flow tests demonstrate very low, non-commercial permeabilities. With the exception of the upper 600 feet of volcaniclastic alluvium, well 83-11 is completed in granitic basement. The West Flank possesses the primary attributes of a FORGE site: non-commercial permeability (<10-16m2), a 175˚ to 225˚C temperature range in crystalline rocks, and a location outside an existing geothermal fieldThe Coso Mountains host the Coso volcanic field and are within a right-releasing stepover between the dextral Airport Lake (ALF) and Little Lake fault zones (LLFZ) and the Wild Horse Mesa and Owens Valley faults. Two distinct fault populations have been identified at Coso: WNW-trending and antithetical, NE-trending strike-slip faults and N- to NNE-trending normal faults. These faults are both high permeability drilling targets at depth within the main (productive) geothermal field and they locally segment the field into distinct hydrothermal regimes. The West Flank may be segmented from the rest of the field by one such northerly trending fault. The overall minimum principal stress orientation in the main geothermal field varies from 103˚ to 108˚; however, the minimum horizontal principal stress in 83-11 is rotated to 081˚.

  3. Hot Dry Rock; Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depthmore » originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005]« less

  4. Magnetotelluric and Audio-magnetotelluric measurements in Alasehir Graben for geothermal exploration purposes

    NASA Astrophysics Data System (ADS)

    Tekesin-Cankurtaranlar, Ozge; Tuysuz, Okan; Riza Kilic, Ali

    2017-04-01

    In this study, we present the results of Magnetotelluric (MT) and Audio-magnetotelluric (AMT) soundings over a potential geothermal field. Study area is located in the northeasternmost part of the Alasehir (or Gediz) Graben, Western Anatolia, which is delimited by NW-SE trending fault systems and is filled by Miocene to Recent sediments. Study area is also very close to the Kula Quaternary volcanic region, a possible geothermal heat source for the region, last eruption of which was 12.000 years ago. Relatively thin crust, high heat flow values and intense tectonic activity of the Western Anatolia possibly refers to the high geothermal potential. In fact, along the southern and central part of the graben there are many productive areas reaching up to 300 degrees Celsius. By this motivation, to determine the geothermal potential of the study area MT and AMT measurements had been carried out on a total of 45 stations covering about 8 km2 area. All profiles shows higher resistivity values (>140 ohm.m) at greater depths, possibly indicating a metamorphic basement covered by Miocene to Recent sediments. This metamorphic basement gets shallower towards the North where the geothermally weathered schists and marbles crop out. Furthermore, a normal fault interface between metamorphic basement and Neogene sediments shows high resistivity contrast. Results indicate that the metamorphic basement is a less conductive block located at a depth of 1500 - 2000 m at the south and gets shallower towards the north as normal fault blocks.

  5. Roosevelt Hot Springs, Utah FORGE Regional Well Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Greg

    This archive contains a GIS point feature shapefile that shows the locations of wells in the general region of the Utah FORGE project, near Roosevelt Hot Springs. This includes Utah FORGE deep well 58-32 and wells for which data has been uploaded to the Geothermal Data Repository. The attribute table has a field that contains well names.

  6. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.

  7. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  8. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  9. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  10. Temporal changes in shear velocity from ambient noise at New Zealand geothermal fields

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.; Townend, J.

    2016-12-01

    We use ambient noise to compare shear velocity changes with geothermal production processes at the Ngatamariki and Rotokawa geothermal fields, located in the central North Island of New Zealand. We calculate shear velocity changes through an analysis of cross correlation functions of diffusive seismic wavefields between stations, which are proportional to Green's functions of the station path. Electricity production at Ngatamariki uses an 82 MW binary type power station manufactured by Ormat Technologies, which began operations in mid-2013 and is owned and operated by Mighty River Power. The "Nga Awa Purua" triple flash power plant at the Rotokawa geothermal field was established in 2010 with parnership between Mighty River Power and Tauhara North No. 2 trust and currently operates 174 MW of generation. The seismometers of both networks, deployed primarily to observe microseismicity within the field, were installed prior to well stimulation and the start of production. Although cultural noise dominates the energy spectrum, a strong natural ambient noise signal can be detected when filtering below 1 Hz. Despite similar noise settings, the signal-to-noise ratio of cross correlation stacks at Rotokawa was more than two times greater than at Ngatamariki. We use stacks of cross correlations between stations prior to the onset of production as references, and compare them with cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production.

  11. Optimization of Geothermal Well Placement under Geological Uncertainty

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian

    2017-04-01

    Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.

  12. Identification the geothermal system using 1-D audio-magnetotelluric inversion in Lamongan volcano field, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ilham, N.; Niasari, S. W.

    2018-04-01

    Tiris village, Probolinggo, East Java, is one of geothermal potential areas in Indonesia. This area is located in a valley flank of Mount Lamongan and Argopuro volcanic complex. This research aimed to identify a geothermal system at Tiris area, particularly the fluid pathways. The geothermal potential can be seen from the presence of warm springs with temperature ranging 35-45°C. The warm spring locations are aligned in the same orientation with major fault structure in the area. The fault structure shows dominant northwest-southeast orientation. We used audio-magnetotelluric data in the frequency range of 10 Hz until 92 kHz. The total magnetotelluric sites are 6. From the data analysis, most of the data orientation were 2-D with geo-electrical direction north-south. We used 1-D inversion using Newton algorithm. The 1-D inversion resulted in low resistive anomaly that corresponds to Lamongan lavas. Additionally, the depth of the resistor are different between the area to the west (i.e. 75 m) and to the east (i.e. 25 m). This indicates that there is a fault around the aligned maar (e.g. Ranu Air).

  13. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.) is conducting since May, 2012. The GAPSS experiment consists of a large aperture seismic array composed by 20 temporary and 2 permanent broad-band seismic stations. Besides the characterization of the seismic release of the geothermal field, our purpose is to investigate in depth the geothermal field applying cost-effective passive seismic techniques, such as local earthquake tomography, attenuation tomography, shear wave splitting analysis and surface-wave dispersion from noise correlation analysis.

  14. Archuleta County CO Lineaments

    DOE Data Explorer

    Richard E. Zehner

    2012-01-01

    This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.

  15. CO2 Push-Pull Single Fault Injection Simulations

    DOE Data Explorer

    Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita

    2017-09-21

    ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.

  16. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was conclude that the same hydrothermal fluid in geothermal system was reached to the surface and interacted with the surface rocks. Our conceptual geothermal model for Cappadocia Geothermal Province based on our geochemical and hydrogeochemical data in combination with geological and geophysical information suggest that the geothermal resources in this region are controlled by primary (active fault) and secondary (buried fault) tectonic belts. Further, our geochemical data indicate the Paleozoic-Mesozoic marble and gneiss being the reservoir rocks. Geogradient and impending heat fluxes to the surface with a possible crustal thinning, which was developed after regional tectonic activities during the Late Pliocene-Quaternary period, constitutes the heat sources. In addition, our study suggest that the Quaternary tuff and ignimbrites of Cappadocia Volcanics represent the seal rock of the geothermal system. In conclusion this study provide evidence for a significant geothermal potential in the Cappadocia region with well-defined seal rocks. However, further studies are needed to resolve the geothermal fluid source problem. Keywords: Cappadocia, geothermal systems, geochemistry, rare earth elements, hydrogeochemistry, hydrothermal alteration.

  17. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.

  18. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  19. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less

  20. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.

  1. Brady's Geothermal Field Nodal Seismometers Metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesley Parker

    Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.

  2. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  3. Philippine geothermal resources: General geological setting and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal fieldmore » in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.« less

  4. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  5. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  6. Velocity structures of Geothermal sites: A comparative study between different tomography techniques on the EGS-Soultz-sous-Forêts Site (France)

    NASA Astrophysics Data System (ADS)

    Calo', M. C.; Dorbath, C.

    2009-12-01

    One major goal of monitoring seismicity accompanying hydraulic fracturing of a reservoir is to recover the seismic velocity field in and around the geothermal site. In many cases the seismicity induced by the hydraulic stimulations allows us to roughly describe the velocity anomalies close to the hypocentral location, but only during the time period of the stimulation. Several studies have shown that the 4D (time dependent) seismic tomographies are very useful to illustrate and study the temporal variation of the seismic velocities conditioned by injected fluids. Nevertheless in geothermal fields local earthquake tomography (LET) is often inadequate to study the seismic velocities during the inter-injection periods, due to the lack of seismicity. In July 2000 an injection test that lasted 15 days performed at the Enhanced Geothermal System (EGS) site of Soultz-sous-Forêts (Alsace, France) produced about 7200 micro-earthquakes with Duration Magnitude ranging from -0.9 to 2.5. the earthquakes were located by down hole and surface seismic stations. We present here a comparison between three tomographic studies, 1) the “traditional” seismic tomography of Cuneot et al., 2008, 2) a Double Difference tomography using the TomoDD code of Zhang and Thurber (2003) and, 3) the models obtained by applying the Weighted Average Model method (WAM, Calo’ et al., 2009). the velocity models were obtained using the same dataset recorded during the stimulation. The WAM technique produces a more reliable reconstruction of the structures around and above the cluster of earthquakes, as demonstrated by the distribution of the velocity standard deviations. Although the velocity distributions obtained by the three tomographic approaches are qualitatively similar, the WAM results correlate better with independent data such the fracturing directions measured in the down-holes, the location of the clustered seimsicity) than those of the traditional and DD tomographies. To overcome the limits of LET during the inter-injection periods we plan to perform a seismic noise tomography study. In geothermal sites, the elastic characteristics of the volume at rest, i.e. during the inter-injection periods, are often poorly known.

  7. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  8. The GEOTREF program, a new approach for geothermal investigation

    NASA Astrophysics Data System (ADS)

    Gérard, Frédéric; Viard, Simon; Garcia, Michel

    2017-04-01

    The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.

  9. Geophysical characterization of subaerial hydrothermal manifestations in Punta Banda, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, L.; Prol-Ledesma, R. M.; Arango, C.; Canet, C.

    2009-04-01

    Important growth of population in Baja California Peninsula has triggered the need for energy and fresh water. The most sustainable possibility for increasing the availability of fresh water is the use of renewable energy sources in desalination plants. The abundance of geothermal manifestations in the peninsula provides a reliable energy source for desalination purposes. Geothermal development of the Baja California Peninsula dates from the 70's, when the Cerro Prieto geothermal field started producing electricity. Two important cities, Tijuana and Ensenada, are located in the north-western area of Baja California. The city of Ensenada has a desalination plant that is due to be replaced and the geothermal resources of the area could be an option for the new desalination plant. Punta Banda, a region near Ensenada, was specially investigated to determine its geothermal potential. Subaerial springs and the submarine vents were sampled and studied in this work, also geological and geochemical studies were performed, moreover geoelectrical surveys were accomplished to characterize the hydrothermal system at depth. Even though saline intrusion is a severe problem in Ensenada (TDS higher than 3000), thermal springs away from the coast and coastal springs have salinities lower than sea water. According to the geoelectrical models obtained from profiles, the inferred conductive features can be related to thermal anomalies. The existence of hot springs located along a trend suggests that the dynamic of the thermal fluid is restricted by secondary faults.

  10. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk factors at favorable sites enables an evaluation of project feasibility across sites based on tradeoffs in the risk factors. Uncertainties in each risk factor can also be considered to determine if the tradeoffs in risk factors between sites are meaningful.

  11. Market study for direct utilization of geothermal resources by selected sectors of economy

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented.

  12. Genesis and evolution of the Cerro Prieto Volcanic Complex, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    García-Sánchez, L.; Macías, J. L.; Sosa-Ceballos, G.; Arce, J. L.; Garduño-Monroy, V. H.; Saucedo, R.; Avellán, D. R.; Rangel, E.; Layer, P. W.; López-Loera, H.; Rocha, V. S.; Cisneros, G.; Reyes-Agustín, G.; Jiménez, A.; Benowitz, J. A.

    2017-06-01

    The Cerro Prieto Volcanic Complex (CPVC), located in northwestern Mexico, is the only surface manifestation of the Cerro Prieto Geothermal Field, the third largest producer of geothermal energy in the world. This geothermal field and the Salton Sea in the USA sit in a pull-apart basin that belongs to the trans-tensional tectonic zone that includes the San Andreas Fault system and the Salton Trough basin to the NW and the East Pacific Rise to the SE. In spite of its strategic importance in the generation of geothermal energy, the origin of Cerro Prieto and its relationship with the geothermal reservoir were unknown. In this contribution, we discuss the origin, evolution, and mechanisms of formation of this small monogenetic volcano and the magmas that fed the system. The volcanic complex is located on top of the Cerro Prieto left lateral fault to the northwest of the Cerro Prieto Geothermal Field. The complex consists of a lava cone and a series of domes (˜0.15 km3) protruding from Tertiary sandstones and recent unconsolidated sediments of the alluvial plain of the Colorado River. The Cerro Prieto Volcanic Complex consists of seven stratigraphic units emplaced in a brief time span around 78-81 ka. Its activity began with the extrusion of a dacitic lava that came into contact with water-saturated sediments, causing brecciation of the lava. The activity continued with the emplacement of dacitic domes and a dyke that were destroyed by a phreatic explosion emplacing a lithic-rich breccia. This phreatic explosion formed a 300-m-wide and 40-m-deep circular crater. The activity then migrated ˜650 m to the SW where three dacitic lava domes were extruded and ended with the emplacement of a fissure-fed lava flow. Subsequent remobilization of the rocks in the complex has generated debris and hyperconcentrated flow deposits interbedded with fluviatile sediments in the surrounding terrain. All rocks of the CPVC are dacites with phenocrysts of plagioclase, orthopyroxene, and Fe-Ti oxides and minor quartz. Gabbro-dioritic dykes intruded in Tertiary sandstones and siltstones of the local basement contain phenocrysts of plagioclase, clinopyroxene, Fe-Ti oxides, and olivine. All CPVC rocks are chemically homogeneous suggesting discrete modifications by crustal assimilation, fractional crystallization, or magma mixing processes during upper crustal residence. Aeromagnetic results suggest that the depth of the magmatic source in the area is located below 3.5 km. CPVC rocks contain chemical anomalies typical of subduction zones, which suggests that all CPVC magmas could have been generated by partial melting of the remains of the subducted Farallon plate.

  13. Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2006-01-01

    The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.

  14. Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M.; Ritchotte, G.; Viggiano, A.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediatelymore » adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.« less

  15. Micro-seismic earthquakes characteristics at natural and exploited hydrothermal systems in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jousset, P. G.; Jaya, M. S.; Sule, R.; Diningrat, W.; Gassner, A.; Akbar, F.; Ryannugroho, R.; Hendryana, A.; Kusnadi, Y.; Syahbana, D.; Nugraha, A. D.; Umar, M.; Indrinanto, Y.; Erbas, K.

    2013-12-01

    The assessment of geothermal resources requires the understanding of the structure and the dynamics of geothermal reservoirs. We deployed a multidisciplinary geophysical network around geothermal areas in the south of Bandung, West Java, Indonesia. The first deployment included a network of 30 broadband and 4 short-period seismic stations with Güralp and Trillium sensors (0.008 - 100 Hz) since October 2012. In a second step, we extended the network in June 2013 with 16 short-period (1 Hz) seismometers. We describe the set-up of the seismic networks and discuss first observations and results. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. Preliminary location of earthquakes is performed using a non-linear algorithm, which allows us to define at least 3 seismic clusters. We discuss this seismic pattern within the geothermal fields.

  16. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  17. Assessing the Impact of the Installation of a Community-Scale Closed-Loop Ground-Source Geothermal System on Underlying Aquifers: Ball State University, Muncie, IN

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C.; Florea, L.; Dunn, M.; Samuelson, A. C.; Lowe, J.

    2013-12-01

    Ball State University (BSU), located within the city of Muncie, Indiana, began installing the nation's largest ground-source geothermal project in 2009. Currently, BSU is burning over 20,000 tons of coal annually to satisfy heating and cooling demands of the school and is one of the largest emitters of CO2, SO2 and mercury in the city of Muncie and surrounding Delaware County. The elimination of coal burning will reduce aerial pollution by an estimated 1400 tons of SO2 and 4 pounds of mercury annually, once the system is fully operational. Currently, the groundsource geothermal system is being installed in Phases. Phase 1 includes 1803 400-ft deep geothermal boreholes that were drilled in a 15x15 ft grid in two large fields (North and South) in the northern part of campus. Two geothermal exchange loops were installed in each borehole to add or remove heat from the ground. BSU students and faculty collected hydrogeologic and temperature data from a series of groundwater monitoring wells, beginning Summer 2010. The installation of the second phase in the southern part of campus has commenced.. Despite the rise in community-scale ground-source geothermal energy systems, there is very little empirical information on their effects upon the groundwater environment, or, vice versa, of the effects of the groundwater flow pattern on the geothermal field. Previous studies have triggered concern over the impact of large-scale geothermal systems where increases in groundwater temperatures were documented. We will demonstrate how, since BSU initiated Phase 1 in late November 2011 with cold-water circulation (adding heat to the ground), the temperature increased over 10 degrees Celsius in the center of the South Field, with temperatures rising in other surrounding monitoring wells depending on groundwater movement and their distance from the edge of the geothermal boreholes. The temperature increases are distinctively different in the upper highly hydraulically conductive aquifers (Quaternary till) and the underlying poorly conductive formations (Ordovician and Silurian limestone and shale). Maintaining a temperature differential between the exchange loops and the geologic substrate and/or groundwater is crucial to the long term efficiency of the system, and continued monitoring both of the hydrology and engineering aspects of the project will be necessary.

  18. 43 CFR 3271.13 - How do I obtain approval to build pipelines and facilities connecting the well field to...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I obtain approval to build pipelines and facilities connecting the well field to utilization facilities not located on Federal lands leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  19. 43 CFR 3271.13 - How do I obtain approval to build pipelines and facilities connecting the well field to...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How do I obtain approval to build pipelines and facilities connecting the well field to utilization facilities not located on Federal lands leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  20. 43 CFR 3271.13 - How do I obtain approval to build pipelines and facilities connecting the well field to...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How do I obtain approval to build pipelines and facilities connecting the well field to utilization facilities not located on Federal lands leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  1. 43 CFR 3271.13 - How do I obtain approval to build pipelines and facilities connecting the well field to...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How do I obtain approval to build pipelines and facilities connecting the well field to utilization facilities not located on Federal lands leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  2. Coso MT Site Locations

    DOE Data Explorer

    Doug Blankenship

    2011-05-04

    This data includes the locations of the MT data collected in and around the Coso Geothermal field that covered the West Flank area. These are the data that the 3D MT models were created from that were discussed in Phase 1 of the West Flank FORGE project. The projected coordinate system is NAD 1927 State Plane California IV FIPS 0404 and the Projection is Lambert Conformal Conic. Units are in feet.

  3. Micro-seismicity within the Coso Geothermal field, California, from 1996-2012

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Weber, Lisa C.

    2017-01-01

    We extend our previous catalog of seismicity within the Coso Geothermal field by adding over two and a half years of additional data to prior results. In total, we locate over 16 years of seismicity spanning from April 1996 to May of 2012 using a refined velocity model, apply it to all events and utilize differential travel times in relocations to improve the accuracy of event locations. The improved locations elucidate major structural features within the reservoir that we interpret to be faults that contribute to heat and fluid flow within the reservoir. Much of the relocated seismicity remains diffuse between these major structural features, suggesting that a large volume of accessible and distributed fracture porosity is maintained within the geothermal reservoir through ongoing brittle failure. We further track changes in b value and seismic moment release within the reservoir as a whole through time. We find that b values decrease significantly during 2009 and 2010, coincident with the occurrence of a greater number of moderate magnitude earthquakes (3.0 ≤ ML < 4.5). Analysis of spatial variations in seismic moment release between years reveals that localized seismicity tends to spread from regions of high moment release into regions with previously low moment release, akin to aftershock sequences. These results indicate that the Coso reservoir is comprised of a network of fractures at a variety of spatial scales that evolves dynamically over time, with progressive changes in characteristics of microseismicity and inferred fractures and faults that are only evident from a long period of seismic monitoring analyzed using self-consistent methods.

  4. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Science.gov Websites

    allow users to determine locations that are favorable to geothermal energy development. List of software Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mungania, J.

    Olkaria Geothermal area is located in the central sector of the Kenya, Rift Valley. A 45MW Geothermal power station has been operational at Olkaria since 1985 supplied by 22 of the 26 wells drilled in the Eastern production field (EPF). Between 1988 and 1993, eight more wells referred to as {open_quote}replacement wells{close_quote} were drilled in the same field to boost steam supply to the station. Petrographic analyses of the drill cuttings is usually done to determine detail stratigraphy of the field, extends of hydrothermal activity, subsurface structures and other parameters which may influence production potential of a well. Analyses ofmore » the drill cuttings from the EPF wells show that: Variations in the whole rock alteration intensities correlate with differences in rocktypes. Permeable horizons, especially the productive feeder zones are well marked by enhanced hydrothermal minerals depositions, mainly quartz, calcite, pyrite and epidote. Other aspects of state of reservoir like boiling are signified by presence of bladed calcite.« less

  6. Geo-electrical and geological strikes of the Mount Lamongan geothermal area, East Java, Indonesia – preliminary results

    NASA Astrophysics Data System (ADS)

    Nugraheni, L. R.; Niasari, S. W.; Nukman, M.

    2018-04-01

    Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.

  7. Are Geotehrmal Reservoirs Stressed Out?

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.

  8. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    NASA Astrophysics Data System (ADS)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  9. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  10. Geochemical Study of Ampallas Geothermal Area, Mamuju District, West Sulawesi Province

    NASA Astrophysics Data System (ADS)

    Fauziyyah, F.; Prabowo, T. R.; Shalihin, M. G. J.; Setiawan, D. I.; Yushantarti, A.

    2016-09-01

    Ampallas is one of the areas with geothermal potential which located in Mamuju district, near from the capital city of West Sulawesi. This research was carried out to understand the characteristic of this geothermal field based on chemistry of the surface manifestation, including fluid characteristic and soil anomaly. Geothermal research in Ampallas area focused on 4 hot springs; Ampallas, Batupane, Karema, and Gantungan. With average temperature around 34 - 67°C. Ampallas 1,2,3,4,7,8 hot springs water type is chloride - bicarbonate, which means it came from the reservoir while Batupane, Gantungan, Karema and Ampallas 5 are all bicarbonate type. Ampallas 1,2,3,4,7,8, Karema and Gantungan hot springs fluid plotted in partial equilibrium zone while Batupane and Ampallas 5 plotted in immature water zone. It means the Ampallas hot springs (except Ampallas-5) mixed with meteoric water right after reached the equilibrium state. It is also concluded that Ampallas 5 hot springs came from the same reservoir with Batupane, but not Gantungan and Karema hot springs. The speculative resource potential of Ampallas geothermal system is estimated around 30 MWe. But if detailed geophysical method was applied the result could be more accurate.

  11. Evolution of seismicity in relation to fluid injection in the North-Western part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Staszek, Monika; Lasocki, Stanisław; Martínez-Garzón, Patricia; Kwiatek, Grzegorz

    2018-02-01

    The Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of time-series through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ˜2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.

  12. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    NASA Astrophysics Data System (ADS)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks consist of a thick (>1500 m) package of fine-grained altered basalts and interbedded sedimentary rocks. Within this package, in the central portion of the well field, a ~300-500 m thick marker of laminated siltstones + coarse-grained, porphyritic plagioclase basalt has been identified in cuttings. Variations in thickness within the marker suggest older faults with significant throw were primarily northwest striking. Large local variations in the thickness of the 5.11 Ma trachytic basalt body support this interpretation and indicate NW-striking faulting likely continued through ~5 Ma B.P. However, all evidence indicates near-surface (<1000 m depth) faults at the Soda Lake geothermal field strike NNE, perpendicular to the contemporary extension direction. Structural interpretation is in progress for the Soda Lake geothermal field. In conjunction with recently obtained 3D seismic and microgravity surveys, stratigraphic information obtained from cuttings broadly constrains the structural setting. These data may permit determination of the specific structural host environment and should allow for assessment of how the prevailing faults at the site correlate with regional scale trends.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

  14. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very consistent and also agree with previous stress estimates in the eastern part of the Coso Geothermal Field. In order to obtain a reliable estimation of the stress orientation in this setting, it is necessary to sample the stress field on an interval long to capture several of the dominant wavelengths.

  15. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  16. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  17. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  18. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  19. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  20. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  1. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  2. Integrated geophysical study of the geothermal system in the southern part of Nisyros Island, Greece

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Apostolopoulos, G.

    1995-10-01

    The study of the high-enthalpy geothermal field of Nisyros Island is of great importance, because of the planned construction of a geothermal power station. The purpose of the applied geophysical surveys — gravity, SP, VLF and audio-magnetotelluric — in southernmost Nisyros was to investigate the major and minor faulting zones which are geothermally active, i.e. whether geothermal fluid circulation occurs in these zones. The survey lines, four parallel traverses of about 1500 m length, were chosen to be almost transverse to the main faults of the area. The SP method was the main reconnaissance technique, with the VLF and gravity measurements correlating with the "SP model". Previously proposed SP data acquisition and reduction techniques were used, followed by a 2-D interpretation of the SP map which apparently locates the position of the fracture zones (geothermally active). The SP and VLF anomalies are believed to be generated by the same source (subsurface flow of fluid, heat and ions). Hence, at the place of a vertical geothermal fluid circulation zone, the curve of SP dipole-like anomaly changes its behaviour and the curve of the VLF anomaly takes maximum values for the in-phase component and minimum values for the out-of-phase component. On the VLF map of the survey area, the zones detected with the SP interpretation coincide with the maximum values of the VLF in-phase component. The geothermal fluid circulation zones, detected by the SP method, appear to be well correlated with corresponding features derived from the gravity and the AMT surveys. In particular, the AMT soundings indicate two zones of geothermal fluid circulation instead of the one the SP method detected in the central part of the investigated area.

  3. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  4. Modeling of a deep-seated geothermal system near Tianjin, China.

    PubMed

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.

  5. Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.

    1982-05-01

    Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed.more » The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.« less

  6. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  7. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  8. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE PAGES

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas; ...

    2017-12-01

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  9. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

  10. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    NASA Astrophysics Data System (ADS)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  11. Detectability of geothermal areas using Skylab X-5 data

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.

    1975-01-01

    The results are presented of a study which was undertaken to determine if data from a single near-noon pass of Skylab could be used to detect geothermal areas. The size and temperature requirements for a geothermally heated area to be seen by Skylab S-192 MSS X-5 thermal sensor were calculated. This sensor obtained thermal data with the highest spatial resolution of any nonmilitary satellite system. Only very large hot areas could be expected to be unambiguously recognized with a single data set from this instrument. The study area chosen was The Geysers geothermal field in Sonoma County, California, the only geothermal area of significant size scanned by Skylab. Unfortunately, 95% of the Skylab thermal channel data was acquired within 3 hours of local noon. For The Geysers area only daytime X-5 data were available. An analysis of the thermal channel data (10.2 to 12.5 um) revealed that ground temperatures determined by Skylab were normally distributed. No anomalous hot spots were apparent. Computer enhancement techniques were used to delineate the hottest 100 and 300 ground areas (pixel, 75 m by 75 m) within the study region. It was found that the Skylab MSS with the X-5 thermal detector does not have sufficient spatial resolution to locate unambiguously from daytime data any but the largest and hottest convectively created geothermal features, which in general are prominent enough to have been previously recognized.

  12. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    USGS Publications Warehouse

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  13. Characteristics of Seismicity at Ngatamariki and Rotokawa Geothermal Fields, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopp, C. J.; Mroczek, S.; Savage, M. K.; Sewell, S. M.; Townend, J.; Sherburn, S.

    2017-12-01

    Fluid-induced seismicity (FIS) is a useful indicator of thermal and pressure changes within a geothermal reservoir. Given the difficulty of making measurements in the space between wells, FIS provides one of the only direct observations of fluid-related reservoir processes. Understanding exactly why and how these microearthquakes occur helps us unravel the interaction between the movement of fluid and heat at depth and could allow for a better understanding of the creation and destruction of permeability in the reservoir. We begin with an earthquake catalog of roughly 6200 events which occurred between May 2012 and November 2015 at the Mercury geothermal fields at Rotokawa and Ngatamariki. We expand this catalog using matched filter detection to include 350,000 microearthquakes. Earthquakes at the fields are densely clustered in areas of active fluid injection and the rate of seismicity is highly correlated with injection rate. We present high-precision locations as well as frequency-magnitude distributions and source mechanisms for significant events and discuss their relation to injection and production rates at the fields. In particular, we focus on specific periods of interest including the stimulation of well NM08 in June 2012, the Ngatamariki plant startup in April 2013, the switch of injection at Rotokawa to well RK22 in 2013 and a prolonged period of permeability change at well RK24.

  14. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less

  15. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter Eugene

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less

  16. Engineering parameters used in geopressured geothermal Fairway evaluation and test-well site location, Frio formation, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, A.R.; Meriwether, J.

    1977-01-01

    Adequate deliverability of fluids from reservoirs with temperatures higher than 300/sup 0/F is a key factor in evaluating geopressured geothermal resources. In the Austin Bayou Prospect, Brazoria County, Texas, permeability is difficult to evaluate before wells are drilled and tested. However, this report discusses how reservoir pressure decline and high temperature reduce permeability. The history of gas-condensate production from geopressured reservoirs in the Chocolate Bayou field, located near the Austin Bayou Prospect, shows that deliverability of hydrocarbons is high in the early life of the reservoirs but drops sharply as pressure declines. Average geothermal gradient is 1.8/sup 0/F per hundredmore » feet and reservoir pressure gradients lie between 0.465 and 0.98 psia per foot for depths below 10,000 feet. Salinities vary from 40,000 to 80,000 ppM and methane content may range from 25 to 45 cubic feet per barrel for formation waters commonly found in the Chocolate Bayou field. The effective gas permeabilities determined from production flow tests are estimated to range from 1 to 6 millidarcys and absolute permeabilities lie between 2 and 10 millidarcys. More than 10 billion barrels of water inferred to occur in place in the prospective sandstone reservoirs of the Austin Bayou prospect contain potentially 1,733 MW-years of electrical energy and 400 billion cubic feet of methane in solution.« less

  17. Geothermal NEPA Database on OpenEI (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K. R.; Levine, A.

    2014-09-01

    The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. Theymore » then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.« less

  18. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  19. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  20. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    NASA Astrophysics Data System (ADS)

    Semedi, Jarot M.; Willemen, Louise; Nurlambang, Triarko; van der Meer, Freek; Koestoer, Raldi H.

    2017-12-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic values, energy supply security, and the conservation of the environment. This has led to the prioritization of renewable energy sources. Geothermal energy a renewable energy source that produces low carbon emissions and is widely available in Indonesia due to the country’s location in the “volcanic arc”. The development of geothermal energy faces several problems related to its potential locations in Indonesia. The potential sites for geothermal energy are mostly located in the volcanic landscapes that have a high hazard risk and are often designated protected areas. Local community low knowledge of geothermal use also a challenge for geothermal development where sometimes strong local culture stand in the way. Each phase of geothermal energy development (exploration, construction, operation and maintenance, and decommissioning) will have an impact on the landscape and everyone living in it. Meanwhile, natural and other human-induced drivers will keep landscapes and environments changing. This conference paper addresses the development of an integrated assessment to spatially measure the impact of geothermal energy development phases on ecosystem services. Listing the effects on the ecosystem services induced by each geothermal development phases and estimating the spatial impact using Geographic Information System (GIS) will result in an overview on where and how much each geothermal development phase affects the ecosystem and how this information could be included to improve national spatial planning.

  1. Apatite (U-Th)/He Thermochronometry as an innovative Geothermal Exploration Tool - A case study from the Wassuk Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, K. E.; Stockli, D. F.; Walker, J. D.

    2010-12-01

    A utility-grade geothermal system requires increased, near-surface temperatures (>120°C), water to transfer heat, and structural or sedimentological fluid conduits. In extensional tectonic settings, geothermal anomalies often occur in areas with recent, high strain accumulation and complex faulting (i.e., cross-faults, accommodation zones) where exhumation and uplift of footwall rocks transfer heat, via advection, to the near-surface which is further carried by water through structural fluid conduits. Apatite helium (AHe) thermochronometric footwall age mapping can be used in conjunction with these genetic occurrence models to further focus regional-scale geothermal exploration efforts to areas of probabilistic increased fracture permeability and most recent, rapid footwall exhumation. Furthermore, partially reset apatites resulting from interaction with hydrothermal fluids (>40°C) will show which areas have been hottest most recently. This case study in the Wassuk Range, Hawthrone, NV confirms the utility of AHe thermochronometry as a geothermal exploration tool. A dense grid of footwall samples were collected adjacent to the Hawthorne geothermal anomaly (>85°C BHT) located in the hanging wall of the Wassuk Range block. Our data show that the location of the present-day geothermal anomaly correlates with the location of 1) the most recent episode of rapid footwall exhumation at 3.5-4 Ma, 2) km scale accommodation zones between differentially tilted Wassuk Range blocks, and 3) an elevated Miocene geothermal gradient. Furthermore, anomalously young AHe ages (<3.5 Ma) mimic the lateral extent of the Hawthorne geothermal anomaly and likely resulted from interaction with a deep-seated geothermal cell or hot hydrothermal fluids.

  2. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  3. Brady's Geothermal Field DAS Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    The submitted data correspond to the vibration caused by a 3.4 M earthquake and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. Earthquake information : M 4.3 - 23km ESE of Hawthorne, Nevada Time: 2016-03-21 07:37:10 (UTC) Location: 38.479 N 118.366 W Depth: 9.9 km

  4. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.

  5. Preliminary study of near surface detections at geothermal field using optic and SAR imageries

    NASA Astrophysics Data System (ADS)

    Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1 and 2 of FCC. Comparing to the extracted lineament density, we interpreted that the near surface manifestation is located at zone 1 and 2 of FCC image.

  6. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir. Vertical depth-sections indicate that these low values are co-located with production zones and production related seismicity. In contrast, the highest Vp/Vs estimates are co-located with injection zones and their associated seismicity.

  7. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  8. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippmann, M.J.; Truesdell, A.H.

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins ofmore » the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.« less

  9. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.

    2017-12-01

    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water upflow is assumed to be the main driven factors that explain the occurrence of hot spring in regions with normal to slightly abnormal geothermal gradient. Actual thermal output of the captured fluid in the São Pedro do Sul Hydrothermal area is not fully used, namely in summer times. Thus the main focus for the concessionary includes the saturation of the actual Termas heat power capacity either in the SPA utilization and expansion for newer users in the district heating system. Further studies must be conducted in order to ascertain for possible source deep exploitation to refine quantitatively the São Pedro do Sul reservoir conceptual model in order to make sustainable wise management of this important natural resource, critical for the São Pedro do Sul municipality development and also contributing for the Portuguese sustainable economic growth. In this paper we give new insights for the knowledge of São Pedro do Sul Hydromineral and Geothermal Field, namely the geothermal reservoir, the concession hot water exploitation and future perspectives for upcoming sustainable developments of this valuable natural resource.

  10. Characterization of geothermal paleosystem in the Lesser Antilles volcanic arc: structural, petrographic, thermodynamic and petrophysics analysis of Terre-de-Haut (Les Saintes archipelago, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Favier, Alexiane; Navelot, Vivien; Verati, Chrystèle; Lardeaux, Jean-Marc; Corsini, Michel; Diraison, Marc; Géraud, Yves; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    This survey takes part in the GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program "Investments for the future". The program focuses on the exploration of geothermal resource in the Lesser Antilles volcanic arc. An exclusive license has been issued in the Vieux-Habitants area (Basse-Terre, Guadeloupe) to carry on the development of high-temperature geothermal energy in this active volcanic region. The deep geothermal reservoir on the Basse-Terre island could be characterized in exhumed paleosystems. The reference paleosystem in the Guadeloupe archipelago is located in Terre-de-Haut. Four major fault directions have been highlighted N000-N020, N050-N070, N090-N110 and N130-N140. Field observations emphasize three major cleavage directions overlaying the fault systems: N035-N060, N080-N110, N145-N165. Volcanic rocks affected by cleavage display several metamorphic transformation grades. The more transformed calc-alkaline rocks are located at the intersection of several cleavage directions. Mineralogical transformations due to metamorphism and surimposed fractures are also responsible for strong changes of petrophysical properties. In comparison with the reference protolith of andesitic lava flows outcropping in Vieux-Habitants, which have porosity and permeability lower than 5 % and 10-15 m2, andesites of Terre-de-Haut have better reservoir properties with connected porosity and permeability higher than 15 % and 10-14-10-15 m2 respectively. Thermodynamic modelling based on petrography and chemical composition of the most transformed rocks highlights a steady state mineral assemblage between 0.25 - 1.5 kbar and 350 - 450 ˚ C. It corresponds to a geothermal gradient higher than 120 to 150˚ C/km. This is consistent with temperatures measured in Bouillante wells. However, this geothermal gradient is notably higher to a usual volcanic arc conductive gradient estimated to 70-100˚ C/km. It can be explained by the addition of a convective processes caused by hydrothermal fluid flows.

  11. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  12. The Geothermal Potential, Current and Opportunity in Taiwan

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base-load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.

  13. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geologymore » at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.« less

  15. Honey Lake Geothermal Project, Lassen County, California

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  16. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  17. Geophysical model of Mt. Labo geothermal field, Southeastern Luzon, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los Banos, C.F. Jr.; Layugan, D.B.; Maneja, F.C.

    1996-12-31

    The geophysical model of Mt. Labo geothermal field, based on the results of the regional gravity and magnetotelluric (MT) surveys, indicates a geothermal reservoir centered beneath the Mabahong Labo thermal ground. The heat source of the present hydrothermal system is provided by a cooling intrusive body, mapped as a gravity high, associated with the Mt. Labo volcanic activity. The geothermal fluids circulate along fractures within the low-density reservoir rocks of the Susung Dalaga Formation. This reservoir rock shows relatively high resistivity values of 30 to 40 ohm-m. Directly overlying the resistive reservoir, occurring between -1000 m to -1500 m, ismore » a thick alteration halo formed within the basal unit of the Labo Volcanics (Lbu). The predominantly hydrous, low-temperature clay minerals which compose the alteration halo give low resistivity values of 1 to 4 ohm-m. Outflow of hot fluids to the south-southwest, which possibly feeds the thermal springs at Kilbay and Alawihaw, may be channeled along the thinning low resistivity Lbu. The geophysical model also shows a possible separate hydrothermal system in the west associated with a relatively shallower intrusive body, also defined by positive gravity values. This intrusion, which could be related to the cluster of volcanic domes located south of Bakilid Fault, may provide the heat that drives the hot springs at Kilbay and Alawihaw. It could also be possible that the Kilbay and Alawihaw springs originate from both systems. Based on the interpretation of the gravity and MT data, wells LB-1D and LB-5D lie closest to the intrusive, LB-313 and LB-4D are located in the center of the resource, while LB-2D and LB-6D lie along the margin or outside of the resource. The size of this resource, as defined by the 5 ohm-m MT low resistivity anomaly, is about 10 sq. km.« less

  18. Snohomish County Public Utility District Geothermal Energy Exploration Study Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Adam; Collar, Craig W.

    2012-10-04

    Supported by funds from this award, the District thoroughly explored the feasibility of a hydrothermal geothermal development within its service territory. The District successfully planned and drilled six exploratory geothermal wells and added significantly to the knowledge of the geology of the area. The Straight Creek Fault region, which was the sole location that showed significant potential for hydrothermal development in the District's service territory, was determined not to be feasible for development. The District subsequently expanded its search for geothermal development locations to include all of Washington State. Mount Baker has been identified as the area of the statemore » with the greatest potential for geothermal development. Having gathered additional information about the Mount Baker region with support from this award, the District is actively pursuing exploration and development in the area.« less

  19. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  20. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the geothermal field, the carbon-isotopic composition of CO2 is consistent with derivation of carbon from Franciscan metasedimentary rocks. NH3 concentrations are high in most Geysers well fluids, and are 2-3 orders of magnitude greater than would be expected in a the gas phase exhibiting homogeneous equilibrium at normal reservoir temperatures and pressures. Evidently, NH3 is flushed from the Franciscan host rocks at a rate that exceeds the reaction rate for NH3 breakdown. Many wells show clear influence by fluids from reinjection wells where steam condensate has been pumped back into the geothermal reservoir. Six wells were resampled over the time period of this study. One of these six wells was strongly affected by a nearby injection well. Three of the six resampled wells showed some signs of decreasing liquid/ steam within the geothermal reservoir, consistent with 'drying out' of the reservoir due to steam withdrawal. However, two wells exhibited little change. Analyses of gases from five surface manifestations (fumaroles and bubbling pools) are roughly similar to the deeper geothermal samples in both chemical and isotopic composition, but are lower in soluble gases that dissolve in groundwater during transit toward the surface.

  1. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimschal, U.

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less

  2. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  3. InSAR measurements and numerical models of deformation at Brady Hot Springs geothermal field (Nevada), 1995-2012

    NASA Astrophysics Data System (ADS)

    Ali, S. T.; Davatzes, N. C.; Mellors, R. J.; Foxall, W.; Drakos, P. S.; Zemach, E.; Kreemer, C.; Wang, H. F.; Feigl, K. L.

    2013-12-01

    We study deformation due to changes in fluid pressure caused by pumping during production, injection, and stimulation at the Brady Hot Springs geothermal field in the Basin and Range province in Nevada. To measure the deformation, we analyze Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ERS-1, ERS-2, Envisat, and TerraSAR-X satellites between 1995 and 2013. The InSAR results indicate subsidence at the order of several centimeters per year over an elliptically shaped area roughly ~5 km long by ~2 km wide. Its long axis follows the NNE strike of the predominant normal fault system. The subsiding area is centered near a prominent bend in the fault system where the successful production wells are located. Within this broad bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. To explain the deformation signal, we use poroelastic models constrained by borehole measurements of pressure, temperature and mass flux, as well as geologic observations. We solve the coupled deformation-diffusion problem using the finite element method. To estimate parameters in the model, e.g., permeability, we use the General Inversion for Phase Technique -- GIPhT [Feigl and Thurber, 2009; Ali and Feigl, 2012] that utilizes the gradient of range change and avoids the need for unwrapping the observed wrapped phase. We then solve the non-linear inverse problem using a gradient-based inversion scheme. Our results suggest that a complex network of high permeability conduits associated with intersections between fault segments and bends in fault segments explains the smaller length-scale features observed in the interferograms. Such structurally controlled, high permeability conduits are consistent with relatively recent fault slip evidenced by scarps in late Pleistocene Lake Lahontan sediments and spatially associated surface hydrothermal features that predate production at Brady. In contrast, Desert Peak, a "blind" geothermal field, located less than 7 km away from Brady, shows little or no deformation in the InSAR data set, although the two fields are otherwise similar in spatial extent, structural setting, and geothermal production. Desert Peak exhibits neither hydrothermal features nor any evidence of surficial fault slip, however, suggesting that the "plumbing" associated with the fault system there is deeper at than at Brady.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davlin, Thomas

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot printmore » and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru March 2014, with the detention facility occupied for the final seven months, the well field supply water temperatures to the heat pumps dropped to a minimum of 39°F and reached a maximum temperature of 68 °F while providing 15,819 MMBtu of cooling energy and 27,467 MMBtu of heating energy. During this period the peak recorded system cooling load was 610 tons and the peak heating load was 8.4 MMBtu. The DEC is currently evaluating the most beneficial electric rate for plant operations. Total project cost of $16.9 million was approximately $3.2 million less than the estimate provided in the grant application. The reduction in project costs were primarily due to favorable construction material prices as well as strong competition in the local construction contractor market. The DEC plant reached the substantial completion milestone in December 2011 and began providing thermal service to the detention facility in January 2012 when the building’s HVAC system was ready to accept heating service. The plant reached commercial operating status on August 1, 2012. However, due to construction delays, the detention facility was not occupied until September of 2013. The detention facility construction delays also impacted the installation and commissioning of the project’s dedicated domestic hot water heat pump. Final coordination with the detention facility’s building management system vendor to establish network links for the exchange of date is currently being completed. This will allow the development of control sequences for the optimal operation of the domestic hot water system.« less

  5. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H 2SO 4 by atmospheric oxidation at the water tablemore » in a steam heated environment of H 2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.« less

  7. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  8. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition, and information source. Aqueous geochemistry, a compilation of aqueous chemistry, free gas and isotopes analyses. Aqueous geochemical analyses consist of 407 aqueous geochemical analyses from 85 geothermal sites throughout Alaska. This template also includes 106 free gas analyses from 31 geothermal sites. Isotopic analyses (285) of waters from 42 geothermal sites are also contained in this geochemical data. Borehole temperature data from geothermal, and oil and gas wells are presented along with thermal depth profiles where available. Earthquakes in proximity to hot springs consists of 1,975 earthquakes that are within 5 km of thermal hot springs and may be used to detect underground movement of thermal waters. Active faults comprises active faults across Alaska (1,527) including fault type, location, orientation and slip rate. Additionally, a new comprehensive and searchable Alaska geothermal bibliography, with links to downloadable reference sources was created during this study. The completed Alaska geothermal sites map and database will be accessible to the public and industry and will enable research and development of geothermal sites in Alaska.

  9. Utah: basic data for thermal springs and wells as recorded in GEOTHERM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, J.D.

    1983-05-01

    This GEOTHERM sample file contains 643 records for Utah. Records may be present which are duplicates for the same analyses. A record may contain data on location, sample description, analysis type (water, condensate, or gas), collection condition, flow rates, and the chemical and physical properties of the fluid. Stable and radioactive isotopic data are occasionally available. Some records may contain only location and temperature. This compilation should contain all the chemical data for geothermal fluids in Utah available as of December, 1981. 7 refs. (ACR)

  10. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  11. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honggang; Liu, Xiaobing

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only amore » few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.« less

  12. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    USGS Publications Warehouse

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide useful insight into: 1) prominent structural features, faults and fractures that contribute to the flow of fluid and heat in the reservoir; 2) diffuse seismicity throughout the reservoir representing fractures that likely contribute to the overall permeability, storage and heat exchange capacity of the reservoir, but which are not confined to prominent faults; and 3) seismic velocities that outline the major hydrologic compartments within the Coso geothermal field.

  13. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  14. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  16. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a great potential to trace source of dissolved Cl- in geothermal water. Estimated reservoir temperatures show that geothermal reservoirs in study area are mid-low temperature geothermal reservoirs.

  17. Hydrologic data and description of a hydrologic monitoring plan for Medicine Lake Volcano, California

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, W.D.

    1996-01-01

    A hydrologic reconnaissance of the Medicine Lake Volcano area was done to collect data needed for the design of a hydrologic monitoring plan. The reconnaissance was completed during two field trips made in June and September 1992, during which geothermal and hydrologic features of public interest in the Medicine Lake area were identified. Selected wells, springs, and geothermal features were located and documented, and initial water-level, discharge, temperature, and specific-conductance measurements were made. Lakes in the study area also were surveyed during the September field trip. Temperature, specific- conductance, dissolved oxygen, and pH data were collected by using a multiparameter probe. The proposed monitoring plan includes measurement of water levels in wells, discharge from springs, and lake stage, as well as analysis of well-,spring-, and lake-water quality. In determining lake-water quality, data for both stratified and unstratified conditions would be considered. (Data for stratified conditions were collected during the reconnaissance phase of this project, but data for unstratified conditions were not.) In addition, lake stage also would be monitored. A geothermal feature near Medicine Lake is a "hot spot" from which hot gases discharge from two distinct vents. Gas chemistry and temperature would be monitored in one of these vents.

  18. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our next step is to collect mobile elements and magnetotelluric data to exam our initial model. Dissipative structure theory is one of the essential tools for understanding non-linear dynamic system. We will apply this method to other developed geothermal fields, and estimate the geothermal potential compared to the actual production.

  19. Hydraulic Stimulation of Fracture Permeability in Volcanic and Metasedimentary Rocks at the Desert Peak Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Hickman, S.; Davatzes, N. C.; Zemach, E.; Stacey, R.; Drakos, P. S.; Lutz, S.; Rose, P. E.; Majer, E.; Robertson-Tait, A.

    2011-12-01

    An integrated study of fluid flow, fracturing, stress and rock mechanical properties is being conducted to develop the geomechanical framework for creating an Enhanced Geothermal System (EGS) through hydraulic stimulation. This stimulation is being carried out in the relatively impermeable well 27-15 located on the margins of the Desert Peak Geothermal Field, in silicified rhyolite tuffs and metamorphosed mudstones at depths of ~0.9 to 1.1 km and ambient temperatures of ~180 to 195° C. Extensive drilling-induced tensile fractures seen in image logs from well 27-15 indicate that the direction of the minimum horizontal principal stress, Shmin, is 114±17°. This orientation is consistent with normal faulting on ESE- and WNW-dipping normal faults also seen in these image logs. A hydraulic fracturing stress test conducted at 931 m indicates that the magnitude of Shmin is 13.8 MPa, which is ~0.61 of the calculated vertical stress, Sv. Coulomb failure calculations using these stresses and friction coefficients measured on core indicate that shear failure should be induced on pre-existing fractures once fluid pressures are increased ~2.5 MPa or more above the ambient formation fluid pressure. The resulting activation of faults well-oriented for shear failure should generate a zone of enhanced permeability propagating to the SSW, in the direction of nearby geothermal injection and production wells, and to the NNE, into an unexploited part of the field. Stimulation of well 27-15 began in August 2010, and is being monitored by flow-rate/pressure recording, a local seismic network, periodic temperature-pressure-flowmeter logging, tracer tests and pressure transient analyses. An initial phase of shear stimulation was carried out over 110 days at low pressures (< Shmin) and low injection rates (< 380 l/min), employing stepwise increases in pressure to induce shear failure along pre-existing natural fractures. This phase increased injectivity by one order of magnitude. Chelating agents and mud acid treatments were then used to dissolve mineral precipitates and open up partially sealed fractures. This chemical stimulation phase only temporarily increased injectivity and worsened the stability of the wellbore. A large-volume hydraulic fracturing operation was subsequently carried out at high pressures (> Shmin) and high injection rates (up to 2800 l/min) over 23 days to promote fluid pressure transfer to greater distances from the borehole, resulting in an additional 4-fold increase in injectivity. Locations of microseismic events induced by these operations plus tracer testing showed growth of the stimulated volume between well 27-15 and active geothermal wells located ~0.5 to 2 km to the SSW, as predicted by the stress model. Future plans for the Desert Peak EGS project involve augmenting the seismic array before executing additional hydraulic fracturing and shear stimulation to further improve the injection performance of well 27-15.

  20. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolo, Daniel

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour andmore » collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.« less

  1. Guidebook to Geothermal Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J. P.; Meurice, J.; Wobus, N.

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  2. Sustainable Management of Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Rumohr, S.; Balke, K.-D.; Bayer, P.; Blum, P.

    2009-04-01

    In recent years, geothermal energy has become increasingly popular, because it offers a number of advantages over traditional energy sources based on fossil fuels. It is a renewable energy source, it is clean and safe for the surrounding environment, and it also contributes to reduction of CO2 emissions. Geothermal energy systems are recognized as one of the most efficient heating and cooling systems on the market. Therefore, there is great chance for future growth of geothermal energy use, particularly in densely populated urban regions. But there are also drawbacks: In many large cities, groundwater is heated up by several degrees (~ 5˚ C) compared to the surrounding areas. Causes might be microclimatic changes in the urban environment and the heating effect of sewage effluents. In fact, a major role plays overutilization of the ground as a cooling medium during the hot seasons for the air conditioning of large office buildings. The focus of this project is set on sustainable geothermal use in such large and densely populated areas, which are also called "urban heat islands". Previous studies focus on spatial temperature trends in the subsurface, and only a few have been able to reveal temporal trends, for which long-term measurement records are needed. This study is dedicated to two German locations: the city of Frankfurt/Main and the city of Cologne. The purpose of the study in Frankfurt is a comprehensive field investigation of the spatial temperature variations in the underlying aquifers, while in Cologne the attention is also on the temporal trends of urban groundwater temperatures. Of particular interest is not only to develop a sustainable management concept, but also a quantitative geophysical and hydrogeological assessment. For the city of Frankfurt/Main, the Hessian Agency for the Environment and Geology (HLUG) provides access to ongoing, highly spatially resolved field measurement locations. For Cologne, about 40 years old intensive temperature records will be utilized and compared to the status-quo. Furthermore, major geothermal projects in both cities will be reported and quantitatively analyzed in order to study the urban anthropogenic impacts. For this, heat transport models will be set up for at least one city. In site-specific integrative management strategies a balance between heat extraction and injection is elaborated. Finally, the findings of these case studies will be translated into a general guidance for those other urban areas with substantial heat anomalies that exist worldwide.

  3. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.

  4. Exploration Criteria for Low Permeability Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, D

    1977-03-01

    The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less

  5. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  6. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps formore » the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.« less

  7. Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C. B.

    2011-12-01

    In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.

  8. The coso EGS project - Recent developments

    USGS Publications Warehouse

    Rose, P.; Sheridan, J.; McCulloch, J.; Moore, J.N.; Kovac, K.; Weidler, R.; Hickman, S.

    2005-01-01

    An Enhanced Geothermal System (EGS) field experiment will be conducted to hydraulically stimulate injection well 34-9RD2, located on the east flank of the Coso geothermal reservoir, with the objective of increasing the injection rate of this well to 750 gpm at a wellhead pressure of 100 psi or less. The stimulation of this well is expected to create hydraulic communication with the recently drilled production well 38C-9, which is directly south of 34-9RD2. We summarize the results of fracture and stress analyses based upon borehole image logs of 38C-9; petrographic and petrologic analyses of cuttings from both the injection well 34-9RD2 and the production well 38C-9; and plans for the redrilling and stimulation of 34-9RD2.

  9. The Coso EGS project - Recent developments

    USGS Publications Warehouse

    Rose, P.; Sheridan, J.; McCulloch, J.; Moore, J.N.; Kovac, K.; Spielman, P.; Weidler, R.; Hickman, S.

    2004-01-01

    An Engineered Geothermal System (EGS) field experiment will be conducted to hydraulically stimulate injection well 34-9RD2, located on the east flank of the Coso geothermal reservoir, with the objective of increasing the injection rate of this well to 750 gpm at a wellhead pressure of 100 psi or less. The stimulation of this well is expected to create hydraulic communication with the recently drilled production well 38C-9, which is directly south of 34-9RD2. We summarize the results of fracture and stress analyses based upon borehole image logs of 38C-9; petrographic and petrologic analyses of cuttings from both the injection well 34-9RD2 and the production well 38C-9; and plans for the redrilling and stimulation of 34-9RD2.

  10. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    NASA Astrophysics Data System (ADS)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical Precambrian craton basin in the world, considering that the Tarim basin has not experienced obvious Meso-Cenozoic tectono-thermal events after its formation. The heat flow distribution of the Tarim basin is characterized by large values in the uplift areas and low in the depressions, showing the influence of lateral contrast in thermal properties within the basin on present-day geothermal regime.

  11. Interpretation of VLF-EM & VLF-R data using tipper and impedance analyses: A case study from Candi Umbul-Telomoyo, Magelang, Indonesia

    NASA Astrophysics Data System (ADS)

    Prastyani, Erina; Niasari, Sintia Windhi

    2017-07-01

    The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.

  12. Subsurface imaging in a sector of Cerro Prieto transform fault near to pull-apart basin, Mexicali Valley, Baja California, Mexico, based on crooked lines 2D seismic reflection.

    NASA Astrophysics Data System (ADS)

    Mares-Agüero, M. A.; González-Escobar, M.; Arregui, S.

    2016-12-01

    In the transition zone between San Andres continental transformation system and the coupled transform faults system and rifting of Gulf of California is located the Cerro Prieto pull-apart basin delimitated by Imperial fault (northeast) and Cerro Prieto fault (CPF) (southwest), this last, is the limit west of Cerro Prieto geothermic field (CPGF). Crooked lines 2D seismic reflection, covering a portion near the intersection of CPF and CPGF are processed and interpreted. The seismic data were obtained in the early 80's by Petróleos Mexicanos (PEMEX). By decades, technical and investigation works in Cerro Prieto geothermic field and its vicinity had mapped faults at several depths but do not stablish a clear limit where this faults and CPF interact due the complex hydrothermal effects imaging the subsurface. The profiles showing the presence of a zone of uplift effect due to CPF. Considering the proximity of the profiles to CPF, it is surprising almost total absence of faults. A strong reflector around 2 km of depth, it is present in all profiles. This seismic reflector is considered a layer of shale, result of the correlation with a well located in the same region.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultantsmore » produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.« less

  14. Review of subduction and its association with geothermal system in Sumatera-Java

    NASA Astrophysics Data System (ADS)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  15. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  16. A comparison of economic evaluation models as applied to geothermal energy technology

    NASA Technical Reports Server (NTRS)

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  17. Evaluation of Geothermal and Natural Gas Resources Beneath Camp Dawson and Opportunities for Deep Direct Use of Geothermal Energy or Natural Gas for Heat and Electricity Production; NETL-TRS-8-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 148.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Means, Ken; Muring, Timothy M.; Sams, Neal W.

    NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.

  18. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  19. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  20. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  1. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  2. Brady's Geothermal Field DAS Vibroseis Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    2016-03-25

    The submitted data correspond to the monitored vibrations caused by a vibroseis seismically exciting the ground in the vertical direction and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. The data also include a file with the acceleration record at the Vibroseis. Vibroseis Sweep Details: Sweep on location T84 Stage 4 (Mode P 60 s long record ) Time: 2016-03-25 14:01:15 (UTC) Location: 39.80476089N, -119.0027625W Elevation: 1272.0M (on ground surface at the site) Sweep length: 20 seconds Frequencies: 5 Hz to 20 Hz

  3. Analysis of induced seismicity in geothermal reservoirs – An overview

    USGS Publications Warehouse

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the fluid injected) when induced events start to occur far away from the boundary of the seismic cloud.

  4. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    USGS Publications Warehouse

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (<60 mW m-2) characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  5. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.

  6. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.

  7. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  8. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  9. Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California

    NASA Astrophysics Data System (ADS)

    Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.

    2016-12-01

    Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low resistivity zones ( 1Ωm), suggestive of a fluid pathway. In order to refine these models and extend them to greater depths, we have deployed long-period (0.002Hz-10Hz) MT instruments in three locations. The data were collected over several weeks and are currently being processed and analyzed.

  10. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.

  11. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  12. DARPA Workshop on Geothermal Energy for Military Operations

    DTIC Science & Technology

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  13. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  14. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson

    ERIC Educational Resources Information Center

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben

    2015-01-01

    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  15. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  16. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  17. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    NASA Astrophysics Data System (ADS)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.

  18. Residential heating costs: A comparison of geothermal solar and conventional resources

    NASA Astrophysics Data System (ADS)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  19. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiryukhin, Alexey; Xu, Tianfu; Pruess, Karsten

    Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal hydrodynamic chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260 C at the bottom ( Ogiri type); (2) two-phase conditions, 300 C at the bottom ( Hatchobaru type); and (3) heat pipe conditions, 260 C at the bottom ( Matsukawa type). THC modeling for the single-phase upflow scenario shows wairakite,more » quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230 C. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermodynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140 C in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.« less

  20. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    NASA Astrophysics Data System (ADS)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  1. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    NASA Astrophysics Data System (ADS)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818

  2. Operating results and reinjection of Milos field in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibara, Y.; Tahara, M.; Sakanashi, H.

    1989-01-01

    The Milos geothermal prospect located on one of the Cycladean islands of Greece represents a high temperature (320{sup 0}C), high silica content (1150 ppm) modified sea water resource. The program of development under taken by the Public Power Corporation (PPC) of Greece started with the drilling of a number of wells and has progressed to the installation of a pilot-style 2MW(e) condensing power plant which went on-line in December 1986. This plant has been provided by Mitsubishi Heavy Industries (MHI) under a contract with PPC. Geothermal South Pacific (GEOSPAC) was sub-contracted to MHI to provide technical and scientific assistance inmore » connection with reservoir related matters. The authors present the various studies and modification that were done to establish an acceptable method of plant operation and waste disposal.« less

  3. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields

    NASA Astrophysics Data System (ADS)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping

    2018-02-01

    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  4. Geothermal energy from the Pannonian Basins System: An outcrop analogue study of exploration target horizons in Hungary

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.; Sass, Ingo; Török, Ákos

    2015-04-01

    The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.

  5. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  6. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    PubMed

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  7. Reducing the Geothermal Exploration Risk by Carbon Dioxide Soil Flux Investigations

    NASA Astrophysics Data System (ADS)

    Carapezza, Maria Luisa; Barberi, Franco; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca; De Simone, Gabriele; Gattuso, Alessandro; Silvestri, Mario

    2013-04-01

    In the exploration of medium to high enthalpy geothermal resources it happens rather frequently that deep wells find high temperatures but are not productive because they don't cross any permeable fractured reservoir. Because of the high cost of deep drillings, this aspect represents one of the main economic risks of geothermal exploration. A detailed survey of diffuse CO2 soil flux may allow to identify from the surface the permeable portions of a deep-seated actively degassing geothermal reservoir, drastically reducing this risk. In order to test the effectiveness of CO2 soil flux as a geothermal exploration tool we selected two volcanic areas north of Rome, Latera caldera and Marta zone near lake Bolsena, both hosting a geothermal reservoir with T>200 °C and where productive and non-productive wells had been drilled in the past. We proved that in both zones productive wells are located on high CO2 soil flux zones, whereas the not-productive wells are sited on low flux areas. In addition the surveys allowed to identify some as yet unexplored portions of the geothermal reservoirs where future wells should be conveniently located. Use of the same technique in the medium enthalpy geothermal system of Torre Alfina, Central Italy (T=140°C) showed that the presence of a thick impervious rock cover may be very effective in preventing gas leakages from the reservoir to the surface. Promising results have been obtained also by CO2 soil flux surveys in some geothermal areas of Honduras (Platanares, Azacualpa) and Costa Rica (Las Pailas). Obviously, CO2 flux cannot provide any estimate of temperature at depth, which has to be assessed with other geochemical or geophysical exploration techniques.

  8. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  9. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  10. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  11. Preliminary study of Songa-Wayaua geothermal prospect area using volcanostratigraphy and remote sensing analysis

    NASA Astrophysics Data System (ADS)

    Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini

    2017-12-01

    Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.

  12. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser

    2017-04-01

    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic alteration layer, pinpointed as the 80-Ohm-m isosurface, shows two dome-shape highs. The first is NNE-trending, and may be interpreted as an upflow zone along a fault of the Wonji belt. Two productive wells are located along the borders of this area, as well as the alignements of fumaroles and altered grounds. The second is linked to a wide resistive area, located at shallow depth, where no clay cap was detected. It could be interpreted as a fossil high-temperature alteration zone reaching shallow depths, and it is associated to several fumaroles. Modeling of 2D/3D gravity data shows that the anomalies are due to shallow density variations likely related to lithology. The deep lateral variations due to structural lineaments inferred from well stratigraphy have no detectable signature. However, the trend analysis performed on the residual Bouguer anomaly (via horizontal and tilt derivative computations), allowed to identify five lineaments. Three of them exhibit NNE-SSW strike, corresponding to the Wonji Fault Belt Trend, whereas two have NNW-SSE strike, corresponding to the Red Sea Rift trend, which in this area is of minor evidence. The signature of shallow structures is then indicative of major regional structures. One of the lineaments marks the presence of a major fumarolic zone.

  13. Exploration of Geothermal Natural Resources from Menengai Caldera at Naruku, Kenya

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A.; Thompson, L. E.; Kaip, G.; Velasco, A. A.

    2011-12-01

    The Menengai Caldera, a large, dormant volcano, lies near the city of Naruku, Kenya (0.20°S, 36.07°E) and presents a significant natural geothermal energy resource that will benefit local communities. Kenya continues to explore and exploit its only major energy resource: geothermal energy. The Geothermal Development Company (GDC) of Kenya and University of Texas at El Paso (UTEP) have initially deployed seven seismic stations to address the volcanic hazards and associated processes that occurs through the analysis of data collection from seismic sensors that record ground motion. Seven more sensors are planned to be deployed in Aug. 2011. In general, the internal state and activity of the caldera is an important component to the understanding of porosity of the fault system, which is derived from the magma movement of the hot spot, and for the exploitation of geothermal energy. We analyze data from March to May 2011 to investigate the role of earthquakes and faults in controlling the caldera processes, and we find 15 events occurred within the caldera. We will utilize the double difference earthquake location algorithm (HypoDD) to analyze the local events in order to find active faulting of the caldera and the possible location of the magma chamber. For future work, we will combine the exiting data with the new seismic station to image the location of the caldera magma chamber.

  14. Geothermal energy development in the Philippines: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity hasmore » been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.« less

  15. DoD Installation Energy Security: Evolving to a Smart Grid

    DTIC Science & Technology

    2012-03-20

    located at the Naval Air Weapons Station in China Lake, California. This series of geothermal power plants produces a peak power output of 270 megawatts...initiatives are driving the DoD to invest significantly in renewable energy resources like solar, wind, and geothermal , as well as energy efficient vehicles...hydroelectric, geothermal ) resources. The most common and largest forms of electrical generation come from power plants that use fossil fuels

  16. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yong; Huangfu, Gang

    2004-02-01

    Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.

  17. Controls on hydrothermal fluid flow within the Rotokawa geothermal field, New Zealand: insights from 3D geological models

    NASA Astrophysics Data System (ADS)

    Bardsley, C.; Sewell, S.; Cumming, W. B.; Minnick, M.; Rowland, J. V.; O'Brien, J.; Price, L.

    2012-12-01

    Identifying permeable zones is essential for economically viable exploration and development of conventional geothermal reservoirs with naturally high permeability. Except very close to boreholes, the resolution of geological and geophysical tools is at a much larger scale than the centimetre aperture of most geothermal fluid pathways important to production. A case study from the >250°C Rotokawa Geothermal Field, currently producing 175 MWe within the Taupo Volcanic Zone in New Zealand, illustrates how a 3D visualization of a subset of available data that are conceptually relevant at the scales of interest has enhanced the understanding of fluid flow within this system. Geoscience data sets including subsurface formation geometry and permeable zones in wells; the natural state temperature pattern deduced from wells and MT resistivity; microearthquakes (MEQ) induced by injection, and surface geology have been integrated with engineering data including production pressure responses and injection rates to constrain the location and general hydraulic properties of one of the most influential faults in the field. Stratigraphic offsets of >500 m, recorded in core and cuttings from wells drilled on either side of the field, confirm the presence of this fault, initially suspected based on a surface lineation of eight young (<22 ka) hydrothermal eruption craters. The 3D visualization of the MEQ occurrence pattern in space and time helps constrain the mechanism of the MEQs themselves and, importantly, the confinement of most of the MEQs to the eastern side of the fault closest to the injection wells. Hosted within the Mesozoic meta-sedimentary basement formation, this has provided an important conceptual constraint that explains the lack of injection fluid on the western side of this fault. Further to this, if this fault is acting as a barrier at the Mesozoic meta-sedimentary level today, this could imply a switch in the behaviour of this structure as it is inferred, based on the alignment of the hydrothermal eruption vents, that these vents were triggered by a rupture along this fault, implying it was once a conduit to fluid flow.

  18. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, A.; Dennis, B.; Van Eeckhout, E.

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions weremore » conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.« less

  19. Prediction and discovery of new geothermal resources in the Great Basin: Multiple evidence of a large undiscovered resource base

    USGS Publications Warehouse

    Coolbaugh, M.F.; Raines, G.L.; Zehner, R.E.; Shevenell, L.; Williams, C.F.

    2006-01-01

    Geothermal potential maps by themselves cannot directly be used to estimate undiscovered resources. To address the undiscovered resource base in the Great Basin, a new and relatively quantitative methodology is presented. The methodology involves three steps, the first being the construction of a data-driven probabilistic model of the location of known geothermal systems using weights of evidence. The second step is the construction of a degree-of-exploration model. This degree-of-exploration model uses expert judgment in a fuzzy logic context to estimate how well each spot in the state has been explored, using as constraints digital maps of the depth to the water table, presence of the carbonate aquifer, and the location, depth, and type of drill-holes. Finally, the exploration model and the data-driven occurrence model are combined together quantitatively using area-weighted modifications to the weights-of-evidence equations. Using this methodology in the state of Nevada, the number of undiscovered geothermal systems with reservoir temperatures ???100??C is estimated at 157, which is 3.2 times greater than the 69 known systems. Currently, nine of the 69 known systems are producing electricity. If it is conservatively assumed that an additional nine for a total of 18 of the known systems will eventually produce electricity, then the model predicts 59 known and undiscovered geothermal systems are capable of producing electricity under current economic conditions in the state, a figure that is more than six times higher than the current number. Many additional geothermal systems could potentially become economic under improved economic conditions or with improved methods of reservoir stimulation (Enhanced Geothermal Systems).This large predicted geothermal resource base appears corroborated by recent grass-roots geothermal discoveries in the state of Nevada. At least two and possibly three newly recognized geothermal systems with estimated reservoir temperatures ???150??C have been identified on the Pyramid Lake Paiute Reservation in west-central Nevada. Evidence of three blind geothermal systems has recently been uncovered near the borate-bearing playas at Rhodes, Teels, and Columbus Marshes in southwestern Nevada. Recent gold exploration drilling has resulted in at least four new geothermal discoveries, including the McGinness Hills geothermal system with an estimated reservoir temperature of roughly 200??C. All of this evidence suggests that the potential for expansion of geothermal power production in Nevada is significant.

  20. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  1. Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland

    NASA Astrophysics Data System (ADS)

    Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán; Fridriksson, Thráinn; Elders, Wilfred A.; Fridleifsson, Gudmundur Ó.

    2009-08-01

    The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as -23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from -60 to -78‰, and δ18OEPIDOTE in these wells are between -3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ˜ -79‰ and -89‰, respectively, show δDEPIDOTE values of -115‰ and -125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is -68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes. Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is -125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.

  2. Brady's Geothermal Field - March 2016 Vibroseis SEG-Y Files and UTM Locations

    DOE Data Explorer

    Kurt Feigl

    2016-03-31

    PoroTomo March 2016 (Task 6.4) Updated vibroseis source locations with UTM locations. Supersedes gdr.openei.org/submissions/824. Updated vibroseis source location data for Stages 1-4, PoroTomo March 2016. This revision includes source point locations in UTM format (meters) for all four Stages of active source acquisition. Vibroseis sweep data were collected on a Signature Recorder unit (mfr Seismic Source) mounted in the vibroseis cab during the March 2016 PoroTomo active seismic survey Stages 1 to 4. Each sweep generated a GPS timed SEG-Y file with 4 input channels and a 20 second record length. Ch1 = pilot sweep, Ch2 = accelerometer output from the vibe's mass, Ch3 = accel output from the baseplase, and Ch4 = weighted sum of the accelerometer outputs. SEG-Y files are available via the links below.

  3. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallan, R; Wilt, M; Kirkendall, B

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less

  4. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transectmore » lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.« less

  5. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  6. Multidisciplinary exploration of the Tendaho Graben geothermal fields

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede

    2017-04-01

    The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and the dome-shape structure of the clay cap layer. The 2D and 3D gravimetric, magnetic and resistivity models have been integrated with the structural, geological and geochemical outcomings in order to get an updated conceptual model of the geothermal systems.

  7. MeProRisk - Acquisition and Prediction of thermal and hydraulic properties

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Mottaghy, D.; Pechnig, R.

    2009-04-01

    MeProRisk is a joint project of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH (Aachen) and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The MeProRisk project aims to improve strategies to reduce the risk for planning geothermal power plants. Within our subproject we estimate geothermal relevant parameters in the laboratory and in the borehole scale. This basis data will be integrated with hydraulic and seismic experiments to provide a 3D reservoir model. Hitherto we focussed on two different type locations in Germany. These are (1) the crystalline basement in South Germany and (2) the Rotliegend formation and volcanic rocks in the Northern German Sedimentary Basin. In the case of the crystalline basement an extensive dataset could be composed from the 9 km deep KTB borehole including logging, core and cutting data. The whole data could be interpreted with respect to lithology, structure and alteration of the formation which mainly consists of alternating sequences of gneiss and metabasite. For the different rock types the data was analyzed statistically to provide specific values for geothermal key parameters. Important key parameters are for example: p-wave velocity, density, thermal conductivity, permeability and porosity. For the second type location we used logging data recovered within one borehole (> 5 km deep) which was drilled in the so called Voelkersen gas field. The data was supplied by the RWE DEA company. The formation comprises volcanic rocks and sandstones. On corresponding cores we measured p-wave velocity, thermal conductivity, density and porosity in the laboratory. In the same way as for type location (1) the complete data set was analyzed statistically to derive specific values which are relevant for the geothermal reservoir model. Finally this study will end up in a multi-scale implementation of the bore and its direct environment into a 3D reservoir model. For this purpose we provide the basic data which is suitable for the model calculations.

  8. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    NASA Astrophysics Data System (ADS)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions contribute less to the image quality as fracture zone azimuth increases. Our optimization methodology is best suited for designing future field surveys with a favorable benefit-cost ratio in areas with significant à priori knowledge. Moreover, our optimization workflow is valuable for selecting useful subsets of acquired data for optimum target-oriented processing.

  9. RiverHeath: Neighborhood Loop Geothermal Exchange System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  10. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  11. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  12. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  13. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C; Harris, D B

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combinedmore » with conventional methods significantly improves the network detection ability in an efficient matter.« less

  14. Open Questions on the Origin of Life at Anoxic Geothermal Fields

    PubMed Central

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2014-01-01

    We have recently reconstructed the ‘hatcheries’ of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al.: Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 2012, 109:E821–830). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis as a tool, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy. PMID:23132762

  15. Preliminary determination of geothermal working area based on Thermal Infrared and Synthetic Aperture Radar (SAR) remote sensing

    NASA Astrophysics Data System (ADS)

    Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.

  16. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and injection rates, heat source, fractures, and all the relevant parameters are performed to evaluate their effects on temperature distribution of reservoir for 30 years. Through these sensitivity studies, we can design the better geothermal system in I-Lan area and reduce the risk of exploitation.

  17. Gunion - Nevada`s most innovative geothermal food dehydration facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Taylan, G.; Stewart, M.B.

    1995-12-31

    The Gunion (garlic and onion) dehydration plant, owned and operated by Integrated Ingredients, a Division of Burns Philp Food, Incorporated, uses geothermal fluids at a temperature of 306{degrees}F to dehydrate 50 to 70-thousand pounds per day of garlic and onions. The geothermal fluids are provided by Empire Farms, who has the rights for development of the resource and is the lease holder of fee land known as the Kosmos Lease. The San Emidio KGRA is located in northern Washoe County, 90 miles north-northeast of Reno, Nevada and 20 miles south of Gerlach, Nevada. Geothermal fluids exit the plant at 242{degrees}Fmore » and are piped to an injection well located 3,000 feet south-southwest of the plant. The plant location was selected not only for the geothermal resource, but also for the area`s low relative humidity. Currently, 1100-1200 gpm of geothermal fluids, at an inlet temperature of 302{degrees}F, are sufficient to provide the dryer line with ample BTU`s. Three geothermal wells drilled to depths ranging from 493 to 1817 feet produce fluids ranging in temperature from 266 to 306{degrees}F. One well can easily provide the heat required by the dryer line and will be capable of providing heat for a planned three-fold expansion of the facility. The remaining two wells are used as backup, or may be used for other applications such as soil sterilization. The fluid exiting the plant at 242{degrees}F may be cascaded and used for greenhouses and soil warming in the future. Geothermal heat is also used to dehumidify onions placed in the cold storage facility. The dehydration process takes 5-6 hours to dry the product to a 4.5% moisture content. The dried product is then milled to various sizes from powder to granules. The dehydration plant operates 24 hours/day 7 days a week. Currently 80 people are employed full-time at the plant. The dehydrated onion and garlic are used in condiments, soups, sauces and salad dressing.« less

  18. Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016

    DOE Data Explorer

    Michelle Robertson

    2016-06-01

    List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.

  19. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the BSR-derived temperatures. These results are consistent with the interpretation of cold seawater being pumped into the ridge from both flanks, cooling the temperature field. In summary, the thermal data are consistence with previously proposed fluid circulation model.

  20. Castle Creek known geothermal resource area: an environmental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in themore » county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.« less

  1. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppler, D.B.; Heiken, G.; Wohletz, K.

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normalmore » faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.« less

  2. Deep geothermal resources in the Yangbajing Field, Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Ping; Jin Jian; Duo Ji

    1997-12-31

    Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less

  3. Measured Fluid Flow in an Active H2O-CO2 Geothermal Well as an Analog to Fluid Flow in Fractures on Mars: Preliminary Report

    NASA Technical Reports Server (NTRS)

    Kieffer, Susan W.; Brown, K. L.; Simmons, Stuart F.; Watson, Arnold

    2004-01-01

    Water in the Earth's crust generally contains dissolved gases such as CO2. Models for both 'Blue Mars' (H2O-driven processes) and 'White Mars' (CO2-driven processes) predict liquid H2O with dissolved CO2 at depth. The fate of dissolved CO2 as this mixture rises toward the surface has not been quantitatively explored. Our approach is a variation on NASA's 'Follow the Water' as we 'Follow the Fluid' from depth to the surface in hydrothermal areas on Earth and extrapolate our results to Mars. This is a preliminary report on a field study of fluid flow in a producing geothermal well. For proprietary reasons, the name and location of this well cannot be revealed, so we have named it 'Earth1' for this study.

  4. Reservoir controling factors in the Karaha-Telaga Bodas geothermal field, Indonesia

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Christensen, Carl; Allis, R.; Powell, T.; Murray, B.; Nash, G.

    2005-01-01

    Karaha - Telaga Bodas geothermal system consists of: 1) a caprock, ranging from several hundred meters to 1600 m thick that is characterized by steep, conductive temperature gradients and low permeabilities; 2) an underlying vapor-dominated zone that extends below sea level; and 3) a deep liquid-dominated zone with measured temperatures up to 353??C. Heat is provided by a 3 km deep tabular granodiorite stock. The effective base of the reservoir is controlled by the stress regime's effect on fractures within volcanic rocks located above the brittle/ductile deformation boundary. The base of the caprock is controlled by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has reduced initial permeabilities; the distribution of secondary minerals deposited by descending waters; and by a downward change from a strike-slip to an extensional stress regime. Producing zones are controlled by both matrix and fracture permeabilities.

  5. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.

  6. Simple interpretations of chemical transients in multi-feed, two-phase geothermal wells; Examples from Philippine Geothermal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruaya, J.R.; Solis, R.P.; Solana, R.R.

    1991-01-01

    This paper reports that the main process responsible for the extreme variations in chloride concentrations in the water discharged by selected multi-feed, two-phase geothermal wells in the Philippines is steam addition brought about by fluid flashing in the formation or by a shallow and distinct steam zone. Correlation of enthalpy with chloride data over a span of seven years for well 106, Tongonan field, revealed the entry of reservoir fluid from the hotter portion of the field as the well responded to exploitation. Using a plot of discharge enthalpy versus total chloride, the deep chloride near well OP-3D which ismore » drilled at the periphery of the Bacon-Manito field, has been determined at about 8700 mg/k. This is somewhat higher than the inferred chloride level of 7000 mg/kg in the postulated main geothermal reservoir. The competing effects of returns of reinjected water and flashing in the formation on the observed chloride concentrations in the discharge water of well PN-20D, Palinpinon field, have been segregated using the technique described above.« less

  7. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    PubMed

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  8. Poly 3D fault modeling scripts/data for permeability potential of Washington State geothermal prospects

    DOE Data Explorer

    Michael Swyer

    2015-02-05

    Matlab scripts/functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St Helen's, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.

  9. Characterising the Architecture of New Zealand's Geothermal Structural Fluid Flow Networks Using Borehole Images

    NASA Astrophysics Data System (ADS)

    McNamara, David; Milicich, Sarah; Massiot, Cécile

    2017-04-01

    Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.

  10. The Tiwi geothermal reservoir: Geology, geochemistry, and response to production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoagland, J.R.; Bodell, J.M.

    1990-06-01

    The Tiwi geothermal field is located on the Bicol Peninsula of Southern Luzon in the Philippines. The field is associated with the extinct Quaternary stratovolcano Mt. Malinao, one of a chain of volcanos formed as a result of crustal subduction along the Philippine Trench to the east. The geothermal reservoir is contained within a sequence of interlayered andesite flows and pyroclastic deposits that unconformably overlie a basement complex of marine sediments, metamorphic, and intrusive rocks. In its initial state, the Tiwi reservoir was an overpressured liquid-filled system containing near-neutral sodium chloride water at temperatures exceeding 260{degree}C. The reservoir is partiallymore » sealed at its top and sides by hydrothermal argillic alteration products and calcite deposition. Isolated portions of the reservoir contain a corrosive acid chloride-sulfate water associated with a distinctive advanced argillic mineral assemblage. Withdrawal of fluid for electricity generation has caused widespread boiling in the reservoir and the formation of steam zones. The resultant solids deposition in wellbores and near-wellbore formation has been mitigated by a combination of mechanical and chemical well stimulation. Mass withdrawal from the reservoir has also caused invasion of cold groundwater into the reservoir through former fluid outflow channels. During 1983-1987, several wells were flooded with cold water and ceased flowing. In response, PGI moved development drilling west to largely unaffected areas and undertook recompletion and stimulation programs. These programs effectively halted the decline in generation by 1988.« less

  11. Geothermal System Extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnerson, Jon; Pardy, James J.

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected backmore » into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.« less

  12. Geothermal Energy Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th« less

  13. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal experiments, our research goals are 1)Analysis and understanding of geothermal structure and geofluids in ductile condition of the Japanese Island arc, 2)Fundamental technologies of drilling under ductile region for geothermal reservoir, 3) Development of geothermal reservoir simulator of two phase and multiphase flow including supercritical state through rock fracture, 4) Lab scale support for ICDP-JBBP, 5) Application of new EGS technologies to conventional geothermal fields as recovery from the 2011 Great East Japan Earthquake and energy crisis in Japan. [Publications Relevant to the Research] Tsuchiya, N. and Hirano, N. (2007), ISLAND ARC, 16, 6-15. Okamoto, A., Saishu, H., Hirano, N. & Tsuchiya, N. (2010) Geochimica et Cosmochimica Acta, 74, 3692-3706. Majer, E.L., Baria, R., Stark, M., Oates, S., Bonner, J. Smith, B. & Asanuma H., (2007) Geothermics, 36, 185-222. Watanabe, N., Hirano, N. Tsuchiya, N. (2009) Journal of Geophysical Research B: Solid Earth, 114(4), B04208.

  14. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    NASA Astrophysics Data System (ADS)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  15. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    USGS Publications Warehouse

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a few days and are localized near the MCF system.

  16. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  17. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  18. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  19. 1979-1980 Geothermal Resource Assessment Program in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  20. TISSUE ASSAYS AND POPULATION CHARACTERISTICS OF ROOSEVELT HOT SPRINGS' ANIMALS (1977-1978)

    EPA Science Inventory

    Geothermal energy exploration is being conducted at several locations in the United States including a site at Roosevelt Hot Springs in southwest Utah. To assess any possible impact and to help design a monitoring strategy for geothermal development, element concentrations in ani...

  1. 43 CFR 3270.10 - What types of geothermal operations are governed by these utilization regulations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of geothermal resources. This includes: (1) Electrical generation facilities; (2) Direct use facilities; (3) Related utilization facility operations; (4) Actual and allocated well field production and injection; and (5) Related well field operations. (b) The utilization regulations in subparts 3270 through...

  2. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  3. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer

    NASA Astrophysics Data System (ADS)

    Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo

    2018-01-01

    This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.

  4. Updating of the geological and geothermal research on Milos island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fytikas, M.

    1989-01-01

    The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less

  5. Soil degassing at the Los Humeros geothermal field (Mexico)

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc; Carrasco-Núñez, Gerardo; Mazot, Agnès; Villanueva-Estrada, Ruth Esther; Inguaggiato, Claudio; Bernard Romero, Rubén; Rocha Miller, Roberto; Hernández Rojas, Javier

    2018-05-01

    The Los Humeros geothermal field is the third most important producer of geothermal electricity (70 MW) in Mexico. Geothermal fluids are hosted in fractured andesitic lavas and mostly consist of high enthalpy steam with limited water content (vapor fraction > 0.9). Despite the high reservoir temperature ( 300-400 °C), thermal manifestations at the surface are scarce and locally appear as steaming grounds, weak steam vents and advanced argillic alteration. Geothermal fluid upflow from the reservoir towards the surface is limited by welded ignimbrite deposits that act as a low-permeability barrier. In this study, we present the first measurements of CO2, CH4 and H2S degassing rates from the soil performed at Los Humeros. Flux measurements were complemented with δ13C composition of degassing CO2 and soil temperatures to discuss gas origin and thermal anomalies. We measured high soil degassing rates (up to 7530 g m-2 d-1 CO2, 33 g m-2 d-1 CH4 and 22 g m-2 d-1 H2S) in three localized areas (Humeros North - HN, Humeros South - HS and Xalapazco - XA) as well as high soil temperatures reaching the boiling temperature at the local altitude (90.6 °C). The particular location of these three areas suggests that the steam-dominated reservoir degases to the surface through permeable faults crossing the ignimbritic deposits. The remaining surveyed areas are characterized by weak CO2 fluxes (≤44 g m-2 d-1), non-detectable CH4 and H2S fluxes, and lower soil temperatures (5-21 °C). The compositions in δ13CCO2 from HN-HS-XA areas (δ13CCO2 = -7.94 to -2.73‰) reflect a magmatic source with some possible contribution from the sedimentary basement, as well as fractionation induced by boiling and CO2 dissolution in shallow water bodies. We also discuss the processes causing the spread in CO2/CH4 flux ratios. Finally, we estimate the heat output from the three high degassing areas to a value of 16.4 MWt.

  6. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux associated with upflow of magmatic fluids here is likely due to the aforementioned 'scrubbing' from extensive groundwater flow, as well as high background biogenic CO2 flux. Deep, temperature gradient core holes have been sited based on these geophysical and geochemical datasets.

  7. Using earthquake clusters to identify fracture zones at Puna geothermal field, Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Shalev, E.; Malin, P.; Kenedi, C. L.

    2010-12-01

    The actively producing Puna geothermal system (PGS) is located on the Kilauea East Rift Zone (ERZ), which extends out from the active Kilauea volcano on Hawaii. In the Puna area the rift trend is identified as NE-SW from surface expressions of normal faulting with a corresponding strike; at PGS the surface expression offsets in a left step, but no rift perpendicular faulting is observed. An eight station borehole seismic network has been installed in the area of the geothermal system. Since June 2006, a total of 6162 earthquakes have been located close to or inside the geothermal system. The spread of earthquake locations follows the rift trend, but down rift to the NE of PGS almost no earthquakes are observed. Most earthquakes located within the PGS range between 2-3 km depth. Up rift to the SW of PGS the number of events decreases and the depth range increases to 3-4 km. All initial locations used Hypoinverse71 and showed no trends other than the dominant rift parallel. Double difference relocation of all earthquakes, using both catalog and cross-correlation, identified one large cluster but could not conclusively identify trends within the cluster. A large number of earthquake waveforms showed identifiable shear wave splitting. For five stations out of the six where shear wave splitting was observed, the dominant polarization direction was rift parallel. Two of the five stations also showed a smaller rift perpendicular signal. The sixth station (located close to the area of the rift offset) displayed a N-S polarization, approximately halfway between rift parallel and perpendicular. The shear wave splitting time delays indicate that fracture density is higher at the PGS compared to the surrounding ERZ. Correlation co-efficient clustering with independent P and S wave windows was used to identify clusters based on similar earthquake waveforms. In total, 40 localized clusters containing ten or more events were identified. The largest cluster was located in the production area for the power plant. Most of the clusters had linear features when their Hypoinverse locations were plotted. The concentration of individual linear features was higher in the PGS than the surrounding ERZ. The resolution of the features was resolved further by relocating each individual cluster through the catalog double difference method. Mapping of the linear features showed that a number of the larger features ran rift parallel. However a large number of rift perpendicular features were also identified. In the area where the anomalous (N-S) shear wave polarization was observed, a number of linear features with a similar orientation were identified. We assume that events occurring on the same fracture zone have similar source mechanisms and thus similar waveforms. It is concluded that the linear features identified by earthquake clustering are fracture zones. The orientation and concentration of the fracture zones is consistent with that of the shear wave splitting polarizations.

  8. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia)

    NASA Astrophysics Data System (ADS)

    Nukman, M.; Moeck, I.

    2012-04-01

    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.

  9. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  10. Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, Alex; Young, Katherine R; Dobson, Patrick F.

    This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less

  11. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer

    Dobson, Patrick

    2013-02-11

    Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  12. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    NASA Astrophysics Data System (ADS)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  13. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less

  14. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS,more » 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.« less

  15. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that couldmore » accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.« less

  16. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  17. 30 CFR 1210.50 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue FORMS AND REPORTS Royalty Reports-Oil, Gas, and Geothermal Resources... reporting requirements when energy and mineral resources are removed from Federal and Indian oil and gas and geothermal leases and federally approved agreements. This includes leases and agreements located onshore and...

  18. 76 FR 38680 - Notice of Availability of the Draft Environmental Impact Statement for the West Chocolate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... solar, wind and geothermal testing and development in a renewable energy evaluation area located near... pending geothermal lease application within the renewable energy evaluation area. This CDCA Draft Plan... Availability of the Draft Environmental Impact Statement for the West Chocolate Mountains Renewable Energy...

  19. 43 CFR 3273.12 - How will BLM review my site license application?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE... information. (b) If your site license is located on geothermal leases where the surface is managed by the... requested by the Federal Energy Regulatory Commission. (d) If another Federal agency manages the surface, we...

  20. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  1. Greider geothermal statement, based on testimony presented to Lt. Gov. Dymally Committee. [Development of geothermal industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greider, B.

    Factors that contribute to the delay of geothermal development by utilities are discussed. These include: the increasingly complex regulations on the Geysers field; low quality and sizes of hot water resources; economics of financing geothermal exploration; professional experience; and lack of faith in the technology of conversion of hot water into electricity. Key issues that must be resolved before geothermal development can significantly penetrate the electricity generation industry are presented. It is pointed out that legislation to stimulate development of California's geothermal resources should be based on consideration of the following items: streamlined controls which allow geothermal exploration and developmentmore » to proceed under a minimum of effective regulation; reasonable tax provisions encouraging exploration, research, development, and production of geothermal energy; and suitable economic incentives for utility companies that will encourage early commitment to construct generating plants. (LBS)« less

  2. Association of Cancer Incidence and Duration of Residence in Geothermal Heating Area in Iceland: An Extended Follow-Up.

    PubMed

    Kristbjornsdottir, Adalbjorg; Aspelund, Thor; Rafnsson, Vilhjalmur

    2016-01-01

    Residents of geothermal areas have higher incidence of non-Hodgkin's lymphoma, breast cancer, prostate cancer, and kidney cancers than others. These populations are exposed to chronic low-level ground gas emissions and various pollutants from geothermal water. The aim was to assess whether habitation in geothermal areas and utilisation of geothermal water is associated with risk of cancer according to duration of residence. The cohort obtained from the census 1981 was followed to the end of 2013. Personal identifier was used in record linkage with nation-wide emigration, death, and cancer registries. The exposed population, defined by community codes, was located on young bedrock and had utilised geothermal water supply systems since 1972. Two reference populations were located by community codes on older bedrock or had not utilised geothermal water supply systems for as long a period as had the exposed population. Adjusted hazard ratio (HR), 95% confidence intervals (CI) non-stratified and stratified on cumulative years of residence were estimated in Cox-model. The HR for all cancer was 1.21 (95% CI 1.12-1.30) as compared with the first reference area. The HR for pancreatic cancer was 1.93 (1.22-3.06), breast cancer, 1.48 (1.23-1.80), prostate cancer 1.47 (1.22-1.77), kidney cancer 1.46 (1.03-2.05), lymphoid and haematopoietic tissue 1.54 (1.21-1.97), non-Hodgkin´s lymphoma 2.08 (1.38-3.15) and basal cell carcinoma of the skin 1.62 (1.35-1.94). Positive dose-response relationship was observed between incidence of cancers and duration of residence, and between incidence of cancer and degree of geothermal/volcanic activity in the comparison areas. The higher cancer incidence in geothermal areas than in reference areas is consistent with previous findings. As the dose-response relationships were positive between incidence of cancers and duration of residence, it is now more urgent than before to investigate the chemical and physical content of the geothermal water and of the ambient air of the areas to detect recognized or new carcinogens.

  3. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorie M. Dilley

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trappedmore » in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.« less

  4. Systems and methods for locating and imaging proppant in an induced fracture

    DOEpatents

    Aldridge, David F.; Bartel, Lewis C.

    2016-02-02

    Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.

  5. Hydraulic characterization of aquifers by thermal response testing

    NASA Astrophysics Data System (ADS)

    Wagner, Valentin; Blum, Philipp; Bayer, Peter

    2014-05-01

    Temperature as a major physical quantity of the subsurface, and naturally occurring thermal anomalies are recognized as promising passive tracers to characterize the subsurface. Accelerated by the increasing popularity of geothermal energy, also active thermal field experiments have gained interest in hydrogeology. Such experiments involve artificial local ground heating or cooling. Among these, the thermal response test (TRT) is one of the most established field investigation techniques in shallow geothermal applications. It is a common method to investigate important subsurface heat transport parameters to design sustainable ground-source heat pump (GSHP) systems. During the test, the borehole heat exchanger (BHE) is heated up with a defined amount of energy by circulating a heat carrier fluid. By comparing temperature change between BHE inlet and outlet, the ability of the BHE to transfer heat or cold to the ambient ground is assessed. However, standard interpretation does not provide any insight into the governing processes of in-situ heat transfer. We utilize a groundwater advection sensitive TRT evaluation approach based on the analytical moving line source equation. It is shown that the TRT as a classical geothermal field test can also be used as a hydrogeological field test. Our approach benefits from the fact that thermal properties, such as thermal conductivity, of natural aquifers typically are much less variable than hydraulic properties, such as hydraulic conductivity. It is possible to determine a relatively small hydraulic conductivity range with our TRT evaluation approach, given realistic ranges for thermal conductivity, volumetric heat capacity, thermal dispersivity and thermal borehole resistance. The method is successfully tested on a large-scale geothermal laboratory experiment (9 m × 6 m × 4.5 m) and with a commercially performed TRT in the field scale. The laboratory experiment consists of a layered artificial aquifer, which is penetrated by a short BHE. This BHE is used to record a groundwater influenced TRT dataset. The performed field TRT is measured at a BHE located in the Upper Rhine Valley in South-West Germany, which penetrates a 68 m thick gravel aquifer with significant horizontal groundwater flow. At both sites, the derived hydraulic conductivity ranges obtained from TRT evaluation are shown to be within the ranges obtained from classical hydrogeological methods such as sieve analysis and pumping tests. This confirms that the temperature signal recorded during thermal response tests can be employed as a thermal tracer and that the evaluation of such a signal can be applied to estimate aquifer hydraulic conductivities.

  6. "Assistance to States on Geothermal Energy"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines« less

  7. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  8. Geothermal resource development for electric power generation in Indonesia: results and future promises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumitramihardja, A.; Robert, D.; Ibrahim, K.

    1986-07-01

    Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less

  9. Geothermal energy in Washington: site data base and development status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number ofmore » serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)« less

  10. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less

  11. Investigation on effective promotion of geothermal energy development

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.

  12. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.

  13. Discriminating Characteristics of Tectonic and Human-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2015-12-01

    We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of "end-member" areas known to be dominated by human-induced earthquakes (the Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jacinto fault zone in southern California and Coso region excluding the Coso geothermal field in eastern central California) reveals several distinguishing characteristics. Induced seismicity is shown to have (i) higher rate of background events (both absolute and relative to the total rate), (ii) faster temporal offspring decay, (iii) higher intensity of repeating events, (iv) larger proportion of small clusters, and (v) larger spatial separation between parent and offspring, compared to regular tectonic activity. These differences also successfully discriminate seismicity within the Coso and Salton Sea geothermal fields in California before and after the expansion of geothermal production during the 1980s.

  14. Evaluating the Effect from Constructing Binary Geothermal Power Units Based on Spent Petroleum and Gas Boreholes in the South Regions of Russia

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2018-02-01

    The article substantiates the possibility of efficiently harnessing the geothermal resources available in the North Caucasian region through constructing binary geothermal power plants (GeoTPPs) using idle petroleum and gas wells. The power capacities of GeoTPPs are evaluated, and the basic characteristics of these power plants in case of constructing them in the promising areas are determined. The overall useful GeoTPP capacity equal to approximately 330 MW can be obtained from using the entire fleet of idle wells available in these areas. Diagrams confirming the possibility of reaching the optimal flowrate of geothermal heat carrier circulating in the geothermal circulation system loop are presented. This flowrate corresponds to a binary GeoTPP's maximal useful power output. The article shows, taking the Ternair geothermal field as an example, that it is inefficient to use medium-enthalpy thermal waters for generating energy at a binary GeoTPP involving reinjection of a spent heat carrier. It is shown that good prospects can be expected from applying a hybrid geothermal and combined-cycle technology, by means of which it is possible to use lowenthalpy (80-100°C) thermal waters for generating electricity in a highly efficient manner. In accordance with such technology, geothermal heat is used in the binary GeoTPP cycle for heating low-boiling working fluid to its evaporation temperature. The working fluid is evaporated and superheated by using the heat of exhaust gases from a gas turbine power unit. Owing to combined use of the thermal water heat potential and the heat of exhaust gases from a gas turbine power plant in a hybrid process system, it becomes possible to obtain high power performance indicators of hybrid geothermal and combined-cycle power plants. This conclusion is confirmed by the results from numerical evaluations carried out as applied to the Ternair geothermal field. With the fully harnessed resource potential of the Ternair field, the total capacity of hybrid geothermal and combined-cycle power plants may reach 60 MW, a level that would make it possible to relieve a significant part of energy, environmental, economic, and social problems faced by the city of Makhachkala.

  15. Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimac, J.; Goff, F.; Hearn, B.C. Jr.

    1992-01-01

    The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in themore » region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.« less

  16. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    NASA Astrophysics Data System (ADS)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  17. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  18. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    NASA Astrophysics Data System (ADS)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  19. Cancer incidence among population utilizing geothermal hot water: a census-based cohort study.

    PubMed

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2013-12-15

    The aim of the study was to assess whether utilization of geothermal hot-water is associated with risk of cancer. The cohort from census was followed from 1981 to 2010 in nation-wide death and cancer registries. The moving apart of American-Eurasian tectonic plates, observed in Iceland, results in high volcanic activity. The definition of the study populations was based on geological information. The target population was inhabitants of communities located on bedrock younger than 3.3 million years, utilizing hot-water supply generated from geothermal wells since 1972. The two reference populations were inhabitants of communities without this hot-water supply located on areas with less volcanic/geothermal activity, and bedrock older than 3.3 million years. Hazard ratio (HR), and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking. HR in the geothermal hot-water supply areas for all cancer was 1.15 (95% CI 1.05-1.25) as compared with nongeothermal areas. The HR for breast cancer was 1.40 (1.12-1.75), prostate cancer 1.61 (1.29-2.00), kidney cancer 1.64 (1.11-2.41), lymphatic and haematopoietic tissue cancers 1.45 (1.08-1.95), and for basal cell carcinoma (BCC) of the skin 1.46 (1.16-1.82). Positive exposure-response relations were observed between the risk of these cancers and the degree of volcanic/geothermal activity in the reference areas. Increased incidence of all cancers, breast, prostate, kidney cancer and BCC of the skin was found among the population utilizing geothermal hot-water for decades. More precise information on exposure is needed in future studies. Copyright © 2013 UICC.

  20. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    NASA Astrophysics Data System (ADS)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  1. Thermal structure of Sikhote Alin and adjacent areas based on spectral analysis of the anomalous magnetic field

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Nosyrev, M. Yu.; Shevchenko, B. F.; Gilmanova, G. Z.

    2017-11-01

    The depth of the base of the magnetoactive layer and the geothermal gradient in the Sikhote Alin crust are estimated based on a method determining the Curie depth point of magnetoactive masses by using spectral analysis of the anomalous magnetic field. A detailed map of the geothermal gradient is constructed for the first time for the Sikhote Alin and adjacent areas of the Central Asian belt. Analysis of this map shows that the zones with a higher geothermal gradient geographically fit the areas with a higher level of seismicity.

  2. Determination of silica deposition rates and thresholds applied towards protection of injection reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geothermal Development Associates; Don Michels Associates

    1999-07-01

    This program was instituted to quantify certain aspects of silica scaling deposition processes at the Miravalles Geothermal Field, Costa Rica. The program objective was to identify the highest temperature at which silica scale will develop from partially evaporated and significantly cooled geothermal liquid under operating conditions. Integral to the study objective was the quantification of certain aspects of silica deposition processes at the Miravalles Geothermal Field, Costa Rica. There, the objective was to reduce the scaling risk associated with adding a bottoming-cycle to generate more electricity from the liquids already being produced.

  3. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  4. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  5. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  6. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  7. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  8. About Us - Alaska Statutes | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations declaration of sources, see 4 1, ch. 175, SLA 1980, in the legislative policy on geothermal re- Temporary and

  9. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  10. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.

  11. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P.

    The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperaturemore » field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source, while As associated with bottom sediment travels {approx}3 km farther.« less

  12. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    NASA Astrophysics Data System (ADS)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the occurrence of hydrothermal fluids is controlled by fault-induced secondary permeability. The resurgence of the caldera floor could be induced by an inferred magmatic intrusion, representing the heat source of the geothermal system and feeding the simultaneous monogenetic volcanic activity around the deforming area. The operation of the geothermal field and the plans for further exploration should focus on, both, the active resurgence fault system and the new endogenous thermal anomalies mapped outside the known boundaries of the geothermal field.

  13. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  14. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  15. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  16. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  17. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  18. Configuration of the mudstones, gray- and coffee-colored shale lithologic units, zones of silica and epidote, and their relation to the tectonics of the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobo R, J.M.

    1981-01-01

    Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.

  19. Value of Information Evaluation using Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainor-Guitton, W.

    2015-06-15

    Value of information (VOI) provides the ability to identify and prioritize useful information gathering for a geothermal prospect, either hydrothermal or for enhanced geothermal systems. Useful information provides a value greater than the cost of the information; wasteful information costs more than the expected value of the information. In this project we applied and refined VOI methodologies on selected geothermal prospects.

  20. Update on subsidence at the Wairakei-Tauhara geothermal system, New Zealand

    USGS Publications Warehouse

    Allis, R.; Bromley, C.; Currie, S.

    2009-01-01

    The total subsidence at the Wairakei field as a result of 50 years of geothermal fluid extraction is 15 ?? 0.5 m. Subsidence rates in the center of the subsidence bowl have decreased from over 450 mm/year during the 1970s to 80-90 mm/year during 2000-2007. The location of the bowl, adjacent to the original liquid outflow zone of the field, has not changed significantly. Subsidence at the Tauhara field due to Wairakei production was not as well documented in the early years but appeared later and has been less intense than at Wairakei. Total subsidence of 2.6 ?? 0.5 m has also occurred close to the original liquid outflow zone of this field, and maximum subsidence rates in this area today are in the 80-100 mm/year range. In the western part of the Wairakei field, near the area of hot upflow, subsidence rates have approximately doubled during the last 20 years to 30-50 mm/year. This increase appears to be have been caused by declining pressure in the underlying steam zone in this area, which is tapped by some production wells. At Tauhara field, two areas of subsidence have developed since the 1990s with rates of 50-65 mm/year. Although less well-determined, this subsidence may also be caused by declining pressure in shallow steam zones. The cause of the main subsidence bowls in the Wairakei-Tauhara geothermal system is locally high-compressibility rocks within the Huka Falls Formation (HFF), which are predominantly lake sediments and an intervening layer of pumice breccia. At Wairakei, casing deformation suggests the greatest compaction is at 150-200 m depth. The cause of the large compressibility is inferred to be higher clay content in the HFF due to intense hydrothermal alteration close to the natural fluid discharge areas. Future subsidence is predicted to add an additional 2-4 m to the Wairakei bowl, and 1-2 m elsewhere, but these estimates depend on the assumed production-injection scenarios.

  1. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the region and fully meet the needs of Russia in lithium carbonate and sodium chloride.

  2. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K. R.

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was determined to be less subjective, since it requires less subjectivity in the input values.« less

  3. Seismic Characterization of the Blue Mountain Geothermal Site

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Matzel, E.; Cladouhos, T. T.

    2017-12-01

    All fluid injection activities have the potential to induce earthquakes by modifying the state of stress in the subsurface. In geothermal areas, small microearthquakes can be a beneficial outcome of these stress perturbations by providing direct subsurface information that can be used to better understand and manage the underground reservoir. These events can delineate the active portions of the subsurface that have slipped in response to pore fluid pressure changes or temperature changes during and after fluid injection. Here we investigate the seismic activity within the Blue Mountain Geothermal Power Plant located in Humboldt County, Nevada between December 2015 to May 2016. We compare the effectiveness of direct spatial-temporal cross-correlation templates with Matched Field Processing (MFP) derived templates and compare these results with earthquake detection results from a traditional STA/LTA algorithm. Preliminary results show significant clustering of microearthquakes, most probably influenced by plant operations. The significant increase in data availability that advanced earthquake detection methods can provide improves the statistical analyses of induced seismicity sequences, reveal critical information about the ongoing evolution of the subsurface reservoir, and better informs the construction of models for hazard assessments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Value of Information spreadsheet

    DOE Data Explorer

    Trainor-Guitton, Whitney

    2014-05-12

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  5. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy in remote sensing data sets. Mapped by depth, we identified narrow zones of intense alteration that mark fluid circulation, and overall changes in metamorphic grade facies through clay type. Steamboat Hills is more highly altered than Hawthorne, thus the alteration assemblages reflect the pH and temperature differences.

  6. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  7. The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.

    2016-12-01

    We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.

  8. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  9. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    USGS Publications Warehouse

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the local leveling networks spanning the well field and the bounding graben were analyzed for several 2-year periods (1993-1995, 1995-1997, and 1997-1999). Annual rates of change across the normal faults bounding the graben have steadily decreased for each 2-year period between 1993 and 1999, reflecting the slowing decline in geothermal reservoir pressure. Horizontal control data from a two-color electronic distance meter (EDM) defined the lateral extent of subsidence at Casa Diablo. The EDM and leveling data elucidate the localized effect of the shallow source of subsidence and the broader effect of the deeper magmatic inflation source. Data from bench marks common to both the vertical and the horizontal control networks were used to assess the effect of subsidence on the EDM base station (CASA). Modeling of geodetic data collected during periods of little or no magmatic inflation indicated that the CASA two-color EDM station is being drawn toward the well field at a rate of 3-5 mm/yr. ?? 2003 Elsevier B.V. All rights reserved.

  10. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  11. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  12. Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, Gregory M.

    Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.

  13. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  14. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-21

    This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid

  15. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    NASA Astrophysics Data System (ADS)

    Haukwa, C.; Bodvarsson, G. S.; Lippmann, M. J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model, a two-dimensional exploitation model was developed. The field has a production area of about 10 km(exp 2), with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  16. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  17. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150more » MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  18. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  19. Seismic Investigations of the Murci Geothermal Field (Southern Tuscany, Italy): Preliminary Results

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Alexandrakis, C.; Buske, S.

    2013-12-01

    The Monte Amiata region in the Southern Tuscany, Central Italy, describes a volcanic complex with great significance in terms of the regional fresh water supply, mining and geothermal power generation. Mainly for the latter purpose, the volcanic area of Mt Amiata has been the subject of extensive geological and geophysical research (e.g. Dini et al., 2010 and references therein). The insights from these studies have led to successful geothermal production in the Mt Amiata region since the early 1960s (e.g. Batini et al., 2003). Today's most important reservoirs in this area are the Bagnore and the Piancastagnaio fields which are both operated by the company Enel Green Power. The work presented here deals with the Murci area, another potential reservoir located about 10 km southwest of the Mt Amiata volcanic complex. Therefore, in order to get a more detailed understanding of this area, five reflection seismic profiles were carried out. We have performed on three of them a preliminary depth-migrated images, through Kirchhoff prestack depth migration (KPSDM). The vital point of depth migration algorithms is the accuracy of the velocity model that is used for the backpropagation of the seismic data. Therefore, we derived a suitable 1D starting model from nearby well logs and VSP measurements. In order to remove the large topography effects along the profiles, we then utilized first-arrival tomography for each seismic line. For the following processing we incorporated these 2D tomographic results into our starting model which compensates for static effects and improves the resolution in the near-surface area. The velocity models were then used in the application of KPSDM to the seismic data for each profile, respectively. The resulting preliminary images show a zone of high seismic reflectivity, known as the 'K-horizon' (e.g. Brogi, 2008), and could improve its geological interpretation. These promising results encourage us to proceed with deeper migration velocity analysis which will reveal more details about the structures of the Murci area. Batini, F. et al., 2003: Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy), Episodes, 26, 239-244. Brogi, A., 2008. The structure of the Monte Amiata volcano-geothermal area (Northern Apennines, Italy): Neogene-Quaternary compression versus extension, Int J Earth Sci (Geol Rundsch) (2008) 97:677-703 Dini, I. et al., 2010. Geological Evaluation of the Base of the Mt. Amiata Volcanic Complex (Tuscany, Italy), Procedings World Geothermal Congress 2010, Bali, Indonesia, April 2010.

  20. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  1. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  2. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  3. An efficient approach to imaging underground hydraulic networks

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2012-07-01

    To better locate natural resources, treat pollution, and monitor underground networks associated with geothermal plants, nuclear waste repositories, and carbon dioxide sequestration sites, scientists need to be able to accurately characterize and image fluid seepage pathways below ground. With these images, scientists can gain knowledge of soil moisture content, the porosity of geologic formations, concentrations and locations of dissolved pollutants, and the locations of oil fields or buried liquid contaminants. Creating images of the unknown hydraulic environments underfoot is a difficult task that has typically relied on broad extrapolations from characteristics and tests of rock units penetrated by sparsely positioned boreholes. Such methods, however, cannot identify small-scale features and are very expensive to reproduce over a broad area. Further, the techniques through which information is extrapolated rely on clunky and mathematically complex statistical approaches requiring large amounts of computational power.

  4. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    PubMed

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  5. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  6. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  7. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  8. Analysis and application of impedance polar diagram and zstrike rose diagram of magnetotellurics data in southern part of the Wayang Windu geothermal field

    NASA Astrophysics Data System (ADS)

    Rohayat, O. R.; Wicaksono, R. A.; Daud, Y.

    2018-03-01

    In this study, we determined the main direction of geoelectric strike in the southern part of the Wayang Windu geothermal field using magnetotellurics (MT) data. The strike direction was obtained by analyzing data using impedance polar and Zstrike rose diagram. We investigated 51 MT data at different sites of the southern part of the Wayang Windu geothermal field. Determination of geoelectric strike direction is important since the strike is the rotation references in MT data processing. Our findings had pointed out that the geoelectric strike direction in this study area is in accordance with the direction of geological structure and has a good correlation with structures delineated from 3D MT inversion model.

  9. Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy

    USGS Publications Warehouse

    Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.

    1985-01-01

    A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.

  10. Association of Cancer Incidence and Duration of Residence in Geothermal Heating Area in Iceland: An Extended Follow-Up

    PubMed Central

    Kristbjornsdottir, Adalbjorg; Aspelund, Thor; Rafnsson, Vilhjalmur

    2016-01-01

    Background Residents of geothermal areas have higher incidence of non-Hodgkin’s lymphoma, breast cancer, prostate cancer, and kidney cancers than others. These populations are exposed to chronic low-level ground gas emissions and various pollutants from geothermal water. The aim was to assess whether habitation in geothermal areas and utilisation of geothermal water is associated with risk of cancer according to duration of residence. Methods The cohort obtained from the census 1981 was followed to the end of 2013. Personal identifier was used in record linkage with nation-wide emigration, death, and cancer registries. The exposed population, defined by community codes, was located on young bedrock and had utilised geothermal water supply systems since 1972. Two reference populations were located by community codes on older bedrock or had not utilised geothermal water supply systems for as long a period as had the exposed population. Adjusted hazard ratio (HR), 95% confidence intervals (CI) non-stratified and stratified on cumulative years of residence were estimated in Cox-model. Results The HR for all cancer was 1.21 (95% CI 1.12–1.30) as compared with the first reference area. The HR for pancreatic cancer was 1.93 (1.22–3.06), breast cancer, 1.48 (1.23–1.80), prostate cancer 1.47 (1.22–1.77), kidney cancer 1.46 (1.03–2.05), lymphoid and haematopoietic tissue 1.54 (1.21–1.97), non-Hodgkin´s lymphoma 2.08 (1.38–3.15) and basal cell carcinoma of the skin 1.62 (1.35–1.94). Positive dose-response relationship was observed between incidence of cancers and duration of residence, and between incidence of cancer and degree of geothermal/volcanic activity in the comparison areas. Conclusions The higher cancer incidence in geothermal areas than in reference areas is consistent with previous findings. As the dose-response relationships were positive between incidence of cancers and duration of residence, it is now more urgent than before to investigate the chemical and physical content of the geothermal water and of the ambient air of the areas to detect recognized or new carcinogens. PMID:27205903

  11. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  12. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...

  13. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayle, Phillip A., Jr.

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less

  14. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig

    2015-10-01

    The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Garry J.; Birkby, Jeff

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278more » degrees F.« less

  16. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  17. Travel time seismic tomography on Reykjanes, SW Iceland

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Ágústsson, Kristjan; Blanck, Hanna; Metz, Malte; Franke, Steven; Pàll Hersir, Gylfi; Bruhn, David; Flovenz, Ólafur; Friðleifsson, Guðmundur

    2017-04-01

    We present updated tomographic results obtained using seismic data recorded around geothermal reservoirs located both on-land Reykjanes, SW-Iceland and offshore along Reykjanes Ridge. We gathered records from a network of 234 seismic stations (including 24 Ocean Bottom Seismometers) deployed between April 2014 and August 2015. In order to determine the orientation of the OBS stations, we used Rayleigh waves planar particle motions from large magnitude earthquakes. This method proved suitable using the on-land stations: orientations determined using this method with the orientations measured using a giro-compass agreed. We focus on the 3D velocity images using local earthquakes to perform travel time tomography. The processing includes first arrival picking of P- and S- phases using an automatic detection and picking technique based on Akaike Information Criteria. We locate earthquakes by using a non-linear localization technique, as a priori information for deriving a 1D velocity model. We then computed 3D velocity model by joint inversion of each earthquake's location and velocity lateral anomalies with respect to the 1D model. Our models confirms previous models obtained in the area, with enhanced details. In a second step, we performed inversion of the Vp/Vs ratio. Results indicate a low Vp/Vs ratio anomaly at depth suggesting the absence of large magmatic body under Reykjanes, unlike results obtained at other geothermal field, sucha as Krafla and Hengill. We discuss implications of those results in the light of recent IDDP drilling in Reykjanes.

  18. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.

  19. Geothermal and volcanism in west Java

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  20. Geothermal areas in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuja, T.A.

    1986-01-01

    In this paper an attempt has been made to correlate the tectonic and geologic features with surface manifestations of geothermal activity in Pakistan to delineate prospective areas for exploration and development of geothermal energy. Underthrusting of the Arabian plate beneath the Eurasian plate has resulted in the formation of Chagai volcanic arc which extends into Iran. Quaternary volcanics in this environment, along with the presence of thermal springs, is an important geotectonic feature revealing the possible existence of geothermal fields. Geothermal activity in the northern areas of Pakistan, as evidenced by thermal springs, is the likely result of collision andmore » underthrusting of the Indian plate beneath the Eurasian plate. Numerous hot springs are found along the Main Mantle thrust and the Main Karakorum thrust in Chilas and Hunza areas respectively. The concentration of hot springs in Sind Province is also indicative of geothermal activity. A string of thermal seepages and springs following the alignment of the Syntaxial Bend in Punjab Province is also noteworthy from the geothermal viewpoint. In Baluchistan Province (southwest Pakistan), Hamun-e-Mushkel, a graben structure, also shows geothermal prospects on the basis of aeromagnetic studies.« less

  1. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  2. Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water.

    PubMed

    Okazaki, Takuya; Orii, Tatsuya; Ueda, Akira; Ozawa, Akiko; Kuramitz, Hideki

    2017-06-13

    We present a novel fiber optic sensor for real-time sensing of silica scale formation in geothermal water. The sensor is fabricated by removing the cladding of a multimode fiber to expose the core to detect the scale-formation-induced refractive index change. A simple experimental setup was constructed to measure the transmittance response using white light as a source and a spectroscopy detector. A field test was performed on geothermal water containing 980 mg/L dissolved silica at 93 °C in Sumikawa Geothermal Power Plant, Japan. The transmittance response of the fiber sensor decreased due to the formation of silica scale on the fiber core from geothermal water. An application of this sensor in the evaluation of scale inhibitors was demonstrated. In geothermal water containing a pH modifier, the change of transmittance response decreased with pH decrease. The effectiveness of a polyelectrolyte inhibitor in prevention of silica scale formation was easily detectable using the fiber sensor in geothermal water.

  3. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  4. Geothermal Exploration Case Studies on OpenEI (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developersmore » central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.« less

  5. The concept of geothermal exploration in west Java based on geophysical data

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2018-02-01

    Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.

  6. Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

    NASA Astrophysics Data System (ADS)

    Astisiasari; Van Westen, Cees; Jetten, Victor; van der Meer, Freek; Rahmawati Hizbaron, Dyah

    2017-12-01

    An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity. Besides, a pipeline infrastructure also delivers the brine back to earth, through the injection well-pads. Despite of its important functions, a geothermal pipeline may bear a threat to its vicinity through a pipeline failure. The pipeline can be impacted by perilous events like landslides, earthquakes, and subsidence. The pipeline failure itself may relate to physical deterioration over time, e.g. due to corrosion and fatigue. The geothermal reservoirs are usually located in mountainous areas that are associated with steep slopes, complex geology, and weathered soil. Geothermal areas record a noteworthy number of disasters, especially due to landslide and subsidence. Therefore, a proper multi-risk assessment along the geothermal pipeline is required, particularly for these two types of hazard. This is also to mention that the impact on human fatality and injury is not presently discussed here. This paper aims to give a basic overview on the existing approaches for the assessment of multi-risk assessment along geothermal pipelines. It delivers basic principles on the analysis of risks and its contributing variables, in order to model the loss consequences. By considering the loss consequences, as well as the alternatives for mitigation measures, the environmental safety in geothermal working area could be enforced.

  7. The shallow seismic structure of the Larderello geothermal field (Italy) as seen from Receiver Function analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto

    2017-04-01

    The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.

  8. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  9. Chemical Analyses of Ground Water in the Carson Desert near Stillwater, Churchill County, Nevada, 2005

    USGS Publications Warehouse

    Fosbury, DeEtta; Walker, Mark; Stillings, Lisa L.

    2008-01-01

    This report presents the chemical analyses of ground-water samples collected in 2005 from domestic wells located in the Stillwater area of the Carson Desert (fig. 1). These data were evaluated for evidence of mixing with nearby geothermal waters (Fosbury, 2007). That study used several methods to identify mixing zones of ground and geothermal waters using trace elements, chemical equilibria, water temperature, geothermometer estimates, and statistical techniques. In some regions, geothermal sources influence the chemical quality of ground water used for drinking water supplies. Typical geothermal contaminants include arsenic, mercury, antimony, selenium, thallium, boron, lithium, and fluoride (Webster and Nordstrom, 2003). The Environmental Protection Agency has established primary drinking water standards for these, with the exception of boron and lithium. Concentrations of some trace metals in geothermal water may exceed drinking water standards by several orders of magnitude. Geothermal influences on water quality are likely to be localized, depending on directions of ground water flow, the relative volumes of geothermal sources and ground water originating from other sources, and depth below the surface from which water is withdrawn. It is important to understand the areal extent of shallow mixing of geothermal water because it may have adverse chemical and aesthetic effects on domestic drinking water. It would be useful to understand the areal extent of these effects.

  10. Soil is the origin for the presence of Naegleria fowleri in the thermal recreational waters.

    PubMed

    Moussa, Mirna; Tissot, Océane; Guerlotté, Jérôme; De Jonckheere, Johan F; Talarmin, Antoine

    2015-01-01

    Naegleria fowleri is found in most geothermal baths of Guadeloupe and has been responsible for the death of a 9-year-old boy who swam in one of these baths in 2008. We wanted to determine the origin for the presence of this amoeba in the water. Water samples were taken at the origin of the geothermal sources and at the arrival in the baths. After filtration, cultures were made and the number of Naegleria present was determined using the most probable number method. Soil samples collected in the proximity of the baths were also tested for the presence of thermophilic amoebae. The species identification was obtained by PCR. During three consecutive months, no Naegleria could be found at the origin of any geothermal source tested. In contrast, N. fowleri was isolated at least once in all baths at the arrival of the water, except one. Thermophilic amoebae could be found in each soil sample, especially near the baths located at a lower altitude, but N. fowleri was only isolated near two baths, which were also the baths most often contaminated with this species. So it appears that the contamination of the water with N. fowleri occurs after emerging from the geothermal source when the water runs over the soil. Therefore, it should be possible to reduce the concentration of N. fowleri in the geothermal baths of Guadeloupe to for example less than 1 N. fowleri/10 L by installing a pipeline between the geothermal sources and the baths and by preventing flooding water from entering the baths after rainfall. By taking these measures, we were able to eliminate N. fowleri from a pool located inside a reeducation clinic.

  11. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  12. Geothermal Progress Monitor, report No. 13

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  13. In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada

    USGS Publications Warehouse

    Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,

    1997-01-01

    As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.

  14. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, D.L.; Moore, J.N.; Clemente, W.C.

    1996-12-31

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine)more » deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.« less

  15. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  16. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  17. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  18. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  19. Draft Genome Sequence of Thermus scotoductus Strain K1, Isolated from a Geothermal Spring in Karvachar, Nagorno Karabakh

    PubMed Central

    Saghatelyan, Ani; Poghosyan, Lianna

    2015-01-01

    The 2,379,636-bp draft genome sequence of Thermus scotoductus strain K1, isolated from geothermal spring outlet located in the Karvachar region in Nagorno Karabakh is presented. Strain K1 shares about 80% genome sequence similarity with T. scotoductus strain SA-01, recovered from a deep gold mine in South Africa. PMID:26564055

  20. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verificationmore » of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.« less

  1. Geoelectrical Characterization of the Punta Banda System: A Possible Structural Control for the Geothermal Anomalies

    NASA Astrophysics Data System (ADS)

    Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.

    2007-05-01

    The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.

  2. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  3. Geothermal exploration in the Virunga Prospect, Northern Rwanda

    NASA Astrophysics Data System (ADS)

    Jolie, E.

    2009-04-01

    German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.

  4. Geothermal pilot study final report: creating an international geothermal energy community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less

  5. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 imagery of the Northern California Coast Ranges has disclosed a potential relation between a heretofore unrecognized fracture system and known deposits of mercury and geothermally active areas in the Coast Range and between oil and gas fields in the Sacramento Valley. Three potentially important systems of linear elements within the Coast Ranges, detected on ERTS-1 imagery, may represent fault systems or zones of shearing because topographic offset and stratigraph disruption can be seen along one or two of the lineations. One of the systems in subparallel to the San Andreas fault and is confined to the Pacific Coastal Belt. Another set is confined to the central core of the Coast Ranges. The third set of linear features (Valley System) has not heretofore been recognized. Some of the known mercury deposits and geothermally active areas near Clear Lake, in the Coast Ranges, are along the Valley System or at the intersection of the Central and Valley Systems. The plotted locations of some of the oil and gas fields in the Sacramento Valley are associated with the Valley and/or Central Systems. If these relations prove reliable, the ERTS-1 imagery may prove to be an extremely useful exploration tool.

  6. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)

    NASA Astrophysics Data System (ADS)

    Barberi, Franco; Carapezza, Maria Luisa; Cioni, Roberto; Lelli, Matteo; Menichini, Matia; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca

    2013-05-01

    Platanares and Azacualpa geothermal sites of Honduras are located in an inner part of the Caribbean Plate far from the active volcanic front of Central America. Here geology indicates that there are not the conditions for the occurrence of shallow magmatic heat sources for high-enthalpy geothermal resources. Geothermal perspectives are related to the possibility of a deep circulation of meteoric water along faults and the storage of the heated fluid in fractured permeable reservoirs. Geochemical geothermometers indicate a temperature for the deeper part of the geothermal reservoir close to 200 °C for Platanares and of 150-170 °C for Azacualpa. Calcite scaling, with subordinate silica deposition has to be expected in both sites. CO2 soil flux investigations have been carried out in both areas and reveal the presence of positive anomalies likely corresponding to the presence at depth of fractured degassing geothermal reservoirs. Compared with the geothermal areas of Central Italy whose reservoirs are hosted in carbonate rocks, e.g. Latera (Chiodini et al., 2007), the CO2 soil flux measured in Honduras is significantly lower (mean of 17 g/m2day at Platanares and of 163 g/m2day at Azacualpa) probably because of the dominant silicate nature of the deep reservoirs.

  7. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the other model, a northwestern dipping normal faults system was interpreted, and the normal faults were the paths for guiding the geothermal energy from the depth. Although both models were possible for obtaining a promising geothermal energy in the study area, a clear conceptual structure model is needed for future development of the geothermal energy in this area. Our interpretation favorites the fault dominant structure model; however, since the bedrock was slate or argillite still needed to be identified, more data from core borings and other geophysical, geologic data are needed. In this paper, we will illustrate a 3 dimensional suburface structure model by using the seismic images and integrate with results obtained from other studies to show the possibility of the proposed fault dominant structure model.

  8. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major range-front faults (5-6%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems. The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures. These findings may help guide future exploration efforts, especially for blind geothermal systems, which probably comprise the bulk of the geothermal resources in the Great Basin.

  9. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008

  10. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  11. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  12. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  13. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    NASA Astrophysics Data System (ADS)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  14. Kenya geothermal private power project: A prefeasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less

  15. New Energy Villages in Taiwan and China

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Wang, S. C.

    2015-12-01

    Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.

  16. The detection of geothermal areas from Skylab thermal data

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.; Pohn, H. A.

    1975-01-01

    Skylab-4 X-5 thermal data of the geysers area was analyzed to determine the feasibility of using midday Skylab images to detect geothermal areas. The hottest ground areas indicated on the Skylab image corresponded to south-facing barren or sparsely vegetated slopes. A geothermal area approximately 15 by 30 m coincided with one of the hottest areas indicated by Skylab. This area could not be unambiguously distinguished from the other areas which are believed to be hotter than their surroundings as a result of their topography, and micrometeorological conditions. A simple modification of a previous thermal model was performed and the predicted temperatures for the hottest slopes using representative values was in general agreement with the observed data. It is concluded that data from a single midday Skylab pass cannot be used to locate geothermal areas.

  17. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    NASA Astrophysics Data System (ADS)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The approach of hot spring variation research also has potential benefits for earthquake monitoring and prediction.

  18. The Campi Flegrei caldera-hosted high-temperature and high-saline geothermal system in the Southern Italy: the implication of the geothermal resource as derived by the present state of the knowledge through 70 years of volcanological, structural, petrolog

    NASA Astrophysics Data System (ADS)

    Piochi, M.; Di Vito, M. A.; Mormone, A.; De Natale, G.; Tramelli, A.; Troise, C.; Carlino, S.

    2012-04-01

    The Campi Flegrei caldera (Italy) hosts a geothermal system characterized by: i) high thermal gradient (temperature up to 420°C at 3050 m b.s.l.), ii) high temperature (up to ~90-150°C at very shallow depth) fumaroles, iii) multiple meteoric to brine (TDS up to 33 g•l-1; temperature up to 95 °C) aquifers and iv) at least 1500 tonnes per day of CO2 emissions. This area is highly urbanized despite the repeated occurrence of ground deformation phenomena accompanied by seismicity with volcano-tectonic and long-period micro-earthquakes. The caldera has been widely studied by geologist and geophysicists. In particular, since '40s, the caldera has drawn scientific interest for its geothermal capability inducing the companies AGIP (Azienda Geologica Italiana Petroli) and SAFEN (Società Anonima Forze Endogene Napoletane) to drill more than one hundred 80-to-3100 m deep wells. However this experience did not reach the exploitation phase due to technological and communication problems. The geothermal potential (thermal and electric) is evaluated of about 6 GWy. The recent Campi Flegrei Deep Drilling Project [De Natale and Troise, 2011], sponsored by the International Continental Scientific Drilling Program, foresees the realization of medium-to-deep wells in the caldera with the ambition of stimulating interest in geothermal energy exploitation and technology development and, in addition of installing downhole monitoring systems. The geological knowledge of the area is the benchmark for the drilling sites selection. We reconstructed a multi-disciplinary conceptual model updated on the basis of the most recent scientific results and findings. In particular, the constrains (the most important are listed in brackets) comes from: i) boreholes (litho-stratigraphy, aquifer location, depth-related temperature), ii) fieldwork (stratigraphy, location of structural fractures and eruption vents), iii) petrology and melt inclusions (pressure and temperature of magma with implications regarding the magma reservoir location and arrest levels of ascending magma), iv) hydrothermal facies distribution (mainly at depths affected by thermo-metamorphism), v) elastic parameters (mainly Vp and Vp/Vs) of cored rocks measured in laboratory; vi) surface fluid emissions (as the surface expression of faults and fractures), vii) hydrogeology (location of thermal aquifers and general water circulation), and viii) seismology (location of main geophysical discontinuity and of seismic wave anomaly, seismogenetic and attenuation volumes). Our model evidences the lack of information from deep layers in the eastern caldera sector, i.e., the Bagnoli Plain and in the Pozzuoli Gulf. Investigations of these sites would add important information to our present knowledge of the geothermal system, as well as of the caldera structure and related magma-system behavior. Furthermore, the Bagnoli Plain is one of the largest Italian dismantled industrial areas, affected by metal contamination and undergoing to reclamation. It is, presently, a sparsely inhabited zone within the city of Naples, which therefore allows deep volcanological and geothermal investigations as well as requalification in terms of clean and renewable resource use, in contrast with the other peripherals areas where the high-population density poses strong limitations to the research and to the possibility to plan new rational use of the land and of its resources.

  19. The Geysers Geothermal Field Update1990/2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, P.; Lippmann, M.; Dobson, P.F.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, butmore » not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.« less

  20. Low Temperature Geothermal Play Fairway Analysis For The Appalachian Basin: Phase 1 Revised Report November 18, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Teresa E.; Richards, Maria C.; Horowitz, Franklin G.

    Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1)more » thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh Pennsylvania, for which the available geological data are insufficient to fully analyze the geological risks but yet the population is high. First, to assess the spatial variation in the depth to which one would need to drill to obtain geothermal temperatures that are useful to a future project, the project used bottom-hole temperature data from Appalachian Basin oil and gas exploration. These bottom hole temperature data are abundant but of low quality. Second, the project examined the potential for sufficient water flow rates through rocks to harvest heat from a geothermal well field, considering only natural reservoirs. This analysis provides a very incomplete picture of spatial variability of natural reservoirs because the oil and gas reservoir data lack key properties and are spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. Third, in light of the fact that earthquake activity has been induced in several states by subsurface work related to the oil and gas industry, this project examined the potential for similar activity in the Appalachian Basin. Acknowledging that data for such a task are insufficient, we utilized what was available: records of seismic activity, regional estimates of the orientations of stress in the rocks, and locations and orientations of zones of lateral change in rock properties at depths down to several kilometers below Earth’s surface. With these data, we created a first approximation of spatially variable risks for induced earthquakes. Because no data existed with which to test the reliability of these methods, the results have a high degree of uncertainty. Fourth, we examined the spatial variability of the above-the-ground factors that contribute to the economical viability of projects to tap low-temperature geothermal resources for direct-use. We worked principally with population density as a regionally known variable that would impact the cost of district heating. The resulting maps omit the costs of producing the hot water from the ground, because the below-ground costs are directly coupled to the thermal resource risk factor and natural reservoir risk factor – later analyses of those costs will be needed. The result of the district heating analysis is highly skewed: few census locations yielded a low estimated surface cost. The team also identified more than 165 prospects for high value direct-use geothermal energy opportunities such as industrial sites, university campuses, and federal facilities, among others. At the closure of this regional analysis, the most significant technical uncertainties are 1) reservoir distribution and capacities; 2) validity of thermal resource maps, and 3) the holistic estimation of Levelized Cost of Heat for favorable geological situations.« less

  1. Brady's Geothermal Field Nodal Seismometer Active Source Data Sample

    DOE Data Explorer

    Kurt Feigl

    2016-03-25

    This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.

  2. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  3. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote somemore » relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.« less

  4. Community phylogenetic diversity of cyanobacterial mats associated with geothermal springs along a tropical intertidal gradient.

    PubMed

    Jing, Hongmei; Lacap, Donnabella C; Lau, Chui Yim; Pointing, Stephen B

    2006-04-01

    The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon-Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.

  5. Geothermal GIS coverage of the Great Basin, USA: Defining regional controls and favorable exploration terrains

    USGS Publications Warehouse

    Coolbaugh, M.F.; Sawatzky, D.L.; Oppliger, G.L.; Minor, T.B.; Raines, G.L.; Shevenell, L.; Blewitt, G.; Louie, J.N.

    2003-01-01

    A geographic information system (GIS) of geothermal resources, built last year for the state of Nevada, is being expanded to cover the Great Basin, USA. Data from that GIS is being made available to industry, other researchers, and the public via a web site at the Great Basin Center for Geothermal Energy, Reno, Nevada. That web site features a search engine, supports ArcExplorer?? for on-line map construction, and provides downloadable data layers in several formats. Though data collection continues, preliminary analysis has begun. Contour maps of geothermal temperatures, constructed using geothermometer temperatures calculated from a Great Basin geochemical database compiled by the Geo-Heat Center, reveal distinctive trends and patterns. As expected, magmatic-type and extensional-type geothermal systems have profoundly different associations, with magmatic-type systems following major tectonic boundaries, and extensional-type systems associating with regionally high heat flow, thin crust, active faulting, and high extensional strain rates. As described by earlier researchers, including Rowen and Wetlaufer (1981) and Koenig and McNitt (1983), high-temperature (> 100??C) geothermal systems appear to follow regional northeast trends, most conspicuously including the Humboldt structural zone in Nevada, the "Black Rock-Alvord Desert" trend in Oregon and Nevada, and the "Newcastle-Roosevelt" trend in Utah and Nevada. Weights-of-evidence analyses confirm a preference of high-temperature geothermal systems for young northeast-trending faults, but the distribution of geothermal systems correlates even better with high rates of crustal extension, as measured from global positioning system (GPS) stations in Nevada. A predictive map of geothermal potential based only on areas of high extensional strain rates and high heat flux does an excellent job of regionally predicting the location of most known geothermal systems in Nevada, and may prove useful in identifying blind systems.

  6. Application effectiveness of the microtremor survey method in the exploration of geothermal resources

    NASA Astrophysics Data System (ADS)

    Tian, Baoqing; Xu, Peifen; Ling, Suqun; Du, Jianguo; Xu, Xueqiu; Pang, Zhonghe

    2017-10-01

    Geophysical techniques are critical tools of geothermal resource surveys. In recent years, the microtremor survey method, which has two branch techniques (the microtremor sounding technique and the two-dimensional (2D) microtremor profiling technique), has become a common method for geothermal resource exploration. The results of microtremor surveys provide important deep information for probing structures of geothermal storing basins and researching the heat-controlling structures, as well as providing the basis for drilling positions of geothermal wells. In this paper, the southern Jiangsu geothermal resources area is taken as a study example. By comparing the results of microtremor surveys and drilling conclusions, and analyzing microtremor survey effectiveness, and geological and technical factors such as observation radius and sampling frequency, we study the applicability of the microtremor survey method and the optimal way of working with this method to achieve better detection results. A comparative study of survey results and geothermal drilling results shows that the microtremor sounding technique effectively distinguishes sub-layers and determines the depth of geothermal reservoirs in the area with excellent layer conditions. The error of depth is generally no more than 8% compared with the results of drilling. It detects deeper by adjusting the size of the probing radius. The 2D microtremor profiling technique probes exactly the buried structures which display as low velocity anomalies in the apparent velocity profile of the S-wave. The anomaly is the critical symbol of the 2D microtremor profiling technique to distinguish and explain the buried geothermal structures. 2D microtremor profiling results provide an important basis for locating exactly the geothermal well and reducing the risk of drilling dry wells.

  7. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    NASA Astrophysics Data System (ADS)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  8. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  9. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  10. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    NASA Astrophysics Data System (ADS)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  11. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  12. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland,more » Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook« less

  13. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all regions with positive prospectivity inside subcrops and discharge areas was 1.83 (standard deviation = 0.75), whereas this mean prospectivity for known geothermal sites was 3.07 (standard deviation = 0.90). These results suggest that our prospectivity analysis using our integrated framework and the hydrogeologic windows concept is useful for identifying known and potential geothermal resources. The prospectivity approach also substantially reduces the number of known geothermal resources per km2 (from 0.004 at prospectivity > 0 to 0.016 at prospectivity > 3), suggesting that limiting an exploration area to regions with high prospectivity scores could reduce exploration costs. Comparing this method to more simplistic methods revealed that this method consistently had a higher density of resources in the top quintile for prospectivity. Using our prospectivity map, we identified nine sites for further data collection and analysis: Rincon, Lordsburg, Mud Springs, Gillis Hot Well, Goodsight, Cliff-Riverside, Rio Salado/Lucero, and the Northern Little Florida Mountains.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less

  15. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network (DFN) and 3D elements to simulate groundwater flow in the 3D regional fault network and in sedimentary deposits, respectively. Firstly, the geometry of the 3D fracture network and its hydraulic connections with 3D elements (sedimentary cover) is built in accordance with the tectonic history and based on geological and geophysical evidences. Secondly, data from previous studies and site-specific geological knowledge provide information on the fault zones family sets and on respective hydraulic properties. Then, from the simulated 3D groundwater flow model and based on a particle tracking methodology, groundwater flow paths are constructed. The regional groundwater flow paths results are extracted and analysed to delineate preferential zones to explore at finer scale and so to define the potential positions of the exploration wells. This work is conducted in the framework of the IMAGE project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553), which aims to develop new methods for better siting of exploitation wells.

  16. Draft Genome Sequence of Thermus scotoductus Strain K1, Isolated from a Geothermal Spring in Karvachar, Nagorno Karabakh.

    PubMed

    Saghatelyan, Ani; Poghosyan, Lianna; Panosyan, Hovik; Birkeland, Nils-Kåre

    2015-11-12

    The 2,379,636-bp draft genome sequence of Thermus scotoductus strain K1, isolated from geothermal spring outlet located in the Karvachar region in Nagorno Karabakh is presented. Strain K1 shares about 80% genome sequence similarity with T. scotoductus strain SA-01, recovered from a deep gold mine in South Africa. Copyright © 2015 Saghatelyan et al.

  17. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  18. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    NASA Astrophysics Data System (ADS)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  19. Numerical modeling of regional stress distributions for geothermal exploration

    NASA Astrophysics Data System (ADS)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model.

  20. The Ischia volcanic island (Southern Italy): Inferences from potential field data interpretation

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Di Maio, R.; Cella, F.; Florio, G.; Motschka, K.; Roberti, N.; Secomandi, M.; Supper, R.; Fedi, M.; Rapolla, A.

    2009-01-01

    In this paper we present a study of the structural setting of the volcanic island of Ischia by the analysis and interpretation of high-resolution aeromagnetic and self-potential data recently acquired over the island. The magnetic data allowed us to locate the main anomaly sources and lineaments of the island and its offshore surroundings, while the self-potential (SP) data provided information on both the structural pattern of the resurgent caldera and the high-temperature fluid circulation. An inversion of the acquired magnetic and SP data, and a joint modelling of the magnetic data and of a previous gravity data set along a SW-NE profile allowed us to build a model of the island. The model is characterized by the presence of an igneous-very likely trachytic-structure, whose top is located at 1200-1750 m b.s.l. Such a body, possibly formed by several neighbouring intrusions, has a density contrast with the pyroclastic cover of about 0.4 gr/cm 3 and its central-western part, below Mt. Epomeo, seems to be demagnetized. The demagnetization should be connected to the high geothermal gradient measured in this portion of the island and may be due to hydro-chemical alteration processes and/or to the possible presence of partially melted spots within the intrusion. Our outcome is consistent with the results of previous geophysical, geo-volcanological and geothermal studies.

  1. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  2. Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, D.

    1996-12-31

    This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  3. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  4. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  5. Development of exploration and monitoring techniques for the sustainable thermal use of the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Vienken, Thomas; Dietrich, Peter

    2013-04-01

    The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We will show that the development of new monitoring and exploration techniques is the prerequisite for the sustainable thermal use of the shallow subsurface in the framework of a geothermal resource management.

  6. Geohydrology, geochemistry, geothermal potency of Rianiate Toba Lake North Sumatera

    NASA Astrophysics Data System (ADS)

    Nainggolan, Juliper; Sitepu, Cristin; Pardede, Sanggam; Diantoro, Markus

    2017-09-01

    This research was performed to determine the potency of Rianiate’s geothermal an alternative of energy source and determine the types of geothermal that was begun with the position’s measurement by using GPS (Global Position System), and then the direct observation of chemical and physical properties such as pH, surface’s temperature, color etc. The following steps were taking sample in four different springs indicated by spring 1, spring 2, spring 3, and spring 4. The chemical nature was measured by titrimetry method by using AAS, XRD, and gas Chromathology. The calculating of temperature of subsurface has done by using geothermometer and sequentially followed by geothermal potency’s calculation. The position of four springs are located about N: 02° 31,852’ and E: 098° 44. 021’ where were average height from sea’s level is 958 m. The highest surface’s temperature is 80 °C and the temperature under soil is about 130.5 °C described the average of geothermal. The calculation of content of chloride, sulfate, bicarbonations revealed that the water can be categorized as chloride type. The trilateral diagram Na/1000 - K/100 - √Mg of hot water is in the regime of immature water. From the calculation of Indonesia’s Standardized Geotherm, it was obtained that the estimated reservoir potency of Rianiate geotherm is 2,68 MWe.

  7. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  8. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  9. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  10. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  11. Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field.

    PubMed

    Holtzman, Benjamin K; Paté, Arthur; Paisley, John; Waldhauser, Felix; Repetto, Douglas

    2018-05-01

    The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < M L < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.

  12. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong; Turchi, Craig

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less

  13. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    DOE PAGES

    Zhu, Guangdong; Turchi, Craig

    2017-01-27

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less

  14. 2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields

    NASA Astrophysics Data System (ADS)

    Monteiro Santos, Fernando A.; Afonso, António R. Andrade; Dupis, André

    2007-03-01

    Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those methods. This paper presents results obtained from the two-dimensional joint inversion of dipole-dipole and scalar AMT data acquired in a low enthalpy geothermal field situated in a graben. The joint inverted models show a better definition of shallow and deep structures. The results show that the extension of the benefits using joint inversion depends on the number and spacing of the AMT sites. The models obtained from experimental data display a low resistivity zone (<20 Ω m) in the central part of the graben that was correlated with the geothermal reservoir. The resistivity distribution models were used to estimate the distribution of the porosity in the geothermal reservoir applying two different approaches and considering the clay minerals effect. The results suggest that the maximum porosity of the reservoir is not uniform and might be in the range of 12% to 24%.

  15. Execution of deep dipole geoelectrical soundings in areas of geothermal interest. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    It is suggested that deep geoelectrical problems may be resolved by carrying out dipole soundings in the field and applying a quantitative interpretation in the Schlumberger domain. The 'transformation' of original field dipole sounding curves into equivalent Schlumberger curves is outlined for the cases of layered structures and arbitrary underground structures. Theoretical apparent resistivity curves are derived for soundings over bidimensional structures. Following a summary of the geological features of the Travale-Radicondoli geothermal area of Italy, the dipole sounding method employed for this field study and the means of collecting and analyzing the data, are outlined.

  16. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are presented which will allow the Service to provide input to the federal leasing process. As an impact information source by which to judge the appropriateness of a specific activity at a specific site, a discussion of activities-impacts is provided on a phase by phase basis. Mitigation and possible enhancement techniques are also presented so that the impacts of the development can be dealt with and the fish and wildlife situation improved. The Service can achieve its objective only if biological input is made throughout the entire process of geothermal development, from exploration to testing to full field operation. A discussion of geothermal leasing procedures emphasizes the timing and nature of Service participation in current interagency lease processing, and there is a provision for the utilization of new knowledge, techniques, and responses as experience is accumulated.

  17. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less

  18. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    NASA Astrophysics Data System (ADS)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the geothermal sites of the southern Sula graben (Laguna de Agua Caliente and El Olivar) are covered by the Oligocene-Miocene volcano-sedimentary sequences of the Matagalpa formation, possibly acting as efficient impermeable cap rocks. These results significantly differ from those reported by previous studies and emphasize that the southern Sula graben, in particular the El Olivar area, can represent among the investigated thermal springs, the most promising site for the exploitation of a high-enthalpy geothermal field.

  19. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm diameter may be drilled into the sample while at reservoir conditions. This allows for simulation of borehole damage as well as injector-producer schemes. Dual 70 MPa syringe pumps set to flow rates between 10 nL/min and 60 mL/min injecting into a partially cased borehole allow for fully contained fracturing treatments. A six sensor acoustic emission (AE) array is used for geometric fracture location estimation during intercept borehole drilling operations. Hydraulic sensors and a thermocouple array allow for additional monitoring and data collection as relevant to computer model validation as well as field test comparisons. The results from preliminary tests inside and outside of the cell demonstrate the functionality of the equipment while also providing some novel data on the propagation and flow characteristics of hydraulic fractures themselves.

  20. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (< 3 Myr) belonging to the Lesser Antilles subduction zone. It is composed of arc typical calc-alkaline volcanic rocks. Outcrops of the studied area consist either of andesitic lava flows, volcanic sedimentary facies or dikes. Field studies allow to propose a structural framework and highlight three major directions N000˚ E, N050˚ E and N090˚ E, which are consistent with the regional tectonic trends of the arc. Petrographical and petrophysical studies displayed that the major part of outcropping facies in the Vieux-Habitants area are not altered. Andesitic lava flows have poor reservoir properties with porosity and permeability lower than 5 % and 10-15m2 respectively. These results are in contrast with measurements performed in volcano-sedimentary rocks, which have heterogeneous petrophysical properties ranging from 15 to 50 % for porosity and from 10-15to 10-9m2 for permeability. Such surface data would probably change and decrease when depth increases. As there is a lack of underground data under the Vieux-Habitants area (wireline, drill core), exhumated rocks outcropping in the northern part of Basse-Terre Island (Basal Complex) have been studied. Such rocks have been identified in the Basal Complex (2.5 - 3 Myr) located in the northern part of the Basse-Terre Island. Previous works have demonstrated a 1000 m/Myr erosional rate, which corresponds at least to a 2 - 3 km exhumation. The petrography study of the Basal Complex reveals sub-greenschist type mineralogical transformations (chlorite, white mica, quartz...) changing the andesitic protolith in a meta-andesite. This metamorphism forms cleavage plans thanks to a pressure-solution mechanism. Mineralogical transformations associated with these cleavage planes have an impact on petrophysical properties. The solid phase density and porosity decrease. An anisotropy of permeability develops due to cleavage plans. Thermodynamics modelling based on the rock chemical composition and petrography observations emphasizes a steady-state mineral assemblage between 1.5 - 2 kbar and 280 - 320˚ C. This is consistent with an in situ measured volcanic arc conductive geothermal gradient of 70 ˚ C/km.

  1. Tar Creek study, Sargent oil field, Santa Clara County, California

    USGS Publications Warehouse

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.

    2002-01-01

    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  2. Third workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advancesmore » have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick Muffler (USGS-MP), and Mark Silverman (DOE-SAN); and to the rapporteurs: George Frye (Aminoil), Vasel Roberts (Electrical Power Research Institute), and Alexander Graf (LBL), whose Valuable summaries are included in the Proceedings. Special thanks are also due Roland Horne, Visiting Professor from New Zealand and Program Manager of the Stanford Geothermal Program, for his efforts with the Program graduate students in conducting the Workshop. Further thanks go to Marion Wachtel, who in spite of tremendous personal hardship, administered the Workshop and prepared the Proceedings in a timely and professional manner. Professor Ramey and I also express our appreciation to the Department of Energy, whose financial support of the Workshop made possible the program and these Proceedings. Paul Kruger Stanford University December 31, 1977« less

  3. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.

    2015-12-01

    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used to identify probable locations of intrusive rock (heat) and permeability.

  4. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  5. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  6. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  7. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  8. Improved Location of Microseismic Events in Borehole Monitoring by Inclusion of Particle Motion Analysis: a Case Study at a CBM Field in Indonesia

    NASA Astrophysics Data System (ADS)

    Verdhora Ry, Rexha; Septyana, T.; Widiyantoro, S.; Nugraha, A. D.; Ardjuna, A.

    2017-04-01

    Microseismic monitoring and constraining its hypocenters in and around hydrocarbon reservoirs provides insight into induced deformation related to hydraulic fracturing. In this study, we used data from a single vertical array of sensors in a borehole, providing measures of arrival times and polarizations. Microseismic events are located using 1-D velocity models and arrival times of P- and S-waves. However, in the case of all the sensors being deployed in a near-vertical borehole, there is a high ambiguity in the source location. Herein, we applied a procedure using azimuth of P-wave particle motion to constrain and improve the source location. We used a dataset acquired during 1-day of fracture stimulation at a CBM field in Indonesia. We applied five steps of location procedure to investigate microseismic events induced by these hydraulic fracturing activities. First, arrival times for 1584 candidate events were manually picked. Then we refined the arrival times using energy ratio method to obtain high consistency picking. Using these arrival times, we estimated back-azimuth using P-wave polarization analysis. We also added the combination of polarities analysis to remove 180° ambiguity. In the end, we determined hypocenter locations using grid-search method that guided in the back-azimuth trace area to minimize the misfit function of arrival times. We have successfully removed the ambiguity and produced a good solution for hypocenter locations as indicated statistically by small RMS. Most of the events clusters highlight coherent structures around the treatment well site and revealed faults. The same procedure can be applied to various other cases such as microseismic monitoring in the field of geothermal and shale gas/oil exploration, also CCS (Carbon Capture and Storage) development.

  9. Geothermal Money Book [Geothermal Outreach and Project Financing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This ismore » where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.« less

  10. Fourteenth workshop geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  11. Fourteenth workshop geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  12. Geothermal Technologies | NREL

    Science.gov Websites

    clean, renewable, domestic power source for the United States. Photo of a geothermal power plant in a technical barriers. GeoVision Study Photo of large gears on a drilling apparatus Technology Innovation We're of a woman in a hard hat with a large, drilling apparatus behind her in a grassy field Partnerships

  13. NV PFA Regional Data

    DOE Data Explorer

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  14. A review of the hydrogeologic-geochemical model for Cerro Prieto

    USGS Publications Warehouse

    Lippmann, M.J.; Truesdell, A.H.; Halfman-Dooley, S. E.; Mañónm, A.

    1991-01-01

    With continued exploitation of the Cerro Prieto, Mexico, geothermal field, there is increasing evidence that the hydrogeologic model developed by Halfman and co-workers presents the basic features controlling the movement of geothermal fluids in the system. In mid-1987 the total installed capacity at Cerro Prieto reached 620 MWc, requiring a large rate of fluid production (more than 10,500 tonnes/hr of a brine-steam mixture; August 1988). This significant mass extraction has led to changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. Pressure drawdown has caused an increase in cold water recharge in the southern and western edges of the field, and local and general reservoir boiling in parts of the geothermal system. After reviewing the hydrogeologic and geochemical models of Cerro Prieto, the exploitation-induced cold water recharge and reservoir boiling (and plugging) observed in different areas of the field, are discussed and interpreted on the basis of these models and schematic flow models that describe the hydrogeology. ?? 1991.

  15. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  16. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  17. Geomechanics of Hydraulic Stimulation in Geothermal Systems: Designing and Implementing a Successful Enhanced Geothermal System at Desert Peak, Nevada

    NASA Astrophysics Data System (ADS)

    Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.

    2013-12-01

    Creation of an Enhanced Geothermal System (EGS) in hot but low-permeability rocks involves hydraulic stimulation of fracture permeability to develop a complex heat exchange system with low hydraulic impedance. An integrated study of stress, fractures and rock mechanical properties was conducted to develop the geomechanical framework for a multi-stage EGS stimulation in Desert Peak well 27-15, located at the low-permeability margins of an active geothermal field. The stimulation targeted silicified tuffs and metamorphosed mudstones at depths of 0.9 to 1.8 km and temperatures ~180 to 210° C. Drilling-induced tensile fractures in image logs from well 27-15 show that the least horizontal principal stress (Shmin) is consistent with normal faulting on ESE- and WNW-dipping fractures mapped at the surface and seen in the image logs. A hydraulic fracturing stress measurement indicates that the magnitude of Shmin at ~0.93 km depth is 0.61 of the calculated vertical stress. Coulomb failure calculations using these stresses together with measurements of friction and permeability on core predict that dilatant shear failure should be induced on pre-existing conjugate normal faults once pore pressures are increased ~2.5 MPa or more above ambient values, generating a zone of enhanced permeability elongated in the direction toward active geothermal wells ~0.5 km to the SSW. Hydraulic stimulation of well 27-15 began in September 2010 by injecting water into the open-hole interval between the casing shoe at 0.9 km depth and a temporary cement plug at 1.1 km. Stimulation was monitored by combined surface and down-hole seismic monitoring, inter-well tracer testing and periodic pressure-temperature-flowmeter logging. An initial stage of low-pressure (shear) stimulation was conducted for ~100 days at a series of pressure steps Shmin and injection rates up to 2800 l/min, resulting in an additional 6-fold increase in injectivity. Numerous microearthquakes induced during this high-pressure stage along with tracer testing demonstrated growth of the stimulated volume and establishment of a strong hydrologic connection between well 27-15 and geothermal production wells to the SSW. After drilling out the cement plug and opening up the stimulation zone to the total depth of the well (1.8 km), additional stages of low- and high-pressure stimulation were carried out in early 2013. This full-hole stimulation was characterized by continued growth of the microseismic cloud in the NNE - SSW direction and strong tracer returns to the main geothermal field. A cumulative 175-fold injectivity gain was achieved in well 27-15 over the entire EGS project, which exceeded project goals. The Desert Peak geomechanical model predicted both the approximate initiation criteria and directional characteristics of the injection-induced shear and tensile failure and resulting permeability gains that led to success of this EGS project.

  18. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  19. Geothermal Potential Analysis Using Landsat 8 and Sentinel 2 (Case Study: Mount Ijen)

    NASA Astrophysics Data System (ADS)

    Sukojo, B. M.; Mardiana, R.

    2017-12-01

    Geothermal energy is also a heat energy contained in the earth’s internal. Indonesia has a total geothermal potential of around 27 GWe. The government is eager for the development of geothermal in Indonesia can run well so that geothermal can act as one of the pillars of national energy. However, the geothermal potential has not been fully utilized. One of the geothermal potention is Mount Ijen. Mount Ijen is a strato volcano that has a crater lake with a depth of about 190 m and has a very high degree of acidity and the volume of lake water is very large. With the abundance of potential geothermal potential in Indonesia, it is necessary to have an activity in the form of integrated geoscience studies to be able to maximize the potential content that exists in a geothermal area. One of the studies conducted is to do potential mapping. This research performs image data processing of Landsat 8, Sentinel 2, RBI Map, and preliminary survey data. This research carried out the Vegetation Index, surface temperature and altitude. The equipment used in this research includes image processing software, number processing software, GPS Handheld and Laptop. Surface Temperatures in the Mount Ijen have anomalies with large temperatures ranging between 18° C to 38° C. The best correlation value of altitude and ground surface temperature is -0.89 ie the correlation of January surface temperature. While the correlation value of Landsat 8 and Sentinel 2 vegetation index was 0.81. The land cover confidence matrix scored 80%. Land cover in the research area is dominated by forests by 35% of the research area. There is a potential area of geothermal potential is very high on Mount Ijen with an area of 39.43 hectares located in Wongsorejo District and adjacent to District Sempol.

  20. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.

Top