Sample records for geothermal gradient core

  1. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  2. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less

  3. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  4. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less

  5. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  6. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  7. Alum Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.

  8. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  9. Hydrothermal Alteration of Open Fractures in Prospective Geothermal Drill Cores, Akutan Island, Alaska

    NASA Astrophysics Data System (ADS)

    Kent, T.

    2011-12-01

    The goal of this study is to constrain the most recent thermal alteration of two drill cores (HSB2/HSB4) from the Island of Akutan in the Aleutian Islands of Alaska. These cores are characterized by identifying mineralogy using x-ray diffraction spectra, energy dispersive spectroscopy with a scanning electron microscope and optical mineralogy. This is then compared with the coincident thermal data gathered on site in order to help constrain the most recent thermal activity of this dynamic resource. Using multiple temperature diagnostic minerals and their paragenesis, a relative thermal history is produced of expansive propylitic alteration. When combined with the wireline temperature gradients of the cores a model of downward migration emerges. Shallow occurrences of high temperature minerals that lie above the boiling point to depth curve indicate higher hydrostatic pressures in the past which can be attributed to a combination of glacial effects, including a significant amount of glacial erosion that is recognized due to a lack of significant clay cap to the geothermal resource.

  10. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  11. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  12. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  13. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohse, Alan

    On December 8, 1977, Gruy Federal, Inc. took over the C.D. Hopkins et al. No. 2 well, located near Jesup in Wayne County, Georgia, to be deepened and used for geothermal temperature-gradient measurements. The well was drilled from 4,009 to 4,341 feet, then diamond cored to 4,371 feet, 28 feet of core being obtained for analysis. After logging by the USGS District Groundwater Office in Atlanta, the well was terminated with 3 1/2 inch tubing to 4,386 feet. Scientists from Virginia Polytechnic Institute determined the bottom-hole temperature to be 60 C (140 F) at 1,331 meters (4,365 feet). Over themore » interval 47-1,331 meters (154-4,365 feet) the least-squares temperature gradient was 29.3 {+-} 0.14 C/km (1.61 {+-} 0.25 F/100 ft).« less

  15. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  16. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    USGS Publications Warehouse

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.

  17. Dynamics of Metamorphic Core Complexes Inferred From Modeling and Metamorphic Petrology

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Rey, P.; Teyssier, C.

    2008-12-01

    Orogenic collapse involves extension and thinning of thick, hot, and in some cases partially molten, crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. 2D numerical modeling predicts that the geometry and P-T-t history of MCC varies as a function of the presence/absence of a partially molten layer in the deep crust; the nature of heterogeneities that localize the MCC (e.g. normal fault in upper crust vs. point-like anomaly in the deep crust); and extensional strain rate. The presence of melt in particular has a significant effect on the thermal and structural history of MCC because the presence of partially molten crust or magma bodies at depth enhances upward advection of material and heat. At high extension rate (cm/year in the region of the MCC), partially molten crust crystallizes as migmatite and cools along a high geothermal gradient (35-65 C/km); material remains partially molten during ascent, forming a migmatite dome when it crystallizes at shallower crustal levels (e.g. cordierite/sillimanite stability field). At low strain rate (mm/yr in the MCC region), the partially molten crust crystallizes at high pressure (e.g. kyanite zone); this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20-35 C/km) during ascent. MCC that develop during extension of partially molten crust may therefore record distinct crystallization versus exhumation histories as a function of extensional strain rate. The mineral assemblages, metamorphic reaction histories, and structures of migmatite-cored (Mc) MCC can therefore be used to interpret the dynamics of MCC formation, e.g. "fast" McMCC in the northern N American Cordillera and Aegean regions.

  18. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    NASA Astrophysics Data System (ADS)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  19. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Blackwell; K. W. Wisian; M. C. Richards

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less

  20. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that the high heat flow zone has prevailed since that time.

  1. SW New Mexico BHT geothermal gradient calculations

    DOE Data Explorer

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  2. Thermal structure of Sikhote Alin and adjacent areas based on spectral analysis of the anomalous magnetic field

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Nosyrev, M. Yu.; Shevchenko, B. F.; Gilmanova, G. Z.

    2017-11-01

    The depth of the base of the magnetoactive layer and the geothermal gradient in the Sikhote Alin crust are estimated based on a method determining the Curie depth point of magnetoactive masses by using spectral analysis of the anomalous magnetic field. A detailed map of the geothermal gradient is constructed for the first time for the Sikhote Alin and adjacent areas of the Central Asian belt. Analysis of this map shows that the zones with a higher geothermal gradient geographically fit the areas with a higher level of seismicity.

  3. Compensated geothermal gradient: new map of old data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, M.W.

    1986-05-01

    Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less

  4. Experimental observation and numerical simulation of permeability changes in dolomite at CO2 sequestration conditions

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.

  5. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  6. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimschal, U.

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less

  7. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  8. Improved Understanding of Permafrost Controls on Hydrology in Interior Alaska by Integration of Ground-Based Geophysical Permafrost Characterization and Numerical Modeling

    DTIC Science & Technology

    2015-05-01

    Horiguchi and Miller, 1983; McCauley et al., 2002) that extended to a maximum depth of 90 m as influenced by the geothermal gradient and determined by... geothermal energy flux were applied to the model boundaries (Figure 5.4.1). The ground surface at 0 m depth consisted of an idealized lake bottom with...deeper saturated zone and the geothermal gradient from below the penetration depth of the annual temperature envelope. The initial condition for

  9. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less

  10. Geothermal Data Collection and Interpretation in the State of Alabama: Early Results from the ARRA Geothermal Energy Initiative

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.

    2011-12-01

    The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.

  11. La prospection geothermique de surface au Maroc: hydrodynamisme, anomalies thermiques et indices de surfaceGeothermal prospecting in Morocco: hydrodynamics, thermal anomalies and surface indices

    NASA Astrophysics Data System (ADS)

    Zarhloule, Y.; Lahrache, A.; Ben Abidate, L.; Khattach, D.; Bouri, S.; Boukdir, A.; Ben Dhia, H.

    2001-05-01

    Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers. The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.

  12. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  13. Geothermal energy for greenhouses

    Treesearch

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  14. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.

  15. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of the Acoculco geothermal system, involving a natural hazard that could affect future geothermal-power infrastructure.

  16. Regional geothermal exploration in Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Swanberg, C. A.

    1983-01-01

    A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.

  17. Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-08-01

    Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermalmore » gradients. Explanations for elevated gradients are reviewed. (MHR)« less

  18. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    USGS Publications Warehouse

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  19. Geothermal studies in oil field districts of North China

    NASA Astrophysics Data System (ADS)

    Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen

    In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.

  20. Deer Lodge Valley investigations, western Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wideman, C.J.; Sonderegger, J.; Crase, E.

    1982-07-01

    A review of the geothermal investigations conducted in the Deer Lodge Valley of Western Montana is briefly presented. Maps of the generalized geology and Bouguer gravity and graphs of selected geothermal gradients and resistivity sounding profiles are presented. (MJF)

  1. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  2. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  3. Geothermal studies at Kirtland Air Force Base, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, L.; Grant, B.

    Due to an effort by government installations to discontinue use of natural gas, alternative energy sources are being investigated at Kirtland Air Force Base, Albuquerque, New Mexico. New Mexico has geologic characteristics favorable for geothermal energy utilization. Local heat flow and geochemical studies indicate a normal subsurface temperature regime. The alluvial deposits, however, extend to great depths where hot fluids, heated by the normal geothermal gradient, could be encountered. Two potential models for tapping geothermal energy are presented: the basin model and the fault model.

  4. Detection of geothermal anomalies in Tengchong, Yunnan Province, China from MODIS multi-temporal night LST imagery

    NASA Astrophysics Data System (ADS)

    Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.

    2012-12-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  5. Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water.

    PubMed

    Okazaki, Takuya; Orii, Tatsuya; Ueda, Akira; Ozawa, Akiko; Kuramitz, Hideki

    2017-06-13

    We present a novel fiber optic sensor for real-time sensing of silica scale formation in geothermal water. The sensor is fabricated by removing the cladding of a multimode fiber to expose the core to detect the scale-formation-induced refractive index change. A simple experimental setup was constructed to measure the transmittance response using white light as a source and a spectroscopy detector. A field test was performed on geothermal water containing 980 mg/L dissolved silica at 93 °C in Sumikawa Geothermal Power Plant, Japan. The transmittance response of the fiber sensor decreased due to the formation of silica scale on the fiber core from geothermal water. An application of this sensor in the evaluation of scale inhibitors was demonstrated. In geothermal water containing a pH modifier, the change of transmittance response decreased with pH decrease. The effectiveness of a polyelectrolyte inhibitor in prevention of silica scale formation was easily detectable using the fiber sensor in geothermal water.

  6. Effects of the Karacadag Volcanic Complex on the thermal structure and geothermal potential of southeast Anatolia

    NASA Astrophysics Data System (ADS)

    Bilim, Funda; Aydemir, Attila; Kosaroglu, Sinan; Bektas, Ozcan

    2018-06-01

    The Karacadag Volcanic Complex (KVC) is the largest volcanic unit in SE Turkey. It is also defined as a shield volcano on the northernmost part of the Arabian Plate. The main goal of this study is to investigate the geothermal potential of this region associated with the magnetic signature of this volcanic complex and surrounding area. Besides this primary objective, the possibility of there being volcanic intrusion into the buried fault zones under the volcanic cover are also investigated to determine the interrelations between the active tectonics and heat flow in the area. A spectral analysis method is applied to the magnetic anomalies of the volcanic rocks to identify the Curie point depth (CPD) and geothermal gradient, as well as to estimate heat flow and radiogenic heat production of radioactive minerals in the complex. A tilt angle map is also presented, in correlation with instrumentally recorded earthquake magnitudes, to indicate tectonic trends that are consistent with the maps of the thermal parameters in this study. In contrast with expectations for the KVC area, the region around Akcakale and Suruc Grabens is the most prolific zone for geothermal potential, despite them not showing strong magnetic anomalies. Curie point depths are shallow, down to 18 km, around the Akcakale Graben, and deeper, down to 22 km, around the Bitlis-Zagros Suture Zone where the geothermal gradients increase from 26 to 32 °C km-1 through the graben area. Heat flows in this zone are in the range from 75 to 90 mW m-2 depending on the thermal conductivity coefficient (2.3, 2.5, 2.7, and 3.0 W m-1 K-1) used. Radiogenic heat production values also indicate slightly changing spectra in the range 0.19 to 0.25 μW m-3). None of these parameters are focused around Mt. Karacadag. However, the earthquake epicenters (generally M ≤ 4) are aligned with the boundary faults of the Akcakale Graben where the CPD, geothermal gradient, and heat flow maps indicate relatively high potential. We thus suggest that this graben area would be good for future geothermal exploration. On the contrary, considering the low geothermal gradient and heat flow values, Mt. Karacadag can be accepted as being an extinct volcano, despite its apparent, high, magnetic anomalies.

  7. Estimating the composition of hydrates from a 3D seismic dataset near Penghu Canyon on Chinese passive margin offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, Wu-Cheng

    2016-04-01

    A bottom-simulating reflector (BSR), representing the base of the gas hydrate stability zone, can be used to estimate geothermal gradients under seafloor. However, to derive temperature estimates at the BSR, the correct hydrate composition is needed to calculate the phase boundary. Here we applied the method by Minshull and Keddie to constrain the hydrate composition and the pore fluid salinity. We used a 3D seismic dataset offshore SW Taiwan to test the method. Different from previous studies, we have considered the effects of 3D topographic effects using finite element modelling and also depth-dependent thermal conductivity. Using a pore water salinity of 2% at the BSR depth as found from the nearby core samples, we successfully used 99% methane and 1% ethane gas hydrate phase boundary to derive a sub-bottom depth vs. temperature plot which is consistent with the seafloor temperature from in-situ measurements. The results are also consistent with geochemical analyses of the pore fluids. The derived regional geothermal gradient is 40.1oC/km, which is similar to 40oC/km used in the 3D finite element modelling used in this study. This study is among the first documented successful use of Minshull and Keddie's method to constrain seafloor gas hydrate composition.

  8. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  9. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    NASA Astrophysics Data System (ADS)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the fracture zone. The assumed elastic rock properties can be evaluated by FD modeling. Geoelectric and electromagnetic investigations of the fracture zone were carried out to investigate their potential to give hints on minerals, brines or hydrothermal fluids within the fracture zone. Measurements of the Spectral Induced Polarization show that anisotropy of phase angles may not be neglected, because otherwise data may be misinterpreted and structural models become unnecessarily complicated. A crucial aspect for the performance of a Geothermal plant is the mineral contents of the formation water. Scalings and corrosion can severely disturb the operation and the properties of the reservoir. Therefore, North German formation waters were analysed and categorized and a thermodynamic database was developed. It allows hydrogeochemical modeling of geothermally used waters and of hydrogeochemically and technically induced processes under North German conditions. Hydromechanical modeling showed that differences of elastic rock properties between neighboring layers does not strongly influence propagation paths of fractures, whereas they significantly influence fracture aperture. On the other hand, differences of mechanical rock properties significantly influence propagation paths of fractures. Existing fractures are also affected by the induced fracture - after stimulation, they propagate further in the direction of maximum shear stress. Furthermore, rock deformation during the production phase depends strongly on the contrast of hydraulic conductivity between highly permeable fracture core and low permeable rock matrix. The projects within gebo-Geosystem are well interconnected. Both the focus area "Geosystem" as well as the whole collaborative research program "gebo" offer different approaches that lead to an improvement of geothermal exploration and exploitation as well as a better understanding of the processes within geothermal reservoirs. Acknowledgement: The gebo project is funded by the "Niedersächsisches Ministerium für Wissenschaft und Kultur" and the industry partner Baker Hughes, Celle, Germany.

  10. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  11. Development and Exploitation of Low Enthalpy Geothermal Systems, Example of "The Dogger" in the Paris Basin, France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, J.; Menjoz, A.; Martin, J.C.

    1987-01-20

    A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers.more » The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.« less

  12. Exploring geothermal structures in the Ilan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Ying; Shih, Ruey-Chan; Chung, Chen-Tung; Huang, Ming-Zi; Kuo, Hsuan-Yu

    2017-04-01

    The Ilan Plain in northeast Taiwan is located at the southwestern tip of the Okinawa Trough, which extends westward into the Taiwan orogeny. The Ilan Plain covered by thick sediments is clipped by the Hsuehshan Range in the northern side and the Central Range in the southern side. High geothermal gradients with plenteous hot springs of this area may result from igneous intrusion associated with the back-arc spreading of the Okinawa Trough. In this study, we use reflection seismic survey to explore underground structures in the whole Ilan Plain, especially in SanShin, Wujie, and Lize area. We aim to find the relationship between underground structures and geothermal forming mechanism. The research uses reflection seismic survey to investigate the high geothermal gradient area with two mini-vibrators and 240-channel system. The total length of seismic lines is more than 30 kilometers. The results show that alluvial sediments covering the area about 400 600 meters thick and then thin out to the west in SanShin area. In SanShin , the Taiyaqiao anticline in Hsuehshan Range has entered the plain area and is bounded by the Zhuoshui fault (south) and the Zailian fault (north). In Wujie and Lize , Zhuoshui fault cut through a strong reflector which is the top of the gravel layer near the bottom of the alluvial layer, while the SanShin fault seems to cut near very shallow strata. These two faults are a strike-slip fault with a bit of normal fault component distributing over a range of 600 meters. In Ilan Plain, the geothermal forming mechanism is controlled by anticlines and faults. The hydrothermal solution which migrates upward along these anticline or fault zones to the shallow part causing high geothermal gradients in these areas.

  13. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-12-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  14. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at West Virginia University.

  15. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty based upon a more realistic description of the statistical structure of the data given the geologic characteristics of each province.

  16. Geothermal surveys in the oceanic volcanic island of Mauritius

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.

  17. Assessment of the geothermal resources of Illinois based on existing geologic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  18. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  19. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  20. Prokaryotic communities differ along a geothermal soil photic gradient.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  1. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.

  2. New Mexico Geothermal Play Fairway Analysis from LANL

    DOE Data Explorer

    Rick Kelley

    2015-10-27

    This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.

  3. Method and apparatus for determining vertical heat flux of geothermal field

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  4. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  5. Geothermal resources of the northern gulf of Mexico basin

    USGS Publications Warehouse

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  6. The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.

  7. Porosity and Mineralogy Control on the Thermal Properties of Sediments in Off-Shimokita Deep-Water Coal Bed Basin

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.

    2014-12-01

    Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.

  8. Washington Play Fairway Analysis Geothermal GIS Data

    DOE Data Explorer

    Corina Forson

    2015-12-15

    This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.

  9. Assessment of the origin and geothermal potential of the thermal waters by hydro-isotope geochemistry: Eskisehir province, Turkey.

    PubMed

    Yuce, Galip; Italiano, Francesco; Yasin, Didem; Taskiran, Lutfi; Gulbay, Ahmet Hilmi

    2017-05-01

    The thermal fluids vented over Eskisehir province have been investigated for their origin and to estimate the geothermal potential of the area. Thermal waters as well as bubbling and dissolved gases were collected and analysed for their chemical and isotopic features. Their isotopic composition varies in the range from -11.5 to -7.7 ‰ for δ 18 O, -84 and -57 ‰ for δ 2 H, and 0-7.2 TU for tritium. The gases (bubbling and dissolved) are mostly N 2 -dominated with a significant amount of CO 2 . The helium isotopic ratios are in the range of 0.2-0.66 R/Rac, indicate remarkable mantle-He contribution ranging between 2 and 10 % in the whole study area. Considering the estimated geothermal gradient about three times higher than the normal gradient, and the reservoir temperatures estimated to be between 50 and 100 °C using quartz and chalcedony geothermometers, a circulation model was built where possible mixing with shallow waters cool down the uprising geothermal fluids.

  10. Characterization of geothermal paleosystem in the Lesser Antilles volcanic arc: structural, petrographic, thermodynamic and petrophysics analysis of Terre-de-Haut (Les Saintes archipelago, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Favier, Alexiane; Navelot, Vivien; Verati, Chrystèle; Lardeaux, Jean-Marc; Corsini, Michel; Diraison, Marc; Géraud, Yves; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    This survey takes part in the GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program "Investments for the future". The program focuses on the exploration of geothermal resource in the Lesser Antilles volcanic arc. An exclusive license has been issued in the Vieux-Habitants area (Basse-Terre, Guadeloupe) to carry on the development of high-temperature geothermal energy in this active volcanic region. The deep geothermal reservoir on the Basse-Terre island could be characterized in exhumed paleosystems. The reference paleosystem in the Guadeloupe archipelago is located in Terre-de-Haut. Four major fault directions have been highlighted N000-N020, N050-N070, N090-N110 and N130-N140. Field observations emphasize three major cleavage directions overlaying the fault systems: N035-N060, N080-N110, N145-N165. Volcanic rocks affected by cleavage display several metamorphic transformation grades. The more transformed calc-alkaline rocks are located at the intersection of several cleavage directions. Mineralogical transformations due to metamorphism and surimposed fractures are also responsible for strong changes of petrophysical properties. In comparison with the reference protolith of andesitic lava flows outcropping in Vieux-Habitants, which have porosity and permeability lower than 5 % and 10-15 m2, andesites of Terre-de-Haut have better reservoir properties with connected porosity and permeability higher than 15 % and 10-14-10-15 m2 respectively. Thermodynamic modelling based on petrography and chemical composition of the most transformed rocks highlights a steady state mineral assemblage between 0.25 - 1.5 kbar and 350 - 450 ˚ C. It corresponds to a geothermal gradient higher than 120 to 150˚ C/km. This is consistent with temperatures measured in Bouillante wells. However, this geothermal gradient is notably higher to a usual volcanic arc conductive gradient estimated to 70-100˚ C/km. It can be explained by the addition of a convective processes caused by hydrothermal fluid flows.

  11. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  12. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    DOE PAGES

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...

    2016-04-10

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less

  13. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal energy to provide usable heat for oil sands processing can only be found within the crystalline basement rocks beneath the WCSB. Lower temperature geothermal resources can be found in the 2 km thick layer of sedimentary rocks in the Peace River area and beneath urban centres in Northern Alberta. Modeling shows that heat extraction for oilsands processing with a doublet or triplet of 5km wells, operated for 15 years, could be marginally economic when compared to the currently low gas prices. This type of heat extraction would be economically competitive if the system had a life span greater than 20 years or with higher natural gas prices.

  14. NGA Industry Critique of the Exploration Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovanetti, J.L.

    1992-03-24

    The author critiques the Exploration component of the U.S. Department of Energy (DOE) Geothermal Program Review X. The comments focus principally on the hydrothermal portion of the DOE program, but he also makes some commentary on the Long Valley Exploratory Well and Geopressured-Geothermal components of the program, as well as some general comments. Before I do that, I would like to review the current state of geothermal exploration in the United States. According to Koenig (1989, 1990) who critiqued the DOE Geothermal Program in those years, geothermal exploration in the western U.S. has been conducted in virtually all of themore » apparent geothermal resource areas. Many of these areas which were under exploration in the 1960s and 1970s, and were explored in part under the U.S. DOE Industry Coupled Program have progressed to commercial status in the 80s. The DOE March (1992) Draft Multi-Year Program Plan for FY 1993-1997 states that 8 out of the 14 geothermal resource areas explored under this Industry Coupled Program in the late 1970s are currently under production. I do not think we will find anyone in this room, in the geothermal industry, or in the United States that will argue with the clear and outstanding success of that government program. When the prices of oil dropped in the 1980s, many geothermal operators left the industry, and with the dramatic decrease in activity, many of the service companies went by the wayside also. By and large, the domestic geothermal industry today is emaciated. As a result of the capital intensive nature of geothermal development, the historical long lead times to go from exploration to production, the highly entrepreneurial nature of the industry, and the lack of an economic market, virtually no new exploration has been conducted in the U.S. in about 10 years. The consequence of this lack of activity is an almost nonexistent geothermal reserve base, outside of known producing fields and their immediate surrounds. The U.S. DOE Deep Thermal Gradient Drilling Program in the Cascade Range is a notable exception to this stagnant condition. Like it's predecessor, the industry coupled program, the Thermal Gradient Drilling Program identified at least, one potentially viable geothermal resource: Newberry Volcano.« less

  15. Evaluation of hydrothermal resources of North Dakota. Phase II. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.

    1981-06-01

    This evaluation of the hydrothermal resources of North Dakota is based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the Phase II study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermalmore » conductivity of core samples is being done to facilitate heat-flow calculations on those hole-of-convenience cased.« less

  16. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.

    1982-08-01

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivitymore » of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.« less

  17. Recovery Act. Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Paul; Skeehan, Kirsten; Smith, Jerome

    Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.

  18. Hydrogeologic investigations of the southern Española Basin, NM

    NASA Astrophysics Data System (ADS)

    Earney, T.; Christensen, D.; Horton, A.; Folsom, M.; Kelley, S.

    2017-12-01

    For the past 5 years, students participating in the Summer of Applied Geophysical Experience (SAGE) have been studying groundwater conditions in the southern Española Basin, in northern New Mexico, with a goal of developing a better understanding of both regional and local scale geothermal anomalies. A regional geothermal gradient map constructed over the study area indicates that there are two regions with anomalously high geothermal gradients, one associated with the Buckman municipal wellfield (BMWF) and the other in the vicinity of the Cerros del Rio volcanic field. Overproduction at the BMWF was responsible for a 100 meter drop in groundwater levels between 1989 and 2003, leading to a significant amount of land subsidence. Repeat measurements of thermal profiles for several monitoring wells at Buckman reveal incremental warming over a 5 year period from 2013 to 2017. Additionally, land elevation recovery was documented between 2007 and 2010 using InSAR (Interferometric Synthetic Aperture Radar). These observations are inferred to be a response to decreased production rates in nearby wells Buckman 1 and 8. This suggests that the groundwater flow system at Buckman is still in a state of recovery from the years of overproduction. The proximity of the well field to a small mapped fault near Buckman 8 potentially explains why geothermal gradients are anomalously high at the BMWF. Monitoring well SF-2b received special attention in an attempt to explain a localized thermal anomaly between 200 and 230 meters down hole. Explanations including geology (faults and stratigraphy) and interference from nearby production wells do not seem to account for the anomaly. The anomaly is therefore interpreted as the result of a damaged casing. Elevated geothermal anomalies at the Cerros del Rio volcanic field could be explained by structural and textural changes to groundwater flow units that occurred when aligned plug and dikes feeding volcanic vents intruded along faults. A conceptual model illustrates that as basaltic dikes intruded rift fill sediments in the Española Basin, nearby sediments would be altered, thereby reducing pore space and permeability of the aquifers, hindering lateral flow and creating a forced convection system by which warm fluids can migrate towards the surface, thus increasing the geothermal gradient.

  19. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a variety of visualization software. Web services are ideal for the NGDS data for a number of reasons including that they preserve data ownership in that they are read only and new services can be deployed to meet new requirements without modifying existing applications.

  20. Influence of the iron spin crossover in ferropericlase on the lower mantle geotherm

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan J.; Shukla, Gaurav; Wu, Zhongqing; Houser, Christine; Yuen, David A.; Wentzcovitch, Renata M.

    2017-05-01

    The iron spin crossover in ferropericlase introduces anomalies in its thermodynamics and thermoelastic properties. Here we investigate how these anomalies can affect the lower mantle geotherm using thermodynamics properties from ab initio calculations. The anomalous effect is examined in mantle aggregates consisting of mixtures of bridgmanite, ferropericlase, and CaSiO3 perovskite, with different Mg/Si ratios varying from harzburgitic to perovskitic (Mg/Si ˜ 1.5 to 0.8). We find that the anomalies introduced by the spin crossover increase the isentropic gradient and thus the geotherm proportionally to the amount of ferropericlase. The geotherms can be as much as ˜200 K hotter than the conventional adiabatic geotherm at deep lower mantle conditions. Aggregate elastic moduli and seismic velocities are also sensitive to the spin crossover and the geotherm, which impacts analyses of lower mantle velocities and composition.

  1. Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.

    2005-01-01

    Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits. 

  2. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the BSR-derived temperatures. These results are consistent with the interpretation of cold seawater being pumped into the ridge from both flanks, cooling the temperature field. In summary, the thermal data are consistence with previously proposed fluid circulation model.

  3. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  4. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    NASA Astrophysics Data System (ADS)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (<10 Ωm) core zone, c . 2km wide, and a resistive (>50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  5. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial geothermal piping systems. Based on the simulations and experiments, the effect of parameters on the overall operating costs is studied. Finally, with the results obtained, the economics and return on investment behind coaxial geothermal energy systems are discussed. Government policies on renewable energy are explained, highlighting the energy incentives associated with geothermal energy in the United States. The findings of this research provides a platform for further shallow geothermal energy system studies with an immense potential to revolutionize the energy industry in the future.

  6. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  7. Kimama Well - Photos

    DOE Data Explorer

    Shervais, John

    2011-01-16

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  8. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  9. Geothermal resources assessed in Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less

  10. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  11. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  12. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  13. 43 CFR 3253.11 - Must I notify BLM when I have completed my exploration operations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...) Complete any geophysical exploration operations; (b) Complete the drilling of temperature gradient well(s... gradient well; and (d) Plug shot holes and reclaim all exploration sites. ...

  14. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature andmore » pressure conditions in magmatic geothermal systems.« less

  15. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.

  16. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  17. The IRETHERM Project: How Can We Characterize Geothermal Reservoirs in Ireland using Magnetotelluric Surveying?

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Rath, V.; Brown, C.; Reay, D.

    2014-12-01

    We present results from two geophysical investigations of the north of Ireland, one of a concealed sedimentary basin and the other of an area of pre- to mid-Cambrian metasedimentary material with local microseismicity in Donegal. Magnetotelluric data have been acquired over each area as part of the IRETHERM Project in order to assess potential low-enthalpy geothermal resources. In addition, airborne frequency-domain EM response data have been used to assist in the definition of near-surface electrical structure and constraint of magnetotelluric modeling. The Rathlin Basin in Northern Ireland was identified as a potential geothermal resource due both an elevated geothermal gradient (observed in two deep boreholes) and favorable hydraulic properties in thick successions of Permian and Triassic sandstones (measured from core samples). Prior seismic experiments failed to fully image the sediments beneath the overlying flood basalt. A new experiment applying the magnetotelluric method has had more success, as the MT signal is not dissipated by the crystalline overburden. MT data were acquired at 69 sites across the north-eastern portion of the onshore Rathlin Basin and on nearby Rathlin Island in order to image the thickness, depth, and lateral continuity of the target sediments. Analyses and modeling of the data have determined a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the sediments against the structurally-controlling Tow Valley Fault. Further testing of the model sensitivity to variations of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the overlying sediments have lower porosities and permeabilities from core sampling. Microseismicity in a metasedimentary area of northern Donegal suggests that secondary porosity distributions along fracture planes may have been augmented, leading to elevated electrical conductivity. MT data were acquired over the epicenter and surrounding of a M2.2 earthquake that occurred on 26/01/2012, with both audio-MT and broadband MT data acquired at 59 sites, and solely AMT data at the remaining 29 sites. Forward and inverse modeling of the data have been performed to search for fine conductive structures within the bedrock, as well as to model the general subsurface structure.

  18. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  19. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  20. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  1. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  2. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  3. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.

  4. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).

  5. Soil Microbial Community Structure across a Thermal Gradient following a Geothermal Heating Event

    PubMed Central

    Norris, Tracy B.; Wraith, Jon M.; Castenholz, Richard W.; McDermott, Timothy R.

    2002-01-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65°C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50°C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50°C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them. PMID:12450855

  6. Heat Flux and Fluid Flow in the Terrebonne Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Meazell, K.; Flemings, P. B.

    2016-12-01

    We use a three-dimensional seismic survey to map the gas hydrate stability zone within a mid-slope salt-withdrawal minibasin in the northern Gulf of Mexico and identify anomalous regions within the basin where fluids may modify the hydrate stability zone. A discontinuous bottom-simulating reflector (BSR) marks the base of the hydrate stability zone and suggests an average geothermal gradient of 18.1 C/km based on the calculated temperature at the BSR assuming seawater salinity, hydrostatic pressure, and a seafloor temperature of 4 C. When compared to our model of the predicted base of gas hydrate stability assuming a basin-wide geothermal gradient of 18.1 C, two anomalies are found where the BSR is observed significantly shallower than expected. The southern anomaly has a lateral influence of 1500 m from the salt, and a maximum shoaling of 800 m. This anomaly is likely the result of increased salinity or heat from a rising salt diapir along the flank of the basin. A local geothermal gradient of 67.31 C/km or a salinity of 17.5 wt % can explain the observed position of the BSR at the southern anomaly. The northern anomaly is associated with active cold seep vents. In this area, the pluming BSR is crescent shaped, which we interpret as the result of warm and or salty fluids migrating up through a fault. This anomaly has a lateral influence of 1500 m, and a maximum shoaling of 600 m above the predicted base of gas hydrate stability. A local geothermal gradient of 35.45 C/km or a salinity of 14.7 wt % is required to adjust the position of the BSR to that which is observed at the northern anomaly. Active fluid migration suggests a combination of both heat and salinity is responsible for the altered position of the BSR.

  7. Soil microbial community structure across a thermal gradient following a geothermal heating event.

    PubMed

    Norris, Tracy B; Wraith, Jon M; Castenholz, Richard W; McDermott, Timothy R

    2002-12-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.

  8. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  9. Relationship of geological and geothermal field properties: Midcontinent area, USA, an example

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Brower, J.C.

    1993-01-01

    Quantitative approaches to data analysis in the last decade have become important in basin modeling and mineral-resource estimation. The interrelation of geological, geophysical, geochemical, and geohydrological variables is important in adjusting a model to a real-world situation. Revealing the interdependences of variables can contribute in understanding the processes interacting in sedimentary basins. It is reasonably simple to compare spatial data of the same type but more difficult if different properties are involved. Statistical techniques, such as cluster analysis or principal components analysis, or some algebraic approaches can be used to ascertain the relations of standardized spatial data. In this example, structural configuration on five different stratigraphic horizons, one total sediment thickness map, and four maps of geothermal data were copared. As expected, the structural maps are highly related because all had undergone about the same deformation with differing degrees of intensity. The temperature gradients derived (1) from shallow borehole logging measurements under equilibrium conditions with the surrounding rock, and (2) from non-equilibrium bottom-hole temperatures (BHT) from deeper depths are mainly independent of each other. This was expected and confirmed also for the two temperature maps at 1000 ft which were constructed using both types of gradient values. Thus, it is evident that the use of a 2-point (BHT and surface temperature) straightline calculation of a mean temperature gradient gives different information about the geothermal regime than using gradients from temperatures logged under equilibrium conditions. Nevertheless, it is useful to determine to what a degree the larger dataset of nonequilibrium temperatures could reflect quantitative relationships to geologic conditions. Comparing all maps of geothermal information vs. the structural and the sediment thickness maps, it was determined that all correlations are moderately negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.

  10. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    NASA Astrophysics Data System (ADS)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical Precambrian craton basin in the world, considering that the Tarim basin has not experienced obvious Meso-Cenozoic tectono-thermal events after its formation. The heat flow distribution of the Tarim basin is characterized by large values in the uplift areas and low in the depressions, showing the influence of lateral contrast in thermal properties within the basin on present-day geothermal regime.

  11. Integration of Full Tensor Gravity and Z-Axis Tipper Electromagnetic Passive Low Frequency EM Instruments for Simultaneous Data Acquisition - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieberg, Scott

    Ground gravity is a common and useful tool for geothermal exploration. Gravity surveys map density changes in the subsurface that may be caused by tectonic deformation such as faulting, fracturing, plutonism, volcanism, hydrothermal alteration, etc. Full Tensor Gravity Gradient (FTG) data has been used for over a decade in both petroleum and mining exploration to map changes in density associated with geologic structure. Measuring the gravity gradient, rather than the gravity field, provides significantly higher resolution data. Modeling studies have shown FTG data to be a viable tool for geothermal exploration, but no FTG data had been acquired for geothermalmore » applications to date. Electromagnetic methods have been used for geothermal exploration for some time. The Z-Axis Tipper Electromagnetic (ZTEM) was a newer technology that had found success in mapping deep conductivity changes for mining applications. ZTEM had also been used in limited tests for geothermal exploration. This newer technology provided the ability to cost effectively map large areas whilst detailing the electrical properties of the geological structures at depths. The ZTEM is passive and it uses naturally occurring audio frequency magnetic (AFMAG) signals as the electromagnetic triggering source. These geophysical methods were to be tested over a known geothermal site to determine whether or not the data provided the information required for accurately interpreting the subsurface geologic structure associated with a geothermal deposit. After successful acquisition and analysis of the known source area, an additional survey of a “greenfield” area was to be completed. The final step was to develop a combined interpretation model and determine if the combination produced a higher confident geophysical model compared to models developed using each of the technologies individually.« less

  12. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less

  13. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  14. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  15. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging.

    PubMed

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong

    2016-06-21

    X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.

  16. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    NASA Astrophysics Data System (ADS)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  17. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  18. Stress Map 2.0: Updating the Stress Map of the Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Mallyon, D.; Schmitt, D. R.; Currie, C. A.; Gu, Y. J.; Heidbach, O.

    2015-12-01

    The greatest horizontal compression in much of the Western Canada Sedimentary Basin appears to uniformly trend NE-SW. Beyond this, major gaps remain in our knowledge of stress magnitudes and even faulting regimes. This lack of quantitative information impedes a proper understanding of seismic events that appear to be linked to hydraulic fracturing stimulations. Apart from this immediate concern, such seismicity could impact long term green-house gas sequestration and geothermal energy development. As part of the Helmholtz-Alberta geothermal collaboration, we are developing a program to update this crustal stress state information. The program consists of more immediate studies related to conventional analysis of borehole image logs, core fractures, and transient pressure records as can be made available. Data sets analyzed to date include logs to 3.5 km depth from areas experiencing induced seismicity, from 2.5 km depth within the Precambrian craton in NE Alberta, and to 400 m depth within a large carbonate platform. All these data largely confirm the NE-SW stress directions. In some cases, the configurations of drilling induced tensile fractures and borehole breakouts allow the faulting regime to be constrained. The addition of new seismometers to the region is also allowing for the refinement of earthquake focal mechanisms. Finally, a dramatic contrast in lithosphere thickness, composition and geothermal gradient exists at the contact between the Cordillera and the North American craton; therefore, lithosphere-scale numerical models are also being developed to quantify the relative contribution of geodynamic processes, such as mantle flow and contact geometry, to the observed stress regime within the basin.

  19. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  20. Hydrogeothermal Convective Circulation Model for the Formation of the Chicxulub Ring of Cenotes in the Yucatan Peninsula, Mexico.

    NASA Astrophysics Data System (ADS)

    Monroy-Rios, E.; Beddows, P. A.

    2015-12-01

    Despite being deeply buried, the topography and geophysical characteristics of the multi-ring Chicxulub impact structure are reflected on the now subaerial Yucatan Peninsula with aligned arcs of cenotes (sinkholes), forming the "Ring of Cenotes". A pending question is the determination of the geological, geochemical, structural features and associated processes that have led to void development, and the upwards propagation of the voids, cross cutting over 1000 m of super-deposited carbonate sequences. Drawing from the published literature on drill core and geophysical surveys undertaken by Pemex, UNAM, and IODP/ICDP, numerical modeling, and general carbonate platform hydrothermal reactive transport models, we provide a conceptual model for the genesis of the Ring of Cenotes. In horizontally bedded carbonate platforms, geothermal gradients will drive convective flow, with strong vertical components specifically in the platform center. In the Yucatan Platform, a high occurrence of anhydrite and dolomite at depth evokes early burial dolomitization and anhydritization, sourcing Mg from seawater. The Chicxulub impact near the center of the platform produced a low permeability and high thermal conductivity melt rock that arguably extends to the basement rock at 3.5 km below surface. Heat of impact enforced the pre-existing geothermal circulation pattern, and even with depletion of the heat of impact, the high thermal conductivity of the crystalline melt would lead to enhanced geothermal gradients in the center of the platform. The cenotes overlying the crater are deep (150+ m) vertical shafts with most (but not all) breaching the surface. The pit geomorphology suggests a bottom-up formation. Excess Si in the shallow groundwater points to a convective circulation with strong vertical components geochemically linking the granodioritic basement rock to the surface. Water temperature and conductivity profiles support ongoing vertical flux in some deep pit cenotes. Within this framework, we argue for the formation of the Ring of Cenotes by hydrogeothermal convective circulation in the post-impact carbonate sequences, leading to spatially focused dissolution at depth, with voids initiated along the crater edge effectively propagating upwards, often breaching the surface.

  1. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less

  2. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the other model, a northwestern dipping normal faults system was interpreted, and the normal faults were the paths for guiding the geothermal energy from the depth. Although both models were possible for obtaining a promising geothermal energy in the study area, a clear conceptual structure model is needed for future development of the geothermal energy in this area. Our interpretation favorites the fault dominant structure model; however, since the bedrock was slate or argillite still needed to be identified, more data from core borings and other geophysical, geologic data are needed. In this paper, we will illustrate a 3 dimensional suburface structure model by using the seismic images and integrate with results obtained from other studies to show the possibility of the proposed fault dominant structure model.

  3. The Springhill Formation (Jurassic-Cretaceous) as a potential low enthalpy geothermal reservoir in the Cerro Sombrero area, Magallanes Basin, Chile.

    NASA Astrophysics Data System (ADS)

    Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.

    2017-12-01

    Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows the feasibility of obtaining low enthalpy geothermal energy from currently abandoned oil wells that reach 2000 m depth.This work is a contribution to the FONDAP-CONICYT 15090013 Project.

  4. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux associated with upflow of magmatic fluids here is likely due to the aforementioned 'scrubbing' from extensive groundwater flow, as well as high background biogenic CO2 flux. Deep, temperature gradient core holes have been sited based on these geophysical and geochemical datasets.

  5. West Flank Coso, CA FORGE 3D temperature model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the observed data within the Coso geothermal field. Based on a lack of temperature data west of 74-2TCH, the edges of this model still seem to have an effect on West Flank modeled temperatures.

  6. Data for Regional Heat flow Studies in and around Japan and its relationship to seismogenic layer

    NASA Astrophysics Data System (ADS)

    Tanaka, A.

    2017-12-01

    Heat flow is a fundamental parameter to constrain the thermal structure of the lithosphere. It also provides a constraint to lithospheric rheology, which is sensitive to temperature. General features of the heat flow distribution in and around Japan had been revealed by the early 1970's, and heat flow data have been continuously updated by further data compilation from mainly published data and investigations. These include additional data, which were not published individually, but were included in site-specific reports. Also, thermal conductivity measurements were conducted on cores from boreholes using a line-source device with a half-space type box probe and an optical scanning device, and previously unpublished thermal conductivities were compiled. It has been more than 10 years since the last published compilation and analysis of heat flow data of Tanaka et al. (2004), which published all of the heat flow data in the northwestern Pacific area (from 0 to 60oN and from 120 to 160oE) and geothermal gradient data in and around Japan. Because these added data and information are drawn from various sources, the updated database is compiled in each datasets: heat flow, geothermal gradient, and thermal conductivity. The updated and improved database represents considerable improvement to past updates and presents an opportunity to revisit the thermal state of the lithosphere along with other geophysical/geochemical constraints on heat flow extrapolation. The spatial distribution of the cut-off depth of shallow seismicity of Japan using relocated hypocentres during the last decade (Omuralieva et al., 2012) and this updated database are used to quantify the concept of temperature as a fundamental parameter for determining the seismogenic thickness.

  7. Publications - GMC 383 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 383 Publication Details Title: Makushin Geothermal Project ST-1R, A-1, D-2 Core 2009 re -sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal

  8. Publications - GMC 366 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 366 Publication Details Title: Makushin Geothermal Project ST-1R Core 2009 re-sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal systems

  9. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  10. Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth

    NASA Astrophysics Data System (ADS)

    Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.

    2013-04-01

    In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability settings. This is also important in EGS settings where stimulation will often re-activate existing fracture networks. The development at the Eastgate Geothermal Borehole project provides an opportunity to model fracture and vein populations within an intrusive body and validate those model predictions with production data from the site.

  11. Petroleum prospects of Benue trough, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawachukwu, J.I.

    1985-04-01

    Exploration activities in the Benue trough have been minimal over the years, mainly because of large petroleum deposits found in the adjoining Niger delta and early gas finds in the Anambra basin, south of the Benue trough. The recent increase in exploration activities in the trough has necessitated a reevaluation of the petroleum potentials of the basin. In this study, the time-temperature index (TTI) method was used to evaluate petroleum prospects of the basin. An increase in geothermal gradient resulted in a decrease in depth to the oil window, with the sediments maturing earlier at higher geothermal gradients. At geothermalmore » gradients of 1.5-1.9/sup 0/F/100 ft (2.73.5/sup 0/C/100 m) and maximum TTI values, the Asu River Group and the Eze-Aku Group of sediments are still within the gas-generating stage. The Awgu Shale and the Nkporo Shale are capable of generating gas at geothermal gradients of 2.3-2.7/sup 0/F/100 ft (4.2-4.9/sup 0/C/100 m). The Benue trough is essentially a gas-condensate basin with little oil. Exploration targets in the basin include both the sub-Santonian and superSantonian sediments, with the Eze-Aku Group, Awgu Shale, and Nkporo Shale being more prospective than the stratigraphically lower Asu River Group. In general, the middle Benue trough is considered to be the most prospective area within the trough because depths to the mature zones are moderate (6,600-13,000 ft; 2-4 km). These depths are variable, decreasing northeastward and increasing southwestward toward the Niger delta.« less

  12. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  13. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  14. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  15. Thermal history of Bakken shale in Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J.

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships includemore » factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.« less

  16. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  17. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  18. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    PubMed

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluation of hydrothermal resources of North Dakota. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.

    1981-06-01

    The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less

  20. The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits

    NASA Technical Reports Server (NTRS)

    Cardell, G.; Hecht, M. H.; Carsey, F. D.; Engelhardt, H.; Fisher, D.; Terrell, C.; Thompson, J.

    2004-01-01

    The distinctive layering visible in images from Mars Global Surveyor of the Martian polar caps, and particularly in the north polar cap, indicates that the stratigraphy of these polar layered deposits may hold a record of Martian climate history covering millions of years. On Earth, ice sheets are cored to retrieve a pristine record of the physical and chemical properties of the ice at depth, and then studied in exacting detail in the laboratory. On the Martian north polar cap, coring is probably not a practical method for implementation in an autonomous lander. As an alternative, thermal probes that drill by melting into the ice are feasible for autonomous operation, and are capable of reasonable approximations to the scientific investigations performed on terrestrial cores, while removing meltwater to the surface for analysis. The Subsurface Ice Probe (SIPR) is such a probe under development at JPL. To explore the dominant climate cycles, it is postulated that tens of meters of depth should be profiled, as this corresponds to the vertical separation of the major layers visible in the MOC images [1]. Optical and spectroscopic analysis of the layers, presumably demarcated by embedded dust and possibly by changes in the ice properties, would contribute to the construction of a chronology. Meltwater analysis may be used to determine the soluble chemistry of the embedded dust, and to monitor gradients of atmospheric gases, particularly hydrogen and oxygen, and isotopic variations that reflect atmospheric conditions at the time the layer was deposited. Thermal measurements can be used to determine the geothermal gradient and the bulk mechanical properties of the ice.

  1. Shallow geothermal investigations into the existence of the Valles Caldera outflow plume near Ponderosa and Jemez Pueblo, north-central, New Mexico

    NASA Astrophysics Data System (ADS)

    Salaz, Robert Ezekiel

    Geothermal research within the Jemez Mountains spans several decades and is documented in many papers. This study serves to extend the research boundary to the south and east outside of Valles caldera and Canon de San Diego, where the main occurrences of geothermal activity are located. The focus of this investigation is to test for a deep ~900 m, stratigraphically-bound thermal aquifer within the Madera Limestone along the western margin of the Santo Domingo basin transition zone near Ponderosa and Jemez Pueblo, in north-central New Mexico. Numerous springs were sampled for aqueous geochemistry to identify leakage of a deeper geothermal aquifer into shallow aquifers. Wells were sampled for temperature anomalies. In addition, two travertine deposits were analyzed for stable isotope composition and one deposit was dated using U-Series techniques to assess the timing and origin of deposition. This study is important because researchers in other extensional basins have identified reasonably good geothermal reservoirs in deep carbonate aquifers that are similar in geologic setting to the Madera Limestone aquifer of this study. The existence of a deep geothermal aquifer near Ponderosa and Jemez Pueblo, New Mexico could prove to be another prospect for geothermal exploration in the Jemez Mountains. Aqueous geochemistry of springs are plotted on ternary Piper diagrams to help classify similar geochemical trends and group these trends into recognizable patterns. These data indicate calcium carbonate rich waters in the north that may gradationally change to alkaline type waters as they flow south through the study area. Contrasting this data, SiO2 and TDS concentrations show two separate systems that may indicate separate confined aquifers. Two distinct TDS regions are observed, one with higher concentrations (>1000 ppm) shows a decrease from N-S and one with lower concentrations (<600 ppm) shows an increase from N-S. The data indicate that the waters can be classified as shallow meteoric waters within the Jemez Mountains. The geochemical complexity of the data point towards separate systems with distinct geochemical characteristics, i.e. confined aquifers, but the complexity and sparseness of data make further interpretations difficult. No evidence of geothermal mixing was observed in any of the samples. Temperature data taken from shallow water wells that penetrate Tertiary Zia Sandstone and Triassic Chinle Group sediments (less than 200 m) show higher than expected geothermal gradients, up to 93 °C/km. Transient temperature models of an aquifer with warm water flowing laterally may explain how an expected background temperature gradient in the Rio Grande rift of 30 °C/km could be heated to 80 °C/km. The aquifer is the Madera Limestone, with a projected depth of 900 meters, which lies below the Abo Formation and the Chinle Group aquitards. The models point toward a period of advective heat transport of a deep stratigraphically-bound, laterally flowing geothermal aquifer and subsequent conductive heating of the strata above the aquifer. Travertine data show elevated delta13C values from 1.31‰ -- 5.18‰ PDB, indicating a possible magmatic source. delta18O paleotemperature results indicate spring temperatures of approximately 33 °C. U-series dates yield an age for one travertine mound, ~150 meters above the active stream channel, of approximately 450 ka +/-17 ka. These data are also consistent with published data from Soda Dam. Although the data show mixed indications of a potential geothermal resource at depth, it is evident that there is no leakage of this resource into the shallow groundwater within the study area. However, higher-than-normal geothermal gradients may indicate a thermal source at depth. Travertine data are sparse, but support the existence of thermal activity related to geothermal events from the Valles caldera in the past. (Abstract shortened by ProQuest.).

  2. Mountain Home Well - Photos

    DOE Data Explorer

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  3. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  4. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of <10 °C/km, or to Buchan-type metamorphism at high geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on precedingly accretionary and collisional orogens. The UHT metamorphic rocks have occurred since the Archean, suggesting that the hot underplating has operated very early in the Earth's history. In contrast, the UHP metamorphic rocks primarily occur in the Phanerozoic, indicating that the thermal regime of many subduction zones has changed since the Neoproterozoic for the cold subduction.

  5. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and temperature.

  6. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.

  7. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K. R.

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was determined to be less subjective, since it requires less subjectivity in the input values.« less

  8. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  9. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of themore » Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.« less

  10. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north ofmore » Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.« less

  11. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  12. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.

  13. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  14. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  15. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that couldmore » accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.« less

  16. Geophysical Analysis of Major Geothermal Anomalies in Romania

    NASA Astrophysics Data System (ADS)

    Panea, Ionelia; Mocanu, Victor

    2017-11-01

    The Romanian segment of the Eastern Pannonian Basin and the Moesian Platform are known for their geothermal and hydrocarbon-bearing structures. We used seismic, gravity, and geothermal data to analyze the geothermal behavior in the Oradea and Timisoara areas, from the Romanian segment of Eastern Pannonian Basin, and the Craiova-Bals-Optasi area, from the Moesian Platform. We processed 22 seismic reflection data sets recorded in the Oradea and Timisoara areas to obtain P-wave velocity distributions and time seismic sections. The P-wave velocity distributions correlate well with the structural trends observed along the seismic lines. We observed a good correlation between the high areas of crystalline basement seen on the time seismic sections and the high heat flow and gravity-anomaly values. For the Craiova-Bals-Optasi area, we computed a three-dimensional (3D) temperature model using calculated and measured temperature and geothermal gradient values in wells with an irregular distribution on the territory. The high temperatures from the Craiova-Bals-Optasi area correlate very well with the uplifted basement blocks seen on the time seismic sections and high gravity-anomaly values.

  17. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  18. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greatermore » proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.« less

  19. FORGE Milford Digitized Geophysical Logs from Acord 1

    DOE Data Explorer

    Jones, Clay G.; Moore, Joseph N.

    2016-03-31

    This submission includes digitalized versions of the following: McCulloch Geothermal Corp Acord 1-26 Cover Letter McCulloch Geothermal Corp Acord 1-26 Drilling Plan McCulloch Geothermal Corp Acord 1-26 Bond Documents Division of Water Rights Permission to Drill Drillers Log Geothermal Data (Mud) Log Compensated Densilog - Neutron Log Dual Induction Focused Log BHC Acoustilog Differential Temperature Log Dual Induction Focused Log Gamma Ray Neutron Log Temperature Log Caliper Temperature Log (Run 3) Densilog Gamma Ray Neutron Log Temperature Log (Run 4) Compensated Densilog Sample Log (Page 1 of 2) Report of Well Driller Stratigraphic Report (J.E. Welsh) Photographs and Negatives of Acord 1-26 Well Site (7) Petrography Report (M.J. Sweeney) Cuttings Samples (21 Boxes at Utah Core Research Center)

  20. National Geothermal Data System: an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.

  1. Kimberly Well - Photos

    DOE Data Explorer

    Shervais, John

    2011-06-16

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  2. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  3. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1991-01-01

    The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.

  5. Downhole pressure sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  6. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.

    PubMed

    Tutolo, Benjamin M; Luhmann, Andrew J; Kong, Xiang-Zhao; Saar, Martin O; Seyfried, William E

    2014-02-18

    Injection of cool CO2 into geothermally warm carbonate reservoirs for storage or geothermal energy production may lower near-well temperature and lead to mass transfer along flow paths leading away from the well. To investigate this process, a dolomite core was subjected to a 650 h, high pressure, CO2 saturated, flow-through experiment. Permeability increased from 10(-15.9) to 10(-15.2) m(2) over the initial 216 h at 21 °C, decreased to 10(-16.2) m(2) over 289 h at 50 °C, largely due to thermally driven CO2 exsolution, and reached a final value of 10(-16.4) m(2) after 145 h at 100 °C due to continued exsolution and the onset of dolomite precipitation. Theoretical calculations show that CO2 exsolution results in a maximum pore space CO2 saturation of 0.5, and steady state relative permeabilities of CO2 and water on the order of 0.0065 and 0.1, respectively. Post-experiment imagery reveals matrix dissolution at low temperatures, and subsequent filling-in of flow passages at elevated temperature. Geochemical calculations indicate that reservoir fluids subjected to a thermal gradient may exsolve and precipitate up to 200 cm(3) CO2 and 1.5 cm(3) dolomite per kg of water, respectively, resulting in substantial porosity and permeability redistribution.

  7. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  8. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  9. Apatite (U-Th)/He Thermochronometry as an innovative Geothermal Exploration Tool - A case study from the Wassuk Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, K. E.; Stockli, D. F.; Walker, J. D.

    2010-12-01

    A utility-grade geothermal system requires increased, near-surface temperatures (>120°C), water to transfer heat, and structural or sedimentological fluid conduits. In extensional tectonic settings, geothermal anomalies often occur in areas with recent, high strain accumulation and complex faulting (i.e., cross-faults, accommodation zones) where exhumation and uplift of footwall rocks transfer heat, via advection, to the near-surface which is further carried by water through structural fluid conduits. Apatite helium (AHe) thermochronometric footwall age mapping can be used in conjunction with these genetic occurrence models to further focus regional-scale geothermal exploration efforts to areas of probabilistic increased fracture permeability and most recent, rapid footwall exhumation. Furthermore, partially reset apatites resulting from interaction with hydrothermal fluids (>40°C) will show which areas have been hottest most recently. This case study in the Wassuk Range, Hawthrone, NV confirms the utility of AHe thermochronometry as a geothermal exploration tool. A dense grid of footwall samples were collected adjacent to the Hawthorne geothermal anomaly (>85°C BHT) located in the hanging wall of the Wassuk Range block. Our data show that the location of the present-day geothermal anomaly correlates with the location of 1) the most recent episode of rapid footwall exhumation at 3.5-4 Ma, 2) km scale accommodation zones between differentially tilted Wassuk Range blocks, and 3) an elevated Miocene geothermal gradient. Furthermore, anomalously young AHe ages (<3.5 Ma) mimic the lateral extent of the Hawthorne geothermal anomaly and likely resulted from interaction with a deep-seated geothermal cell or hot hydrothermal fluids.

  10. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less

  11. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25mT, and between 0 to 625°C. The declination of RM vectors was used to bring pieces to a common anchor orientation calculated through the Geocentric Axial Dipole Model (GAD). The paleomagnetic technique proved to be reliable to reorient the Tol-1 core. Structural analyses along the core show N50-60E-striking preferential vein orientation. In addition, N40-50E- and N60-70W-striking preferential fault orientations were identified. Kinematic analysis of fault-slip data shows a N60E-striking bulk fault plane solution with normal strain regime. The veins and faults orientation show strain axes compatible with published regional stress field (σmax N238E).

  12. In situ determination of heat flow in unconsolidated sediments

    USGS Publications Warehouse

    Sass, J.H.; Kennelly, J.P.; Wendt, W.E.; Moses, T.H.; Ziagos, J.P.

    1979-01-01

    Subsurface thermal measurements are the most effective, least ambiguous tools for identifying and delineating possible geothernml resources. Measurements of thermal gradient in the upper few tens of meters generally are sufficient to outline the major anomalies, but it is always desirable to combine these gradients with reliable estimates of thermal conductivity to provide data on the energy flux and to constrain models for the heat sources responsible for the observed, near-surface thermal anomalies. The major problems associated with heat-flow measurements in the geothermal exploration mode are concerned with the economics of casing and/or grouting holes, the repeated site visits necessary to obtain equilibrium temperature values, the possible legal liability associated with the disturbance of underground aquifers, the surface hazards presented by pipes protruding from the ground, and the security problems associated with leaving cased holes open for periods of weeks to months. We have developed a technique which provides reliable 'real-time' determinations of temperature, thermal conductivity, and hence, of heat flow during the drilling operation in unconsolidated sediments. A combined temperature, gradient, and thermal conductivity experiment can be carried out, by driving a thin probe through the bit about 1.5 meters into the formation in the time that would otherwise be required for a coring trip. Two or three such experiments over the depth range of, say, 50 to 150 meters provide a high-quality heat-flow determination at costs comparable to those associated with a standard cased 'gradient hole' to comparable depths. The hole can be backfilled and abandoned upon cessation of drilling, thereby eliminating the need for casing, grouting, or repeated site visits.

  13. Elements de conception d'un systeme geothermique hybride par optimisation financiere

    NASA Astrophysics Data System (ADS)

    Henault, Benjamin

    The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.

  14. Geothermal studies in China

    NASA Astrophysics Data System (ADS)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),

  15. Community phylogenetic diversity of cyanobacterial mats associated with geothermal springs along a tropical intertidal gradient.

    PubMed

    Jing, Hongmei; Lacap, Donnabella C; Lau, Chui Yim; Pointing, Stephen B

    2006-04-01

    The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon-Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.

  16. Nomogram Method as Means for Resource Potential Efficiency Predicative Aid of Petrothermal Energy

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanova, K. F.; Izmailova, G. R.; Larin, P. A.; Vasilyeva, E. R.; Madjidov, M. A.; Marupov, S. R.

    2018-05-01

    The article describes the innovative approach when predicting the resource potential efficiency of petrothermal energy. Various geothermal gradients representative of Bashkortostan and Tatarstan republics regions were considered. With the help of nomograms, the authors analysed fluid temperature dependency graphs at the outlet and the thermal power versus fluid velocity along the wellbore. From the family of graphs plotted by us, velocities corresponding to specific temperature were found. Then, according to thermal power versus velocity curve, power levels corresponding to these velocities relative to the selected fluid temperature were found. On the basis of two dependencies obtained, nomograms were plotted. The result of determining the petrothermal energy production efficiency is a family of isocline lines that enables one to select the optimum temperature and injection rate to obtain the required amount of heat for a particular depth and geothermal gradient.

  17. Stability of a penny-shaped geothermal reservoir in the earth's crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Sekine, H.

    1982-06-01

    The theoretical analysis of a penny-shaped geothermal reservoir in the earth's crust subject to linear tectonic stress gradients has been made on the basis of the three dimensional theory of elasticity. The condition for stability of a reservoir requires K/sub 1/ < K /SUB c/ , where K/sub 1/ and K /SUB c/ are, respectively, the stress intensity factor for the opening mode and the fracture toughness of the surrounding rock. From this condition the upper critical pressure being necessary for the reservoir stability is obtained and is shown graphically.

  18. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less

  19. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  20. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less

  1. Processing of thermal parameters for the assessment of geothermal potential of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Gola, G.; Verdoya, M.

    2009-04-01

    The growing interest on renewable energy sources is stimulating new efforts aimed at the assessment of geothermal potential in several countries, and new developments are expected in the near future. In this framework, a basic step forward is to focus geothermal investigations on geological environments which so far have been relatively neglected. Some intracontinental sedimentary basins could reveal important low enthalpy resources. The evaluation of the geothermal potential in such geological contexts involves the synergic use of geophysical and hydrogeological methodologies. In sedimentary basins a large amount of thermal and hydraulic data is generally available from petroleum wells. Unfortunately, borehole temperature data are often affected by a number of perturbations which make very difficult determination of the true geothermal gradient. In this paper we addressed the importance of the acquisition of thermal parameters (temperature, geothermal gradient, thermal properties of the rock) and the technical processing which is necessary to obtain reliable geothermal characterizations. In particular, techniques for corrections of bottom-hole temperature (BHT) data were reviewed. The objective was to create a working formula usable for computing the undisturbed formation temperature for specific sedimentary basins. As test areas, we analysed the sedimentary basins of northern Italy. Two classical techniques for processing temperature data from oil wells are customarily used: (i) the method by Horner, that requires two or more measurements of bottom-hole temperatures carried out at the same depth but at different shut-in times te and (ii) the technique by Cooper and Jones, in which several physical parameters of the mud and formation need to be known. We applied both methods to data from a number of petroleum explorative wells located in two areas of the Po Plain (Apenninic buried arc and South Piedmont Basin - Pedealpine homocline). From a set of about 40 wells having two or more temperature measurements at a single depth we selected 18 wells with BHTs recorded at te larger than 3.5 hours; the time span between two measurements varies from 1 to 21 hours. In total 71 couples of BHT-te data are available; the mud circulation time is lower or equal to 4.5 hours. Corrections require the knowledge of thermal parameters. We attempted to remedy the existing deficiency of thermal conductivity data of sedimentary rocks with a series of laboratory measurements on several core samples recovered from wells. Moreover, we developed a model for calculating the thermal conductivity of the rock matrix as a function of mineral composition based on the fabric theory and experimental thermal conductivity data. As the conductivity of clay minerals, which are present in most formations, is poorly defined, we applied an inverse approach, in which mineral conductivities are calculated one by one, on condition that the sample bulk thermal conductivity, the porosity and the amount of each mineral phase are known. Analyses show that formation equilibrium temperatures computed with the Horner method are consistent with those obtained by means of the Cooper and Jones method, which gives on average temperatures lower than 2 C only for shut-in times < 10 hours. The corrected temperatures compared with temperatures measured during drill-stem tests show that the proposed corrections are rather accurate. The two data sets give coherent results and the inferred average geothermal gradient is 21.5 mK/m in the Apenninic buried arc area and 25.2 mK/m in the South Piedmont Basin-Pedealpine homocline area. The problem with the Horner method is that it implicitly assumes no physical property contrast between circulating mud and formation, and that the borehole is infinitesimally thin, i.e. it acts as a line source. This has been criticized by many authors. The accuracy of the predicted temperatures depends on the reliability and accuracy of BHT, shut-in time and mud circulation time, and the error increases with the decrease of the shut-in time. On the other hand, the method by Cooper and Jones provides more reliable results, but requires physical parameters that are not always available. The Horner slope data as a function of depth were then fitted with a second order polynomial and depth-time correction equations were calibrated for the two test areas. The obtained depth-time correction equations allow for each area the correction for mud circulation when only one couple BHT-te is available. If the value of the time before circulation ceased is not included on the well log header, it is possible to formulate an empirical equation obtained from time data as a function of depth applicable to the whole investigated area.

  2. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predictingmore » reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.« less

  3. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  4. Clathrate hydrate stability models for Titan: implications for a global subsurface ocean

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2013-12-01

    Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.

  5. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  6. Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2006-01-01

    The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.

  7. Groundwater chemistry in the vicinity of the Puna Geothermal Venture Power Plant, Hawai‘i, after two decades of production

    USGS Publications Warehouse

    Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.

    2015-01-01

    We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.

  8. Novel highly dispersible, thermally stable core/shell proppants for geothermal applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne

    The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systemsmore » (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.« less

  9. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  10. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  11. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US Department of Energy, Geothermal Technologies Office. To keep this system operational after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.

  12. McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009

    DOE Data Explorer

    Richard Zehner

    2009-01-01

    This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.

  13. Analysing the geothermal state of the ICDP COSC-1 well bore, Central Sweden

    NASA Astrophysics Data System (ADS)

    Löwe, R.; Pascal, C.; Renner, J.

    2017-12-01

    In 2014 the first well of the ICDP project "Collisional Orogeny in the Scandinavian Caledonides (COSC)" was drilled to 2495.8 m (MD) near Åre in Central Sweden. The well penetrates the Seve Nappe complex, a result of subduction/exhumation processes during the collision of Baltica and Laurentia 400 Ma. To gain detailed understanding of the geothermal state of fossil mountain belts and cratonic areas, it is necessary to study present-day heat transfer in the Earth's crust in appropriate deep wells. Heat transfer in the crust is governed by heat conduction and hydrothermal convection. The primary aims of our study are to determine which heat transfer mechanisms dominate in the study area around COSC-1 and how much heat flows to the surface. Permeability was determined for selected samples for various confining pressures using an oscillatory pore pressure method. The determined values range from 5.8 10-19 to 1.3 10-22 m2 and an empirical permeability-pressure trend was derived. Our results imply that convection plays a negligible role for heat transfer in the study area. A modified "Ångström" device was used to determine thermal diffusivity (α) from transient (oscillatory) temperature signals. It was tested on selected COSC-1 cores in an inter-laboratory round robin involving five international research organisations. Determination of specific heat capacity, density, and α for the 105 core samples, allowed us to calculate thermal conductivity (λ). In addition, we conducted measurements to assess the anisotropy of λ and α and their temperature dependencies. For the first 2000 m λ amounts to 2.8±0.4 W/(m.K) on average and increases to 4.1±1 W/(m.K) in the lowermost section of the well. Average heat generation, as derived from spectral gamma ray logs, is as low as 0.8 µW/m3. Three temperature logs were measured about one week, one month, and one year after drilling, with the latest log measured close to thermal equilibrium below 1500 m depth. Based on the logs an uncorrected average thermal gradient of 21°C/km is advanced. Experimental results provide the input for 3D numerical modelling to predict the geothermal regime of the study area.

  14. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our next step is to collect mobile elements and magnetotelluric data to exam our initial model. Dissipative structure theory is one of the essential tools for understanding non-linear dynamic system. We will apply this method to other developed geothermal fields, and estimate the geothermal potential compared to the actual production.

  15. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  16. 43 CFR 3281.17 - What information must be provided in the Plan of Development?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) GEOTHERMAL RESOURCES UNIT AGREEMENTS Application, Review, and Approval of a Unit Agreement § 3281.17 What... gradient wells, and the timeframe for the completion of these wells, may be the first phase. A second phase...

  17. 43 CFR 3281.15 - What is the minimum initial unit obligation a unit agreement must contain?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Application, Review, and Approval of a Unit Agreement § 3281... drilling temperature gradient wells. (d) BLM will not consider any work done prior to unit approval for the...

  18. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.« less

  19. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    NASA Astrophysics Data System (ADS)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  20. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the ;particles; and imaging with 10 ms exposures.

  1. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.

  2. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India

    USGS Publications Warehouse

    Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.

    1983-01-01

    The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.

  3. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  4. Thermally driven electrokinetic energy conversion with liquid water microjets

    DOE PAGES

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...

    2015-11-01

    One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  5. Thermally driven electrokinetic energy conversion with liquid water microjets

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.

    2015-11-01

    A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  6. Regional operations research program for development of geothermal energy in the southwest United States. Final technical report, June 1977-August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlin, J.M.; Christ, R.; McDevitt, P.

    1979-01-01

    The efforts by the Core and State Teams in data acquisition, electric and non-electric economic studies, development of computer support functions and operations, and preparation of geothermal development scenarios are described. Team reports for the states of Arizona, Colorado, Nevada, New Mexico, and Utah are included in the appendices along with a summary of the state scenarios. (MHR)

  7. Neutron imaging for geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence

    2013-03-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  8. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  9. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet

    PubMed Central

    Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.; Quartini, Enrica

    2014-01-01

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼114 ± 10 mW/m2 with areas of high flux exceeding 200 mW/m2 consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578

  10. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  11. The distribution of ground ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Jakosky, B. M.

    1993-01-01

    A wealth of geologic evidence indicates that subsurface water ice has played an important role in the evolution of Martian landforms. Theoretical models of the stability of ground ice show that in the near-surface regolith ice is currently stable at latitudes poleward of about +/- 40 deg and below a depth of a few centimeters to a meter, with some variations with longitude. If ice is not previously present at a particular location where it is stable, atmospheric water will diffuse into the regolith and condense as ice, driven by the annual subsurface thermal oscillations. The lower boundary of this ice deposit is found to occur at a depth (typically a few meters) where the annual thermal oscillations give way to the geothermal gradient. In the equatorial regions near-surface ice is currently not stable, resulting in the sublimation of any existing ice and subsequent loss to the atmosphere. However, subliming ice might be maintained at a steady-state depth, where diffusion and loss to the atmosphere are balanced by resupply from a possible deeper source of water (either deeper, not yet depleted, ice deposits or ground water). This depth is typically a few tens to hundreds of meters and depends primarily on the surface temperature and the nature of the geothermal gradient, being deeper for a higher surface temperature and a lower geothermal gradient. Such an equatorial deposit is characterized by the regolith ice content being low nearer the surface and increasing with depth in the deposit. Oscillations in the orbit will affect this picture of ground ice in two ways: by causing periodic changes in the pattern of near-surface stability and by producing subsurface thermal waves that may be capable of driving water ice deeper into the regolith.

  12. Thermal maturity of Jurassic shales from the Newark Basin, U.S.A.: influence of hydrothermal fluids and implications to basin modeling

    USGS Publications Warehouse

    Walters, C.C.; Kotra, R.K.

    1990-01-01

    Organic geochemical investigations were conducted on a series of cores that systematically sampled the uppermost Jurassic strata from the northern Newark Basin. Each sedimentary unit consists of fluvial red sandstones and siltstones with cyclic deposits of interbedded black lacustrine shales and gray deltaic siltstones. In a suite of organic-rich shales from the Boonton, Towaco and Feltville Formations, organic maturation parameters were used to determine aspects of the thermal history of the Newark Basin. Comparisons of model calculations and measured maturities support39 Ar/40 Ar-geochronometer studies that indicate a hydrothermal event occurred ???175 Ma ago. An increase in the regional geothermal gradient to ???7.5??C/100 m for ???5 Ma best conforms to the organic geochemical observations. Biomarker compounds in Boonton and Towaco strata should have been relatively unaltered by this regional event, but anomalous molecular distributions in the organic-rich rocks may have resulted from localized heating by hydrothermal fluids. The effects of this interaction would be very subtle and may be indistinguishable from variations caused by differences in organic facies. Within this uncertainty, sterane and hopane isomerization and steroid aromatization reactions advanced in the Boonton and Towaco Formation strata primarily because of burial and normal geothermal heating that followed the hydrothermal event. Biomarker kinetic models indicate that ???2400 m of Boonton and post-Boonton strata were eroded after basinal uplift commenced ???50 Ma ago. ?? 1990.

  13. Alteration of Basalt and Hyaloclastite in the Project Hotspot MHC-2 Core with Some Comparison to Hyaloclastites of the Hawaii Scientific Drilling Program #2 (HSDP) Core

    NASA Astrophysics Data System (ADS)

    Walton, A. W.; Walker, J. R.

    2015-12-01

    Project Hotspot's 1821m coring operation at Mountain Home Air Force Base, Idaho (MHC), sought to examine interaction of hotspot magmas with continental crust and evaluate geothermal resources. Subsurface temperature increased at a gradient of 76˚/km. Alteration was uniform and not intense over the upper part of the core and at the bottom, but differed markedly in an anomalous zone (AZ) from 1700 to 1800m. The MHC core contains diatomite, basalt lava and minor hyaloclastite. Olivine (Ol) in lavas is more-or-less altered to iddingsite. Plagioclase (Plag) has altered to smectite along cleavage planes and fractures except in the AZ, where it is intensely altered to corrensite. Clinopyroxene (CPX, pinkish in thin section) is little altered, as are apatite and opaque minerals (probably ilmenite with magnetite or pyrite in different samples). Interstitial material is converted to smectite or, in the AZ, to corrensite. Phyllosilicate lines vesicles, and calcite, zeolite and phyllosilicate fill them. Pore-lining phillipsite is common shallow in the core, with vesicle-filling analcime and heulandite at greater depth. A fibrous zeolite, probably stilbite, is also present. Hyaloclasts are altered to concentrically layered masses of smectite. MHC hyaloclastites do not display the microbial traces and palagonite ("gel-palagonite") alteration common in Hawaii Scientific Drilling Project #2 (HSDP) samples. HSDP samples do contain pore-lining phillipsite, but pore fillings are chabazite. Calcite is absent in HSDP hyaloclastites. Neither Ol nor Plag were altered in HSDP hyaloclastites. HSPD glasses are less silicic and Ti-rich than MHC lavas, containing Ol rather than CPX as a dominant mafic. However the differences in alteration of hyaloclastites probably reflect either the fact that the HSDP core was collected at temperatures equivalent to those at the top of the MHC-2 core or HSDP samples were from beds that were in modified marine pore water, rather than continental waters.

  14. Time-dependent effects of heat advection and topography on cooling histories during erosion

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil S.; Grasemann, Bernhard

    1997-03-01

    Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by the lateral cooling effect of topographic relief, with samples exhumed in valleys displaying a different near-surface cooling history to those on ridge crests.

  15. The composite TTG series: evidence for a non-unique tectonic setting for Archaean crustal growth.

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François

    2010-05-01

    The geodynamic context of formation of the Archaean TTG (tonalite-trondhjemite-granodiorite) series, the dominant component of the Archaean continental crust, is a matter of debate. The two end-member models for TTG formation are melting of the basaltic slab in a "hot subduction"; and intra-plate melting of basaltic rocks at the base of thick crust (oceanic plateau?). Both models do however predict strikingly different geothermal gradients, as in the modern Earth a typical subduction gradient is less than 10 °C/km compared to > 25-30 °C/km in the case of plateau melting. Using a large database of published TTG compositions, and filtering it to remove rocks that do not match the definition of TTG, it is possible to show that the TTG series is actually composite and made of a range of geochemically identifiable components that can be referred to as low-, medium- and high-pressure groups. The geochemistry of the low-pressure group (low Al, Na, Sr, relatively high Y and Nb) is consistent with derivation from a plagioclase and garnet- amphibolite; the medium-pressure group was formed in equilibrium with a garnet-rich, plagioclase-poor amphibolite, whereas the high pressure group derived from a rutile bearing eclogite. As the temperature of melting of metamafic rocks is largely independent from pressure, this corresponds to melting along a range of contrasting geothermal gradients. The low pressure group requires gradients of 10-12 °C/km, whereas the gradient required for the low pressure group can be as high as 25—30 °C/km. Regardless of the preferred tectonic model for the Archaean, such a range of gradients requires an equally large range of tectonic sites for the formation of the Archaean continental crust.

  16. Heat flow and geothermal potential of the East Mesa KGRA, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Swanberg, C. A.

    1974-01-01

    The East Mesa KGRA (Known Geothermal Resource Area) is located in the southeast part of the Imperial Valley, California, and is roughly 150 kilometers square in areal extent. A new heat flow technique which utilizes temperature gradient measurements across best clays is presented and shown to be as accurate as conventional methods for the present study area. Utilizing the best clay gradient technique, over 70 heat flow determinations have been completed within and around the East Mesa KGRA. Background heat flow values range from 1.4 to 2.4 hfu (1 hfu = .000001 cal. per square centimeter-second) and are typical of those throughout the Basin and Range province. Heat flow values for the northwest lobe of the KGRA (Mesa anomaly) are as high as 7.9 hfu, with the highest values located near gravity and seismic noise maxima and electrical resistivity minima. An excellent correlation exists between heat flow contours and faults defined by remote sensing and microearthquake monitoring.

  17. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G.

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  18. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; ,; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  19. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  20. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  1. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for themore » possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.« less

  2. Castro ring zone: a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Ekren, E.B.; Hardyman, R.F.

    1984-01-01

    The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.

  3. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (< 3 Myr) belonging to the Lesser Antilles subduction zone. It is composed of arc typical calc-alkaline volcanic rocks. Outcrops of the studied area consist either of andesitic lava flows, volcanic sedimentary facies or dikes. Field studies allow to propose a structural framework and highlight three major directions N000˚ E, N050˚ E and N090˚ E, which are consistent with the regional tectonic trends of the arc. Petrographical and petrophysical studies displayed that the major part of outcropping facies in the Vieux-Habitants area are not altered. Andesitic lava flows have poor reservoir properties with porosity and permeability lower than 5 % and 10-15m2 respectively. These results are in contrast with measurements performed in volcano-sedimentary rocks, which have heterogeneous petrophysical properties ranging from 15 to 50 % for porosity and from 10-15to 10-9m2 for permeability. Such surface data would probably change and decrease when depth increases. As there is a lack of underground data under the Vieux-Habitants area (wireline, drill core), exhumated rocks outcropping in the northern part of Basse-Terre Island (Basal Complex) have been studied. Such rocks have been identified in the Basal Complex (2.5 - 3 Myr) located in the northern part of the Basse-Terre Island. Previous works have demonstrated a 1000 m/Myr erosional rate, which corresponds at least to a 2 - 3 km exhumation. The petrography study of the Basal Complex reveals sub-greenschist type mineralogical transformations (chlorite, white mica, quartz...) changing the andesitic protolith in a meta-andesite. This metamorphism forms cleavage plans thanks to a pressure-solution mechanism. Mineralogical transformations associated with these cleavage planes have an impact on petrophysical properties. The solid phase density and porosity decrease. An anisotropy of permeability develops due to cleavage plans. Thermodynamics modelling based on the rock chemical composition and petrography observations emphasizes a steady-state mineral assemblage between 1.5 - 2 kbar and 280 - 320˚ C. This is consistent with an in situ measured volcanic arc conductive geothermal gradient of 70 ˚ C/km.

  4. > Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

    2012-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.

  5. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  6. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica.

    PubMed

    Bendia, Amanda G; Signori, Camila N; Franco, Diego C; Duarte, Rubens T D; Bohannan, Brendan J M; Pellizari, Vivian H

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

  7. Radar and infrared remote sensing of geothermal features at Pilgrim Springs, Alaska

    NASA Technical Reports Server (NTRS)

    Dean, K. G.; Forbes, R. B.; Turner, D. L.; Eaton, F. D.; Sullivan, K. D.

    1982-01-01

    High-altitude radar and thermal imagery collected by the NASA research aircraft WB57F were used to examine the structural setting and distribution of radiant temperatures of geothermal anomalies in the Pilgrim Springs, Alaska area. Like-polarized radar imagery with perpendicular look directions provides the best structural data for lineament analysis, although more than half the mapped lineaments are easily detectable on conventional aerial photography. Radiometer data and imagery from a thermal scanner were used to evaluate radiant surface temperatures, which ranged from 3 to 17 C. The evening imagery, which utilized density-slicing techniques, detected thermal anomalies associated with geothermal heat sources. The study indicates that high-altitude predawn thermal imagery may be able to locate relatively large areas of hot ground in site-specific studies in the vegetated Alaskan terrain. This imagery will probably not detect gentle lateral gradients.

  8. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia

    USGS Publications Warehouse

    Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.

    2001-01-01

    Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.

  9. Characterization Efforts in a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.

    2016-12-01

    The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Lee; Chickering, Cathy; Anderson, Arlene

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, themore » invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts (agencies, foundations, pri- vate sector), membership, fees for services (consulting, training, customization, ‘app’ development), repository services (data, services, apps, models, documents, multimedia), advertisements, fees for premier services or applications, subscriptions to value added services, licenses, contributions and donations, endow- ments, and sponsorships.« less

  11. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  12. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  13. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.

  14. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea

    NASA Astrophysics Data System (ADS)

    LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.

    2016-12-01

    Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).

  15. Hypersolidus geothermal energy from the moving freeze-fracture-flow boundary

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles; Eichelberger, John; Sigmundsson, Freysteinn; Papale, Paolo; Sun, Yunwei

    2014-05-01

    Rhyolitic magmas at low pressure undergo much of their crystallization over a small temperature interval just above the solidus. This hypersolidus material has a high energy density and effective heat capacity because of stored heat of crystallization, yet may sustain fractures and therefore admit heat exchange with fluids because of its interlocking crystal framework. Rhyolitic magmas emplaced near the liquidus should at first cool rapidly, owing to internal convection, modest crystallization with declining temperature, and extreme temperature gradients at their boundaries. However, once the solidus is approached the rapid rise in effective heat capacity should result in low temperature gradients and rates of heat flow within the bodies. They are suspended for a time in the hypersolidus state. Prodigious quantities of heat can be released from these thermal masses by hydrothermal systems, natural or perhaps stimulated, fracturing their way inward from the margins. The fracture front drives the solidus isotherm ahead of it. Heat of crystallization in front of the advancing solidus is transferred across the thin, moving boundary zone to the external fluid, which advects it away. Once the material is below (outboard of) the solidus, it behaves as normal rock and cools rapidly, having a heat capacity only about 20% that of water. Variations on this theme were published by Lister (1974) for mid-ocean ridges, Hardee (1980) for lava lakes, and Bjornsson et al (1982) for Grimsvotn and Heimaey, who cited possible geothermal energy exploitiation. This scenario is consistent with a number of observations: 1. The geophysical rarity of imaging mostly liquid magma in the shallow crust, despite common petrologic evidence that silicic magma has undergone shallow storage. 2. More common imaging of "partial melt" volumes, whose inferred properties suggest some, but not dominant proportion of melt. 3. Evidence that pure-melt rhyolitic eruptions may have drained relatively shallow hypersolidus plutons. 4. Downward propagating thin conductive boundary zone observed in repeated coring of Kilauea Iki lava lake, Hawaii 5. Record enthalpy flow and temperature during flow-testing of Iceland Deep Drilling Project (IDDP)-1 in Krafla Caldera by Landsvirkjun Co. Production came from a 2.1-km-deep 500oC "magma" contact zone, from the vicinity of which fresh rhyolite glass-bearing felsite and crystal-poor rhyolite glass fragments were recovered. The hypothesis of a moving freeze-fracture-flow boundary raises the possibility of ultra-high-temperature, natural or engineered geothermal systems in volcanic areas. We believe that this prospect, as well as the benefit to understanding volcanic hazards at restless calderas, gives merit to further exploration of the hypersolidus regime beneath Krafla Caldera.

  16. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  17. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  18. Discharge temperature higher than 30 deg C

    DOE Data Explorer

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30°C from the NMBGMR Aquifer Mapping database

  19. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir.

    NASA Astrophysics Data System (ADS)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean

    2017-04-01

    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and Schmittbuhl J.: two-dimensional THM modelling of the large-scale natural hydrothermal circulation at Soultz-sous-Forêts, Geothermal Energy, (2014), 2, 1-17. Rowe A.M. and Chou J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions, J. Chem. Eng. Data., (1970), 15, 61-66.

  20. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.

  1. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  2. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare earth elements (REEs) were also measured in this study. The results normalized by North America Shale REEs (NASC) show a flat pattern and a distinct europium positive anomaly. It possibly indicates a chemical interaction between meteoric water and sedimentary rock, which excludes the possibility of an igneous source.

  3. The Campi Flegrei caldera-hosted high-temperature and high-saline geothermal system in the Southern Italy: the implication of the geothermal resource as derived by the present state of the knowledge through 70 years of volcanological, structural, petrolog

    NASA Astrophysics Data System (ADS)

    Piochi, M.; Di Vito, M. A.; Mormone, A.; De Natale, G.; Tramelli, A.; Troise, C.; Carlino, S.

    2012-04-01

    The Campi Flegrei caldera (Italy) hosts a geothermal system characterized by: i) high thermal gradient (temperature up to 420°C at 3050 m b.s.l.), ii) high temperature (up to ~90-150°C at very shallow depth) fumaroles, iii) multiple meteoric to brine (TDS up to 33 g•l-1; temperature up to 95 °C) aquifers and iv) at least 1500 tonnes per day of CO2 emissions. This area is highly urbanized despite the repeated occurrence of ground deformation phenomena accompanied by seismicity with volcano-tectonic and long-period micro-earthquakes. The caldera has been widely studied by geologist and geophysicists. In particular, since '40s, the caldera has drawn scientific interest for its geothermal capability inducing the companies AGIP (Azienda Geologica Italiana Petroli) and SAFEN (Società Anonima Forze Endogene Napoletane) to drill more than one hundred 80-to-3100 m deep wells. However this experience did not reach the exploitation phase due to technological and communication problems. The geothermal potential (thermal and electric) is evaluated of about 6 GWy. The recent Campi Flegrei Deep Drilling Project [De Natale and Troise, 2011], sponsored by the International Continental Scientific Drilling Program, foresees the realization of medium-to-deep wells in the caldera with the ambition of stimulating interest in geothermal energy exploitation and technology development and, in addition of installing downhole monitoring systems. The geological knowledge of the area is the benchmark for the drilling sites selection. We reconstructed a multi-disciplinary conceptual model updated on the basis of the most recent scientific results and findings. In particular, the constrains (the most important are listed in brackets) comes from: i) boreholes (litho-stratigraphy, aquifer location, depth-related temperature), ii) fieldwork (stratigraphy, location of structural fractures and eruption vents), iii) petrology and melt inclusions (pressure and temperature of magma with implications regarding the magma reservoir location and arrest levels of ascending magma), iv) hydrothermal facies distribution (mainly at depths affected by thermo-metamorphism), v) elastic parameters (mainly Vp and Vp/Vs) of cored rocks measured in laboratory; vi) surface fluid emissions (as the surface expression of faults and fractures), vii) hydrogeology (location of thermal aquifers and general water circulation), and viii) seismology (location of main geophysical discontinuity and of seismic wave anomaly, seismogenetic and attenuation volumes). Our model evidences the lack of information from deep layers in the eastern caldera sector, i.e., the Bagnoli Plain and in the Pozzuoli Gulf. Investigations of these sites would add important information to our present knowledge of the geothermal system, as well as of the caldera structure and related magma-system behavior. Furthermore, the Bagnoli Plain is one of the largest Italian dismantled industrial areas, affected by metal contamination and undergoing to reclamation. It is, presently, a sparsely inhabited zone within the city of Naples, which therefore allows deep volcanological and geothermal investigations as well as requalification in terms of clean and renewable resource use, in contrast with the other peripherals areas where the high-population density poses strong limitations to the research and to the possibility to plan new rational use of the land and of its resources.

  4. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K.

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location,more » including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was determined to be less subjective, since numerical inputs come from the collected data. And it helps to facilitate communication between project managers and exploration geologists in making objective go/no-go decisions throughout the different project phases.« less

  5. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, D.L.; Moore, J.N.; Clemente, W.C.

    1996-12-31

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine)more » deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.« less

  6. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).

  7. Geothermic Potential Assessment of hydrothermal vents of Township Barranca De Upia - Meta - Colombia

    NASA Astrophysics Data System (ADS)

    Chica, J.; Chicangana, G.; Eco Energy Research Group

    2013-05-01

    Hydrothermal vents have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where hydrothermal vents occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and identify possible uses of the energy contained by the hydrothermal vents.

  8. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  9. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  10. Archuleta County CO Lineaments

    DOE Data Explorer

    Richard E. Zehner

    2012-01-01

    This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.

  11. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  12. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  13. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  14. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special Volume, 2010

  15. Heat-flow data and their relation to observed geothermal phenomena near Klamath Falls, Oregon

    USGS Publications Warehouse

    Sass, J.H.; Sammel, Edward A.

    1976-01-01

    Two holes were drilled to depths of about 180 m in the Lower Klamath Lake basin south of Klamath Falls, Oregon, to obtain heat flow data and to provide estimates of the thermal conductivity of the valley fill. Twenty-nine thermal conductivity determinations on eight cores give a mean conductivity of 1.82 mcal/cm s °C (0.75 W/m °K). Curvature in the upper 50 m of both terriperature profiles indicates a decrease in surface temperature of about 1.8°C, presumably resulting frorn reclamation of what was marshland in the early part of this century. A surprisingly low heat flow of 0.3 HFU (1 HFU = 10−6 cal/cm2 s = 41.8 mW/m2) was measured at site LS near the center of the basin. At site OC-1, 7 km east of LS and 2 km from the Klamath Hills geothermal zone, the heat flow was 1.44 HFU, also a low value in this setting. Temperature profiles in 15 unused water wells in the area had linear gradients ranging from 47° to 170°C/km. The corresponding lower limits of heat flow (conductivities measured at the two heat flow sites being used) range from 0.8 to 3.1 HFU. These variations in heat flow evidently are caused by temperature variations in a convecting system within the near-surface volcanic rocks and do not provide firm constraints on the nature of heat sources at depth.

  16. Engineering parameters used in geopressured geothermal Fairway evaluation and test-well site location, Frio formation, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, A.R.; Meriwether, J.

    1977-01-01

    Adequate deliverability of fluids from reservoirs with temperatures higher than 300/sup 0/F is a key factor in evaluating geopressured geothermal resources. In the Austin Bayou Prospect, Brazoria County, Texas, permeability is difficult to evaluate before wells are drilled and tested. However, this report discusses how reservoir pressure decline and high temperature reduce permeability. The history of gas-condensate production from geopressured reservoirs in the Chocolate Bayou field, located near the Austin Bayou Prospect, shows that deliverability of hydrocarbons is high in the early life of the reservoirs but drops sharply as pressure declines. Average geothermal gradient is 1.8/sup 0/F per hundredmore » feet and reservoir pressure gradients lie between 0.465 and 0.98 psia per foot for depths below 10,000 feet. Salinities vary from 40,000 to 80,000 ppM and methane content may range from 25 to 45 cubic feet per barrel for formation waters commonly found in the Chocolate Bayou field. The effective gas permeabilities determined from production flow tests are estimated to range from 1 to 6 millidarcys and absolute permeabilities lie between 2 and 10 millidarcys. More than 10 billion barrels of water inferred to occur in place in the prospective sandstone reservoirs of the Austin Bayou prospect contain potentially 1,733 MW-years of electrical energy and 400 billion cubic feet of methane in solution.« less

  17. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    PubMed Central

    Bendia, Amanda G.; Signori, Camila N.; Franco, Diego C.; Duarte, Rubens T. D.; Bohannan, Brendan J. M.; Pellizari, Vivian H.

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions. PMID:29867810

  18. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.

  19. Toward a Regional Geography of Renewable Electrical Energy Resources.

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  20. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer

    Richard Zehner

    2012-02-01

    These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geologymore » at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.« less

  2. The geothermal energy potential in Denmark - updating the database and new structural and thermal models

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke

    2017-04-01

    Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.

  3. Microbial Diversity of Acidic Hot Spring (Kawah Hujan B) in Geothermal Field of Kamojang Area, West Java-Indonesia

    PubMed Central

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria. PMID:19440252

  4. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  5. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  6. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia.

    PubMed

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.

  7. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C.

  8. On the evolution of the geothermal regime of the North China Basin

    NASA Astrophysics Data System (ADS)

    Wang, Ji-yang; Chen, Mo-xiang; Wang, Ji-an; Deng, Xiao

    1985-12-01

    Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m -2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m -2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.

  9. Intermediate P/T-type regional metamorphism of the Isua Supracrustal Belt, southern west Greenland: The oldest Pacific-type orogenic belt?

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuyuki; Omori, Soichi; Komiya, Tsuyoshi; Maruyama, Shigenori

    2015-11-01

    The 3.7-3.8 Ga Isua Supracrustal Belt (ISB), southwest Greenland, might be the oldest accretionary complex on Earth. Regional metamorphism of the ISB has a potential to constrain the tectonothermal history of the Earth during the Eoarchean. Chemical and modal analyses of metabasite in the study area (i.e., the northeast part of the ISB) show that the metamorphic grade increases from greenschist facies in the northern part of the study area to amphibolite facies in the southern part. To determine the precise metamorphic P-T ranges, isochemical phase diagrams of minerals of metabasite were made using Perple_X. A synthesis of the estimated metamorphic P-T ranges of the ISB indicates that both the metamorphic pressure and temperature increase systematically to the south in the study area from 3 kbar and 380 °C to 6 kbar and 560 °C. The monotonous metamorphic P-T change suggests that the northeast part of the ISB preserves regional metamorphism resulting from the subduction of an accretionary complex although the ISB experienced metamorphic overprints during the Neoarchean. Both the presence of the regional metamorphism and an accretionary complex having originating at subduction zone suggest that the ISB may be the oldest Pacific-type orogenic belt. The progressive metamorphism can be considered as a record of intermediate-P/T type geothermal gradient at the subduction zone in the Eoarchean. Intermediate-P/T type geothermal gradient is typical at the current zones of subducting young oceanic crust, such as in the case of the Philippine Sea Plate in the southwest part of Japan. Considering the fact that almost all metamorphisms in the Archean are greenschist-amphibolite facies, the intermediate-P/T type geothermal gradient at the ISB might have been worldwide in the Archean. This would indicate that the subduction of young micro-plates was common because of the vigorous convection of hot mantle in the Archean.

  10. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  11. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition, and information source. Aqueous geochemistry, a compilation of aqueous chemistry, free gas and isotopes analyses. Aqueous geochemical analyses consist of 407 aqueous geochemical analyses from 85 geothermal sites throughout Alaska. This template also includes 106 free gas analyses from 31 geothermal sites. Isotopic analyses (285) of waters from 42 geothermal sites are also contained in this geochemical data. Borehole temperature data from geothermal, and oil and gas wells are presented along with thermal depth profiles where available. Earthquakes in proximity to hot springs consists of 1,975 earthquakes that are within 5 km of thermal hot springs and may be used to detect underground movement of thermal waters. Active faults comprises active faults across Alaska (1,527) including fault type, location, orientation and slip rate. Additionally, a new comprehensive and searchable Alaska geothermal bibliography, with links to downloadable reference sources was created during this study. The completed Alaska geothermal sites map and database will be accessible to the public and industry and will enable research and development of geothermal sites in Alaska.

  12. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault

    NASA Astrophysics Data System (ADS)

    Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.

    2018-05-01

    The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.

  13. Hydrocarbon source-rock evaluation - Solor Church Formation (middle Proterozoic, Keweenawan Supergroup), southeastern Minnesota

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1984-01-01

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).

  14. Hydrocarbon source rock evaluation: Solor Church Formation. (Middle Proterozoic, Keweenawan Supergroup) southeastern Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, J.R.; Morey, G.B.

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solar Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5% for 22 of 25 samples); (2) the organic matter is thermally very mature (T/sub max/ = 494/sup 0/C, sample 19) and is probably near the transition between themore » wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup). 5 figs., 2 tabs.« less

  15. Geothermal Energy Resources of Navy/Marine Corps Installations on the Atlantic and Gulf Coastal Plain.

    DTIC Science & Technology

    1980-03-01

    Geological Survey ( AAPG -USGS) thermal gradient map of North America, at a scale of 1:5,000,000, gives the hypothesized average depth (by contours) in...file reports; USGS topographic and geologic maps; AAPG -USGS special geologic maps; APL/JHU reports; VPI-SU progress re- ports to DOE/DGE; technical

  16. Geothermal Resource Evaluation at Naval Air Station Fallon, Nevada

    DTIC Science & Technology

    1987-08-01

    20 4. Mainside Topographic Map Showing Warm Wells and Thermal Gradient H oles... Oligocene and early Miocene periods. These troughs were sites of intense hyohtic to andesitic volcanism and coeval faulting. The orientation and age...volcanic sequence, (2) intervolcanic sediments in the volcanic sequence. (3) a fractured reservoir within uwderlying Mio- Oligocene acid tuffs and

  17. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock. Fracture frequency and connectivity clearly increase near the fault core where the reservoir permeability may thus be higher, the effective Young's modulus lower. Similarly the Schmidt-Hammer measurements show that the rebound hardness, or the compressive strength, respectively, decreases near the fault core. This Project is part of the Research- and Development Project 'AuGE' (Outcrop Analogue Studies in Geothermal Exploration). Project partners are the companies Geothermal Engeneering GmbH as well as the Universities of Heidelberg and Erlangen. We thank the German Federal Ministry for the Environment, Nature Conversation and Nuclear Safty (BMU) for funding the project in the framework of the 5th Energy Research Program (FKZ: 0325302). Also thanks to the owner of the quarry for the permission to perform our field studies.

  18. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    NASA Astrophysics Data System (ADS)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818

  19. The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies

    NASA Astrophysics Data System (ADS)

    Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas

    2017-04-01

    The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.

  20. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5more » samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.« less

  1. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides and hydroxides in geothermal drill samples. We are currently developing automated analysis techniques to convert this detailed spectral logging data into high-vertical-resolution mineral depth profiles that can be linked to lithology, stratigraphy, fracture zones and potential for geothermal production. Also in development are metrics that would link mapped mineralogy to known geothermometers such as Na-K, Mg depletion, discrimination among illite, montmorillonite, and beidellite, and kaolinite crystallinity. Identification of amorphous and crystalline silica components (chalcedony, crystobalite and quartz) can also constrain silica geothermometry. The degree of alteration and some mineral types have been shown to be a proxy for host rock permeability, natural circulation, and the potential for reservoir sealing. Analysis of alteration intensity is also under way. We will present a synthesis of results to date.

  2. Ancient Martian valley genesis and paleoclimatic inference: The present as a key to the past

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    I offer here the speculative genetic hypothesis that the flat-floored landforms represent episodically active, sediment-laden valley glaciers formed by localized geothermal melting of abundant interstitial ice (permafrost) in a fine-grained sedimentary terrain. Geothermal melting may also localize spring heads for the narrow deep, high-gradient valleys, or the collapse process itself may result in the generation of decanted, relatively sediment-poor overland water flows (some local evidence of fluid overtopping of the localized depressions exists). Whatever the generic mechanisms for the suite of valley landforms, perhaps the most interesting observation is simply their youth. In aggregate, the morphologies are similar to the ancient valley systems cited as evidence for a previously much denser atmosphere on Mars.

  3. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  4. In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.

    2015-12-01

    We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.

  5. Earth's first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim; Brown, Michael; Gardiner, Nicholas; Kirkland, Christopher; Smithies, Hugh

    2017-04-01

    The geodynamic setting in which Earth's first stable cratonic nuclei formed remains controversial. Most exposed Archaean continental crust comprises rocks of the tonalite-trondhjemite-granodiorite (TTGs) series that were produced from partial melting of low magnesium basaltic source rocks and have 'arc-like' trace element signatures that resemble continental crust produced in modern supra-subduction zone settings. The East Pilbara Terrane, Western Australia, is amongst the oldest fragments of preserved continental crust of Earth. Low magnesium basalts of the Paleoarchaean Coucal Formation, at the base of the Pilbara Supergroup, have trace element compositions consistent with the putative source rocks for TTGs. These basalts may be remnants of the ≥35 km-thick pre-3.5 Ga plateau-like basaltic crust that is predicted to have formed if mantle temperatures were much hotter than today. Using phase equilibria modelling of an average uncontaminated Coucal basalt, we confirm their suitability as TTG source rocks. The results suggest that TTGs formed by 20-30% melting along high geothermal gradients (≥700 °C/GPa), which accord with apparent geotherms recorded by >95% of Archaean rocks worldwide. Moreover, the trace element composition of the Coucal basalts demonstrates that they were derived from an earlier generation of mafic/ultramafic rocks, and that the arc-like signature in Archaean TTGs was inherited through an ancestral source lineage. The protracted multistage process required for production and stabilisation of Earth's first continents, coupled with the high geothermal gradients, are incompatible with modern-style subduction and favour a stagnant lid regime in the early Archaean.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbett, B.S.; Nielson, D.L.; Adams, M.C.

    This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable formore » any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.« less

  7. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  8. 10 CFR Appendix IV to Part 960 - Types of Information for the Nomination of Sites as Suitable for Characterization

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Types of Information for the Nomination of Sites as Suitable for Characterization IV Appendix IV to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR..., diapirism, tilting, subsidence, faulting, and volcanism. • Estimate of the geothermal gradient. • Estimate...

  9. Fungi from geothermal soils in Yellowstone National Park

    USGS Publications Warehouse

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70??C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22??C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  10. Fungi from Geothermal Soils in Yellowstone National Park

    PubMed Central

    Redman, Regina S.; Litvintseva, Anastassia; Sheehan, Kathy B.; Henson, Joan M.; Rodriguez, Rusty J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70°C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22°C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature. PMID:10583964

  11. Fault and joint geometry at Raft River Geothermal Area, Idaho

    NASA Astrophysics Data System (ADS)

    Guth, L. R.; Bruhn, R. L.; Beck, S. L.

    1981-07-01

    Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.

  12. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  13. Subsurface thermal regime to delineate the paleo-groundwater flow system in an arid area, Al Kufra, Libya

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom El-Said

    2016-12-01

    The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.

  14. Biophysical model of prokaryotic diversity in geothermal hot springs.

    PubMed

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  15. Probability-of-success studies for geothermal projects: from subsurface data to geological risk analysis

    NASA Astrophysics Data System (ADS)

    Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang

    2017-04-01

    In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.

  16. Slim hole drilling and testing strategies

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  17. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  18. Thermochronometrically constrained anatomy and evolution of a Miocene extensional accommodation zone and tilt domain boundary: The southern Wassuk Range, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, Kyle E.; Stockli, Daniel F.; Douglas Walker, J.

    2013-06-01

    (AHe) and Zircon (ZHe) (U-Th)/He thermochronometric data from the southern Wassuk Range (WR) coupled with 40Ar/39Ar age data from the overlying tilted Tertiary section are used to constrain the thermal evolution of an extensional accommodation zone and tilt-domain boundary. AHe and ZHe data record two episodes of rapid cooling related to the tectonic exhumation of the WR fault block beginning at ~15 and ~4 Ma. Extension was accommodated through fault-block rotation and variably tilted the southern WR to the west from ~60°-70° in the central WR to ~15°-35° in the southernmost WR and Pine Grove Hills, and minimal tilting in the Anchorite Hills and along the Mina Deflection to the south. Middle Miocene geothermal gradient estimates record heating immediately prior to large-magnitude extension that was likely coeval with the extrusion of the Lincoln Flat andesite at ~14.8 Ma. Geothermal gradients increase from ~19° ± 4°C/km to ≥ 65° ± 20°C/km toward the Mina Deflection, suggesting that it was the focus of Middle Miocene arc magmatism in the upper crust. The decreasing thickness of tilt blocks toward the south resulted from a shallowing brittle/ductile transition zone. Postmagmatic Middle Miocene extension and fault-block advection were focused in the northern and central WR and coincidentally moderated the large lateral thermal gradient within the uppermost crust.

  19. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.

  20. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    USGS Publications Warehouse

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  1. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches.

    PubMed

    Wakai, Satoshi; Masanari, Misa; Ikeda, Takumi; Yamaguchi, Naho; Ueshima, Saori; Watanabe, Kaori; Nishihara, Hirofumi; Sambongi, Yoshihiro

    2013-04-01

    Hydrogenophilus is a thermophilic, facultative chemoautotroph, which lives prevalently in high temperature geothermal niches. Despite the environmental distribution, little is known about its oxidative phosphorylation. Here, we show that inverted membrane vesicles derived from Hydrogenophilus thermoluteolus cells autotrophically cultivated with H2 formed a proton gradient on the addition of succinate, dl-lactate, and NADH, and exhibited oxidation activity toward these three organic compounds. These indicate the capability of mixotrophic growth of this bacterium. Biochemical analysis demonstrated that the same vesicles contained an F-type ATP synthase. The F1 sector of the ATP synthase purified from H. thermoluteolus membranes exhibited optimal ATPase activity at 65°C. Transformed Escherichia coli membranes expressing H. thermoluteolus F-type ATP synthase exhibited the same temperature optimum for the ATPase. These findings shed light on H. thermoluteolus oxidative phosphorylation from the aspects of membrane bioenergetics and ATPase biochemistry, which must be fundamental and advantageous in the biogeochemical cycles occurred in the high temperature geothermal niches. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.

  3. Online, interactive assessment of geothermal energy potential in the U.S

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.

    2011-12-01

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of August 2011, over 33,000 data resources have been registered in the system catalog, along with scores of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://lab.usgin.org) protocols and standards developed in partnership with the U.S. Geological Survey.

  4. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and injection rates, heat source, fractures, and all the relevant parameters are performed to evaluate their effects on temperature distribution of reservoir for 30 years. Through these sensitivity studies, we can design the better geothermal system in I-Lan area and reduce the risk of exploitation.

  5. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  6. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  7. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

    Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the majormore » structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.« less

  9. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    NASA Astrophysics Data System (ADS)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  10. Modelling of terrain-induced advective flow in Tibet: Implications for assessment of crustal heat flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochstein, M.P.; Yang Zhongke

    1992-01-01

    In steep terrain the effect of advective flow can be significant, as it can distort the temperature field in the upper brittle crust. The effect was studied by modeling advective flow across a large valley system in Tibet which is associated with several geothermal hot spring systems, the Yanbajing Valley. It was found that, in this setting, all near-surface temperature gradients are significantly disturbed, attaining values differing by up to half an order of magnitude from those resulting from conductive heat transfer. Allowing for advective effects, it was found that the crustal heat flux within the Himalayan Geothermal Belt liesmore » within the range of 60 to 90 mW/m{sup 2} in the Lhasa-Yanbajing area.« less

  11. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.

  12. Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Foreêts, France

    NASA Astrophysics Data System (ADS)

    Genter, Albert; Traineau, Hervé

    1996-07-01

    An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Foreˆts, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets striking N005 and N170 °, and dipping 70 °W and 70 °E, respectively. This average attitude is closely related to the past tectonic rifting activity of the graben during the Tertiary, and is consistent with data obtained from nearby boreholes and from neighbouring crystalline outcrops. Fractures are distributed in clusters of hydrothermally altered and fractured zones. They constitute a complex network of fault strands dominated by N-S trends, except within some of the most fractured depth intervals (1650 m, 2170 m), where an E-W-striking fracture set occurs. The geometry of the pre-existing fracture system strikes in a direction nearly parallel to the maximum horizontal stress. In this favorable situation, hydraulic injections will tend both to reactivate natural fractures at low pressures, and to create a geothermal reservoir.

  13. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  14. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    PubMed

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  15. Contaminant gradients in trees: Directional tree coring reveals boundaries of soil and soil-gas contamination with potential applications in vapor intrusion assessment

    USGS Publications Warehouse

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  16. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a shallow aquifer under fully saturated conditions. By changing some of the aquifer properties (i.e., depth, permeability and porosity), it was found how geothermal CO2 fluxes can show values similar to a biogenic background flux. Future field work at Acoculco will include δ13C analysis together with soil flux measurements for a better discrimination of the degassing origin, and a thinner flux measurement grid will be defined for a better detection of any possible gas flux anomaly.

  17. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database

    NASA Astrophysics Data System (ADS)

    Trumpy, Eugenio; Manzella, Adele

    2017-02-01

    The Italian National Geothermal Database (BDNG), is the largest collection of Italian Geothermal data and was set up in the 1980s. It has since been updated both in terms of content and management tools: information on deep wells and thermal springs (with temperature > 30 °C) are currently organized and stored in a PostgreSQL relational database management system, which guarantees high performance, data security and easy access through different client applications. The BDNG is the core of the Geothopica web site, whose webGIS tool allows different types of user to access geothermal data, to visualize multiple types of datasets, and to perform integrated analyses. The webGIS tool has been recently improved by two specially designed, programmed and implemented visualization tools to display data on well lithology and underground temperatures. This paper describes the contents of the database and its software and data update, as well as the webGIS tool including the new tools for data lithology and temperature visualization. The geoinformation organized in the database and accessible through Geothopica is of use not only for geothermal purposes, but also for any kind of georesource and CO2 storage project requiring the organization of, and access to, deep underground data. Geothopica also supports project developers, researchers, and decision makers in the assessment, management and sustainable deployment of georesources.

  18. Molecular Diagnostics of the Internal Motions of Massive Cores

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, T.; Goldsmith, P.; Li, D.; Peng, R.; Langer, W.

    2009-12-01

    We present models of the internal kinematics of massive cores in the Orion molecular cloud. We use a sample of cores studied by Velusamy et al. (2008) that show red, blue, and no asymmetry in their HCO+ line profiles in equal proportion, and which therefore may represent a sample of cores in different kinematic states. We use the radiative transfer code RATRAN (Hogerheijde & van der Tak 2000) to model several transitions of HCO+ and H13CO+ as well as the dust continuum emission, of a spherical model cloud with radial density, temperature, and velocity gradients. We find that an excitation and velocity gradients are prerequisites to reproduce the observed line profiles. We use the dust continuum emission to constrain the density and temperature gradients. This allows us to narrow down the functional forms of the velocity gradient giving us the opportunity to test several theoretical predictions of velocity gradients produced by the effect of magnetic fields (e.g. Tassis et. al. 2007) and turbulence (e.g. Vasquez-Semanedi et al 2007).

  19. Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan

    NASA Astrophysics Data System (ADS)

    Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

    2012-12-01

    1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount of disturbance of the geothermal environment and groundwater flow caused by the use of GSHPs, therefore, would depend on the thickness of these gravels. Reference Funabiki, A., Nagoya, K., Kaneki, A., Uemura, K., Kurihara, M., Obara, H., Goto, A., Chiba, T., Naya, T., Ueki, T., and Takemura, T. (2011) Sedimentary facies and physical properties of the sediment core CRE-NUCHS-1 in Setagaya district, Tokyo, central Japan. Abstracts, The 118th Annual Meeting of theGeological Society of Japan. Acknowledgement This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST).

  20. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    NASA Astrophysics Data System (ADS)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal water that the measurement of the permeability should be performed through a very careful process in order to guarantee a reliable simulation. As the fracture spacing became narrower, overall thermal distribution appeared to be similar to that from EPM model. This suggests that EPM model, which is easy to design and takes less time, can be replaced for the densely fractured medium. Change in fracture aperture within the range of that of actual rocks did not cause a remarkable difference in temperature distribution, which means that measuring accuracy of the actual aperture value in rocks is relatively less important. This demonstrates that the distribution and the structure of fracture system make a great contribution to the whole simulation for fluid and heat flow mechanisms in geologic medium, and thus require an intensive geologic investigation for the fractures including strike and dip information, permeability and connecting relation. In addition, the simulation results show that the heterogeneous model can include the description for the significant fracture flow and it can be a practical tool for a site-specific simulation for EGS sites. This preliminary simulation was useful to estimate the scale of the geothermal reservoir and the energy potential in Seokmodo and it can be further expanded to a long-term simulation to predict the evolution of the geothermal reservoir under the potential EGS operations. Acknowledgement: This study was financially supported by KIGAM, KETEP and BK21.

  1. Anomalous top layer in the inner core beneath the eastern hemisphere

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2003-12-01

    Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.

    The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less

  3. Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient

    PubMed Central

    Weltzer, Michael L.

    2013-01-01

    Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities. PMID:23263946

  4. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Collett, T. S.

    2017-07-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  5. Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient.

    PubMed

    Weltzer, Michael L; Miller, Scott R

    2013-02-01

    Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities.

  6. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    USGS Publications Warehouse

    Riedel, Michael; Collett, Timothy S.

    2017-01-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  7. Washington Geothermal Play Fairway Analysis Heat, Permeability, and Fracture Model Data

    DOE Data Explorer

    Steely, Alex; Forson, Corina; Cladouhos, Trenton; Swyer, Mike; Davatzes, Nicholas; Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Peacock, Jared; Schermerhorn, William

    2017-12-07

    This submission contains raster and vector data for the entire state of Washington, with specific emphasis on the three geothermal play fairway sites: Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV), and Mount Baker (MB). Data are provided for 3 major geothermal models: heat, permeability, and fluid-filled fractures, and an additional infrastructure model. Both of the permeability and fluid-filled-fracture models are produced at 200 m and at 2 km depths; the heat model is only produced at the 200 m depth. Values are provided for both model favorability and model confidence. A combined model at 200m and 2 km depths is provided for favorability, confidence, and exploration risk. Raster data are provided in GeoTiff format and have a statewide coverage. Cell size is 104.355 ft; file type is unsigned 8-bit integer (0-255); 0 represents no favorability or confidence; 255 represents maximum favorability or confidence. The NAD83(HARN)/Washington South (ftUS) projection is used (EPSG:2927). Vector data are provided in shapefile or comma-delimited text file formats. Geographic coordinates, where provided, are in WGS84. A readme file accompanies each folder and provides an overview and description of the enclosed data. The heat model combines 5 intermediate raster layers (which are included in the download package): temperature gradient wells, young volcanic vents, hot springs, young intrusive volcanic rocks, and geothermometry. The permeability model combines 8 intermediate raster layers: density of mapped faults, 2D dilation tendency of mapped faults, 2D slip tendency of mapped faults, seismicity, 3D dilation tendency, 3D slip tendency, 3D maximum coulomb shear stress, and 3D slip gradients. The fluid-filled fracture model combines up to 4 intermediate rasters: resistivity from magneto-telluric 3D inversions, seismicity, Vp/Vs anomalies from passive seismic tomography, and Vs anomalies from ambient-noise tomography. A statewide infrastructure model is also provided that formalizes land-use constraints and restrictions relevant for geothermal prospecting and development. This model combines 10 intermediate rasters: areas off limits to drilling, existing or proposed geothermal leases, DNR-owned land, land-use restrictions along the Columbia River Gorge, areas inundated by water, availability of potential process water, proximity to existing roads, proximity to transmission lines, distance from urban areas, and snow-related elevation restrictions. Supporting vector data for the development of each raster layer is provided. For details on the areas of interest and modeling process please see the 'WA_State_Play_Fairway_Phase_2_Technical_Report' in the download package.

  8. Updating of the geological and geothermal research on Milos island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fytikas, M.

    1989-01-01

    The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less

  9. Characterization of the paleo-hydrothermal fluids flow in the geothermal province of Limagne. (French Massif Central).

    NASA Astrophysics Data System (ADS)

    Fréville, K.; Sizaret, S.

    2017-12-01

    Exploitation of the geothermal energy is a prime target to future energy supply. Understanding the nature and the flow of geothermal fluids is a key objective for describe the functioning of current hydrothermal systems. Located in the French Massif Central, the Limagne basin is a tertiary hemi-graben characterized by a high thermal gradient with numerous occurrences of CO2-rich thermo-mineral waters. This basin has potential for high-temperature geothermal energy, expressed by numerous natural high temperature water sources, as well as at Royat and Vichy were the surface temperature of the water can reach 33°C and 27°C, respectively. In order to better localize this potential, the geological evolution has to be deciphered. In this aim we study the flow processes of the paleo-fluids and estimate the direction and the velocity of the hydrothermal flow from the studies of the growth bands of comb quartz grain localized in vein. In a second time, the studies fluids inclusions within the quartz grain are used to characterize the nature of the fluids involved. Preliminary results show that the flow is discontinuous over the time with changes in velocities and directions during the growth of a single quartz grain. Two main flows were identified, i) a relatively fast upward flow at 10-6,-5 m.s-1; ii) a downward flow at about 10-5,-4 m.s-1. The results allow: (i) to discuss the processes controlling the fluids flow in the Limagne basin; and (ii) to suggest to delimitate the areas with high geothermal potential which integrate the flow variation in time.

  10. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  11. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  12. Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress.

    PubMed

    Yim, Lau Chui; Hongmei, Jing; Aitchison, Jonathan C; Pointing, Stephen B

    2006-07-01

    We report an assessment of whole-community diversity for an extremely isolated geothermal location with considerable phylogenetic and phylogeographic novelty. We further demonstrate, using multiple statistical analyses of sequence data, that the response of community diversity is not monotonic to thermal stress along a gradient of 52-83 degrees C. A combination of domain- and division-specific PCR was used to obtain a broad spectrum of community phylotypes, which were resolved by denaturing gradient gel electrophoresis. Among 58 sequences obtained from microbial mats and streamers, some 95% suggest novel archaeal and bacterial diversity at the species level or higher. Moreover, new phylogeographic and thermally defined lineages among the Cyanobacteria, Chloroflexi, Eubacterium and Thermus are identified. Shannon-Wiener diversity estimates suggest that mats at 63 degrees C supported highest diversity, but when alternate models were applied [Average Taxonomic Distinctness (AvTD) and Variation in Taxonomic Distinctness (VarTD)] that also take into account the phylogenetic relationships between phylotypes, it is evident that greatest taxonomic diversity (AvTD) occurred in streamers at 65-70 degrees C, whereas greatest phylogenetic distance between taxa (VarTD) occurred in streamers of 83 degrees C. All models demonstrated that diversity is not related to thermal stress in a linear fashion.

  13. Subsurface temperature distribution in a tropical alluvial fan

    NASA Astrophysics Data System (ADS)

    Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen

    2017-04-01

    As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.

  14. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients.

    PubMed

    Radujkovic, Dajana; Verbruggen, Erik; Sigurdsson, Bjarni D; Leblans, Niki I W; Janssens, Ivan A; Vicca, Sara; Weedon, James T

    2018-02-01

    Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less

  16. Young (<7 Ma) gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    USGS Publications Warehouse

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been remobilized from older gold mineralization? Current research is investigating these and other questions to improve our genetic understanding of these young gold systems, which in turn can lead to improved exploration targeting. The recent rapid growth in resources for both young gold deposits and geothermal systems underscores their underdeveloped exploration potential. Even though many young gold deposits exhibit relatively shallow hot-springs-style mineralization, their young age may preclude exposure by erosion. Uplift along active normal faults has exposed some deposits (e.g., Florida Canyon, Dixie Comstock, Wind Mountain), but in other areas, such as the Walker Lane, where strike-slip faulting is prevalent, the opportunities for exposure can be limited. Many active geothermal systems are also concealed below the surface in that hot springs or steam vents may be absent above areas of thermal groundwater.With sources of energy to support mine production becoming more problematic, the potential advantages of simultaneously exploring for young gold deposits and spatially associated geothermal systems are becoming more apparent. Exploration methods recently proven effective in geothermal exploration that can be adapted to gold exploration include temperature surveys, hyperspectral remote sensing, geophysical surveys, water analyses, and detailed mapping of geothermal-related features and related fault systems.

  17. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  18. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.

    PubMed

    García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús

    2014-07-01

    The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  20. Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Stanley; Wagstaff, Lyle W.

    1979-01-01

    The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states,more » conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.« less

  1. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NASA Astrophysics Data System (ADS)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-10-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central star formation, we study colours and colour gradients within one effective radius in optical (g - r) and near-infrared (I - H) bands for 120 Virgo cluster early-type galaxies with - 19 mag

  2. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  3. Controls on the Karaha-Telaga Bodas geothermal reservoir, Indonesia

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Christensen, Carl; Allis, R.; Powell, T.; Murray, B.; Nash, G.

    2007-01-01

    Karaha-Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 ??C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells. ?? 2006 CNR.

  4. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Yarom; Anovitz, Lawrence; An, Ke

    2013-01-01

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had bothmore » the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.« less

  5. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.

  6. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    USGS Publications Warehouse

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  7. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  8. Fault block kinematics at a releasing stepover of the Eastern California shear zone: Partitioning of rotation style in and around the Coso geothermal area and nascent metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.

    2006-10-01

    Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent metamorphic core complex, Geol. Soc. Amer. Bull. 117 (2005) 1534-1553.] characterize as a nascent metamorphic core complex. Consistent with upper plate disruption above a detachment, surface rocks (i.e. the upper plate of the detachment system) at the Coso geothermal area are tilted westward. However they appear to exhibit no detectable rotation. Thus, the style of block rotation may be partitioned: with clockwise vertical-axis rotation dominating in the Wild Horse Mesa and horizontal axis rotation (tilting) in the geothermal area.

  9. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less

  10. On the Role of Subduction Dynamics on Emplacement of Metamorphic Core Complexes and Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Menant, A.; Jolivet, L.; Bouchot, V.; Gerya, T.

    2017-12-01

    Subduction-induced extensional tectonics in back-arc domains results in the development of metamorphic core complexes (MCCs) and low-angle normal faults (detachments) that also control magma ascent and fluid circulation. However, possible links with the genesis of high-enthalpy geothermal resources (HEGRs) remain barely explored, and no unifying mechanism responsible for both the generation of MCCs and emplacement of HEGRs has yet been recognized. Although discussions on the possible role of magmatic intrusions beneath these systems are still active, another source of heat is required when one considers the scale of a geothermal Province. An additional source of heat, for instance, could arise from the deep dynamics implied by large-scale tectonic processes such as subduction. Firstly, we investigate subduction dynamics through 3D numerical geodynamic models involving slab rollback and tearing constrained primarily by, geothermal anomaly measurements from western Turkey. Our results show that subduction-induced extensional tectonics controls the genesis and distribution of crustal-scale thermal domes, analogous to crustal and lithospheric boudinage. The thermal domes weaken the crust, localize deformation and enhance development of crustal-scale detachments. Thus, these thermo-mechanical instabilities primarily trigger and control the distribution of MCCs. In addition, subduction-related asthenospheric return flow and shear heating in the mantle increase the temperature of the Moho by up to 250°C. Such forcing is observed in natural settings such as the Menderes (western Anatolia) and the Basin and Range (Western United States). Secondly, the numerically-obtained subduction-induced thermal signature at the base of the continental crust is then imposed as basal thermal condition for 2D high-resolution crustal models dedicated to the understanding of fluid flow around detachments. Our results show that permeable detachments control the bulk of the heat transport and fluid circulation patterns at shallow depth, thus creating favourable zones for HEGRS, as illustrated in the Menderes Massif and in the Basin & Range province.

  11. Research on Utilization of Geo-Energy

    NASA Astrophysics Data System (ADS)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.

  12. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  13. 43 CFR 3484.1 - Performance standards for exploration and surface and underground mining.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operator/lessee to retain representative samples of drill cores for 1 year. Confidentiality of such... prevention equipment when drilling on lands valuable or prospectively valuable for oil, gas, or geothermal resources. (3) All exploration drill holes must be capped with at least 5 feet of cement and plugged with a...

  14. 43 CFR 3484.1 - Performance standards for exploration and surface and underground mining.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operator/lessee to retain representative samples of drill cores for 1 year. Confidentiality of such... prevention equipment when drilling on lands valuable or prospectively valuable for oil, gas, or geothermal resources. (3) All exploration drill holes must be capped with at least 5 feet of cement and plugged with a...

  15. Constraints on the core μ-gradient of the solar-like star HD 49385 via low-degree mixed modes

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Michel, E.

    2010-12-01

    The existence of an ℓ=1 avoided crossing in the spectrum of the solar-like pulsator-target \\cible was established by Deheuvels & Michel (2009). It is the first confirmed detection of such a phenomenon. The authors showed in a preliminary modeling of the star that it was in a post main sequence status. Being a 1.3 M⊙-star, \\cible has had a convective core during its main sequence phase. The μ-gradient left by the withdrawal of this core bears information about the processes of transport at the boundary of the core. We here investigate the constraints that the observed avoided crossing brings on the μ-gradient in the core of the star. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES with participation of the Science Programs of ESA; ESA's RSSD, Austria, Belgium, Brazil, Germany, and Spain.

  16. Fracture propagation and fluid transport in palaeogeothermal fields and man-made reservoirs in limestone

    NASA Astrophysics Data System (ADS)

    Philipp, S. L.; Reyer, D.; Meier, S.

    2009-04-01

    Geothermal reservoirs are rock units from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In geothermal reservoirs in limestone (and similar in other rocks with low matrix permeability), fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites (the percolation threshold must be reached). In order to generate permeability in man-made reservoirs, interconnected fracture systems are formed either by creating hydraulic fractures or by massive hydraulic stimulation of the existing fracture system in the host rock. For effective stimulation, the geometry of the fracture system and the mechanical properties of the host rock (particularly rock stiffnesses and strengths) must be known. Here we present results of a study of fracture systems in rocks that could be used to host man-made geothermal reservoirs: the Muschelkalk (Middle Triassic) limestones in Germany. Studies of fracture systems in exposed palaeogeothermal fields can also help understand the permeability development in stimulated reservoirs. We therefore present data on the infrastructures of extinct fracture-controlled geothermal fields in fault zones in the Blue Lias (Lower Jurassic), Great Britain. In fault zones there are normally two main mechanical and hydrogeological units. The fault core, along which fault slip mostly occurs, consists mainly of breccia and other cataclastic rocks. The fault damage zone comprises numerous fractures of various sizes. During fault slip, the fault core may transport water (if its orientation is favourable to the hydraulic gradient in the area). In the damage zone, however, fluid transport through fracture networks depends particularly on the current local stress field. One reason for this is that fractures are sensitive to changes in the stress field and deform much more easily than circular pores. If the maximum horizontal compression is oriented perpendicular to the fault strike, its fractures (mainly in the damage zone) tend to be closed and lead less water than if the maximum horizontal compression is oriented parallel to the fault strike, in which case its fractures tend to open up and be favourable to fluid transport. In areas of potential geothermal reservoirs, fault zones must be studied, keeping in mind that the permeability structure of a fault zone depends partly on the mechanical units of the fault zone and partly on the local stress field. To explore stress fields affecting fracture propagation we have run numerical models using the finite-element and the boundary-element methods. We focus on the influence of changes in mechanical properties (particularly Young's modulus) between host rock layers in geothrmal reservoirs in limestone. The numerical models show that stresses commonly concentrate in stiff layers. Also, at the contacts between soft marl and stiffer limestone layers, the stress trajectories (directions of the principal stresses) may become rotated. Depending on the external loading conditions, certain layers may become stress barriers to fracture propagation. In a reservoir where most hydrofractures become stratabound (confined to individual layers), interconnected fracture systems are less likely to develop than in one with non-stratabound hydrofractures. Reservoirs with stratabound fractures may not reach the percolation threshold needed for significant permeability. We also used the field data to investigate the fracture-related permeability of fluid reservoirs in limestone with numerical models. We simulated different scenarios, in which potential fluid pathways were added successively (vertical extension fractures, inclined shear fractures and open layer contacts). Short and straight fluid pathways parallel to the flow direction lead to the highest permeabilities. The better the connectivity of the fracture system, the higher is the resulting permeability. Only in well-interconnected, continuous systems of fluid pathways there is a correlation between the apertures of the fractures and the permeability. Our results suggest that fluid transport along faults, and the propagation and aperture variation of hydrofractures, are important parameters in the permeability development of geothermal reservoirs. These studies provide a basis for models of fracture networks and fluid transport in future man-made reservoirs. We conclude that the likely permeability of a man-made geothermal reservoir can be inferred from field data, natural analogues, laboratory measurements, and numerical models.

  17. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: geology of the Tigre Lagoon Field, Planulina Basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The geology and hydrology of the Tigre Lagoon Gas Field and the structural and depositional basin in which it occurs, as described, define a hydrodynamic system which has been in operation for millions of years. Fluid entrapment and geopressuring of the deposits has resulted in steepened geothermal gradients, accelerated maturation and thermal degradation (cracking) of fluid hydrocarbons, thermal diagenesis of certain clay minerals with release of much bound and intracrystalline water as free pore water, and a systematic fluid migration history controlled by the sand-bed aquifers in the basin, and by upward leakage at growth faults wherever fluid pressures approachedmore » or exceeded rock pressures. Observed geotemperature, geopressure, water salinity, and natural gas occurrence in the study area conform with the conceptual model developed.« less

  18. Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.; Basta, N. Z.; Melek, Y. S.

    1984-01-01

    During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea.

  19. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cutting permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperatire gradient at c600m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady state conditions. These results yield a heat flow of c1.3HFU, which is similar to other values on the Alaskan Arctic Coast: the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. With confirmation of the permafrost configuration by offshore drilling, heat conduction models can yield reliable new information on the chronology of arctic shoreline. -from Authors

  20. Reservoir controling factors in the Karaha-Telaga Bodas geothermal field, Indonesia

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Christensen, Carl; Allis, R.; Powell, T.; Murray, B.; Nash, G.

    2005-01-01

    Karaha - Telaga Bodas geothermal system consists of: 1) a caprock, ranging from several hundred meters to 1600 m thick that is characterized by steep, conductive temperature gradients and low permeabilities; 2) an underlying vapor-dominated zone that extends below sea level; and 3) a deep liquid-dominated zone with measured temperatures up to 353??C. Heat is provided by a 3 km deep tabular granodiorite stock. The effective base of the reservoir is controlled by the stress regime's effect on fractures within volcanic rocks located above the brittle/ductile deformation boundary. The base of the caprock is controlled by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has reduced initial permeabilities; the distribution of secondary minerals deposited by descending waters; and by a downward change from a strike-slip to an extensional stress regime. Producing zones are controlled by both matrix and fracture permeabilities.

  1. Spatial characteristics of groundwater temperature in the Ishikari Lowland, Hokkaido, northern Japan: analytical and numerical applications

    NASA Astrophysics Data System (ADS)

    Dim, J. R.; Sakura, Y.; Fukami, H.; Miyakoshi, A.

    2002-03-01

    In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3-4 °C 100 m-1) to the southwest highland area (10 °C 100 m-1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m-2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m-2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Résumé. Dans les sédiments poreux des basses terres d'Ishikari, on observe une augmentation graduelle du gradient géothermal général depuis la rivière Ishikari (3-4 °C 100 m-1) vers la zone élevée située au sud-ouest (10 °C 100 m-1). Toutefois, le gradient géothermal aux faibles profondeurs diffère dans le détail de la distribution générale. Malgré la perte de flux de chaleur par convection, généralement associée aux écoulements souterrains, le flux de chaleur reste élevé (100 mW m-2) dans la zone de recharge de la partie sud-ouest du bassin de l'Ishikari, qui appartient à un champ géothermal actif. Dans la partie nord-est des basses terres, le flux de chaleur atteint localement 140 mW m-2, probablement à cause d'un écoulement souterrain ascendant depuis le champ géothermal profond. Entre les deux zones, le flux de chaleur est beaucoup plus faible. Afin de déterminer le rôle du flux d'eau souterraine dans la distorsion des isothermes dans cette zone, des analyses du gradient thermal en fonction de la température ont été réalisées elles ont permis de définir les composantes majeures du système aquifère régional. Une modélisation deux-dimensionnelle pour la simulation a ensuite contribué à la compréhension non seulement de la cause des variations horizontales du flux de chaleur dans cette région, mais également du contraste entre les propriétés des réservoirs superficiel et profond. Resumen. En los sedimentos porosos de las tierras bajas de Ishikari, hay un incremento gradual en el gradiente geotérmico desde el río Ishikari (3-4 °C 100 m-1) hacia la zona elevada del sudoeste (10 °C 100 m-1). Sin embargo, el gradiente geotérmico a profundidades someras difiere de la distribución de fondo. A pesar de las pérdidas por el flujo convectivo de calor asociadas generalmente al flujo de aguas subterráneas, el flujo de calor permanece elevado (100 mW m-2) en el área de recarga, hacia el sudoeste de la cuenca del Ishikari, la cual pertenece a un campo geotérmico activo. Al nordeste de las tierras bajas, el flujo de calor alcanza 140 mW m-2, probablemente por el flujo ascendente de agua procedente del campo geotérmico profundo. Entre ambas áreas, el flujo de calor es mucho menor. Para examinar el papel del flujo hidráulico en la distorsión de las isotermas de esta región, se ha comparado el gradiente térmico con la temperatura, con lo cual se ha podido definir los componentes mayoritarios del sistema de flujo de las aguas subterráneas. El uso de modelos bidimensionales ha servido para comprender no sólo del origen de las variaciones horizontales del flujo de calor en este campo, sino también el contraste entre las propiedades térmicas de los reservorios someros y profundos de aguas subterráneas.

  2. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  3. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  4. Skin temperature and core-peripheral temperature gradient as markers of hemodynamic status in critically ill patients: a review.

    PubMed

    Schey, Bernadette M; Williams, David Y; Bucknall, Tracey

    2010-01-01

    To examine the evidential basis underpinning the monitoring of skin temperature and core-peripheral temperature gradient as elements of hemodynamic assessment in critically ill and adult cardiac surgical patients. Twenty-six studies examining the efficacy of skin temperature or temperature gradient as markers of hemodynamic status were selected as part of an integrative review. Evidence pertaining to the efficacy of these parameters as markers of cardiac function is equivocal and has not been well appraised in the adult cardiac surgical population. Skin temperature and systemic vascular resistance are also affected by factors other than cardiac output. Skin temperature and core-peripheral temperature gradient should not be considered in isolation from other hemodynamic parameters when assessing cardiac status until they are validated by further large-scale prospective studies. 2010. Published by Mosby, Inc.

  5. Age and P-T Conditions of the Gridino eclogite in the Belomorian Province, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Huanglu; Zhang, Lifei; Guo, Jinghui

    2017-04-01

    The Russian Belomorian eclogite was once regarded as Archean in age and the oldest eclogite in the world. However, its Archean age is disputed. The Gridino ecogite, the abundant eclogite in Belomorian province, is located in the southwest of the Paleoproterozoic Lapland-Kola collisional orogeny, and occurs as boudins and metamorphosed dykes within the tonalite-trondhjemite-granodiorite (TTG) gneisses. Zircons from these eclogites have magmatic cores and metamorphic rims. Metamorphic rims, which contain typical metamorphic mineral inclusions of omphacite and garnet, and are characterized by low Th/U ratios (< 0.035) and flat HREE patterns, yield a U-Pb age of ca. 1.90 Ga. The δ18O values of 6.23 to 6.80 ‰ of zircon rims are acquired during the eclogite-facies metamorphism. On the contrary, zircon cores display higher Th/U ratios 0.18-0.45, negative Eu anomalies and strong enrichment in HREE and have Neoarchean U-Pb ages of ca. 2.70 Ga. δ18O values of 5.64 to 6.07 ‰ suggest the possibility of crystallization from slightly evolved mantle-derived magmas. A three-stage metamorphic evolution has been recognized in the Gridino eclogite based on phase equilibria modeling: prograde epidote amphibolite facies, peak eclogite facies and retrogressed high-pressure granulite facies. The peak metamorphic P-T conditions (790-815 °C, 21-22 kbar) give an apparent geothermal gradient of 11-12 °C/km for Lapland-Kola collisional orogeny during Paleoproterozoic. The Gridino eclogite is not Archean, but the known oldest Paleoproterozoic eclogite, which may respond to the assembly of Columbia supercontinent.

  6. InSAR measurements and numerical models of deformation at Brady Hot Springs geothermal field (Nevada), 1995-2012

    NASA Astrophysics Data System (ADS)

    Ali, S. T.; Davatzes, N. C.; Mellors, R. J.; Foxall, W.; Drakos, P. S.; Zemach, E.; Kreemer, C.; Wang, H. F.; Feigl, K. L.

    2013-12-01

    We study deformation due to changes in fluid pressure caused by pumping during production, injection, and stimulation at the Brady Hot Springs geothermal field in the Basin and Range province in Nevada. To measure the deformation, we analyze Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ERS-1, ERS-2, Envisat, and TerraSAR-X satellites between 1995 and 2013. The InSAR results indicate subsidence at the order of several centimeters per year over an elliptically shaped area roughly ~5 km long by ~2 km wide. Its long axis follows the NNE strike of the predominant normal fault system. The subsiding area is centered near a prominent bend in the fault system where the successful production wells are located. Within this broad bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. To explain the deformation signal, we use poroelastic models constrained by borehole measurements of pressure, temperature and mass flux, as well as geologic observations. We solve the coupled deformation-diffusion problem using the finite element method. To estimate parameters in the model, e.g., permeability, we use the General Inversion for Phase Technique -- GIPhT [Feigl and Thurber, 2009; Ali and Feigl, 2012] that utilizes the gradient of range change and avoids the need for unwrapping the observed wrapped phase. We then solve the non-linear inverse problem using a gradient-based inversion scheme. Our results suggest that a complex network of high permeability conduits associated with intersections between fault segments and bends in fault segments explains the smaller length-scale features observed in the interferograms. Such structurally controlled, high permeability conduits are consistent with relatively recent fault slip evidenced by scarps in late Pleistocene Lake Lahontan sediments and spatially associated surface hydrothermal features that predate production at Brady. In contrast, Desert Peak, a "blind" geothermal field, located less than 7 km away from Brady, shows little or no deformation in the InSAR data set, although the two fields are otherwise similar in spatial extent, structural setting, and geothermal production. Desert Peak exhibits neither hydrothermal features nor any evidence of surficial fault slip, however, suggesting that the "plumbing" associated with the fault system there is deeper at than at Brady.

  7. A geodynamic constraint on Archean continental geotherms

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2003-04-01

    Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of duration less than the crustal thermal equilibriation time (about 10 to 30 Ma). Temporary entrainment in the wake of basal eclogite ``sinkers'' might provide such transient burial. Vlaar's (1994) modelling of this eclogite delamination process (tectonically elaborated by Zegers and van Keken (2001)) indicates such sinker events would be significantly shorter than 10 Ma. The topographic re-equilibriation of a hot moho above such a process would be similarly short (Kaufmann and Royden, 1994).

  8. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    NASA Astrophysics Data System (ADS)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett-Burman experiments resulting in 16 simulations for the seven parameters investigated. The reservoir is divided into 3-, 4-, or 5- layer systems with log-normal permeability distributions. We consider 10 sets of values for each case resulting in a total of 16x3x10 =480 simulations.We analyze the performance of the system to maximize the amount of heat energy extracted, minimize reservoir temperature depletion and maximize the CO2concentration in the produced fluid. Achieving the latter objective reduces power system problems as Welch and Boyle (GRC Trans. 2009) found that CO2 concentration should be >94% in the systems they investigated.

  9. Long-term pumping test to study the impact of an open-loop geothermal system on seawater intrusion in a coastal aquifer: the case study of Bari (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Masciale, Rita; Masciopinto, Costantino; De Carlo, Lorenzo

    2016-04-01

    The high cost and scarcity of fossil fuels have promoted the increased use of natural heat for a number of direct applications. Just as for fossil fuels, the exploitation of geothermal energy should consider its environmental impact and sustainability. Particular attention deserves the so-called open loop geothermal groundwater heat pump (GWHP) system, which uses groundwater as geothermal fluid. From an economic point of view, the implementation of this kind of geothermal system is particularly attractive in coastal areas, which have generally shallow aquifers. Anyway the potential problem of seawater intrusion has led to laws that restrict the use of groundwater. The scarcity of freshwater could be a major impediment for the utilization of geothermal resources. In this study a new methodology has been proposed. It was based on an experimental approach to characterize a coastal area in order to exploit the low-enthalpy geothermal resource. The coastal karst and fractured aquifer near Bari, in Southern Italy, was selected for this purpose. For the purpose of investigating the influence of an open-loop GWHP system on the seawater intrusion, a long-term pumping test was performed. The test simulated the effects of a prolonged withdrawal on the chemical-physical groundwater characteristics of the studied aquifer portion. The duration of the test was programmed in 16 days, and it was performed with a constant pumping flowrate of 50 m3/h. The extracted water was outflowed into an adjacent artificial channel, by means of a piping system. Water depth, temperature and electrical conductivity of the pumped water were monitored for 37 days, including also some days before and after the pumping duration. The monitored parameters, collected in the pumping and in five observation wells placed 160 m down-gradient with respect to the groundwater flow direction, have been used to estimate different scenarios of the impact of the GWHP system on the seawater intrusion by mean of a numerical model. Model flow simulations were carried out under transient flow conditions, in order to determine perturbations of the saline front into the Bari fractured aquifer, caused by the long-term pumping at 50 m3/h.

  10. Impact basins on Venus and some interplanetary comparisons

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Sharpton, Virgil L.

    1993-01-01

    Impact is one of the many processes that have shaped the surface of Venus. The largest impact craters, basins, are important features affecting the evolution of the terrestrial planets. Because Venus has an atmosphere, a gravity similar to Earth's, and a surface target with a high geothermal gradient, venusian basins provide an important comparative set of data to test our ideas about basin-forming impacts and their geological effects on the evolution of the crusts of the terrestrial planets.

  11. Subsurface structure identification uses derivative analyses of the magnetic data in Candi Umbul-Telomoyo geothermal prospect area

    NASA Astrophysics Data System (ADS)

    Septyasari, U.; Niasari, S. W.; Maghfira, P. D.

    2018-04-01

    Telomoyo geothermal prospect area is located in Central Java, Indonesia. One of the manifestations around Telomoyo is a warm spring, called Candi Umbul. The hydrothermal fluids from the manifestation could be from the subsurface flowing up through geological structures. The previous research about 2D magnetic modeling in Candi Umbul showed that there was a normal fault with strike/dip N60°E/45° respectively. This research aims to know the distance boundary and the kind of the geological structure in the study area. We also compared the geological structure direction based on the geologic map and the derivative maps. We used derivative analyses of the magnetic data, i.e. First Horizontal Derivative (FHD) which is the rate of change of the horizontal gradient in the horizontal direction. FHD indicates the boundaries of the geological structure. We also used Second Vertical Derivative (SVD) which is the rate of change of the vertical gradient in the vertical direction. SVD can reveal normal fault or thrust fault. The FHD and SVD maps show that the geological structure boundary has the same direction with the north west-south east geological structure. The geological structure boundary is in 486 m of the local distance. Our result confirms that there is a normal fault in the study area.

  12. Weichselian permafrost depth in the Netherlands: a comprehensive uncertainty and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Govaerts, Joan; Beerten, Koen; ten Veen, Johan

    2016-11-01

    The Rupelian clay in the Netherlands is currently the subject of a feasibility study with respect to the storage of radioactive waste in the Netherlands (OPERA-project). Many features need to be considered in the assessment of the long-term evolution of the natural environment surrounding a geological waste disposal facility. One of these is permafrost development as it may have an impact on various components of the disposal system, including the natural environment (hydrogeology), the natural barrier (clay) and the engineered barrier. Determining how deep permafrost might develop in the future is desirable in order to properly address the possible impact on the various components. It is expected that periglacial conditions will reappear at some point during the next several hundred thousands of years, a typical time frame considered in geological waste disposal feasibility studies. In this study, the Weichselian glaciation is used as an analogue for future permafrost development. Permafrost depth modelling using a best estimate temperature curve of the Weichselian indicates that permafrost would reach depths between 155 and 195 m. Without imposing a climatic gradient over the country, deepest permafrost is expected in the south due to the lower geothermal heat flux and higher average sand content of the post-Rupelian overburden. Accounting for various sources of uncertainty, such as type and impact of vegetation, snow cover, surface temperature gradients across the country, possible errors in palaeoclimate reconstructions, porosity, lithology and geothermal heat flux, stochastic calculations point out that permafrost depth during the coldest stages of a glacial cycle such as the Weichselian, for any location in the Netherlands, would be 130-210 m at the 2σ level. In any case, permafrost would not reach depths greater than 270 m. The most sensitive parameters in permafrost development are the mean annual air temperatures and porosity, while the geothermal heat flux is the crucial parameter in permafrost degradation once temperatures start rising again.

  13. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008

  14. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  15. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  16. Hydrogeologic controls on saturation profiles in heat-pipe-like hydrothermal systems: numerical study

    NASA Astrophysics Data System (ADS)

    Pervin, Mollika; Ghergut, Iulia; Graf, Thomas; Peche, Aaron

    2016-04-01

    Most geothermal reservoirs are of the liquid-dominated type, and their unexploited-state pressure profile approximately follows the hydrostatic gradient. In very hot liquid-dominated systems, temperature typically follows a boiling-point-for-depth (BPD) relationship. By contrast, vapor-dominated systems exhibit (in their unexploited state) surprisingly small vertical gradients of temperature and pressure, such that a constantly high temperature is encountered over a large vertical thickness, while their pressure approximately follows vapour pressure, pvap(T°). This implies that (Pruess 1985, Truesdell and White 1973): (i) for a vapor-dominated reservoir to exist, it must be sealed laterally - otherwise it would be flooded by neighboring groundwaters with hydrostatic p profile, and (ii) liquid water should somehow be present in the whole system - otherwise p values would not be constrained by the pvap(T°) relationship for water. Historically, one of the most puzzling aspects of vapor-dominated systems was the large amount of heat flowing upwards, while vertical T° gradients remained negligible. This mechanism was deemed as 'heat pipe'(HP) (Eastman 1968): In the central zone of a vapor-dominated system, both vapor and liquid are mobile; vapor flows upwards, condenses at shallower depth, and the liquid condensate flows downwards. Due to the large amount of latent enthalpy released in vapor condensation, the vapor-liquid counter-flow can generate large rates of heat flow with negligible net mass transport (Pruess 1985). In order to be able to exploit two-phase (including vapor-dominated) reservoirs in a sustainable manner, one first needs to understand the conditions under which a two-phase (or a vapor-dominated) system has evolved naturally, and which have led to its present (quasi-) steady undisturbed state. Past studies have found that HP can exist in two distinct states, corresponding to liquid-dominated and vapor-dominated p profiles, respectively. Within this work, we explore some mechanisms and geologic controls that can lead to the formation of extensive vapor-dominated zones within a two-phase system. In particular, we investigate the effect of vertical heterogeneity of permeability (stratified reservoir, containing a permeability barrier) on the liquid water saturation profile within a modified HP model. Though in field observations liquid water has been directly encountered only within the condensation zone at reservoir top, it was speculated that large amounts of liquid water might also exist below the condensation zone. This is of great practical significance to the exploitation of vapor-dominated reservoirs, as their longevity depends on the fluid reserves in place. Within this work, we demonstrate by numerical simulations of a modified HP model that high values of liquid water saturation (>0.8) can prevail even far below the condensation zone. Such findings are useful as a baseline for future calculations regarding the economic exploitation of vapor-dominated systems, where premature productivity drop (or dry-out) is the main issue of concern. References: Eastman, G. Y:, 1968: The heat pipe. Scientific American, 218(5):38-46. Preuss, K. A., 1985: A quantitative model of vapor-dominated geothermal reservoirs as heat pipes in fractured porous rock, Transactions, Geothermal Resources. Council, 9(2), 353-361. Truesdell, A. H., and White, D.E. 1973: Production of superheated Steam from Vapor- dominated geothermal reservoirs. Geothermics, 2(3-4), 154-173

  17. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    NASA Astrophysics Data System (ADS)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to calibrate those calculated ground-temperatures.

  18. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  19. The Radiator-Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Marsh, B. D.; Geiser, P.

    2015-12-01

    Standard Enhanced Geothermal Systems (EGS) have repeatedly been hobbled by the inability of rock to conductively transfer heat at rates sufficient to re-supply heat extracted convectively via artificially made fracture systems. At the root of this imbalance is the basic magnitude of thermal diffusivity for most rocks, which severely hampers heat flow once the cooled halos about fractures reach ~0.1 m or greater. This inefficiency is exacerbated by the standard EGS design of mainly horizontally constructed fracture systems with inflow and outflow access at the margins of the fracture network. We introduced an alternative system whereby the heat exchanger mimics a conventional radiator in an internal combustion engine, which we call a Radiator-EGS (i.e., RAD-EGS). The heat exchanger is built vertically with cool water entering the base and hot water extracted at the top. The RAD-EGS itself consists of a family of vertical vanes produced through sequential horizontal drilling and permeability stimulation through propellant fracking. The manufactured fracture zones share the orientation of the natural transmissive fracture system. As below about 700 m, S1 is vertical and the average strike of transmissive fractures parallels SHmax, creating vertical fractures that include S1 and SHmax requires drilling stacked laterals parallel to SHmax. The RAD-EGS is also based on the observation that the longevity of natural hydrothermal systems depends on thermal recharge through heat convection but not heat conduction. In this paper, we present numerical simulations that examine the effects of the depths of the injector and extraction wells, vane size, coolant flow rate, the natural crustal geothermal gradient, and natural regional background flow on geothermal energy extraction.

  20. Near-isothermal conditions in the middle and lower crust induced by melt migration.

    PubMed

    Depine, Gabriela V; Andronicos, Christopher L; Phipps-Morgan, Jason

    2008-03-06

    The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.

  1. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions.

    PubMed

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-07-17

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound's western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 "seed-community" split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community's receptiveness towards immigrants, were the key qualities that ensured the GMMC's sustenance amidst habitat degradation and dispersal to discrete environments.

  2. Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, Gregory M.

    Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.

  3. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    PubMed

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  4. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  5. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  6. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.

  7. ICDP supported coring in IDDP-2 at Reykjanes - the DEEPEGS demonstrator in Iceland - Supercritical conditions reached below 4.6 km depth.

    NASA Astrophysics Data System (ADS)

    Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-04-01

    The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.

  8. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    USGS Publications Warehouse

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  9. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  10. Geothermal power, policy, and design: Using levelized cost of energy and sensitivity analysis to target improved policy incentives for the U.S. geothermal market

    NASA Astrophysics Data System (ADS)

    Richard, Christopher L.

    At the core of the geothermal industry is a need to identify how policy incentives can better be applied for optimal return. Literature from Bloomquist (1999), Doris et al. (2009), and McIlveen (2011) suggest that a more tailored approach to crafting geothermal policy is warranted. In this research the guiding theory is based on those suggestions and is structured to represent a policy analysis approach using analytical methods. The methods being used are focus on qualitative and quantitative results. To address the qualitative sections of this research an extensive review of contemporary literature is used to identify the frequency of use for specific barriers, and is followed upon with an industry survey to determine existing gaps. As a result there is support for certain barriers and justification for expanding those barriers found within the literature. This method of inquiry is an initial point for structuring modeling tools to further quantify the research results as part of the theoretical framework. Analytical modeling utilizes the levelized cost of energy as a foundation for comparative assessment of policy incentives. Model parameters use assumptions to draw conclusions from literature and survey results to reflect unique attributes held by geothermal power technologies. Further testing by policy option provides an opportunity to assess the sensitivity of each variable with respect to applied policy. Master limited partnerships, feed in tariffs, RD&D, and categorical exclusions all result as viable options for mitigating specific barriers associated to developing geothermal power. The results show reductions of levelized cost based upon the model's exclusive parameters. These results are also compared to contemporary policy options highlighting the need for tailored policy, as discussed by Bloomquist (1999), Doris et al. (2009), and McIlveen (2011). It is the intent of this research to provide the reader with a descriptive understanding of the role of geothermal power in the United States, and to recognize that not all policy or energy technology is created equal. Further study options are provide to expand the scope and granularity of this research design to better support a growing market.

  11. Insights to Engineered Geothermal System Performance Using Gringarten-Witherspoon-Ohnishi Analytical Solutions and Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Doe, T.; McLaren, R.; Finilla, A.

    2017-12-01

    An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of fluid pressure and stress gradients, preferential growth and aperture enhancement may change with depth creating preferential pathways through rock this cooler than the injection depth.

  12. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area

    PubMed Central

    Nishar, Abdul; Bader, Martin K.-F.; O’Gorman, Eoin J.; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming. PMID:28326088

  13. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area.

    PubMed

    Nishar, Abdul; Bader, Martin K-F; O'Gorman, Eoin J; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming.

  14. Re-Evaluating Geothermal Potential with GIS Methods and New Data: Williston Basin, North Dakota

    NASA Astrophysics Data System (ADS)

    Crowell, A. M.; Gosnold, W. D.; UND Geothermal Laboratory

    2011-12-01

    The University of North Dakota Geothermal Laboratory is working on the National Geothermal Data Aggregation project in conjunction with Southern Methodist University (SMU) and other partners, and funded by the Department of Energy to collect data for exploration and utilization of resources for geothermal power production. We have examined 10,951 wells in the Williston Basin to determine accurate methods for estimating power extraction potential in a sedimentary basin. The calculations we used involved defining the area of wells within designated ranges and calculating the geothermal fluid reservoir volume using porosity data from the North Dakota Geological Survey Wilson M. Laird Core Library. We defined the parameters for our calculations as: bottom-hole temperature (BHT), formation thickness data, surface area of the polygon around wells within the temperature range, and porosity data. The wells in each formation with a BHT over 90°C were imported into ArcGIS, buffered to 1.6 kilometers from centroid, and outlined with a polygon feature to define the surface area. We then included average formation thickness to determine an approximate volume for ten water and rock reservoirs. In calculating this available energy the following three assumptions were made; that 1/1000 of the water volume is available to use per year, that the temperature is lowered to 50°C during electrical power production, and that the efficiency of the binary power plant utilized is 14%. The estimated recoverable energy in the volume of rock containing geothermal fluids by temperature range is as follows: 1.32 x 108 MW for 90°-100° C, 1.92 x 108 MW for 100°-110° C, 2.15 x 108 MW for 110°-120° C, 2.4 x 108 MW for 120°-130° C, 1.4 x 108 MW for 130°-140° C, 4.95 x 107 MW for 140°-150° C, and 3.67 x 107 MW for 150° C and up.

  15. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  16. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120?? to 200??C) as the fluid-inclusion Th values for barite. Fluid-inclusion Th values for calcite range between about 136?? and 213??C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole. ?? 1991.

  17. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    NASA Astrophysics Data System (ADS)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  18. Conodont color alteration index and upper Paleozoic thermal history of the Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Cardoso, Cassiane Negreiros; Sanz-López, Javier; Blanco-Ferrera, Silvia; Lemos, Valesca Brasil; Scomazzon, Ana Karina

    2015-12-01

    The conodont color alteration index (CAI) was determined in elements from core samples of the Frasnian Barreirinha Formation (one well) and of the Pennsylvanian-Permian Tapajós Group (twenty three wells and one limestone quarry) in the Amazonas Basin. The thermal history of the basin is analyzed using the CAI value distribution represented in maps and stratigraphic sections through correlation schemes, and in conjunction with previously published data. The pattern of palaeotemperatures for CAI values of 1.5-3 is coincident with organic matter maturation under a sedimentary overburden providing diagenetic conditions in the oil/gas window. Locally, conodonts show metamorphism (CAI value of 6-7) in relation to the intrusion of diabase bodies in beds including high geothermal gradient evaporites. Microtextural alteration on the surface conodonts commonly shows several types of overgrowth microtextures developed in diagenetic conditions. Locally, recrystallization in conodonts with a high CAI value is congruent with contact metamorphism in relation to Mesozoic intrusions. The CAI values of 1.5 or 2 observed close to the surface in several areas of the basin may be interpreted in relation to a high thermal palaeogradient derived from the magmatic episode or/and to the local denudation of the upper part of the Paleozoic succession prior to this thermal event.

  19. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P.

    X-ray microtomography (XMT) imaging combined with a three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture properties in composite Portland cement–basalt caprock core samples. The effect of fluid properties and flow conditions on fracture permeability was numerically studied by using fluids with varying physical properties and simulating different pressure conditions. CFD revealed that the application of geomechanical stress led to increased fluid flow, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and lessmore » precipitation in fractures located at the cement–basalt interface. CFD predicted changes in flow characteristics and differences in absolute values of flow properties due to different pressure gradients. CFD was able to highlight the profound effect of fluid properties on flow characteristics and hydraulic properties of fractures. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.« less

  20. Drilling side holes from a borehole

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

  1. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  2. Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project — hole 1 (WFSD-1)

    NASA Astrophysics Data System (ADS)

    Li, Haibing; Xu, Zhiqin; Niu, Yixiong; Kong, Guangsheng; Huang, Yao; Wang, Huan; Si, Jialiang; Sun, Zhiming; Pei, Junling; Gong, Zheng; Chevalier, Marie-Luce; Liu, Dongliang

    2014-04-01

    The Wenchuan earthquake Fault Scientific Drilling project (WFSD) started right after the 2008 Mw 7.9 Wenchuan earthquake to investigate its faulting mechanism. Hole 1 (WFSD-1) reached the Yingxiu-Beichuan fault (YBF), and core samples were recovered from 32 to 1201.15 m-depth. Core investigation and a suite of geophysical downhole logs (including P-wave velocity, natural gamma ray, self-potential, resistivity, density, porosity, temperature, magnetic susceptibility and ultrasound borehole images) were acquired in WFSD-1. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of the structures and physical properties of rocks. Logging data revealed that the geothermal gradient of the volcanic Pengguan complex (above 585.75 m) is 1.85 °C/100 m, while that of the sedimentary Xujiahe Formation (below 585.75 m) is 2.15 °C/100 m. In general, natural gamma ray, resistivity, density, porosity, P-wave velocity and magnetic susceptibility primarily depend on the rock lithology. All major fault zones are characterized by high magnetic susceptibility, low density and high porosity, with mostly low resistivity, high natural gamma ray and sound wave velocity. The high magnetic susceptibility values most likely result from the transformation of magnetic minerals by frictional heating due to the earthquake. The YBF exposed in WFSD-1 can be subdivided into five different parts based on different logging responses, each of them corresponding to certain fault-rocks. The high gamma radiation, porosity and P-wave velocity, as well as low resistivity and temperature anomalies indicate that the Wenchuan earthquake fault zone is located at 585.75-594.5 m-depth, with an average inclination and dip angle of N305° and 71°, respectively. The fact that the fracture directions in the hanging wall and footwall are different suggests that their stress field direction is completely different, implying that the upper Pengguan complex may not be local.

  3. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    PubMed

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  4. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.

  5. Paleoproterozoic migmatitic gneisses from the Tandilia belt (Argentina), Río de la Plata craton, record cooling at deep crustal levels

    NASA Astrophysics Data System (ADS)

    Martínez, Juan Cruz; Massonne, Hans-Joachim; Dristas, Jorge Anastasio; Theye, Thomas; Graff, Ailín Ayelén

    2016-04-01

    We studied high-grade metamorphic rocks of the El Cristo hill area of the Tandilia belt. Mineral analyses and thermodynamic calculations were carried out for two adjacent rock samples: an amphibole-biotite gneiss and a garnet-biotite-bearing migmatite. Peritectic garnets in the migmatite show core compositions of pyr4.5(gro + andr)10spes6alm79.5 changing to pyr3.5(gro + andr)17spes6alm73.5 at their thin rims. Garnet compositions in the gneiss are pyr6.5(gro + andr)26spes12alm55.5 and pyr4.5(gro + andr)34spes12alm49.5 for core and rim, respectively. A P-T path was constructed by calculating pseudosections in the 11-component system Si-Ti-Al-Fe-Mn-Mg-Ca-Na-K-O-H and contouring them by isopleths for garnet components using the PERPLE_X software package. Supra-solidus crystallization of garnet cores in the migmatite began at 5.8 kbar and 660 °C. Garnet rims equilibrated at 7.0 kbar and 640 °C compatible with garnet cores in the amphibole-biotite gneiss (7.6 kbar and 660 °C). The further chemical development of garnet in this rock points to P-T conditions of 11.6 kbar and 620 °C and 12.2 kbar and 595 °C (outermost garnet rim). At this high-pressure stage Ca-amphibole was not stable. Most biotite formed during exhumation whereas the high-pressure accessory minerals, titanite and epidote, persisted. According to the obtained anti-clockwise P-T path the originally partly melted material was tectonically transported from ∼22 km (middle crust) to ∼40 km (lower crust) depths reaching a geothermal gradient as low as 15 °C km-1. This transport probably occurred along a major suture zone, which was active during the Paleoproterozoic (2.25-2.10 Ga), before a terminating collision of terranes near the SW boundary of the Rio de la Plata craton.

  6. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known location and properties of magma to calibrate geophysics (Brown et al, this session) and understand signals of "unrest". How can we not make such observations when there is so much to learn, so much at stake in correctly monitoring volcanoes, and such a need for clean, renewable energy?

  7. MeProRisk - Acquisition and Prediction of thermal and hydraulic properties

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Mottaghy, D.; Pechnig, R.

    2009-04-01

    MeProRisk is a joint project of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH (Aachen) and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The MeProRisk project aims to improve strategies to reduce the risk for planning geothermal power plants. Within our subproject we estimate geothermal relevant parameters in the laboratory and in the borehole scale. This basis data will be integrated with hydraulic and seismic experiments to provide a 3D reservoir model. Hitherto we focussed on two different type locations in Germany. These are (1) the crystalline basement in South Germany and (2) the Rotliegend formation and volcanic rocks in the Northern German Sedimentary Basin. In the case of the crystalline basement an extensive dataset could be composed from the 9 km deep KTB borehole including logging, core and cutting data. The whole data could be interpreted with respect to lithology, structure and alteration of the formation which mainly consists of alternating sequences of gneiss and metabasite. For the different rock types the data was analyzed statistically to provide specific values for geothermal key parameters. Important key parameters are for example: p-wave velocity, density, thermal conductivity, permeability and porosity. For the second type location we used logging data recovered within one borehole (> 5 km deep) which was drilled in the so called Voelkersen gas field. The data was supplied by the RWE DEA company. The formation comprises volcanic rocks and sandstones. On corresponding cores we measured p-wave velocity, thermal conductivity, density and porosity in the laboratory. In the same way as for type location (1) the complete data set was analyzed statistically to derive specific values which are relevant for the geothermal reservoir model. Finally this study will end up in a multi-scale implementation of the bore and its direct environment into a 3D reservoir model. For this purpose we provide the basic data which is suitable for the model calculations.

  8. Occurence of ore metals in some terrestrial geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, P.

    1984-02-01

    Drilling programs and the study of active geothermal systems have shown that the reservoir rocks in many fields contain minor quantities of base and precious metals. Commonly, base-metal sulfides occur in the subsurface but, where present, Au, Ag, Hg, As, Tl and Sb rich precipitates deposit near, or at, the surface. Although in some fields (Geysers, Larderello, Tongonan) some of the ore minerals (and others) are relict, there is evidence that they are now depositing in a few systems. Recent work on active hydrothermal systems in New Zealand shows that: (1) Sphalerite, galena, chalcopyrite (forming veins and disseminated discrete crystals)more » plus rare pentlandite, cobaltite and arsenopyrite, occur at Broadlands, NZ. Rare quantities of base-metal sulfides also occur in cores and cuttings from the geothermal fields of Waiotapu, Kawerau, Tauhara, and Ngawha. Further, Kakimoto (1983) has identified cassiterite, native silver, and trace gold in cores from Tauhara, in the south-eastern part of the Wairakei field. Bore temperatures at the depths from which these minerals were recovered are mostly between 220/sup 0/ and 300/sup 0/C, but at Broadlands are locally as low as 120/sup 0/C. The host rocks are Quaternary calc-alkali, silicic lavas and pyroclastic rocks, andesites, dacite and deep Mesozoic greywackes and argillites; however, there is no obvious relationship between mineralization and stratigraphy, permeability or well output. The deposition of amorphous precious metal precipitates (Au, Ag, Hg, As, Sb, Tl) from hot springs and well discharges has taken place at Broadlands, Waiotapu and Rotokawa; it also occurs at Kawerau. Water discharging from Frying Pan Lake, Waimangu, is presently depositing siliceous sinter containing up to 4.1% tungsten.« less

  9. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B; Faulds, James E

    The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern endmore » of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault, which accommodates motion such that the Mesozoic Nightingale sequence is juxtaposed with late Tertiary sedimentary rocks. The NW dextral fault, the NNE-down to east fault, and several NNE-down to the west faults intersect roughly at the thermal anomaly in Emerson Pass. This suggests that fault intersections locally control upwelling of geothermal fluids within the step-over. Based on this assumption, it is proposed that the area near Buckbrush Springs be investigated further for geothermal potential. At this location, a NNE-down to the west normal fault, with >1 km of offset, intersects a NW-striking down to the south fault at a small left step in the NNE fault. Further studies will include collection of available kinematic indicators near the shallow thermal anomaly in Emerson Pass, geothermometry on Buckbrush Spring, and possibly drilling of temperature gradient wells in Emerson Pass and at Buckbrush Spring.« less

  10. Efficiency of temporary storage of geothermal waters in a lake system: Monitoring the changes of water quality and bacterial community structures.

    PubMed

    Szirányi, Barbara; Krett, Gergely; Kosáros, Tünde; Janurik, Endre; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2017-12-01

    Disposal of used geothermal waters in Hungary often means temporary storage in reservoir lakes to reduce temperature and improve water quality. In this study, the physical and chemical properties and changes in the bacterial community structure of a reservoir lake system in southeast region of Hungary were monitored and compared through 2 years, respectively. The values of biological oxygen demand, concentrations of ammonium ion, total inorganic nitrogen, total phosphorous, and total phenol decreased, whereas oxygen saturation, total organic nitrogen, pH, and conductivity increased during the storage period. Bacterial community structure of water and sediment samples was compared by denaturing gradient gel electrophoresis (DGGE) following the amplification of the 16S rRNA gene. According to the DGGE patterns, greater seasonal than spatial differences of bacterial communities were revealed in both water and sediment of the lakes. Representatives of the genera Arthrospira and Anabaenopsis (cyanobacteria) were identified as permanent and dominant members of the bacterial communities.

  11. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  12. Mount Hood exploration, Oregon: a case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, R.G.

    1981-05-01

    An assessment program of Mount Hood is giving information useful for geothermal development in the area and is expected to characterize and aid in exploration of other Cascade volcanoes. These studies have shown the presence of thermal waters coming to the surface around the south flank of the mountain and subsurface flow in other areas. Geothermal gradient drilling shows the average heat flow in the area to be about two times normal increasing toward the summit. Two commercial exploration programs resulting in drilling are underway; Northwest Natural Gas is exploring the west side for direct utilization in the Portland area,more » and Wy'East is exploring near Timberline Lodge on the south flank. On the west side adequate temperatures have been found but the wells have not found enough permeability to be useful. At Timberline Lodge a 4000' well appears to have sufficient temperature, but it has not yet been tested. Further exploration and testing will continue this summer.« less

  13. Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data

    NASA Astrophysics Data System (ADS)

    Matthews, Chris

    2009-09-01

    The Torrens Hinge Zone is a long but narrow (up to 40km wide) geological transition zone between the relatively stable Eastern Gawler Craton `Olympic Domain' to the west, and the sedimentary basin known as the Adelaide Geosyncline to the east. The author hypothesised from first principles that the Torrens Hinge Zone should be prospective for high geothermal gradients due to the likely presence of high heat flow and insulating cover rocks. A method to test this hypothesis was devised, which involved the determination of surface heat flow on a pattern grid using purpose-drilled wells, precision temperature logging and detailed thermal conductivity measurements. The results of this structured test have validated the hypothesis, with heat flow values over 90mW/m2 recorded in five of six wells drilled. With several kilometres thickness of moderate conductivity sediments overlying the crystalline basement in this region, predicted temperature at 5000m ranges between 200 and 300°C.

  14. Geothermal flux through palagonitized tephra, Surtsey, Iceland - The Surtsey temperature-data-relay experiment via Landsat-1

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Preble, D. M.; Jakobsson, S.

    1976-01-01

    The net geothermal flux through palagonitized basaltic tephra rims of the Surtur I and Surtur II craters at Surtsey, Iceland, in 1972, is estimated at 780 plus or minus 325 microcal/sq cm/s, indicating a decline since 1969 when a flux of 1500 microcal/sq cm/s was estimated. Heat flux in this range characterizes the postvolcanic environment on Surtsey in which the subaerial polagonitization of basaltic tephra is associated with mass transfer of hydrothermal vapor, either of meteoric or sea-water origin, only a few years after cessation of eruptive activity. The flux estimation is the result of the Surtsey data-relay experiment via Landsat-1 which was carried out in several phases. Temperature data were transmitted for a 38-day period in November and December 1972. A near-surface vertical gradient of 69.4 C/m was obtained, suggesting a mixed mechanism of heat transfer, partitioned between conduction and convection.

  15. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  16. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45°E. Inversion of the data reveals the low resistivity sedimentary rocks of the Western Canadian Sedimentary Basin overlying a highly resistive Pre-Cambrian crystalline basement. The basement rocks have strong indications of being electrically anisotropic. Groom-Bailey and phase tensor azimuths are stable and consistent across both frequency and distance but display large phase tensor skew values (indicating 3D structure) and small induction vectors (indicating a lack of lateral structure). This type of anisotropy is unique because of its apparent widespread nature and the number of sites we have to constrain the anisotropic characteristics. These results can help to guide future geothermal development in Alberta as detailed information of the host rock resistivity structure can aid any EGS development.

  17. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  18. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    NASA Astrophysics Data System (ADS)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  19. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  20. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    USGS Publications Warehouse

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.

  1. Wellbore heat flow from the Toa Baja scientific drillhole, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.; Larue, D.K.

    1991-03-01

    Heat flow values, determined from temperature logs and estimates of thermal conductivity from geophysical logs range from 23 to 37 mW/m{sup 2} from 800 to 2,500 m depth in the Toa Baja scientific drillhole on the north, central coast of Puerto Rico. Near the target seismic reflector at the base of the well, an active hydrothermal system was encountered in which heat flow of up to 90 mW/m{sup 2} was found in a mineralized zone beneath a volcanic sill or flow. The heat flow then dropped to 50 mW/m{sub 2} beneath this subhorizontal flow zone. The mining of heat frommore » downdip is proposed to account for this thermal anomaly, as well as the scatter in the heat flow determined from the few other wells drilled into Puerto Rico. The time-temperature history of the well indicates that Eocene volcaniclastics of the lower 2 km were deposited into a geothermal gradient of 60C/km north of an active arc (heat flow estimated to have been 120-180 mW/m{sup 2}). Uplift, erosion and cooling occurred between 40 and 30 Ma. Reburial and deposition of Oligocene-Miocene Limestones produced the present-day geothermal gradient of 15C/km (heat flow of 30-50 mW/m{sup 2}). Based upon comparisons with slab cooling models, the crustal thickness beneath Puerto Rico is estimated to be closer to continental then oceanic.« less

  2. The thermal environment of Cascadia Basin

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Hautala, Susan L.; Bjorklund, Tor A.

    2012-07-01

    Located adjacent to the NE Pacific convergent boundary, Cascadia Basin has a global impact well beyond its small geographic size. Composed of young oceanic crust formed at the Juan de Fuca Ridge, igneous rocks underlying the basin are partially insulated from cooling of their initial heat of formation by a thick layer of pelagic and turbidite sediments derived from the adjacent North American margin. The igneous seafloor is eventually consumed at the Cascadia subduction zone, where interactions between the approaching oceanic crust and the North American continental margin are partially controlled by the thermal environment. Within Cascadia Basin, basement topographic relief varies dramatically, and sediments have a wide range of thickness and physical properties. This variation produces regional differences in heat flow and basement temperatures for seafloor even of similar age. Previous studies proposed a north-south thermal gradient within Cascadia Basin, with high geothermal flux and crustal temperatures measured in the heavily sedimented northern portion near Vancouver Island and lower than average heat flux and basement temperatures predicted for the central and southern portions of the basin. If confirmed, this prediction has implications for processes associated with the Cascadia subduction zone, including the location of the "locked zone" of the megathrust fault. Although existing archival geophysical data in the central and southern basin are sparse, nonuniformly distributed, and derived from a wide range of historical sources, a substantial N-S geothermal gradient appears to be confirmed by our present compilation of combined water column and heat flow measurements.

  3. Application of Thermoluminescence dating to Sambagawa metamorphic rocks for evaluation of the late Quaternary uprifting of Central Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Nishikawa, O.

    2016-12-01

    Thermoluminescence (TL) dating is one of the geochronometry with a low closure temperature, which covers a wide range of younger ages from 1k to 1m yrs, and used to be applied to young volcanics and archeological burnt materials. These materials experienced an instant temperature drop under the closure temperature just after they are generated. If crust is rapidly uplifting, it may possible to apply TL dating even for basement rocks to reconstruct a young history of orogeny. TL age applied to basement is not the age of rock itself, but the age since the rock rising from the deeper part crossed the depth of the closure temperature. Therefore TL age of basement rock is the function of both uplifting rate and geothermal gradient. In this study, in order to evaluation of the late Quaternary uplifting of the central Shikoku, Japan, TL dating of quartz grain derived from the Sambagawa metamorphic rocks has been performed. The ages are in 100-1000 kyr orders and much older than TL ages obtained from the hanging wall of Alpine fault, New Zealand (Nishikawa et al., 2015; AGU Fall meeting). This can be due to the difference of geothermal gradient and uplifting rate between two orogenic belts, and interpreted that the hanging wall of the Alpine fault has been rapidly lifted up from the shallower closure temperature depth, while the rocks in central Shikoku have been rising slowly from deeper part.

  4. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  5. Thermal implications of metamorphism in greenstone belts and the hot asthenosphere-thick continental lithoshere paradox

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1986-01-01

    From considerations of secular cooling of the Earth and the slow decay of radiogenic heat sources in the Earth with time, the conclusion that global heat loss must have been higher in the Archean than at present seems inescapable. The mechanism by which this additional heat was lost and the implications of higher heat low for crustal temperatures are fundamental unknowns in our current understanding of Archean tectonics and geological processes. Higher heat loss implies that the average global geothermal gradient was higher in the Archean than at present, and the restriction of ultramafic komatiites to the Archean and other considerations suggests that the average temperature of the mantle was several hundred degrees hotter during the Archean than today. In contrast, there is little petrologic evidence that the conditions of metamorphism or crustal thickness (including maximum crustal thickness under mountains) were different in archean continental crust from the Phanerozoic record. Additionally, Archean ages have recently been determined for inclusions in diamonds from Cretaceous kimeberlites in South Africa, indicating temperatures of 900 to 1300 at depths of 150 to 215 km (45 to 65 kbar) in the Archean mantle, again implying relatively low geothermal gradients at least locally in the Archean. The thermal implications of metamorphism are examined, with special reference to greenstone belts, and a new thermal model of the continental lithosphere is suggested which is consistent with thick continental lithosphere and high asthenosphere temperatures in the Archean.

  6. Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai

    2018-01-01

    The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.

  7. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  8. Gradient of the stellar magnetic field in measurements of hydrogen line cores

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.

    2009-04-01

    We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.

  9. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  10. Turning up the Heat on the Antarctic Ice Sheet (From Below): Challenges and Near-Term Opportunities for Measuring Antarctic Geothermal Fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Hossainzadeh, S.

    2010-12-01

    Antarctic heat flow plays an important role in determining the rate of meltwater production at the base of the Antarctic ice sheet. Basal meltwater represents a key control on ice sheet mass balance, Antarctic geochemical fluxes into the Southern Ocean, and subglacial microbial habitats. However, direct measurements of heat flow are difficult in glaciated terrains. Vertical temperature profiles determined in ice boreholes are influenced by thermal energy fluxes associated with basal melting/freezing and have to be used with caution when calculating geothermal flux rates. Two published continent-wide geophysical estimates of Antarctic geothermal fluxes provide valuable databases but are not fully consistent with each other and need to be verified by direct subglacial measurements. Planned drilling into Antarctic subglacial environments will offer the opportunity to perform such measurements. Determination of temperature gradients in sedimentary sequences resting at the bottom of subglacial lakes will offer particularly useful insights. Temperature profiles in such environments will not be thermally or mechanically disturbed as it may be the case in till layers proximal to a sliding ice base. We will review plans for making such measurements as part of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) project, which is scheduled to penetrate the West Antarctic ice sheet in 2012-13 and 2013-14.

  11. Microbial community biofabrics in a geothermal mine adit.

    PubMed

    Spear, John R; Barton, Hazel A; Robertson, Charles E; Francis, Christopher A; Pace, Norman R

    2007-10-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50 degrees C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50 degrees C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments.

  12. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions

    PubMed Central

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-01-01

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound’s western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 “seed-community” split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community’s receptiveness towards immigrants, were the key qualities that ensured the GMMC’s sustenance amidst habitat degradation and dispersal to discrete environments. PMID:26184838

  13. Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila; Bilim, Funda; Cifci, Gunay; Okay, Seda

    2018-05-01

    The Gulf of Izmir (GoI) is one of the largest gulfs in the Aegean Sea, Turkey. There is a large magnetic anomaly extending in the NE-SW direction between Foca and Uzunada (Uzun Island) in the gulf. Previously, Curie Point Depth (CPD), geothermal gradient, heat-flow and radiogenic heat production maps of the onshore part of the Aegean region were constructed from the aeromagnetic data. In this study, the same maps except radiogenic heat production map are presented for the offshore part and the largest magnetic anomaly in the northern part of the gulf is focused, particularly. As a result, the thermal structure of GoI is clearly defined and according to the results of this study, CPD values were found from 7 km in the NE of Foca to 10 km through the south of the gulf. The geothermal gradient values vary between 50 and 80 °C/km. Maximum heat flow values around the anomaly are calculated as 200 and 215 mW/m2 according to the thermal conductivity coefficients of 2.5 W m-1 K-1 and 2.7 W m-1 K-1, respectively. Although the anomaly is located in the Izmir Gulf; CPD, geothermic gradient, heat flow anomalies are shifted through the north of Foca and Aliaga towns in the Candarli Bay. This prominent anomaly in the Gulf of Izmir is associated with the magmatics that were encountered at 969 m in the Foca-1 well although it was drilled about 2 km away from the outermost closed contour of the magnetic anomaly. The anomaly is also modeled three dimensionally (3D) in this study. In the model map, the top of the causative body is completely located in the outer part of the gulf, and is very shallow at about 0.5 km while its bottom is inclined through the west of Cigli and Menemen. From this viewpoint, it is possible to suggest that the causative body is inclined through the Foca Peninsula. However, its closed contours are in the NE direction, through the Candarli Bay. Top depth of the causative body is also calculated from the basement horizon on the seismic sections crossing this anomaly. Depth calculations are consistent in these sections and confirm the top depths from the modeling study. The basement geometry in the seismic sections also reflects the shape of 3D model geometry, and bottom depth of the magmatics is also verified by the basement depth calculations in seismic sections.

  14. Estimation of subsurface formation temperature in the Yangtze area, South China: implications for shale gas generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, S.; Hao, C.; Li, X.; Xu, M.

    2015-12-01

    Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.

  15. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    NASA Astrophysics Data System (ADS)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis. Results indicate that a sampling resolution of 10 μm is sufficient to resolve fracture morphology and mineral zonation (where multiple episodes of mineralization occurred), and enables relatively fast data acquisition (3 cm2 can be analyzed in approximately 3 hours). Finer resolutions (down to 2.5 μm) take significantly longer, but can be used to provide additional spatial detail in areas of interest after a low resolution (10 μm) scan. Use of XRD data in conjunction with QEMSCAN° data is sometimes needed to distinguish geothermal alteration minerals with similar chemical compositions (clay minerals, micas and chlorite), however overall the technique appears to have excellent potential for geothermal applications.

  16. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  17. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands.

    PubMed

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Sardans, Jordi; Bartrons, Mireia; Granda, Victor; Sigurdsson, Bjarni D; Leblans, Niki I W; Oravec, Michal; Urban, Otmar; Janssens, Ivan A; Peñuelas, Josep

    2017-08-23

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris , a monocotyledon grass; and Ranunculus acris , a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2-8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region.

  18. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

    PubMed Central

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Granda, Victor; Sigurdsson, Bjarni D.; Leblans, Niki I. W.; Oravec, Michal; Urban, Otmar; Janssens, Ivan A.

    2017-01-01

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. PMID:28832555

  19. Study of Real-Time Dry Bulb and Relative Humidity Sensors in Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Khanal, Manoj; McPhee, Ron; Belle, Bharath; Brisbane, Peter; Kathage, Bevan

    2016-12-01

    As the depth of mines increases, the temperature in the mine workings also increases due to the geothermal gradient. A questionnaire was prepared and sent to a number of mine ventilation engineers, consultants and academics in order to gain an understanding of their experiences and current views on real-time dry and relative humidity temperature monitoring practices. Eighteen persons provided a response to the questionnaire. The answers were compiled and analyzed. This paper presents and analyzed the results obtained from the survey.

  20. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093

    2016-08-15

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less

  1. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy. PMID:18641166

  2. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.

  3. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope geothermometry to assess fracture connectivity and geothermal reservoir characteristics in the past—with the potential to help optimize resource production and injection programs and better understand structural controls on mass and heat transfer in the subsurface.

  4. Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”

    USGS Publications Warehouse

    Winograd, Isaac J.

    2016-01-01

    Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.

  5. Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.

    2016-10-01

    Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.

  6. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  7. New Energy Villages in Taiwan and China

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Wang, S. C.

    2015-12-01

    Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.

  8. Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, Soroush; Stearns, Leigh A.; Kadivar, Amir; Walker, J. Doug; van der Veen, C. J.

    2017-12-01

    Geothermal heat flux (GHF) is a crucial boundary condition for making accurate predictions of ice sheet mass loss, yet it is poorly known in Greenland due to inaccessibility of the bedrock. Here we use a machine learning algorithm on a large collection of relevant geologic features and global GHF measurements and produce a GHF map of Greenland that we argue is within ˜15% accuracy. The main features of our predicted GHF map include a large region with high GHF in central-north Greenland surrounding the NorthGRIP ice core site, and hot spots in the Jakobshavn Isbræ catchment, upstream of Petermann Gletscher, and near the terminus of Nioghalvfjerdsfjorden glacier. Our model also captures the trajectory of Greenland movement over the Icelandic plume by predicting a stripe of elevated GHF in central-east Greenland. Finally, we show that our model can produce substantially more accurate predictions if additional measurements of GHF in Greenland are provided.

  9. Geopressured well project Sweet Lake, Cameron Parish, Louisiana. Final report Feb 80-Sep 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, K.S.

    1983-01-01

    The Sweet Lake geopressured-geothermal test well(Magma Gulf-Technadril/DOE Amoco Fee 1) was drilled in Cameron Parish, Louisiana under a Department of Energy contract. The primary purpose was to demonstrate technological and economic recovery of the geopressured-geothermal resource. The Gas Research Institute funded ancillary work in mud logging, micropaleontology, organic geochemistry, rock mechanics, and core analysis. The well was perforated in the upper Frio Miogypsinoides sand, at a depth of 15,387-15,414 feet. Mud logging and micropaleontology were used to monitor stratigraphic position during the drilling of the well and were particularly important in picking the casing point at the top of themore » Miogypsinoides sand. Several phases of testing have been carried out, including an initial flow test, a reservoir limit test, and long-term (6+ month) testing.« less

  10. Estimation of paleogeothermal gradients and their relationship to timing of petroleum generation, Eagle basin, northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuccio, V.F.; Schenk, C.J.

    1988-01-01

    Lopatin time-temperature index (TTI) modeling of three locations in the Eagle basin, northwestern Colorado, where vitrinite reflectance (R/sub m/) profiles were obtained, shows that paleogeothermal gradients and the timing of oil generation in the Belden Formation (Pennsylvanian) varied due to differing thickness of the Pennsylvanian section across the basin. At the Gilman location, where the Pennsylvanian section is thickest (7,900 ft or 2,408 m), two paleogeothermal gradient models were generated that match the average 3.70% R/sub m/ and the corresponding TTI value between 40,000 and 50,000. The first model assumes a constant geothermal gradient of 2.4/sup 0/F/100 ft (43.8/sup 0/C/km),more » which places the oil window between 270 and 230 Ma. The second model assumes a changing paleogeothermal gradient of 2.80/sup 0/F/100 ft (51/sup 0/C/km), from 320 to 265 Ma and 2.20/sup 0/F/100 ft (40.2/sup 0/C/km) from 265 Ma to present, which places the oil window between 275 and 250 Ma. For the Glenwood location, where the Pennsylvanian section is 4,960 ft (1,512 m), a constant paleogeothermal gradient of 1.80/sup 0/F/100 ft (32.9/sup 0/C/km) works the best in correlating the 2.50% R/sub m/ with the corresponding TTI value of approximately 2,700. Using this gradient, the oil window falls between 175 and 75 Ma.« less

  11. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    DOE PAGES

    Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...

    2015-10-30

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less

  12. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  13. Plate deformation at depth under northern California: Slab gap or stretched slab?

    USGS Publications Warehouse

    ten Brink, Uri S.; Shimizu, N.; Molzer, P.C.

    1999-01-01

    Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.

  14. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  15. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nestedmore » caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which explicitly accounts for boiling, mixing, and CO2 degassing. RTEst modeling results indicate that the well water samples are mixed with up to 75% of the near surface groundwater. Relatively, Ca-(Mg)-HCO3 type water samples are more diluted than the Na-HCO3 type water samples. However, both water types result in similar reservoir temperatures, up to 150 °C. Samples in the vicinity of faults produced higher reservoir temperatures than samples away from the faults. Although both the silica-enthalpy mixing and RTEst models indicated promising geothermal reservoir temperatures, evaluation of the subsurface permeability and extent of the thermal anomaly is needed to define the hydrothermal potential of the Newdale geothermal resource.« less

  16. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  17. Conceptual Model for the Geothermal System of the Wagner Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A.; Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Batista-Cruz, R. Y.; Kretzschmar, T.; Avilés-Esquivel, T. A.; Reyes Ortega, V.; Flores-Luna, C. F.; Gomez-Trevino, E.; Martin, A.; Constable, S.

    2017-12-01

    Cerro Prieto in northwestern Mexico is one of the biggest geothermal plants in the world. Cerro Prieto sits in the Gulf of California rift system, which consists of a series of spreading centers and transform faults. The aim of this study is to evaluate the geothermal potential of the nearby offshore Wagner basin. To this end, we acquired and analyzed a set of different methods, such as reflection seismics, heat flow, magnetotelluric and controlled source electromagnetics, hydrogeochemistry and echosounder. Seismic reflection data show that the Wagner basin is a semi-graben, A profile crossing it shows numerous closely spaced faults, particularly in its eastern part. We found very high heat flow values, in excess of 1000 mW/m2, and large variability on the eastern flank of the Wagner basin, whereas there are more consistent and much lower values across the central and western parts. The high and variable heat flow values are suggestive of advective heat transfer We collected cores and interstitial water samples. The hydrogeochemistry analyses show that in the cores recovered from high heat flow areas, the relations bromide/choride and bromide/sulfide are clearly different from sea water. In contrast, those relations were close to sea water in areas with low heat flow. Similarly, the isotope relations such as 2H/18O show a similar pattern, further indicating the groundwater origin of the interstitial water found in high heat flow zones. In the magnetoteluric measurements we found the presence of a deep conductor that is located approximately under the basin center, extends from the base of the crust to depths of about 40 km, and dips toward the NE. This conductor is probably related to the heat source of the geothermal system. Active source electromagnetics show the presence of shallow conductors that correlate with the faults visible in the seismic sections. There are two distinct conductors, one in the eastern flank and another in the western flank of the basin. The echosounder data and previous studies support the presence of fluid discharge, focused specially in the eastern part of the basin. According to our results, there is recharge in the western part of the basin, a deep heat source beneath the basin, related to the rift process, and groundwater discharge in the eastern part of the basin, channeled by closely spaced faults.

  18. Microbial Community Biofabrics in a Geothermal Mine Adit▿ †

    PubMed Central

    Spear, John R.; Barton, Hazel A.; Robertson, Charles E.; Francis, Christopher A.; Pace, Norman R.

    2007-01-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50°C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50°C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments. PMID:17693567

  19. Solidus of carbonated fertile peridotite under fluid-saturated conditions

    NASA Astrophysics Data System (ADS)

    Falloon, Trevor J.; Green, David H.

    1990-03-01

    The solidus for a fertile peridotite composition ("Hawaiian pyrolite") in the presence of a CO2-H2O fluid phase has been determined from 10 to 35 kbar. The intersection of the decarbonation reaction (olivine + diopside + CO2 ←→ orthopyroxene + dolomite) with the pyrolite solidus defines the point Q‧, located at 22 kbar and 940 °C. At pressures less than Q‧, the solidus passes through a temperature maximum at 14 kbar, 1060 °C. The solidus is coincident with amphibole breakdown at pressures less than 16 kbar. At pressures above Q‧, the solidus is defined by the dissolution of crystalline carbonate into a sodic, dolomitic carbonatite melt. The solidus is at a temperature of 925 °C at ˜28 kbar. The solidus temperature above the point Q‧ is similar to the solidus determined for Hawaiian pyrolite-H2O-CO2 for small contents of H2O (<0.3 wt%) and CO2 (<5 wt%), thus indicating that the primary sodic dolomitic carbonatite melt at both solidi has a very low and limited H2O solubility. The new data clarify the roles of carbonatite melt, carbonated silicate melt, and H2O-rich fluid in mantle conditions that are relatively oxidized (fO2 ˜ MW to FMQ). In particular, a carbonatite melt + garnet lherzolite region is intersected by continental shield geothermal gradients, but such geotherms only intersect regions with carbonated silicate melt if perturbed to higher temperatures ("kinked geotherm").

  20. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  1. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane, are late Cretaceous metamorphic supracrustal rocks.

  2. The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse.

    PubMed

    Tota-Maharaj, K; Scholz, M; Ahmed, T; French, C; Pagaling, E

    2010-12-14

    The use of permeable pavement systems with integrated geothermal heat pumps for the treatment and recycling of urban runoff is novel and timely. This study assesses the efficiency of the combined technology for controlled indoor and uncontrolled outdoor experimental rigs. Water quality parameters such as biochemical oxygen demand, nutrients, total viable heterotrophic bacteria and total coliforms were tested before and after treatment in both rigs. The water borne bacterial community genomic deoxyribonucleic acid (DNA) was analyzed by polymerase chain reaction (PCR) amplification followed by denaturing gradient gel electrophoresis (DGGE) and was further confirmed by DNA sequencing techniques. Despite the relatively high temperatures in the indirectly heated sub-base of the pavement, potentially pathogenic organisms such as Salmonella spp., Escherichia coli, faecal Streptococci and Legionella were not detected. Moreover, mean removal rates of 99% for biochemical oxygen demand, 97% for ammonia-nitrogen and 95% for orthophosphate-phosphates were recorded. This research also supports decision-makers in assessing public health risks based on qualitative molecular microbiological data associated with the recycling of treated urban runoff.

  3. The rapid cooling of the Nansha Block, southern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, M.; Zhang, J.

    2017-12-01

    Since the Late Cretaceous and Cenozoic, the Nansha Block has experienced a series of tectonic process and separated from South China continent to the south. As an exotic micro-continental, Nansha Block has an obvious different lithospheric rheology property from surrounding region. The lithosphere and mantle dynamic and rheology are mainly controlled by temperature. Therefore, we calculated the 3D temperature field and geothermal gradient of Nansha Block's upper mantle by using the S-wave velocity structure from surface wave tomography. The results show that the depth where temperature of 1300° as the lithospheric thickness is in close correspondence with the top of the seismic low velocity zone. The temperature of the upper mantle in Nansha Block is significantly lower than that of surrounding. It implies that Nansha Block experienced a rapid cooling event. We propose that the rapid cooling can be partly attributed to three reasons: 1) Nansha Block is a relatively stable block with no interior geothermal activity. 2) No external heat source to provide energy. 3) Abnormal mantle convection under Nansha Block accelerated the cooling.

  4. Parametric Analysis of the feasibility of low-temperature geothermal heat recovery in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Caulk, R.

    2016-12-01

    The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.

  5. Radon and ammonia transects across the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less

  6. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    PubMed

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Heat flow and thermal history of the Anadarko basin, Oklahoma

    USGS Publications Warehouse

    Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.

    1998-01-01

    New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.

  8. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    PubMed

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C

    2017-02-17

    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of radiant heat on head temperature gradient in term infants.

    PubMed Central

    Gunn, A. J.; Gunn, T. R.

    1996-01-01

    AIMS: To test the hypothesis that external radiant heating might lead to significant fluctuations in superficial and core head temperatures in newborn infants. METHODS: In an observation group of 14 term infants nursed under a radiant heater, servo-controlled to the abdominal skin, changes in rectal, core head, and scalp temperatures with heater activation were examined. In a further intervention group of six infants the effect of a reflective head shield on the fluctuations of scalp temperature was also tested. RESULTS: In the observation group, when the heater had been off for 30 minutes, the rectal and scalp temperatures were 36.7 (SD 0.6) and 35.6 (0.6) degrees C, respectively, a difference of 1.2 (0.2) degrees C. After 30 minutes with the radiant heater on this fell to 0.2 (0.5) degrees C. The core head temperature, however, remained similar to the rectal temperature throughout. In the intervention group a reflective shield prevented the loss of the rectal-scalp gradient. CONCLUSION: Overhead heater activation is associated with loss of the core to scalp temperature gradient, but no change in core head temperature in term infants. The clinical relevance of this superficial heating in vulnerable infants warrants further study. PMID:8777685

  10. Geothermal prospection in the Greater Geneva Basin (Switzerland and France). Impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments

    NASA Astrophysics Data System (ADS)

    Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias

    2017-04-01

    Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri-reefal depositional environments in association with porous dolomitized intervals (Rusilloon et al., 2017). The work presented here will help to constrain and quantify reservoir heterogeneities in a complex reservoir and to provide insights into porosity and permeability distribution that will ultimately help in reservoir modeling, a crucial step for further possible exploitation. Brentini et al. 2017: Geothermal prospection in the Greater Geneva Basin: integration of geological data in the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Clerc et al. 2016: Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Rusillon et al., 2017: Geothermal prospection in the Greater Geneva Basin (Switzerland and France): structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria.

  11. Numerical Simulation of Convective Heat and Mass Transfer in a Two-Layer System

    NASA Astrophysics Data System (ADS)

    Myznikova, B. I.; Kazaryan, V. A.; Tarunin, E. L.; Wertgeim, I. I.

    The results are presented of mathematical and computer modeling of natural convection in the “liquid-gas” two-layer system, filling a vertical cylinder surrounded by solid heat conductive tract. The model describes approximately the conjugate heat and mass transfer in the underground oil product storage, filled partially by a hydrocarbon liquid, with natural gas layer above the liquid surface. The geothermal gradient in a rock mass gives rise to the intensive convection in the liquid-gas system. The consideration is worked out for laminar flows, laminar-turbulent transitional regimes, and developed turbulent flows.

  12. Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from mount hood, Oregon

    USGS Publications Warehouse

    Nathenson, Menuel; Tilling, Robert I.; ,

    1993-01-01

    A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.

  13. Melting relations in the iron-sulfur system at ultra-high pressures - Implications for the thermal state of the earth

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond

    1990-01-01

    The melting temperatures of FeS-troilite and of a 10-wt-pct sulfur iron alloy have been measured to pressures of 120 and 90 GPa, respectively. The results document that FeS melts at a temperature of 4100 (+ or - 300) K at the pressure of the core-mantle boundary. Eutecticlike behavior persists in the iron-sulfur system to the highest pressures of measurements, in marked contrast to the solid-solutionlike behavior observed at high pressures in the iron-iron oxide system. Iron with 10-wt-pct sulfur melts at a similar temperature as FeS at core-mantle boundary conditions. If the sole alloying elements of iron within the core are sulfur and oxygen and the outer core is entirely liquid, the minimum temperature at the top of the outer core is 4900 (+ or - 400) K. Calculations of mantle geotherms dictate that there must be a temperature increase of between 1000 and 2000 K across thermal boundary layers within the mantle. If D-double-prime is compositionally stratified, it could accommodate the bulk of this temperature jump.

  14. Inverse geothermal modelling applied to Danish sedimentary basins

    NASA Astrophysics Data System (ADS)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50 °C, at 1000-1500 m depth, to ca. 80-110 °C, at 2500-3500 m, however, at the deeper parts, most likely, with too low permeability for non-stimulated production.

  15. Inferring lateral density variations in Great Geneva Basin, western Switzerland from wells and gravity data.

    NASA Astrophysics Data System (ADS)

    Carrier, Aurore; Lupi, Matteo; Clerc, Nicolas; Rusillon, Elme; Do Couto, Damien

    2017-04-01

    In the framework of sustainable energy development Switzerland supports the growth of renewable energies. SIG (Services Industriels de Genève) and the Canton of Geneva intend to develop the use of hydrothermal energy in western Switzerland. As a Mesozoïc-formed sedimentary basin, the Great Geneva Basin (GGB) shares geological and petrophysical similarities with the Munich area (Baviera, Germany) and Paris Basin (France). The latter already provide significant amounts of geothermal energy for district heating. The prospection phase has been launched in 2014 by SIG and aims at identifying relevant geological units and defining their geometries. Lower Cretaceous and Tertiary geological units have first been targeted as potential layers. At the depth we find these units (and according to the normal geothermal gradient), low enthalpy geothermal resources are rather expected. In this framework, our study aims at constraining and refining lateral and vertical heterogeneities of Quaternary to Cretaceous sedimentary layers in GGB. Linear velocity law is inverted at wells and then interpolated to the whole basin for each geological layer. Using time pickings from available data and Quaternary information from previous studies time to depth conversion is performed. Thickness map of every geological unit is then produced. Tertiary thickness ranges from 0 m at the NW border of the GGB at the foothill of the Jura Mountains to 3000 m in the SE of the GGB at the border with the French Alps. These observations are consistent with field and well observations. The produced thickness map will be used as a geometry support for gravity data inversion and then density lateral variations estimation. Unconstrained, and a priori constrained inversion has been performed in GGB using Gauss-Newton algorithms. Velocity versus density relationships will then enable to refine velocity law interpolation. Our procedure allowed us to reduce the uncertainty of key target formation and represents an important step towards the development of geothermal energy in the Great Geneva Basin.

  16. Magnetic field gradients and their uses in the study of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  17. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    NASA Astrophysics Data System (ADS)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  18. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  19. Solving the riddle of interglacial temperatures over the last 1.5 million years with a future IPICS "Oldest Ice" ice core

    NASA Astrophysics Data System (ADS)

    Fischer, Hubertus

    2014-05-01

    The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this time period in Antarctica, is not an easy task. Based on a simple ice and heat flow model and glaciological observations (Fischer et al., Climate of the Past, 2013), we conclude that sites in the vicinity of major domes and saddle positions on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, significantly reduced ice thickness is required to avoid bottom melting. The most critical parameter is the largely unknown geothermal heat flux at the bottom of the ice sheet. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 My old ice. If sites with lower geothermal heat flux can be found, also a higher ice thickness is allowed, alleviating the problem of potential flow disturbances in the bottom-most ice to affect a 1.5 Myr climate record.

  20. Content Model Use and Development to Redeem Thin Section Records

    NASA Astrophysics Data System (ADS)

    Hills, D. J.

    2014-12-01

    The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources located primarily within the United States. The goal of NGDS is to make large quantities of geothermal-relevant geoscience data available to the public by creating a national, sustainable, distributed, and interoperable network of data providers. The Geological Survey of Alabama (GSA) has been a data provider in the initial phase of NGDS. One method by which NGDS facilitates interoperability is through the use of content models. Content models provide a schema (structure) for submitted data. Schemas dictate where and how data should be entered. Content models use templates that simplify data formatting to expedite use by data providers. These methodologies implemented by NGDS can extend beyond geothermal data to all geoscience data. The GSA, using the NGDS physical samples content model, has tested and refined a content model for thin sections and thin section photos. Countless thin sections have been taken from oil and gas well cores housed at the GSA, and many of those thin sections have related photomicrographs. Record keeping for these thin sections has been scattered at best, and it is critical to capture their metadata while the content creators are still available. A next step will be to register the GSA's thin sections with SESAR (System for Earth Sample Registration) and assign an IGSN (International Geo Sample Number) to each thin section. Additionally, the thin section records will be linked to the GSA's online record database. When complete, the GSA's thin sections will be more readily discoverable and have greater interoperability. Moving forward, the GSA is implementing use of NGDS-like content models and registration with SESAR and IGSN to improve collection maintenance and management of additional physical samples.

  1. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  2. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  3. Evaluation of stator core loss of high speed motor by using thermography camera

    NASA Astrophysics Data System (ADS)

    Sato, Takeru; Enokizono, Masato

    2018-04-01

    In order to design a high-efficiency motor, the iron loss that is generated in the motor should be reduced. The iron loss of the motor is generated in a stator core that is produced with an electrical steel sheet. The iron loss characteristics of the stator core and the electrical steel sheet are agreed due to a building factor. To evaluate the iron loss of the motor, the iron loss of the stator core should be measured more accurately. Thus, we proposed the method of the iron loss evaluation of the stator core by using a stator model core. This stator model core has been applied to the surface mounted permanent magnet (PM) motors without windings. By rotate the permanent magnet rotor, the rotating magnetic field is generated in the stator core like a motor under driving. To evaluate the iron loss of the stator model core, the iron loss of the stator core can be evaluated. Also, the iron loss can be calculated by a temperature gradient. When the temperature gradient is measured by using thermography camera, the iron loss of entire stator core can be evaluated as the iron loss distribution. In this paper, the usefulness of the iron loss evaluation method by using the stator model core is shown by the simulation with FEM and the heat measurement with thermography camera.

  4. Measurement of geothermal flux through poorly consolidated sediments

    USGS Publications Warehouse

    Sass, J.H.; Munroe, R.J.; Lachenbruch, A.H.

    1968-01-01

    In many regions, crystalline rocks are covered by hundreds of meters of unconsolidated and poorly consolidated sediments. Estimates of heat flux within these sediments using standard continental techniques (temperature and conductivity measurements at intervals of 10 to 30 meters) are unreliable, mainly because of the difficulty in obtaining and preserving representative lengths of core. However, it is sometimes feasible to use what amounts to an oceanographic technique by making closely spaced temperature and conductivity measurements within short cored intervals. This is demonstrated in a borehole at Menlo Park, California (37??27???N, 122??10???W, elevation 16 meters), where heat flows determined over 12 separate 1-meter intervls al lie within 10% of their mean value; 2.2 ??cal/cm2 sec. ?? 1968.

  5. Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manske, M.C.

    1996-08-01

    The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less

  6. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    PubMed

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    NASA Astrophysics Data System (ADS)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  8. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock.

    PubMed

    Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

    2003-06-01

    The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.

  9. Earth's first stable continents did not form by subduction.

    PubMed

    Johnson, Tim E; Brown, Michael; Gardiner, Nicholas J; Kirkland, Christopher L; Smithies, R Hugh

    2017-03-09

    The geodynamic environment in which Earth's first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have 'arc-like' signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today's. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG 'parents', and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents-coupled with the high geothermal gradients-is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  10. Microbial Community Stratification Controlled by the Subseafloor Fluid Flow and Geothermal Gradient at the Iheya North Hydrothermal Field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)

    PubMed Central

    Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-01-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666

  11. Vertical distribution of potentially toxic elements in sediments impacted by intertidal geothermal hot springs (Bahia Concepcion, Gulf of California)

    NASA Astrophysics Data System (ADS)

    Leal-Acosta, M. L.; Shumilin, E.

    2016-12-01

    The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core. 1 Wedephol (1995)

  12. Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1-xS1-y quantum dots.

    PubMed

    Abdellah, Mohamed; Poulsen, Felipe; Zhu, Qiushi; Zhu, Nan; Žídek, Karel; Chábera, Pavel; Corti, Annamaria; Hansen, Thorsten; Chi, Qijin; Canton, Sophie E; Zheng, Kaibo; Pullerits, Tõnu

    2017-08-31

    Ultrafast fluorescence spectroscopy was used to investigate the hole injection in Cd x Se y Zn 1-x S 1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrödinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.

  13. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.

  14. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  15. Estimates of the temperatures of hydrocarbon generation in the region of the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Berlin, Yu. M.; Kononov, M. V.; Marina, M. M.

    2006-07-01

    Particular features of the tectonic structure and anomalous distribution of the geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, the ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. The age of the South Okhotsk Basin is confirmed by the data on the kinematics and corresponds to a 50-km thickness of the lithosphere. This is in accordance with the thickness value obtained by magnetotelluric soundings. A comparative analysis of the model geothermal background and the measured heat flow values on the Akademii Nauk Rise is performed. The analysis points to an abnormally high (by approximately 20%) measured heat flow, which agrees with the high negative gradient of gravity anomalies. The estimates of the deep heat flow and the basement age of the riftogenic basins in the Sea of Okhotsk were carried out in the following areas: the Deryugin Basin (18 Ma, Early Miocene), the TINRO Basin (12 Ma, Middle Miocene), and the West Kamchatka Basin (23 Ma, Late Oligocene). The temperatures at the boundaries of the main lithological complexes of the sedimentary cover are calculated and the zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data, a kinematic model of the region of the Sea of Okhotsk for a period of 36 Ma was calculated and constructed.

  16. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    PubMed Central

    Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870

  17. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating.

    PubMed

    Daebeler, Anne; Abell, Guy C J; Bodelier, Paul L E; Bodrossy, Levente; Frampton, Dion M F; Hefting, Mariet M; Laanbroek, Hendrikus J

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  18. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  19. Geothermal Maps | Geospatial Data Science | NREL

    Science.gov Websites

    presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps

  20. Basics of applied geothermal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1976-01-01

    The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)

Top