Science.gov

Sample records for geothermal project environmental

  1. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  2. Environmental Report Utah State Prison Geothermal Project

    SciTech Connect

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  3. Environmental Assessment: geothermal direct heat project, Marlin, Texas

    SciTech Connect

    Not Available

    1980-08-01

    The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

  4. Newberry Geothermal Pilot Project : Final Environmental Impact Statement.

    SciTech Connect

    US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

    1994-09-01

    BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

  5. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  6. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures

  7. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    SciTech Connect

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support

  8. Middlesex Community College Geothermal Project

    SciTech Connect

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  9. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  10. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    SciTech Connect

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  11. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    SciTech Connect

    Goff, S.J.

    2000-05-28

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  12. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    SciTech Connect

    N /A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  14. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    SciTech Connect

    1999-02-01

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  15. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  16. Environmental assessment for a geothermal direct utilization project in Reno, Nevada

    SciTech Connect

    Perino, J.V.; McCloskey, M.H.; Wolterink, T.J.; Wallace, R.C.; Baker, D.W.; Harper, D.L.; Anderson, D.T.; Siteman, J.V.; Sherrill, K.T.

    1980-08-20

    The proposed action involves the development of geothermal wells to provide hot water and heat for five users in Reno, Nevada. Data from nearby wells indicate the sufficient hot water is available from the Moana Known Geothermal Resource Area for this action. Construction activities have been planned to minimize or eliminate problems with noise, runoff, and disturbance of biota as well as other potential environmental effects. Disposal of the geothermal fluids via surface water or injection will be determined based on water quality of the geothermal fluids and geologic effects of injection. The affected environment is described by this document and needed mitigation procedures discussed.

  17. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  18. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  19. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem.

    PubMed

    Inskeep, William P; Jay, Zackary J; Tringe, Susannah G; Herrgård, Markus J; Rusch, Douglas B

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) "filamentous streamer" communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  20. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.; Herrgård, Markus J.; Rusch, Douglas B.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments. PMID:23653623

  1. Retrospective examination of geothermal environmental assessments

    SciTech Connect

    Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

    1984-03-01

    Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

  2. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing

  3. Boise geothermal injection well: Final environmental assessment

    SciTech Connect

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  4. Environmental problems and geothermal permitting

    SciTech Connect

    Windrem, P.F.; Marr, G.L.

    1982-01-01

    This paper describes the stages of geothermal development, the attendant environmental hazards, and the jurisdictions of the various government agencies. Most examples of environmental hazards are drawn from the electric-power production in the geysers of northern California. The major enviromental effects of geothermal development are observed on air quality (including noise), land (including soil erosion, seismic activity and subsidence, wildlife habitat, and visual quality), and water quality. Ownership determines which agencies have jurisdiction, with the preparation of an environmental impact statement at the heart of the federal regulatory process and an environmental-impact report required at the state level. Environmental rules also cover power-plant construction and geothermal field abandonment. 58 references.

  5. Engineered Geothermal System Demonstration Project

    SciTech Connect

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  6. INEL Geothermal Environmental Program. Final environmental report

    SciTech Connect

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

  7. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  8. Colorado State Capitol Geothermal project

    SciTech Connect

    Shepherd, Lance

    2016-04-29

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  9. Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report

    SciTech Connect

    Not Available

    1981-08-01

    The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

  10. Environmental overview of geothermal development: northern Nevada

    SciTech Connect

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A.

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  11. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or

  12. Time frames for geothermal project development

    SciTech Connect

    McClain, David W.

    2001-04-17

    Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

  13. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  14. INEL Geothermal Environmental Program. 1979 annual report

    SciTech Connect

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  15. Session 9: Heber Geothermal Binary Demonstration Project

    SciTech Connect

    Allen, Richard F.; Nelson, Tiffany T.

    1983-12-01

    The Heber Binary Project had its beginning in studies performed for the Electric Power Research Institute (EPRI), which identified the need for commercial scale (50 Mw or larger) demonstration of the binary cycle technology. In late 1980, SDG&E and the Department of Energy (DOE) signed a Cooperative Agreement calling for DOE to share in 50 percent of the Project costs. Similarly, SDG&E signed Project participation agreements with EPRI, the Imperial Irrigation District, California Department of Water Resources, and Southern California Edison Company, which provided the remaining 50 percent of the required funding. In 1982, the State of California also joined the Project. The objectives of the Heber Binary Project are to demonstrate the potential of moderate-temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology, and to establish schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants. The plant will be the first large-scale power generating facility in the world utilizing the binary conversion process, and it is expected that information resulting from this Project will be applicable to a wide range of moderate-temperature hydrothermal reservoirs, which represent 80 percent of geothermal resources in the United States. To accomplish the plant engineering, design, and equipment procurement, SDG&E has hired Fluor Engineers, Inc., Power Division, of Irvine, California. In early 1982, SDG&E contracted for construction management services with Dravo Constructors, Inc. (DCI) of New York. DCI is responsible for casting the Fluor design into construction packages, letting the construction contracts, and overseeing the construction in the field.

  16. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969

    SciTech Connect

    Levine, Aaron; Young, Katherine

    2014-10-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration.

  17. INEL geothermal environmental program. 1980 annual report

    SciTech Connect

    Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

    1981-04-01

    An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

  18. Honey Lake hybrid geothermal wood residue power project

    SciTech Connect

    Toland, J.

    1981-05-01

    The Honey Lake Hybrid Geothermal Wood Residue Power Project with a planned output of 50 MW is undergoing feasibility studies funded by GeoProducts Corporation, Department of Water Resources, State of California, US Department of Energy and the Forest Service, USDA. The outlook is optimistic. It is reliably estimated that the required volume of woody biomass can be made available without environmental degradation.

  19. Projected Geothermal Energy Development in Canada

    SciTech Connect

    Souther, Jack G.

    1980-12-01

    A systematic evaluation of geothermal energy resources in Canada was begun in 1973 with the compilation of an inventory of thermal springs and young igneous centres (11) and a study of the thermal regime of the Central Canada Plains (15). The status of this work is still very preliminary. The nature, distribution and grade of the geothermal resource-base can be estimated within reasonable limits but the impact of future economic and political constraints, and the rate of development of new conversion technologies are more difficult to forecast. Thus, projections of geothermal energy development in Canada are necessarily less precise than estimate of the resource-base.

  20. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  1. Environmental control technology (ECT) for geothermal processes

    SciTech Connect

    Katz, G.

    1982-01-01

    The objectives of the environmental control technology (ECT) program are to develop research priorities, research new and alternative technologies and to improve economics and performance of ECT systems. The Interagency Geothermal Coordinating Council, Environmental Control Panel developed priorities and obtained industry input during 1980. H/sub 2/S controls, injection monitoring, solid waste characterization and control and subsidence were reviewed as high priority while noise controls were considered low priority. Since geothermal technology is still developing there is a need to continue researching new and alternative ECT. Often ECT systems must be designed for site specific applications and need modification for use of other sites. Most of the US geothermal experience is found at the Geysers, California where H/sub 2/S abatement is required. Various systems have been tested with mixed results. The bottom line is that the economics and performance of H/sub 2/S abatement systems are less than desirable.

  2. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  3. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  4. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  5. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  6. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  7. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  8. Geothermal Mill Redevelopment Project in Massachusetts

    SciTech Connect

    Vale, A.Q.

    2009-03-17

    Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (“DOE”) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

  9. Heber Geothermal Binary Demonstration Project

    SciTech Connect

    Allen, R.F.; Nelson, T.T.

    1983-12-01

    The project background and objectives are discussed. The following are described: the power cycle, design progress, turbine generators; heat exchangers and condensers, materials selection, heat sales contract, and construction. (MHR)

  10. The first geothermal power generation project by Enhanced Geothermal System (EGS) in Korea

    NASA Astrophysics Data System (ADS)

    Jong Lee, Tae; Song, Yoonho; Yoon, Woon-Sang

    2013-04-01

    Though Korea does not have high-enthalpy geothermal resources from volcanic sources, it still has huge amount of geothermal resources at depth; i.e. technical geothermal potential of 19.6 GWe within 6.5 km deep by enhanced geothermal system (EGS) technologies. The first proof of concept project for geothermal power generation by EGS has started in Pohang, Korea in Dec. 2010. The project aims to develop a pilot geothermal power plant of 1 MW or more of installed capacity from a doublet EGS system in 5 years. This work summarizes our two years efforts including geological/geophysical surveys, site selection, civil engineering, permission for drilling, setting up the drill rig, and setting up the micro-seismic network and monitoring. At the end of Dec. 2012, drilling reached down to 2,250 m deep. Results of borehole investigation will be also discussed about.

  11. Technical-economic studies of geothermal projects: the Djibouti case

    SciTech Connect

    Abdallah, A.; Gandino, A.; Sommaruga, C.

    1985-01-01

    Geothermal exploitation projects require very high initial investments and a relatively long recovery time. Before financing a project, a study must be made to determine its feasibility from technical and economic point of view. A study of this type performed in the Republic of Djibouti has demonstrated that a geothermal project for power production offers numerous economic advantages. Estimates have been made of the production cost of conventional power (diesel oil) and of geothermal power, based on the results o recent geothermal exploration in this country and on the current economic situation. Production costs hav been compared and an analysis performed on the economic feasibility of a geothermal program, including deep well drilling, installation of a 20 MW power plant and transmission line for production in Djibouti City of 130 GWh/year over a 25 year period. An evaluation has also been made of the prospects for integrated geothermal development (agriculture, stock breeding, mineral resources and hydrothermalism).

  12. Honey Lake Geothermal Project, Lassen County, California. Final technical report

    SciTech Connect

    Not Available

    1984-11-01

    This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

  13. Geothermal policy project. Quarterly report, March 1-May 30, 1980

    SciTech Connect

    Connor, T.D.

    1980-06-01

    Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

  14. Geothermal R&D Program FY 1988 Project Summaries

    SciTech Connect

    1988-10-01

    This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

  15. Geothermal heating demonstration project at Mammoth Lakes Village. Final report

    SciTech Connect

    Sims, A.V.; Campbell, R.G.

    1980-03-01

    A pilot project is described which demonstrated the feasibility of using geothermal energy for space heating and snow-melting at the Casa Diablo geothermal reservoir near Mammoth Lakes Village, California. The geothermal heating system employed was modeled after the geothermal district heating system used extensively in Iceland. The geothermal heating system incorporated a closed secondary heating loop (Iceland's system uses the geothermal fluids directly) to provide heat to a lumber store, warehouse and display area, and to melt snow on a connecting walkway between the buildings. The secondary loop, containing a mixture of fresh water and ethylene glycol, was heated by geothermal fluids produced from a nearby well. After passing through a heat exchanger, the cooled geothermal fluids were reinjected down another well. The heating system operated for three different periods, and the project concluded after a successful, long-term demonstration of well pump and heating system operation. Pump problems encountered early in the project were solved, and information gained in the final operation period indicated that reliable, extended periods of well pump operation can be achieved. The hydronic heaters effectively heated buildings, and the snow-melting walkway performed very well during winter operation.

  16. Meager Creek geothermal project: Final report

    SciTech Connect

    Stauder, J.; Hunt, J. W.

    1987-04-01

    A fracture-dominated geothermal resource with temperatures in excess of 195/sup 0/C (383/sup 0/F) has been identified in the south reservoir area of the Meager Creek Project, 200 km north of Vancouver in British Columbia, Canada Geothermal fluids were intersected in each of three deep exploratory wells drilled in 1981 and 1982. Low flow rates indicated low permeability of the producing zones tested in the wells. A steam generator and a 20-kWe steam turbine-generator module were installed at well MC-1 and were operated during a 6-month period. The liquid flowrate at the wellhead was approximately 57,000 pounds per hour (26 tonnes/hour or 7.2 kg/sec) with a surface temperature of 125/sup 0/C (257/sup 0/F). Turbine performance was measured at 32 to 37 psia (220 to 255 kPa) inlet steam pressure, with exhaust to the atmosphere at 13 psia (90 kPa). B.C. Hydro's downwell temperature measurements and geochemical thermometry analyses are presented, along with results from the turbine testing. Results indicate a production zone at about 1600 m (5300 ft.) with a temperature of 195/sup 0/C (383/sup 0/F), an unproduced zone below 3000 m (10,000 ft.) with temperature approximately 240/sup 0/C (460/sup 0/F), and steam turbine performance measured at 60% of the isentropic efficiency and interpreted to be equivalent to achieving about 75% efficiency with a 20-kWe steam turbine optimized for the service.

  17. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  18. 76 FR 21329 - Humboldt-Toiyabe National Forest; Nevada; Environmental Impact Statement for Geothermal Leasing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ...The Humboldt-Toiyabe National Forest (HTNF) will prepare an environmental impact statement (EIS) to evaluate certain National Forest System (NFS) lands for geothermal leasing availability. The project area includes NFS lands on the HTNF in Douglas, Lyon, Mineral, Lander, Nye and White Pine County,...

  19. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    SciTech Connect

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  20. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    SciTech Connect

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  1. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  2. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  3. Status of Environmental Controls for Geothermal Energy Development

    SciTech Connect

    Caskey, John F.

    1980-05-01

    This report presents the initial findings and recommendations of the Environmental Controls Panel to the Interagency Geothermal Coordinating Council (IGCC). The Panel has been charged to assess the adequacy of existing environmental controls for geothermal energy systems, to review ongoing programs to develop environmental controls, and to identify controls-related research areas where redirection of federal efforts are appropriate to assure the availability of controls on a timely basis. In its deliberations, the Panel placed greatest emphasis on the use of geothermal resources for electricity generation, the application of geothermal energy receiving greatest attention today. The Panel discussed major known environmental concerns and their potential impact on the commercialization of geothermal resources, control options, regulatory considerations, and ongoing and planned research programs. The environmental concerns reviewed in this report include: air emissions, liquid discharges, solid wastes, noise, subsidence, seismicity, and hydrological alterations. For each of these concerns a brief description of the concern, associated legislation and regulations, control approaches, federal funding trend, and the Panel's recommendations and priorities are presented. In short, the Panel recommends that controls-related research efforts be rebalanced and enhanced, with the greatest emphasis placed on controls for hydrogen sulfide (H{sub 2}S) and non-H{sub 2}S gaseous emissions, injection monitoring methods, systems to treat and use nongeothermal waters for environmental control purposes, solid waste characterization and management methods evaluation, and subsidence controls.

  4. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  5. National Conference of State Legislatures Geothermal Project. Final report, February 1978--September 1982

    SciTech Connect

    1983-01-31

    The principal objectives of the NCSL Geothermal Project was to stimulate and assist state legislative action to encourage the efficient development of geothermal resources, including the use of groundwater heat pumps. The project had the following work tasks: (1) initiate state geothermal policy reviews; (2) provide technical assistance to state geothermal policy reviews; (3) serve as liaison with geothermal community; and (4) perform project evaluation.

  6. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  7. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  8. Meager Creek Geothermal Project: preliminary resource evaluation

    SciTech Connect

    Stauder, J.J.; Menzies, A.J.; Harvey, C.C.; Leach, T.M.

    1983-09-01

    A 190-200/sup 0/C geothermal resource has been identified in the Meager Creek Geothermal Area (South Meager, previously called the South Reservoir), British Columbia, Canada, on the basis of surface and near surface exploration and the results of a three well deep drilling exploration program. The geothermal resource appears to be fracture dominated with limited flow capacity. It is associated with the Meager Creek Fault Zone which was encountered by the deep wells at a depth of 1200-1600 meters (400-800 meters below MSL). Temperatures of up to 270/sup 0/C were encountered below the Meager Creek Fault Zone but both petrologic and well testing data indicate that the rock is generally impermeable. The high temperatures at depth appear to be a manifestation of the abnormally high (approximately equal to 90/sup 0/C/km) regional geothermal gradient.

  9. Coso geothermal environmental overview study ecosystem quality

    SciTech Connect

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  10. Environmental Considerations for a Geothermal Development in the Jemez Mountains of Central New Mexico

    SciTech Connect

    Sabo, David G.

    1980-12-01

    The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitor them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.

  11. Mushroom growing project at the Los Humeros, Mexico geothermal field

    SciTech Connect

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  13. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  14. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    SciTech Connect

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  15. The Pawsey Supercomputer geothermal cooling project

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  16. An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project

    SciTech Connect

    1990-03-01

    A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an

  17. Oregon Trail Mushrooms geothermal loan guaranty application, Malheur County, Oregon: Environmental assessment

    SciTech Connect

    Not Available

    1981-05-01

    The action assessed is the guaranty of a loan by the Geothermal Loan Guaranty Office of the US Department of Energy (DOE) to finance the construction and operation of a mushroom-growing facility that will use geothermal (hot) water for process and space heat. The project consists of two separate facilities: a growing facility located just outside of the eastern limit of the city of Vale, Oregon (Malheur County, Oregon) and a composting facility located about 6.4 km (4 miles) southwest of the city limits (also in Malheur County, Oregon). Five test wells have been drilled into the geothermal resource at the growing site. Either well No. 4 or well No. 5 will serve as a production well. All geothermal fluids will be reinjected into the geothermal aquifer, so either well No. 3 will be used for this purpose, wells Nos. 1 and 2 will be deepened, or a new well will be drilled on the site. A cold-water well will be drilled at the growing site, and another will be drilled at the composting site. The environmental effects of the proposed project are not expected to be significant.

  18. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    SciTech Connect

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students also participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.

  19. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  20. Present status of Fang Geothermal Project, Thailand

    SciTech Connect

    Wanakasem, S.; Takabut, K.

    1986-01-01

    Geothermal exploration work in Fang area begun in 1977 when the BRGM and Geowatt of France and EGAT agreed to collaborate on a feasibility study of electric energy production in Fang geothermal area. Twelve exploration wells (FGTE series) and eight slim holes (BH series) have been drilled and produce hot water at 105/sup 0/C, 0.4 bars at a discharge rate of up to 14 l/s. Exploration well testing and the economic study is to be conducted as part of the next cooperation program of AFME and EGAT during late 1985-early 1986. The first 100-300 kWe demonstration plant is planned to be installed by the end of Fiscal Year 1986. The future of the development program depends on the success of this demonstration plant.

  1. Nevada geothermal power plant project approved

    SciTech Connect

    Not Available

    1987-07-01

    A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

  2. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  3. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  4. The drama of Puna: For and against the Hawai'i geothermal project

    NASA Astrophysics Data System (ADS)

    Keyser, William Henry

    The geothermal project was conceived in the context of the international oil business and the economic growth of Hawai'i. From the point of view of the State, the geothermal project is necessary because imported petroleum provides Hawai'i with 911/2 percent of its total energy. That petroleum consists of 140,000 b/d of crude (1990) and it comes from Alaska, Indonesia and a few other suppliers. However, the Alaskan North Slope is beginning to run dry and the Southeast Asian suppliers of crude will be exporting less petroleum as time goes on. Increasingly, Hawai'i will become dependent on "unstable Middle Eastern" suppliers of crude. From this worry about the Middle East, the State seeks indigenous energy to reduce its dependence on petroleum and to support economic growth. Hence, the geothermal project was born after the 1973 oil embargo. The major source of geothermal energy is the Kilauea Volcano on the Big Island. Kilauea is characterized by the Kilauea caldera and a crack in the Island which extends easterly from the caldera to Cape Kumukahi in Puna and southwest to Pahala in Ka'u. The eastern part of the crack is approximately 55 kilometers long and 5 kilometers wide. The geothermal plants will sit on this crack. While the State has promoted the geothermal project with the argument of reducing "dependence" on imported petroleum, it hardly mentions its goal of economic growth. The opponents have resisted the project on the grounds of protecting Pele and Hawaiian gathering rights, protecting the rain forest, and stopping the pollution in the geothermal steam. What the opponents do not mention is their support for economic growth. The opposition to the project suggests a new environmental politics is forming in Hawai'i. Is this true? The dissertation will show that the participants in this drama are involved in a strange dance where each side avoids any recognition of their fundamental agreement on economic growth. Hence the creation of a new environmental

  5. Environmental impacts of open loop geothermal system on groundwater

    NASA Astrophysics Data System (ADS)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  6. Feasibility study of geothermal heating, Modoc Lassen housing project

    SciTech Connect

    Not Available

    1981-11-01

    This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

  7. Parcperdue Geopressure -- Geothermal Project: Appendix E

    SciTech Connect

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

  8. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  9. Geothermal policy project. Quarterly report, September 1, 1980-November 30, 1980

    SciTech Connect

    Not Available

    1981-01-01

    Efforts continued to carry forward policy development in existing project states. Follow-up contacts were made with most project states, and state visits and meetings occurred in eight project states. Several state-specific documents and one background document, geothermal Policies in Selected States, were prepared during this reporting period. In Yakima, Washington, the project cosponsored a geothermal symposium with the Washington State Energy Office, in addition to attending several other geothermal meetings and conferences.

  10. Geothermal Electric Projects from a User's Viewpoint

    SciTech Connect

    Nugent, James M.

    1980-12-01

    The financing of a geothermal power plant has a unique characteristic which is not present with conventional oil, coal, or nuclear power plants and which has slowed development of geothermal resources. That unique characteristic is the increased risk as perceived by utilities, banks and lessors and the unpredictability of those risks as perceived by insurance companies. From a utility company perspective, the increased risk is the potential financial loss to the stockholders in the event the power plant is unable to economically produce electricity due to depletion, scaling or other problems. Such an eventuality could result in the utility having to ''write-off'' the value of the asset and pass the loss onto the stockholders. Banks, lessors and others share these same concerns for their stockholders; thus, are willing to finance power plants only if most of the financial risk is borne by the utility. Retention of financial risk by the utility can take the form of a ''hell or high water'' power purchase contract wherein the utility makes payments even when no power is being produced, or an indemnity agreement with a plant lessor wherein the utility agrees to indemnify the lessor in the event he loses any of the tax or income benefits contemplated, or a credit agreement with a bank or other source of funds wherein the utility company's general credit backs up the obligation. As a result of their perception of increased risk, utilities have been searching for ways to reduce the risk to their stockholders by shifting it either to the taxpayer in the form of a DOE grant or DOE loan guarantee, or the rate-payer in the form of Public Utility Commission (PUC) approvals or other sharing. Other potential methods for reducing risk may entail finding a plant lessor or other entity willing to accept some of the risk in exchange for a higher rate of return obtaining insurance; or some combination of DOE loan guarantee, lease and insurance. No attempt has been made to include the

  11. Potential effects of environmental regulatory procedures on geothermal development

    SciTech Connect

    Beeland, G.V.; Boies, D.B.

    1981-01-01

    The potential effects of several types of applicable environmental regulatory procedures on geothermal development were assessed, and particular problem areas were identified. The possible impact of procedures adopted pursuant to the following Federal statutes were analyzed: Clean Air Act; Clean Water Act; Safe Drinking Water Act; and Resource Conservation and Recovery Act. State regulations applicable, or potentially applicable, to geothermal facilities were also reviewed to determine: permit information requirements; pre-permit air or water quality monitoring requirements; effect of mandated time frames for permit approval; and potential for exemption of small facilities. The regulations of the following states were covered in the review: Alaska; Arizona; California; Colorado; Hawaii; Idaho; Montana; Nevada; New Mexico; Oregon; Utah; Washington; and Wyoming. (MHR)

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  14. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  15. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of

  16. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect

    Matsuoka, J.K; Minerbi, L.; Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury; Trettin, L.D.

    1996-05-01

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  17. Geothermal Energy Development annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  18. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  19. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  20. Health and environmental effects document on geothermal energy: 1981

    SciTech Connect

    Layton, D.W.; Anspaugh, L.R.; O'Banion, K.D.

    1981-12-04

    Several of the important health and environmental risks associated with a reference geothermal industry that produces 21,000 MW/sub e/ for 30 y (equivalent to 20 x 10/sup 18/ J) are assessed. The analyses of health effects focus on the risks associated with exposure to hydrogen sulfide, particulate sulfate, benzene, mercury, and radon in air and arsenic in water. Results indicate that emissions of hydrogen sulfide are likely to cause odor-related problems in geothermal resources areas, assuming that no pollution controls are employed. For individuals living within an 80 km radius of the geothermal resources, chronic exposure to particulate sulfate could result in between 0 to 95 premature deaths per 10/sup 18/ J of electricity generated. The mean population risk of leukemia from the inhalation of benzene was calculated to be 3 x 10/sup -2/ cases per 10/sup 18/ J. Exposure to elemental mercury in the atmosphere could produce between 0 and 8.2 cases of tremors per 10/sup 18/ J of electricity. Inhalation of radon and its short-lived daughters poses a mean population risk of 4.2 x 10/sup -1/ lung cancers per 10/sup 18/ J. Analysis of skin cancer risk from the ingestion of surface water contaminated with geothermally derived arsenic suggests that a dose-response model is inconsistent with data showing that arsenic is an essential element and that excessive body burdens do not appear even when arsenic reaches 100 ..mu..g/liter in drinking water. Estimates of occupational health effects were based on rates of accidental deaths and occupational diseases in surrogate industries. According to calculations, there would be 14 accidental deaths per 10/sup 18/ J of electricity and 340 cases of occupational diseases per 10/sup 18/ J. The analysis of the effects of noncondensing gases on vegetation showed that ambient concentrations of hydrogen sulfide and carbon dioxide are more likely to enhance rather than inhibit the growth of plants.

  1. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  2. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  3. USGS and Engineering and Environmental Division joint compliance monitoring report for Sacramento, CA Municipal Utility District's SMUDGEO No. 1 Geothermal project. Appendix D to final decision

    SciTech Connect

    Not Available

    1981-03-25

    The laws, ordinances, standards, and conditions for designing, constructing, and operating the power plant and related facilities are referenced. In addition, actions, verifications, submittals, and approvals required by the USGS, BLM, and CEC are specified to assure that the facilities are designed, constructed, and operated in compliance with air and water quality, public health and safety, environmental and such other laws, ordinances, and standards specified. (MHR)

  4. Low enthalpy geothermal project in Zambia

    SciTech Connect

    Dominco, E.; Liguori, P.E.

    1986-01-01

    A project financed by the Italian Ministry of Foreign Affairs (MAE), implements the installation of two organic Rankine cycle (ORC) turbogenerators in remote, rural areas of Zambia. The Italian Government grant amounts to 2,000,000 US dollars. The Government of Zambia will bear all costs of the Zambian counterpart and will provide the low voltage transmission line and distribution grid.

  5. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    SciTech Connect

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  6. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  7. Survey of environmental regulations applying to geothermal exploration, development, and use.

    SciTech Connect

    Beeland, G.V.

    1984-03-01

    Federal, State, and local environmental laws and regulations that apply to geothermal energy development are summarized. Most attention is given to those regulations which deal with air pollution, water pollution, solid wastes and impact assessments. Analyses are made of the regulations with respect to resource definition, pollutants currently not controlled, duplicity and overlap in permit and impact assessment requirements, the lack of uniformity of regulations between states, and the probable future approaches to the regulatory problems. This project updates a similar document (EPA/600/7-78-014) dated February 1978.

  8. Geothermal energy environmental problems and control methods: review of recent findings

    SciTech Connect

    Nguyen, V.T.; Caskey, J.F.; Pfundstein, R.T.; Rifkin, S.B.

    1980-06-01

    The findings of a literature review on the environmental concerns and associated control methods of geothermal energy utilization are presented. The document introduces the environmental problems associated with geothermal energy utilization; assesses the current status of control methods; references appropriate environmental documents; and identifies areas where additional environmental research is needed. The review attempts to consolidate current understanding of the environmental impact of geothermal energy development. Approximately 180 reports written by authors in industry, government and academia have been reviewed in the areas of air emissions, surface and subsurface liquid discharges, solid wastes, noise, subsidence, and induced seismicity.

  9. Draft Executive Summary Hawaii Geothermal Project - EIS Scoping Meetings

    SciTech Connect

    1992-03-01

    After introductions by the facilitator and the program director from DOE, process questions were entertained. It was also sometimes necessary to make clarifications as to process throughout the meetings. Topics covered federal involvement in the HGP-EIS; NEPA compliance; public awareness, review, and access to information; Native Hawaiian concerns; the record of decision, responsibility with respect to international issues; the impacts of prior and on-going geothermal development activities; project definition; alternatives to the proposed action; necessary studies; Section 7 consultations; socioeconomic impacts; and risk analysis. Presentations followed, in ten meetings, 163 people presented issues and concerns, 1 additional person raised process questions only.

  10. Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements

    DTIC Science & Technology

    2011-09-19

    Report No. D-2011-108 September 19, 2011 Geothermal Energy Development Project at Naval Air Station Fallon, Nevada...COMMANDING OFFICER, NAVAL FACILITIES ENGINEERING COMMAND SOUTHWEST DIRECTOR, NAVY SHORE ENERGY PROGRAM OFFICE COMMANDING OFFICER, NAVAL AIR SYSTEMS ...COMMAND SUBJECT: Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements (Report No. D

  11. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  12. Geothermal pilot projects on utilization of low-temperature reserves in Hungary

    SciTech Connect

    Arpasi, M.; Pota, G.; Andristyaka, A.

    1997-12-31

    The Hungarian Oil and Gas Company (MOL Co.) started a programme (MOL-Geothermy Project) in 1995. The main purpose is to decide whether the abandoned oil and gas wells (more than 2000 wells) are suitable for thermal water production and reinjection. The MOL-Geothermy Project consists of three geothermal pilot projects. Two of them are based on low- and medium-enthalpy geothermal reserves, the third one is concentrated on the utilization of geopressured type of geothermal reserves being unique in the World. This paper gives a summary of the pre-feasibility study of two projects and determines the activities planned in the feasibility stages of the projects.

  13. Health and Environmental Effects Document on Geothermal Energy -- 1982 update

    SciTech Connect

    Layton, David W.; Daniels, Jeffrey I.; Anspaugh, Lynn R.; O'Banion, Kerry D.

    1983-11-30

    We assess several of the important health and environmental risks associated with a reference geothermal industry that produces 21,000 MWe for 30 y (equivalent to 20 x 10{sup 18} J). The analyses of health effects focus on the risks associated with exposure to hydrogen sulfide, particulate sulfate, benzene, mercury, and radon in air and arsenic in food. Results indicate that emissions of hydrogen sulfide are likely to cause odor-related problems in 29 of 51 geothermal resources areas, assuming that no pollution controls are employed. Our best estimates and ranges of uncertainty for the health risks of chronic population exposures to atmospheric pollutants are as follows (risks expressed per 10{sup 18} J of electricity): particulate sulfate, 44 premature deaths (uncertainty range of 0 to 360); benzene, 0.15 leukemias (range of 0 to 0.51); elemental mercury, 14 muscle tremors (range of 0 to 39); and radon, 0.68 lung cancers (range of 0 to 1.8). The ultimate risk of fatal skin cancers as the result of the transfer of waste arsenic to the general population over geologic time ({approx} 100,000 y) was calculated as 41 per 10{sup 18} J. We based our estimates of occupational health effects on rates of accidental deaths together with data on occupational diseases and injuries in surrogate industries. According to our best estimates, there would be 8 accidental deaths per 10{sup 18} J of electricity, 300 cases of occupational diseases per 10{sup 18} J, and 3400 occupational injuries per 10{sup 18}J. The analysis of the effects of noncondensing gases on vegetation showed that ambient concentrations of hydrogen sulfide and carbon dioxide are more likely to enhance rather than inhibit the growth of plants. We also studied the possible consequences of accidental releases of geothermal fluids and concluded that probably less than 5 ha of land would be affected by such releases during the production of 20 x 10{sup 18} J of electricity. Boron emitted from cooling towers in the

  14. State-government workshop on barriers and incentives of geothermal energy resources (geothermal project). Annual report, March 1, 1979-February 29, 1980

    SciTech Connect

    Not Available

    1980-05-01

    The activities of the National Conference of State Legislatures' Geothermal Project are summarized. The following are covered: project objective and method of operation, state selection and development of state work plans, program elements, summary of state actions affecting geothermal development, and evaluation of project activities. (MHR)

  15. Economic assessment of geothermal direct heat technology: A review of five DOE demonstration projects

    SciTech Connect

    Hederman, William F. Jr.; Cohen, Laura A.

    1981-06-01

    In this report the cost of using low temperature geothermal energy resources for direct heating applications is compared to the costs associated with conventional heating fuels. The projects compared all involved replacing conventional fuels (e.g., natural gas and fuel oils) with geothermal energy in existing heating systems. The cost of using geothermal energy in existing systems was also compared with the cost of new coal-fired equipment.

  16. Geothermal policy project. Quarterly report, November 1, 1979-January 31, 1980

    SciTech Connect

    Sacarto, D.M.

    1980-02-01

    Solicitation letters for geothermal and ground water heat-pump energy were sent to ten new states, and initial contact was made in two other states, Arizona and Nevada, concerning 1980 project activities. Follow-up contacts were made with several existing project states, and state meetings and workshops were held in five project states. The Preliminary Geothermal Profile for the state of Nevada as well as other project materials were prepared.

  17. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect

    Not Available

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  18. The Idea of an Innovated Concept of the Košice Geothermal Project

    NASA Astrophysics Data System (ADS)

    Bujanská, Alena; Böszörményi, László

    2015-11-01

    Slovakia has very limited amounts of fossil resources. However, it has a relatively high potential of geothermal energy which use is far below its possibilities. The most abundant geothermal resource, not only in Slovakia but throughout the central Europe, is Košice basin. Since the publication of the first ideas about the ambitious goal to exploit the geothermal potential of this site, 20 years has passed and three geothermal wells has been made but without any progress. In the article the authors present the idea of a fundamental change in the approach to improve the energy and economic efficiency of the project.

  19. The geothermal power organization

    SciTech Connect

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  1. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    SciTech Connect

    Kolo, Daniel

    2016-08-15

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour and collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.

  2. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  3. Hydro-mechanical modelling of induced seismicity during the deep geothermal project in St. Gallen, Switzerland

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan

    2017-04-01

    The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced

  4. Environmental impact of geothermal power development and utilization

    SciTech Connect

    Bond, M.A.

    1980-09-01

    The development and utilization of geothermal resources to generate energy is not without its significant impacts upon the environment. Air pollution, thermal pollution, surface and groundwater pollution, soil erosion, land subsidence, increased seismicity, and disruption of existing land uses are all potential hazards associated with the development of a geothermal field. Geothermal operations and activities generally follow a sequence of exploration, testing, development, and production. Each phase has differing impacts on the environment depending upon the potential and locality of the geothermal field, with the chief impacts occurring during the developmental period.

  5. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Not Available

    1990-01-01

    This document covers the activities of monitoring environmental aspects at designated geothermal wells in Texas and Louisiana during the second quarter of 1990 by the Louisiana Geological Survey, Louisiana State University under contract with US DOE. 1 fig. (FSD)

  6. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  7. Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report

    SciTech Connect

    Not Available

    1981-12-01

    The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)

  8. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  11. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  12. Imperial County geothermal development annual meeting: summary

    SciTech Connect

    Not Available

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  13. Institutional and environmental problems in geothermal resource development

    NASA Technical Reports Server (NTRS)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  15. Environmental impact of trace element emissions from geothermal power plants.

    PubMed

    Bargagli, R; Cateni, D; Nelli, L; Olmastroni, S; Zagarese, B

    1997-08-01

    Concentrations of several trace elements were determined in mosses, higher plants and organs of small mammals from a geothermal area in Tuscany (central Italy). Increased deposition of Hg, As, B, and Sb was detected in biological samples collected within a few hundred meters of geothermal power plants. Among the species considered, the moss Hypnum cupressiforme was the most efficient accumulator of trace elements. Contamination levels in a fodder-plant (Hedysarum coronarium) and vegetables grown in the geothermal field did not seem to pose health risks for consumers. However, a statistically significant increase in Hg, B, and As concentrations was found in the kidney and muscle of small mammals living close to geothermal installations. Biological effects of B pollution were detected in two sensitive plant species. In view of plans to increase the exploitation of geothermal resources in the area, adequate measures to monitor the environment should be taken. Mosses are the most suitable accumulative biomonitors for a surveillance network, and studies on small mammal populations should be intensified. Available technologies should be used to diminish atmospheric emissions from geothermal power plants.

  16. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  17. Heber geothermal binary demonstration project: Unavailability distributions for principal pumps

    SciTech Connect

    Mulvihill, Robert J.; Cleveland, Edward B.

    1982-04-01

    The purpose of this study has been to review data sources relevant to the failure rate and mean time to repair for the principal pumps of the Heber geothermal project. Based upon that review the distributions of failure rates, repair times and pump unavailability were established. A total of 16 pumps are represented in this study. The method used to develop data distributions has been to first review as many sources of pump data as are currently available. This review was followed by a study of the features of the pumps specified for the Heber installation and the effects of operation and the environment on those features as they relate to anticipated failure rates and repair times. From this, determinations were made for mean failure rate and repair time values appropriate to specific Heber pumps. Range factors are then selected and used to establish the expected variability of the data. Failure rates and repair times were then combined to obtain the unavailability distribution of each type of pump.

  18. Lightning dock geothermal space heating project, Lightning Dock KGRA, New Mexico. Final report

    SciTech Connect

    McCants, T.W.

    1980-12-01

    The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It was proposed to complete the existing unfinished, re-inforced glass side wall, wood framed structure, as a nursery lath house, the purpose of which would be to use geothermal water in implementing university concepts on the advantages of bottom heat to establish hardy root systems in nursery and bedding plants. The use of this framework was abandoned in favor of erecting new structures for the proposed purpose. The final project of the proposal was the establishment of a drip irrigation system, to an area just west of the existing greenhouse and within feet of the geothermal well. Through this drip irrigation system geothermal water would be pumped, to prevent killing spring frosts. The purpose of this area of the proposal is to increase the potential use of existing geothermal waters of the Lightning Dock KGRA, in opening a new geothermal agri-industry which is economically feasible for the area and would be extremely energy efficient.

  19. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  20. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  1. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  3. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  4. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  5. Navy Geothermal Plan

    SciTech Connect

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  6. Campi Flegrei Deep Drilling Project and geothermal activities in Campania Region (Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Natale, Giuseppe; Troise, Claudia; Troiano, Antonio; Giulia Di Giuseppe, Maria; Mormone, Angela; Carlino, Stefano; Somma, Renato; Tramelli, Anna; Vertechi, Enrico; Sangianantoni, Agata; Piochi, Monica

    2013-04-01

    The Campanian volcanic area has a huge geothermal potential (Carlino et al., 2012), similar to the Larderello-Radicondoli-Amiata region, in Tuscany (Italy), which has been the first site in the World exploited for electric production. Recently, the Campi Flegrei Deep Drilling Project (CFDDP), sponsored by ICDP and devoted to understand and mitigate the extreme volcanic risk in the area, has also risen new interest for geothermal exploration in several areas of Italy. Following the new Italian regulations which favour and incentivise innovative pilot power plants with zero emission, several geothermal projects have started in the Campania Region, characterized by strict cooperation among large to small industries, Universities and public Research Centers. INGV department of Naples (Osservatorio Vesuviano) has the technical/scientific leadership of such initiatives. Most of such projects are coordinated in the framework of the Regional District for Energy, in which a large part is represented by geothermal resource. Leading geothermal projects in the area include 'FORIO' pilot plant project, aimed to build two small (5 MWe each one) power plants in the Ischia island and two projects aimed to build pilot power plants in the Agnano-Fuorigrotta area in the city of Naples, at the easternmost part of Campi Flegrei caldera. One of the Campi Flegrei projects, 'SCARFOGLIO', is aimed to build a 5 MWe geothermal power plant in the Agnano area, whereas the 'START' project has the goal to build a tri-generation power plant in the Fuorigrotta area, fed mainly by geothermal source improved by solar termodynamic and bio-mass. Meanwhile such projects enter the field work operational phase, the pilot hole drilling of the CFDDP project, recently completed, represents an important experience for several operational aspects, which should contitute an example to be followed by the next geothermal activities in the area. It has been furthermore a source of valuable data for geothermal

  7. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  8. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  9. 75 FR 29361 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Competitive Geothermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ...In compliance with the National Environmental Policy Act of 1969 (NEPA), as amended, and the Federal Land Policy and Management Act of 1976 (FLPMA), as amended, the Bureau of Land Management (BLM) Gunnison Field Office, Gunnison, Colorado intends to prepare an Environmental Assessment (EA) to consider whether, and under what conditions, to issue geothermal leases under pending nominations,......

  10. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    SciTech Connect

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  11. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  13. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  14. Geothermal Direct Use Program Opportunity Notice Projects Lessons Learned Final Report

    SciTech Connect

    Lunis, B.C.

    1986-01-01

    The use of geothermal energy for direct-use applications was aided through the development of a number of successful field experiment projects funded on a cost-shared basis by the US Department of Energy, Division of Geothermal Technology. This document provides a summary of the projects administered by the US Department of Energy's Idaho Operations Office and technically monitored through the Idaho National Engineering Laboratory (EG and G Idaho, Inc.). An overview of significant findings and conclusions is provided, as are project descriptions and activities, resource development, design, construction, and operational features. Legal and institutional considerations are also discussed.

  15. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    SciTech Connect

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-10-23

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  16. FY 1996 Summary of Hot Dry Rock Geothermal Power Project

    SciTech Connect

    1996-12-31

    The report describes progress and status of the HDR project at Hijiori. The year was notable for a flow enhancement test of a system with two production wells in operation. Other items include a geochemical survey, reinterpretation of acoustic emission data from 1988 through 1995, borehole measurements to find intersections with fractures, a geological survey, preparation for modeling fractures, improvements in crack simulation in a reservoir analysis model, and environmental survey work. (DJE 2005)

  17. Federal Assistance Program Quarterly Project Progress Report. Geothermal Energy Program: Information Dissemination, Public Outreach, and Technical Analysis Activities. Reporting Period: January 1 - March 31, 2001 [Final report

    SciTech Connect

    Lund, John W.

    2002-03-22

    The final report of the accomplishments of the geothermal energy program: information dissemination, public outreach and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association and the Washington State University Energy Program.

  18. Baca Geothermal Demonstration project legal and regulatory challenges. First semi-annual report for period through June 30, 1980

    SciTech Connect

    Province, S.G.; Walter, K.M.; Miller, J.

    1980-12-01

    The Legal and Regulatory Constraints Reports identify and describe the major legal and institutional constraints associated with the Baca Geothermal Demonstration Project. The impacts of these constraints on the Project in terms of cost, schedule, and technical design are also analyzed. The purpose of these reports is to provide a guide for future geothermal development.

  19. Summary and results of the comprehensive environmental monitoring program at the INEL's Raft River geothermal site

    SciTech Connect

    Mayes, R.A.; Thurow, T.L.; Cahn, L.S.

    1982-01-01

    The Raft River Geothermal Program was designed to demonstrate that moderate temperature (approx. 150/sup 0/C) geothermal fluids could be used to generate electricity and provide an alternate energy source for direct-use applications. The environmental program was initiated soon after drilling began. The major elements of the monitoring program were continued during the construction and experimental testing of the 5-MW(e) power plant. The monitoring studies established pre-development baseline conditions of and assessed changes in the physical, biological, and human environment. The Physical Environmental Monitoring Program collected baseline data on geology, subsidence, seismicity, meteorology and air quality. The Biological Environmental Monitoring Program collected baseline data on the flora and fauna of the terrestrial ecosystem, studied raptor disturbances, and surveyed the aquatic communities of the Raft River. The Human Environmental Monitoring Program surveyed historic and archaeological sites, considered the socioeconomic environment, and documented incidences of fluorosis in the Raft River Valley. In addition to the environmental monitoring programs, research on biological direct applications using geothermal water was conducted at Raft River. Areas of research included biomass production of wetland and tree species, aquaculture, agricultural irrigation, and the use of wetlands as a treatment or pretreatment system for geothermal effluents.

  20. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    SciTech Connect

    1992-09-18

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  1. Development of San Kamphaeng Geothermal Energy Project in Thailand

    SciTech Connect

    Ramingwong, T.; Praserdvigai, S.

    1984-06-01

    San Kamphaeng Geothermal Field located in northern Thailand, has been selected for a case study and exploration drilling program due to relevant geologic data obtained from the area and favorable sociological conditions. The first geothermal exploration well in Thailand, GTE-1, was commenced at the end of 1981. At present, six geothermal exploration wells (GTE-1 to GTE-6), with an average maximum depth of 500 m., have been drilled. Two wells encountered hot water while the rest are dry. GTE-2 is now discharging hot water of 85C with a very small discharge. GTE-6 encountered hot water of 120C at a depth of 489 m. It is now discharging hot water of 104SC at 3.6 bars pressure and at approximately 4 1/s at the well head. A number of shallow wells, with depths of less than 50 m., were drilled in the thermal manifestation area. Here, resistivity surveys showed relatively low values at shallow depths, suggesting possible zones of thermal water accumulation. Five shallow wells encountered hot water with temperatures ranging from 100C to 130C. A reservoir model of the San Kamphaeng geothermal system is proposed. Under the joint technical program between the governments of Thailand and Japan, a deep exploration well of 1500 m. is scheduled to start in July of 1984.

  2. Community Geothermal Technology Program: Silica bronze project. Final report

    SciTech Connect

    Bianchini, H.

    1989-10-01

    Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

  3. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  4. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect

    1981-06-01

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  5. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  6. El Paso County Geothermal Project at Fort Bliss. Final Project Report

    SciTech Connect

    Lear, Jon; Bennett, Carlon; Lear, Dan; Jones, Phil L.; Burdge, Mark; Barker, Ben; Segall, Marylin; Moore, Joseph; Nash, Gregory; Jones, Clay; Simmons, Stuart; Taylor, Nancy

    2016-02-01

    The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator - Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.

  7. The helical screw expander evaluation project. [for geothermal wells

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.

    1977-01-01

    A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.

  8. The helical screw expander evaluation project. [for geothermal wells

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.

    1977-01-01

    A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.

  9. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  10. Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.

    DTIC Science & Technology

    1980-05-01

    Rattlesnake Hill, north of Fallon; Soda Lakes and Upsal Hogbacks , west and northwest of Fallon; and Lone Rock, located in the northwest portion of Range...the crustal extension was additional volcanic activity of late Cenozoic age. The Soda Lake-Upsal Hogback area of the Carson Sink is an inter- esting...area for geothermal potential (a large amount of work has been done in the area). Both the Soda Lake uplift and the Upsal Hogback are Quaternary volcanic

  11. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Groat, C.; Stevenson, D.

    1990-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test well in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles.

  12. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Not Available

    1991-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test wells in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles. 2 figs.

  13. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  14. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  15. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  16. Direct-use geothermal district heating projects in the US. A summary

    SciTech Connect

    Fornes, A.O.

    1981-10-01

    Brief summaries of geothermal district heating projects are presented for the following: Boise, Idaho; Elko, Nevada; Ephrata, Washington; Hawthorne, Nevada; Klamath Falls, Oregon; Lakeview, Oregon; Madison County, Idaho; North Bonneville, Washington; Pagosa Springs, Colorado; Preston, Idaho; Reno, Nevada; Susanville, California; Thermopolis, Wyoming; and Utah State Prison, Utah. (MHR)

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  18. Status and trends of geothermal direct use projects in the United States

    SciTech Connect

    Lunis, B.C.; Lienau, P.J.

    1988-01-01

    The United States is continuing to experience a significant growth rate in the use of low- and moderate-temperature geothermal resources for direct use applications, which is making an increasing contribution to the United States energy demands. This paper provides an overview of how and where geothermal energy is being used, the extent of that use, and what the development trends and concerns appear to be. The applications discussed include industrial processes, heat pumps (heating and cooling), pools and spas, aquaculture and agriculture applications, and space and district heating projects. 3 tabs.

  19. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  20. Geothermal Development and the Use of Categorical Exclusions (Poster)

    SciTech Connect

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental

  1. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  2. Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters

    SciTech Connect

    Stull, Dean P.

    2016-05-26

    The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and international demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange, traditional

  3. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  4. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  5. Geothermal probabilistic cost study

    NASA Astrophysics Data System (ADS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  6. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  7. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Lienau, P.J.; Lunis, B.C.

    1990-01-01

    The use of low- and moderate-temperature (50 to 300{degree}F) geothermal resources for direct use applications has increased significantly since the late 1970s. As a result of this growth, and the need for state-of-the-art information on geothermal direct use project development, the Geothermal Direct Use Engineering and Design Guidebook was published. The book contains 20 chapters titled: Introduction; Demonstration projects lessons learned; Nature of geothermal resources; Exploration for direct heat resources; Geothermal fluid sampling techniques; Drilling and well construction; Well testing and reservoir evaluation; Materials selection guidelines; Well pumps; Piping geothermal fluids; Heat exchangers; Space heating equipment; Heat pumps; Absorption refrigeration; Greenhouses; Aquaculture; Industrial applications; Engineering cost analysis; Regulatory and commercial aspects; and Environmental considerations.

  8. Japan's sunshine project 1987 annual summary of geothermal energy R and D

    NASA Astrophysics Data System (ADS)

    1988-04-01

    Results are reported on the geothermal energy research for 1987 in the Sunshine Project. Exploration methods and formation mechanism of fracture type reservoirs were studied together with the study of their productivity. Basic maps for regional resources evaluation were prepared for five regions in Japan and parameters were determined. Percussion drills and aerated mud excavation technique were developed. Damages in hydrothermal flow were investigated and materials were developed. Crushing and thermal extraction mechanism were analyzed by the pressurized water crushing experiments at a quarry. Results of field experiment on the hot rock mass were analyzed. Environmental conservation and multipurpose use of hot water were investigated. Wide area hydrothermal flow system was surveyed at three areas. High accuracy MT method was developed and its effectiveness was demonstrated. Data was compared and analyzed for the Sengan and Kurikoma areas, which differ in abundance to each other. For development of binary 10 MW class demonstration plant, a well was excavated and tested, downhole pumps were tested and improved, and the conceptual design was investigated for plant equipment. Researches were conducted on the production and recirculation mechanism of hot water and control of water flowout.

  9. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  10. Geothermal materials project input for conversion technology task

    SciTech Connect

    Kukacka, L.E.

    1991-04-01

    This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

  11. Meager Creek Geothermal Project: an exploration case history

    SciTech Connect

    Fairbank, B.D.; Openshaw, R.E.; Souther, J.G.; Stauder, J.J.

    1981-07-01

    The South Reservoir in the Meager Creek Geothermal Area is within crystalline basement rocks on the southern flank of the Pliocene to Recent Meager Mountain Volcanic Complex. Geological, geochemical and resistivity surveys were used to determine targets for temperature gradient diamond drilling. Temperature profiles indicate anomalously high temperature gradients in drill holes M2, M3, M4, M6, M7, M8, M10, M11, and M12. Heat flow values of 105 to 620 mWm/sup -2/ (2.5 to 14.8 HFU) have been calculated for drill holes M2, M3, M7, M8, M11 and M12. These values are up to seven times the regional heat flow for the Garibaldi Volcanic Belt. The main South Reservoir thermal anomaly has been defined over an area about 3 km by 1 km in the Meager Creek valley. The anomaly is open to the north and southeast.

  12. Geothermal Energy Information Dissemination and Outreach

    SciTech Connect

    Dr. John W. Lund

    2005-12-31

    The objective of this project is to continue on-going work by the Geo-Heat Center to develop and disseminate information; provide educational materials; develop short courses and workshops; maintain a comprehensive geothermal resource database; respond to inquiries from the public, industry and government; provide engineering, economic and environmental information and analysis on geothermal technology to potential users and developers; and provide information on market opportunities for geothermal development. These efforts are directed towards increasing the utilization of geothermal energy in the US and developing countries, by means of electric power generation and direct-use.

  13. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  14. Environmental impact of landfill disposal of selected geothermal residues

    SciTech Connect

    Peralta, G.L.; Graydon, J.W.; Seyfried, P.L.; Kirk, D.W.

    1996-01-24

    A solid waste is classified as hazardous if it contains sufficient leachable components to contaminate the groundwater and the environment if disposed in a landfill. Scale, sludge and drilling mud from three geothermal fields (Bulalo, Phlippines; Cerro Prieto, Mexico; and Dixie Valley, USA) containing regulated elements at levels above the earth‘s crustal abundance were studied for their leachability. Cr, As, Cu, Zn and Pb were detected at levels which could impair groundwater quality if leaching occurred. Several procedures were used to assess the likely risk posed by the residues : protocol leaching tests (Canadian LEP and US TCLP), toxicity testing, accelerated weathering test, and a preliminary acid mine drainage potential test. Whole rock analysis, X-ray diffraction, and radioactivity counting were also performed to characterize the samples. Toxi-chromotest and SOS-chromotest results were negative for all samples. Leachng tests indicated that all of them could be classified as nonhazardous wastes. Only one of the six showed a low-level radioactivity based on its high Pb-210 activity. Initial tests for acidification potential gave positive results for three out of six samples whle none of the regulated elements were found in the leachate after accelerated weathering experiment for three months.

  15. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  16. Geothermal direct use projects in the United States: Status and trends

    SciTech Connect

    Lunis, B.C.; Lienau, P.J.; Oregon Inst. of Tech., Klamath Falls, OR . Geo-Heat Center)

    1988-01-01

    Prior to about 1973, geothermal most direct use projects in the United States involved pool/spa applications and limited district and space heating systems. The oil price shocks of the 1970's revived interest in the use of geothermal energy as an alternative energy source. Accordingly, the US Department of Energy initiated numerous programs that caused significant growth of this industry. These programs involved technical assistance to developers, the preparation of project feasibility studies for potential users, cost sharing of demonstration projects (space and district heating, industrial, agriculture, and aquaculture), resource assessments, loan guarantees, support of state resource and commercialization activities, and others. Also adding to the growth were various federal and state tax credits. The use of groundwater-source heat pumps contributed to the growth, starting in 1980. The growth of direct use project development was quite closely monitored during the late 1970's and early 1980's when the USDOE program activities were extensive. Periodic updating of the status of the projects has been occasional but limited since that time. In order to obtain a better understanding of the current geothermal direct use market, the Oregon Institute of Technology Geo-Heat Center (OIT), under contract to the US Department of Energy, launched an extensive data-gathering effort in the spring of 1988. The results of that effort are incorporated into this paper. The Idaho National Engineering Laboratory (INEL) (also funded by the Department of Energy) and OIT, through their continuing contacts with the geothermal industry, including state energy offices, are familiar with development trends and concerns; this information is also presented. 3 tabs.

  17. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  18. Environmental measurements for Project Overview

    SciTech Connect

    Chambers, D.H.; Ravizza, D.L.

    1995-09-28

    From July 10 to July 17, 1995, Project Overview was conducted at the Atlantic Undersea Test and Evaluation Center (AUTEC) at Andros Island, Bahamas. Part of the project was the collection and analysis of environmental data including wind measurements and ocean temperature and salinity profiles. This report describes these environmental measurements and presents the results of analysis performed in the field. The goal of the analysis was to calculate the Brunt-Vaeisaelae (BV) profile during operations, and provide operational recommendations from solutions of the Taylor-Goldstein (T-G) equation using the measured BV profile. Part 1 is a description of the sensors and their deployment. Part 2 discusses the analysis done in the field. Part 3 presents a summary of the wind measurements. Part 4 summarizes the ocean profiling results. Part 5 presents overall conclusions and recommendations for future experiments. The appendices include all of the ocean profiling results and wind measurements obtained in the field.

  19. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  20. Meager Creek geothermal project: an exploration case history

    SciTech Connect

    Fairbank, B.D.; Openshaw, R.E.; Souther, J.G.; Stauder, J.J.

    1981-05-01

    The South Reservoir in the Meager Creek Geothermal Area is within crystalline basement rocks on the southern flank of the Pliocene to Recent Meager Mountain Volcanic Complex. Geological, geochemical and resistivity surveys were used to determine targets for temperature gradient diamond drilling. Temperature profiles indicate anomously high temperature gradients in drill holes M2, M3, M4, M6, M7, M8, M10, M11 and M12. Heat flow values of 105 to 620 mWm/sup -2/ (2.5 to 14.8 HFU) have been calculated for drill holes M2, M3, M7, M8, M11 and M12; these values are up to seven times the regional heat flow for the Garibaldi Volcanic Belt. The main South Reservoir thermal anomaly has been defined over an area about 3 km by 1 km in the Meager Creek valley and is open to the north and southeast. Deep drilling and production testing to assess the reservoir as a potential power source will be initiated during 1981.

  1. Geothermal materials project input for conversion technology task

    SciTech Connect

    Kukacka, L.E.

    1990-08-01

    This ongoing laboratory-based high risk/high payoff R and D program has already yielded several durable cost-effective materials of construction for geothermal energy processes. In FY 1991, R and D in the following areas will be performed: (1) development and downhole testing of advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight (1.1 g/cc) well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive scale-resistant composites for heat-exchanger tubing, (4) high-temperature chemical coupling materials which can be used to bond elastomers to steel substrates, and (5) high-temperature elastomers for use in downhole drill motors. Contingent upon the results, work on heat-exchanger tubing and lost-circulation control materials will be completed FY 1991 and the other activities will be continued in FY 1992. Work on other materials needs will commence in FY 1992. These include the in situ conversion of drilling fluids into well-completion materials and ceramic-type well casing. All of the subtasks will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. Results to date are discussed. 2 refs., 2 figs., 2 tabs.

  2. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  3. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  4. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  6. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  7. Probability-of-success studies for geothermal projects: from subsurface data to geological risk analysis

    NASA Astrophysics Data System (ADS)

    Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang

    2017-04-01

    In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.

  8. Desert Peak East Enhanced Geothermal Systems (EGS) Project

    SciTech Connect

    Zemach, Ezra; Drakos, Peter; Spielman, Paul; Akerley, John

    2013-09-30

    This manuscript is a draft to replaced with a final version at a later date TBD. A summary of activities pertaining to the Desert Peak EGS project including the planning and resulting stimulation activities.

  9. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  10. Crustal Rock Fracture Mechanics for Design and Control of Artificial Subsurface Cracks in Geothermal Energy Extraction Engineering ({Gamma}-Project)

    SciTech Connect

    Abe, Hiroyuki; Takahashi, Hideaki

    1983-12-15

    Recently a significant role of artificial and/or natural cracks in the geothermal reservoir has been demonstrated in the literatures (Abe, H., et al., 1983, Nielson, D.L. and Hullen, J.B., 1983), where the cracks behave as fluid paths and/or heat exchanging surfaces. Until now, however, there are several problems such as a design procedure of hydraulic fracturing, and a quantitative estimate of fluid and heat transfer for reservoir design. In order to develop a design methodology of geothermal reservoir cracks, a special distinguished research project, named as ''{Lambda}-Project'', started at Tohoku University (5 years project, 1983-1988). In this project a basic fracture mechanics model of geothermal reservoir cracks is being demonstrated and its validation is being discussed both theoretically and experimentally. This paper descibes an outline of ''{Lambda}-Project''.

  11. Geothermal Energy Summary

    SciTech Connect

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non

  12. Evaluation and improvement of methods to quantify the exploration risk of geothermal projects

    NASA Astrophysics Data System (ADS)

    Ganz, Britta; Schellschmidt, Rüdiger; Schulz, Rüdiger; Thomas, Rüdiger

    2015-04-01

    The quantification of exploration risks is of major importance for geothermal project planning. The exploration risk is defined as the risk of not successfully achieving a geothermal reservoir with minimum levels of thermal water production and reservoir temperatures (UNEP 2004). A simple method to quantify the probability of success (POS) for geothermal wells is to determine the single risks for temperature and flow rate and calculate the overall probability by multiplying the individual probabilities (SCHULZ et al. 2010). Since 2002, over 50 expert studies to evaluate the exploration risk of geothermal projects in Germany were carried out based on this method. The studies are requested as a basis for insurance contracts covering the risk of not achieving the necessary parameters. The estimated probabilities for temperature and flow rate in the expert reports were now compared with the parameters actually reached in meanwhile realised projects. The results are used for an improvement of the method. The probability of success for a given temperature was calculated using local temperature information in the vicinity of the planned well location. The greater significance of nearby temperature data was considered by inverse distance weighting. In highly productive deep aquifers, which are of major interest for geothermal projects, temperature gradients often strongly decrease due to an intense vertical mixing of the thermal water. Thus, the top of the considered aquifer was used as the reference point of the temperature assessment. As still some positive gradient can be expected within the aquifer, this is a conservative estimation. The evaluation of the reports should therefore especially answer the question, whether this approach has led to a systematic underestimation of the temperature. To calculate the probability of success for hydraulic parameters, the theoretical drawdown at a given flow rate was calculated for existing wells from hydraulic test data. The

  13. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  14. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  15. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  16. Preliminary study of the potential environmental concerns associated with surface waters and geothermal development of the Valles Caldera

    SciTech Connect

    Langhorst, G.J.

    1980-06-01

    A preliminary evaluation is presented of possible and probable problems that may be associated with hydrothermal development of the Valles Caldera Known Geothermal Resource Area (KGRA), with specific reference to surface waters. Because of the history of geothermal development and its associated environmental impacts, this preliminary evaluation indicates the Valles Caldera KGRA will be subject to these concerns. Although the exact nature and size of any problem that may occur is not predictable, the baseline data accumulated so far have delineated existing conditions in the streams of the Valles Caldera KGRA. Continued monitoring will be necessary with the development of geothermal resources. Further studies are also needed to establish guidelines for geothermal effluents and emissions.

  17. Analysis of production and reservoir performance at the CASA Diablo geothermal project

    SciTech Connect

    Miller, Richard J.; Vasquez, Rosalinda

    1988-01-01

    The Mammoth-Pacific geothermal project at Casa Diablo has been in production since January, 1985. The plant generates 7-8 MW of electric power using a binary system supplied by geothermal fluid production from four wells that produce about 3500 GPM of 340º F, low salinity geothermal fluid. The wells produce from a fault/fracture system that is apparently continually recharged from a deep "reservoir" with no significant drawdown in pressure or decline in flow rate over the 2 year period. Prior to the start of production a series of well tests were conducted to determine the pumped flow capacity of the original four wells and to determine reservoir properties from pressured drawdown and build-up analysis. Since the start of operations a continuous record of production rate, flowing bottom-hole pressure, and temperature has been maintained. The well tests and production records have been evaluated to determine the nature of the reservoir and reservoir permeability and other properties. This paper presents the results of that evaluation.

  18. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  19. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    SciTech Connect

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-12-01

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  20. Hanford Environmental Dose Reconstruction Project: Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-07-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, and Environmental Pathways and Dose Estimates. 3 figs.

  1. The Environmental Education through Filmmaking Project

    ERIC Educational Resources Information Center

    Harness, Hallie; Drossman, Howard

    2011-01-01

    The environmental education through filmmaking project, a case study at an alternative US public high school, investigates environmental literacies of "at-risk" students who produced two short documentary films, one on recycling and one on water conservation. The filmmaking project sought to promote students' awareness of environmental issues and…

  2. The Environmental Education through Filmmaking Project

    ERIC Educational Resources Information Center

    Harness, Hallie; Drossman, Howard

    2011-01-01

    The environmental education through filmmaking project, a case study at an alternative US public high school, investigates environmental literacies of "at-risk" students who produced two short documentary films, one on recycling and one on water conservation. The filmmaking project sought to promote students' awareness of environmental issues and…

  3. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  4. Mono County geothermal activity

    SciTech Connect

    Lyster, D.L.

    1986-01-01

    Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

  5. The Oregon Geothermal Planning Conference

    SciTech Connect

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  6. Deep geothermal resources and energy: Current research and developments

    NASA Astrophysics Data System (ADS)

    Manzella, A.; Milsch, H.; Hahne, B.; van Wees, J. D.; Bruhn, D.

    2012-04-01

    Energy from deep geothermal resources plays an increasing role in many European countries in their efforts to increase the proportion of renewables in their energy portfolio. Deep geothermal heat and electric power have a high load factor, are sustainable and environmentally friendly. However, the safe, sustainable, and economic development of deep geothermal resources, also in less favourable regions, faces a number of issues requiring substantial research efforts: (1) The probability of finding an unknown geothermal reservoir has to be improved. (2) Drilling methods have to be better adapted and developed to the specific needs of geothermal development. (3) The assessment of the geothermal potential should provide more reliable and clear guidelines for the development. (4) Stimulation methods for enhanced geothermal systems (EGS) have to be refined to increase the success rate and reduce the risk associated with induced seismicity. (5) Operation and maintenance in aggressive geothermal environments require specific solutions for corrosion and scaling problems. (6) Last but not least, emerging activities to harness energy from supercritical reservoirs would make significant progress with qualified input from research. In particular, sedimentary basins like e.g. the North German and Polish Basin, the Pannonian Basin, the Po Valley, the Bavarian Molasse Basin or the Upper Rhine Graben have a high geothermal potential, even if geothermal gradients are moderate. We will highlight projects that aim at optimizing exploration, characterization, and modeling prior to drilling and at a better understanding of physical, hydraulic and chemical processes during operation of a geothermal power plant. This includes geophysical, geological and geochemical investigations regarding potential geothermal reservoirs in sedimentary basins, as well as modelling of geothermally relevant reservoir parameters that influence the potential performance and long-term behavior of a future

  7. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  8. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  9. Environmental assessment: The Eden project

    NASA Astrophysics Data System (ADS)

    Roza, Christodoulaki

    Non domestic buildings account for about one-sixth of the U.K.'s entire C02 emissions and one-third of the building related ones 2 . Their proportion of energy consumption, particularly electricity, has also been growing 2 . New buildings are not necessarily better, with energy use often proving to be much higher than their designers anticipated 2 . Annual C02 emissions of two- and sometimes three- times design expectations are far from unusual, leaving a massive credibility gap 2 . These and other global environmental and human health related concerns have motivated an increasing number of designers, developers and building users to pursue more environmentally sustainable designs and construction strategies 5 . However, these buildings can be difficult to evaluate, since they are large in scale, complex in materials and function and temporally dynamic due to limited service life of building components and changing user requirements 5 . All of these factors make environmental assessment of the buildings challenging. Previous Post Occupancy Review of Buildings and their Engineering (PROBE) building investigations have uncovered serious shortcomings in facilities management, or at least mismatches between a building's management needs and the ability of the occupiers to provide the right level of management 1 . Consequently, large differences between energy performance expectations and outcomes can occur virtually unnoticed, while designers continue to repeat flawed descriptions 2 . This investigation attempts to evaluate the building's operation and to help achieving demonstrable improvements in terms of energy efficiency and occupant satisfaction. The scope of this study is to evaluate the actual environmental performance of a building notable for its advanced design. The Education Resource Centre at the Eden Project was selected to compare design expectations with post occupancy performance. This report contains a small-scale survey of user satisfaction with the

  10. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  11. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  12. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  13. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  14. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  15. Geothermal direct use engineering and design guidebook

    NASA Astrophysics Data System (ADS)

    Lienau, P. J.; Lunis, B. C.

    1991-09-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  16. Geothermal direct use engineering and design guidebook

    SciTech Connect

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  17. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-10-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, and environmental pathways and dose estimates. 3 figs., 3 tabs.

  18. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  19. Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report

    SciTech Connect

    Not Available

    1981-08-14

    The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

  20. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  1. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    NASA Astrophysics Data System (ADS)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project

  2. 3D geological modelling and geothermal mapping - the first results of the transboundary Polish - Saxon project "TransGeoTherm"

    NASA Astrophysics Data System (ADS)

    Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario

    2014-05-01

    TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series

  3. Krafla Magma Testbed: An International Project Crossing The Scientific Frontier From Geothermal System Into Magma

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Dingwell, D. B.; Ludden, J. N.; Mandeville, C. W.; Markusson, S.; Papale, P.; Sigmundsson, F.

    2016-12-01

    Few Earth regimes are subject to as much inference and as little direct knowledge as magma. Among the most important mysteries is the transition from hydrothermal to magmatic, i.e. from aqueous fluid-present to silicate melt-present, regimes. Because solid rock is ductile at near-solidus temperature, fractures should have fleeting existence and therefore heat transfer should be by conduction. Heat and mass transport across this zone influences evolution of magma bodies. The hydrothermal regime influences eruptive behavior when magma intrudes it and propagation of the transition zone toward magma is demonstrated by physical and chemical evidence. Both drilling observations and heat-balance considerations indicate that the melt- and fluid-absent transition zone is thin. Drilling of Iceland Deep Drilling Project's IDDP-1, 2 km into Krafla Caldera, showed that the transition from deep-solidus fine-grained granite to liquidus rhyolite is less than 30 m thick, probably much less. For the first time, we have the opportunity to interrogate an entire system of heat and mass transport, from magmatic source through the hydrothermal zone to surface volcanism, and in so doing unite the disciplines of volcanology and geothermal energy. With support from industry, national geoscience agencies, community stakeholders, and the International Continental Scientific Drilling Program (ICDP), we are developing a broad program to push the limits of knowledge and technology in extremely hot Earth. We use the term "testbed" for two reasons: Surface and borehole observations used in volcano monitoring and geothermal exploration will be tested and reinterpreted in light of the first "ground-truth" about magma. More than "observing", magma and the transition zone will be manipulated through fluid injection and extraction to understand time-dependent behavior. Sensor technology will be pushed to measure magmatic conditions directly. Payoffs are in fundamental planetary science, volcano

  4. The IRETHERM Project: Assessment Of The Rathlin Basin As A Possible Geothermal Aquifer

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Brown, C.; Reay, D.

    2013-12-01

    IRETHERM (www.iretherm.ie) is a collaborative, SFI-funded research project to identify and evaluate sites within Ireland possessing the greatest potential for deep, low-enthalpy, geothermal energy provision. Geothermal aquifers, which might host such resources and that will be evaluated over the next three years, are found within relatively high primary and/or secondary porosity media, with viability depending largely on the permeability distribution which controls fluid flow and heat-exchange. Promising primary-porosity targets are located in the Permo-Triassic sedimentary basins of Northern Ireland and include the Triassic Sherwood Sandstone Group (measured porosities and permeabilities of 8-24% and 2-1000 mD respectively in borehole core samples). The subject of the work presented here, the Rathlin Basin in Co. Antrim, is one such basin, where measurements in two independent boreholes show geothermal gradients of between 36 and 43 °C/km to depths of 1481 m. Previously published interpretations of gravity models across the basin attribute a thickness of 2000 m to the Sherwood Sandstone Group, with a maximum depth to the Permo-Triassic basement of 4000 m. Magnetotelluric data were acquired onshore in June 2012 across a 2-D grid of 57 sites with a 2 km site spacing in June 2012, and on the nearby Rathlin Island in two profiles totalling 12 sites with an 800 m site spacing in April 2013 in order to image the thickness and continuity of the sediments in the north-eastern portion of the basin. In the modelling results presented here, the Permo-Triassic sediment fill has a well-imaged resistivity contrast to the surrounding basal Dalradian metasediments. The data have been analysed and modelled to determine a model that maps the variation in thickness of the sediment fill and the truncation of the basin sediments against the Tow Valley Fault.

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. Analysis of how changed federal regulations and economic incentives affect financing of geothermal projects

    SciTech Connect

    Meyers, D.; Wiseman, E.; Bennett, V.

    1980-11-04

    The effects of various financial incentives on potential developers of geothermal electric energy are studied and the impact of timing of plant construction costs on geothermal electricity costs is assessed. The effect of the geothermal loan guarantee program on decisions by investor-owned utilities to build geothermal electric power plants was examined. The usefulness of additional investment tax credits was studied as a method for encouraging utilities to invest in geothermal energy. The independent firms which specialize in geothermal resource development are described. The role of municipal and cooperative utilities in geothermal resource development was assessed in detail. Busbar capital costs were calculated for geothermal energy under a variety of ownerships with several assumptions about financial incentives. (MHR)

  7. Environmental projects. Volume 7: Environmental resources document

    NASA Technical Reports Server (NTRS)

    Kushner, Len; Kroll, Glenn

    1988-01-01

    The Goldstone Deep Space Communications Complex (GDSCC) in Barstow, California, is part of the NASA Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Goldstone is managed, directed and operated by the Jet Propulsion Laboratory of Pasadena, California. The GDSCC includes five distinct operational sites: Echo, Venus, Mars, Apollo, and Mojave Base. Within each site is a Deep Space Station (DPS), consisting of a large dish antenna and its support facilities. As required by NASA directives concerning the implementation of the National Environmental Policy Act, each NASA field installation is to publish an Environmental Resources Document describing the current environment at the installation, including any adverse effects that NASA operations may have on the local environment.

  8. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  9. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates.

  10. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  11. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1990-04-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates. The source terms task will develop estimates for radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. 1 fig., 1 tab.

  12. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, Environmental Pathways and Dose Estimates. 2 figs., 1 tab.

  13. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  14. Western Regional Final Supplemental Environmental Impact Statement: Rulemaking for Small Power Production and Cogeneration Facilities - Exemptions for Geothermal Facilities

    SciTech Connect

    Heinemann, Jack M.; Nalder, Nan; Berger, Glen

    1981-02-01

    Section 643 of the Energy Security Act of 1980 directed the Federal Energy Regulatory Commission to develop rules to further encourage geothermal development by Small Power Production Facilities. This rule amends rules previously established in Dockets No. RM79-54 and 55 under Section 201 and 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). The analysis shows that the rules are expected to stimulate the development of up to 1,200 MW of capacity for electrical generation from geothermal facilities by 1995--1,110 MW more than predicted in the original PURPA EIS. This Final Supplemental EIS to the DEIS, issued by FERC in June 1980, forecasts likely near term development and analyzes environmental effects anticipated to occur due to development of geothermal resources in the Western United States as a result of this additional rulemaking.

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-06-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  16. South Dakota geothermal handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  17. Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii

    SciTech Connect

    Jacobi, J.D.; Reynolds, M.; Ritchotte, G.; Nielsen, B.; Viggiano, A.; Dwyer, J.

    1994-10-01

    This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

  18. Phase 1 Feasibility Study, Canby Cascaded Geothermal Project, April 2, 2013

    SciTech Connect

    Merrick, Dale E

    2013-04-02

    A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.

  19. City of North Bonneville, Washington: Geothermal Exploration Project, production test well, Phase II. Final report

    SciTech Connect

    Not Available

    1982-06-01

    Based on discussions with the City of North Bonneville, the production test well was drilled to a depth that would also explore for ground water temperatures near 130/sup 0/F (54.4/sup 0/C). Depth projections to a 130/sup 0/F bottom hole temperature were made by assuming a constant ground water temperature rise greater than 50/sup 0/C per kilometer, and by assuming that essentially homogeneous or equivalent conductive rock units would be encountered. Minimum water production requirements were not set, although the City determined that about 800 gpm would be acceptable. Large upper casing diameters of 16 and 12 inches were installed in order to provide the future use of either a vertical turbine or submersible pump, as desired by the city. The scope of work included interpretation of well characteristics, evaluation of ground water as a geothermal resource, geologic analysis of data from drilling and testing, drilling supervision, daily drilling cost accounting, and preparation of a final report. The report includes geologic evaluation of the drilling and test data, ground water and geothermal potential.

  20. NEDO'S project on geothermal reservoir engineering -- a reservoir engineering study of the Kirishima field, Japan

    SciTech Connect

    Kitamura, H.; Ishido, T.; Miyazaki, S.; Abe, I.; Nobumoto, R.

    1988-01-01

    In order to promote the development of geothermal energy resources, it is important to understand and (to the extent possible) to alleviate potential risks associated with each proposed development project. Further, it is essential to estimate the generation capacity of the reservoir prior to full-scale commitment so that the power plant design may be intelligently formulated. Starting in 1984, the New Energy Development Organization (NEDO) in Japan undertook a four-year program to develop technical methods for the evaluation of potential geothermal resources and for the prediction of production capacity and the appropriate level of electrical generation to be anticipated. NEDO’s general approach to theoretical reservoir evaluation is described, as is the schedule and progress along the four-year program toward its four main goals: development of reservoir simulators, drilling of observation wells in two model fields (the Sumikawa field in northern Honshu and the Kirishima field in southern Kyushu), well tests in the model fields, and reservoir simulation with natural-state and production calculation for both fields. The remainder of the paper describes some results obtained from the well testing program in the Kirishima field and ongoing studies of it.

  1. Protection of food crops during rapid development of the Palinpinon Geothermal Project

    SciTech Connect

    Darby, d'E.C.; de Jesus, A.C.

    1981-10-01

    A tropical water plant known as kangkong is cultivated in the Okoy River. Many hundreds of people are involved in growing this important green vegetable which is harvested up to 12 times per year, hence the need to avert major damage to crops is clear. Trials suggest that kangkong is sensitive to lower levels of arsenic than boron, but because of the relative amounts of these elements in geothermal waters boron is likely to be the limiting element in regard to surface waste-water discharges. Arsenic or boron toxicity symptoms were more severe in the presence of sulphate, while high calcium levels delayed the onset or reduced the severity of the symptoms. Plants tolerated thermal shocks up to about 50/sup 0/C for 30 minutes. Under the test conditions the maximum continuously tolerable level of geothermal fluid was about 8% and of As and B about 3 mg/kg and 5 mg/kg, respectively. For purposes of crop protection during project development, however, wastewater discharges from wells under test are normally regulated so that the level of B upstream of the cropping area does not normally exceed about 3 mg/kg.

  2. Geothermal Systems In The Snake River Plain Idaho Characterized By The Hotspot Project

    NASA Astrophysics Data System (ADS)

    Nielson, D. L.; Delahunty, C.; Shervais, J. W.

    2012-12-01

    The Snake River Plain (SRP) is potentially the largest geothermal province in the world. It is postulated that the SRP results from passage of the North American Plate over the Yellowstone mantle plume. This has resulted in felsic, caldera-related volcanism followed by voluminous eruptions of basalt. Compilations of subsurface temperature data demonstrate the masking effect of the Snake River Aquifer. As a consequence, here has been little serious geothermal exploration within the center of the plain; although there are numerous examples of low-temperature fluids, as well as the Raft River geothermal system, on the southern flanks of the SRP. Project Hotspot was designed to investigate the geothermal potential of the SRP through the coring and subsequent scientific evaluation of three holes, each representing a different geothermal environment. These are located at Kimama, north of Burley, in the center of the plain; at Kimberly near Twin Falls on the southern margin of the plain; and at Mountain Home Air Force base in the central part of the western SRP. Both the Kimberly and Mountain Home sites are located in areas that have warm wells and hot springs, whereas, the Kimama site has neither surface nor subsurface thermal manifestations. All of the sites studied here were sampled using slim hole coring techniques in conjunction with a bottom hole temperature probe developed by DOSECC. Our first hole at Kimama in the center of the eastern SRP was cored to a depth of 1,912 m. Temperature measurements showed the SRP fresh water aquifer extends to a depth of 965 m and masks the underlying high temperature gradient of 74.5oC/Km. The core hole at Kimberly reached a depth of 1,959 m and demonstrated a large low-temperature resource of >50oC below 800 m. A core hole at Mountain Home AFB in the eastern SRP reached a depth of 1,821 m and demonstrated the presence of an intermediate- to high-temperature artesian resource that has a clear magmatic association, with measured

  3. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  4. Environmental projects. Volume 3: Environmental compliance audit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Goldstone Deep Space Communications Complex is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at Goldstone are carried out in support of six large parabolic dish antennas. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL and Goldstone have adopted a position that their operating installations shall maintain a high level of compliance with Federal, state, and local laws governing the management of hazardous substances, abestos, and underground storage tanks. A JPL version of a document prepared as an environmental audit of Goldstone operations is presented. Both general and specific items of noncompliance at Goldstone are identified and recommendations are provided for corrective actions.

  5. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  6. Integrated, Geothermal-CO2 Storage: An Adaptable, Hybrid, Multi-Stage, Energy-Recovery Approach to Reduce Carbon Intensity and Environmental Risk

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Chen, M.; Lu, C.; Sun, Y.; Hao, Y.; Elliot, T. R.; Celia, M. A.; Bielicki, J. M.

    2012-12-01

    The challenges of mitigating climate change and generating sustainable renewable energy are inseparable and can be addressed by synergistic integration of geothermal energy production with secure geologic CO2 storage (GCS). Pressure buildup can be a limiting factor for GCS and geothermal reservoir operations, due to a number of concerns, including the potential for CO2 leakage and induced seismicity, while pressure depletion can limit geothermal energy recovery. Water-use demands can also be a limiting factor for GCS and geothermal operations, particularly where water resources are already scarce. Economic optimization of geothermal-GCS involves trade-offs of various benefits and risks, along with their associated costs: (1) heat extraction per ton of delivered CO2, (2) permanent CO2 storage, (3) energy recovery per unit well (and working-fluid recirculation) costs, and (4) economic lifetime of a project. We analyze a hybrid, multi-stage approach using both formation brine and injected CO2 as working fluids to attempt to optimize the benefits of sustainable energy production and permanent CO2 storage, while conserving water resources and minimizing environmental risks. We consider a range of well-field patterns and operational schemes. Initially, the fluid production is entirely brine. After CO2 breakthrough, the fraction of CO2 in production, which is called the CO2 "cut", increases with time. Thus, brine is the predominant working fluid for early time, with the contribution of CO2 to heat extraction increasing with CO2 cut (and time). We find that smaller well spacing between CO2 injectors and producers favors earlier CO2 breakthrough and a more rapid rise in CO2 cut, which increases the contribution of recirculated CO2, thereby improving the heat extraction per ton of delivered CO2. On the other hand, larger well spacing increases permanent CO2 storage, energy production per unit well cost, while reducing the thermal drawdown rate, which extends the economic

  7. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.

    1992-03-01

    This Project Management Plan (PMP) describes the approach that will be used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems that will be used to plan and control the HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease Control (CDC), and the Technical Steering Panel (TSP).

  8. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.

    1992-03-01

    This Project Management Plan (PMP) describes the approach that will be used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems that will be used to plan and control the HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease Control (CDC), and the Technical Steering Panel (TSP).

  9. Commission decision on the Department of Water Resources' Application for Certification for the Bottle Rock Geothermal Project

    SciTech Connect

    Not Available

    1980-11-01

    The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)

  10. Heber geothermal binary demonstration project quarterly technical progress report, July 1, 1981--September 30, 1981

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of July 1, 1981, through September 30, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the US Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  11. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1982--December 31, 1982

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Dixon, J.R.; Hsiao, W.P.; Liparidis, G.S.; Lombard, G.L.; Nelson, T.T.; Van De Mark, G.D.

    1983-05-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1982--December 31, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  12. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  13. Induced Seismicity Related to Hydrothermal Operation of Geothermal Projects in Southern Germany - Observations and Future Directions

    NASA Astrophysics Data System (ADS)

    Megies, T.; Kraft, T.; Wassermann, J. M.

    2015-12-01

    Geothermal power plants in Southern Germany are operated hydrothermally and at low injection pressures in a seismically inactive region considered very low seismic hazard. For that reason, permit authorities initially enforced no monitoring requirements on the operating companies. After a series of events perceived by local residents, a scientific monitoring survey was conducted over several years, revealing several hundred induced earthquakes at one project site.We summarize results from monitoring at this site, including absolute locations in a local 3D velocity model, relocations using double-difference and master-event methods and focal mechanism determinations that show a clear association with fault structures in the reservoir which extend down into the underlying crystalline basement. To better constrain the shear wave velocity models that have a strong influence on hypocentral depth estimates, several different approaches to estimate layered vp/vs models are employed.Results from these studies have prompted permit authorities to start imposing minimal monitoring requirements. Since in some cases these geothermal projects are only separated by a few kilometers, we investigate the capabilities of an optimized network combining the monitoring resources of six neighboring well doublets in a joint network. Optimization is taking into account the -- on this local scale, urban environment -- highly heterogeneous background noise conditions and the feasibility of potential monitoring sites, removing non-viable sites before the optimization procedure. First results from the actual network realization show good detection capabilities for small microearthquakes despite the minimum instrumentational effort, demonstrating the benefits of good coordination of monitoring efforts.

  14. Geothermal Financing Workbook

    SciTech Connect

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  15. Environmental Control Unit Harness Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Testing four new Environmental Control Unit Harnesses for improved user comfort during SCAPE operations. Phase I, testing in a lab environment, Phase II will continue testing the best candidates in a field environment.

  16. Chemical behaviour of geothermal silica after precipitation from geothermal fluids with inorganic flocculating agents at the Hawaii Geothermal Project Well-A (HGP-A)

    SciTech Connect

    De Carlo, E.H.

    1987-01-01

    The report summarizes the results of experiments dealing with the problem of removal of waste-silica from spent fluids at the experimental power generating facility in the Puna District of the island of Hawaii. Geothermal discharges from HGP-A represent a mixture of meteoric and seawaters which has reacted at depth with basalts from the Kilauea East Rift Zone under high pressure and temperature. After separation of the steam phase of the geothermal fluid from the liquid phase and a final flashing stage to 100 degrees Celsius and atmospheric pressure, the concentration of the silica increases to approximately 1100 mg/L. This concentration represents five to six times the solubility of amorphous silica in this temperature range. We have evaluated and successfully developed bench scale techniques utilizing adsorptive bubble flotation for the removal of colloidal silica from the spent brine discharge in the temperature range of 60 to 90 degrees C. The methods employed resulted in recovery of up to 90% of the silica present above its amorphous solubility in the experimental temperature range studied.

  17. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  18. The IRETHERM Project: How Can We Characterize Geothermal Reservoirs in Ireland using Magnetotelluric Surveying?

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Rath, V.; Brown, C.; Reay, D.

    2014-12-01

    We present results from two geophysical investigations of the north of Ireland, one of a concealed sedimentary basin and the other of an area of pre- to mid-Cambrian metasedimentary material with local microseismicity in Donegal. Magnetotelluric data have been acquired over each area as part of the IRETHERM Project in order to assess potential low-enthalpy geothermal resources. In addition, airborne frequency-domain EM response data have been used to assist in the definition of near-surface electrical structure and constraint of magnetotelluric modeling. The Rathlin Basin in Northern Ireland was identified as a potential geothermal resource due both an elevated geothermal gradient (observed in two deep boreholes) and favorable hydraulic properties in thick successions of Permian and Triassic sandstones (measured from core samples). Prior seismic experiments failed to fully image the sediments beneath the overlying flood basalt. A new experiment applying the magnetotelluric method has had more success, as the MT signal is not dissipated by the crystalline overburden. MT data were acquired at 69 sites across the north-eastern portion of the onshore Rathlin Basin and on nearby Rathlin Island in order to image the thickness, depth, and lateral continuity of the target sediments. Analyses and modeling of the data have determined a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the sediments against the structurally-controlling Tow Valley Fault. Further testing of the model sensitivity to variations of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the overlying sediments have lower porosities and permeabilities from core sampling. Microseismicity in a metasedimentary area of northern Donegal suggests that secondary porosity distributions along fracture planes may have been augmented, leading to elevated electrical conductivity. MT data were acquired over the epicenter

  19. The IRETHERM project: Magnetotelluric assessment of the Rathlin Basin as a possible geothermal aquifer

    NASA Astrophysics Data System (ADS)

    Delhaye, Robert; Jones, Alan; Reay, Derek

    2014-05-01

    IRETHERM (www.iretherm.ie) is a collaborative, SFI-funded research project to identify and evaluate sites within Ireland possessing the greatest potential for deep, low-enthalpy, geothermal energy provision. Possible areas for geothermal potential include the Permian and Triassic sedimentary basins in Northern Ireland, which contain groups with relatively high primary porosity, with viability depending largely on the permeability distribution, which controls fluid flow and heat-exchange. The most promising of these is the Triassic Sherwood Sandstone Group, which has measured porosities and permeabilities of 8-24% and 2-1000 mD respectively from borehole core samples. The subject of the work presented here, the Rathlin Basin in County Antrim, is one of three onshore basins in Northern Ireland, where measurements in two independent boreholes show geothermal gradients of between 36 and 43 °C/km to depths of 1481 m. Previously published interpretations of gravity models across the basin attribute a thickness of 2000 m to the Sherwood Sandstone Group, with a maximum depth to the Permo-Triassic basement of 4000 m. Magnetotelluric data were acquired onshore in June 2012 across a 2-D grid of 57 sites with a 2 km site spacing, and on the nearby Rathlin Island on two profiles totalling 12 sites with an 800 m site spacing in April 2013 in order to image the thickness and continuity of the sediments in the north-eastern portion of the basin. In the modelling results presented here, the Permo-Triassic sediment fill has a well-imaged resistivity contrast to the surrounding basal Dalradian metasediments. The data have been analysed and modelled to determine a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the basin sediments against the Tow Valley Fault. Further synthetic testing of the model sensitivity to variation of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the

  20. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  1. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1989-08-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates: source terms; environmental transport; environmental monitoring data; demographics, agriculture, and food habits; and environmental pathways and dose estimates. The source terms task will develop estimates of radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. The environmental transport task will reconstruct the movement of radioactive materials from the areas of release to populations. Movement via the atmosphere, surface water (Columbia River), and ground water will be studied. The environmental monitoring task will assemble, evaluate, and report historical environmental monitoring data. A major effort of this task is to separate Hanford as a source of radionuclide concentrations in the environment from concentrations due to natural sources and nuclear testing fallout.

  2. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    SciTech Connect

    Not Available

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  3. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  4. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  5. School Yard Environmental Projects: A Planning Primer.

    ERIC Educational Resources Information Center

    Megalos, Mark A.; And Others

    This guide describes how to establish successful trails, outdoor classrooms, or other environmental education improvements on rural and urban school grounds. Teachers are encouraged to promote the environmental project as a solution to an existing problem and to include all parties and stakeholders that can benefit from a coordinated environmental…

  6. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  7. Reflectance spectral analyses for the assessment of environmental pollution in the geothermal site of Mt. Amiata (Italy)

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Salvini, Riccardo; Guastaldi, Enrico; Nicolardi, Valentina; Protano, Giuseppe

    2013-11-01

    We studied the environmental impact of geothermal activities in the Mt. Amiata area, using on-site spectral analyses of various ecological components. Analytical techniques were based on the study of the “red-edge”, which represents the spectral feature of the reflectance spectra defined between red and infrared wavelengths (λ) within the range 670-780 nm. Since in the study area the geothermal exploitation causes the drifting of contaminants such as Hg, Sb, S, B, As and H2S (hydrogen sulfide) from power plants, the spectral response of vegetation and lichens depends on their distance from the power stations, and also on the exposed surface, material type and other physical parameters. In the present research, the spectral radiance of targets was measured in the field using an Analytical Spectral Device (ASD) Field-Spec™FR portable radiometer. Spectral measurements were made on vegetation and lichen samples located near to and far from geothermal areas and potential pollution sources (e.g., power plants), with the aim of spatially defining their environmental impact. Observations for vegetation and lichens showed correlation with laboratory chemical analyses when these organisms were under stress conditions. The evaluation of relationships was carried out using several statistical approaches, which allowed to identify methods for identifying contamination indicators for plants and lichens in polluted areas. Results show that the adopted spectral indices are sensitive to environmental pollution and their responses spatialstatically correlated to chemical and ecophysiological analyses within a notable distance.

  8. Integrating TQM into environmental restoration projects

    SciTech Connect

    Caldwell, J.A.

    1992-12-31

    Responsible and cost-effective waste management and environmental restoration are best achieved when the principles and procedures of Total Quality Management are made an integral part of the process. By describing three case histories, we explore and explain techniques for using TQM in environmental projects. Key aspects considered include: quality measurement systems; establishing and maintaining standard operating procedures; management and technical peer review; the use of Quality Improvement Teams; Roadmapping (a new procedure that the US Department of Energy is incorporating into environmental restoration programs); and the role of audit teams in document production. The three case histories covered include: The Department of Energy`s Uranium Mill Tailings Remedial Action Project on which Roadmapping and Quality Improvement Teams have led to significant changes in procedures; the EPA ARCS program on which adoption of project management Standard Operating Procedures enhanced cost and schedule control; the Jacobs Engineering TQM program that emphasizes performance measurement and management and project technical peer review.

  9. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  10. Environmental audit: West Valley Demonstration Project

    SciTech Connect

    Not Available

    1992-01-01

    This report documents the results of the Environmental Audit of West Valley Demonstration Project (WVDP) located in West Valley, New York. The WVDP Environmental Audit was conducted from July 29 through August 16, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at WVDP as well as the overall environmental management system. The scope of the Environmental Audit was comprehensive, addressing environmental media and Federal, state, and local regulations, with the exception of the National Environmental Policy Act (NEPA). Also addressed were DOE Orders, WVDP 1989 ES&H Assessment Action Plan, formalized facility or program operating procedures, and BMPS. The technical disciplines addressed by the Audit were: Air; Surface Water; Soils, Sediment and Biota; Groundwater; Waste Management; Toxic and Chemical Materials; Radiation; Quality Assurance; and Inactive Waste Sites. In addition, the Audit included a review of environmental management programs within the West Valley Project Office (WVPO). West Valley Nuclear Services (WVNS), and Subcontractor organizations. The effectiveness of environmental monitoring programs was a major component of the review conducted within each technical discipline.

  11. Environmental audit: West Valley Demonstration Project

    SciTech Connect

    Not Available

    1992-01-01

    This report documents the results of the Environmental Audit of West Valley Demonstration Project (WVDP) located in West Valley, New York. The WVDP Environmental Audit was conducted from July 29 through August 16, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at WVDP as well as the overall environmental management system. The scope of the Environmental Audit was comprehensive, addressing environmental media and Federal, state, and local regulations, with the exception of the National Environmental Policy Act (NEPA). Also addressed were DOE Orders, WVDP 1989 ES H Assessment Action Plan, formalized facility or program operating procedures, and BMPS. The technical disciplines addressed by the Audit were: Air; Surface Water; Soils, Sediment and Biota; Groundwater; Waste Management; Toxic and Chemical Materials; Radiation; Quality Assurance; and Inactive Waste Sites. In addition, the Audit included a review of environmental management programs within the West Valley Project Office (WVPO). West Valley Nuclear Services (WVNS), and Subcontractor organizations. The effectiveness of environmental monitoring programs was a major component of the review conducted within each technical discipline.

  12. River Protection Project (RPP) Environmental Program Plan

    SciTech Connect

    POWELL, P.A.

    2000-03-29

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  13. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  14. Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Kraft, Toni; Cauzzi, Carlo; Kästli, Philipp; Wiemer, Stefan

    2015-05-01

    Monitoring and understanding induced seismicity is critical in order to estimate and mitigate seismic risk related to numerous existing and emerging techniques for natural resource exploitation in the shallow-crust. State of the art approaches for guiding decision making, such as traffic light systems, rely heavily on data such as earthquake location and magnitude that are provided to them. In this context we document the monitoring of a deep geothermal energy project in St Gallen, Switzerland. We focus on the issues of earthquake magnitude, ground motion and macroseismic intensity which are important components of the seismic hazard associated to the project. We highlight the problems with attenuation corrections for magnitude estimation and site amplification that were observed when trying to apply practices used for monitoring regional seismicity to a small-scale monitoring network. Relying on the almost constant source-station distance for events in the geothermal `seismic cloud' we developed a simple procedure, calibrated using several ML > 1.3 events, which allowed the unbiased calculation of ML using only stations of the local monitoring network. The approach determines station specific ML correction terms that account for both the bias of the attenuation correction in the near field and amplification at the site. Since the smallest events (ML < -1) were only observed on a single borehole instrument, a simple relation between the amplitude at the central borehole station of the monitoring network and ML was found. When compared against magnitudes computed over the whole network this single station approach was shown to provide robust estimates (±0.17 units) for the events down to ML = -1. The relation could then be used to estimate the magnitude of even smaller events (ML < -1) only recorded on the central borehole station. Using data from almost 2700 events in Switzerland, we then recalibrated the attenuation correction, extending its range of validity

  15. Geothermal Project Den Haag - 3-D models for temperature prediction and reservoir characterization

    NASA Astrophysics Data System (ADS)

    Mottaghy, D.; Pechnig, R.; Willemsen, G.; Simmelink, H. J.; Vandeweijer, V.

    2009-04-01

    In the framework of the "Den Haag Zuidwest" geothermal district heating system a deep geothermal installation is projected. The target horizon of the planned doublet is the "Delft sandstone" which has been extensively explored for oil- and gas reservoirs in the last century. In the target area, this upper Jurassic sandstone layer is found at a depth of about 2300 m with an average thickness of about 50 m. The study presented here focuses on the prediction of reservoir temperatures and production behavior which is crucial for planning a deep geothermal installation. In the first phase, the main objective was to find out whether there is a significant influence of the 3-dimensional structures of anticlines and synclines on the temperature field, which could cause formation temperatures deviating from the predicted extrapolated temperature data from oil and gas exploration wells. To this end a regional model was set up as a basis for steady state numerical simulations. Since representative input parameters are decisive for reliable model results, all available information was compiled: a) the subsurface geometry, depth and thickness of the stratigraphic layers known from seismic data sets 2) borehole geophysical data and c) geological and petrographical information from exploration wells. In addition 50 cuttings samples were taken from two selected key wells in order to provide direct information on thermal properties of the underlying strata. Thermal conductivity and rock matrix density were measured in the laboratory. These data were combined with a petrophysical log analysis (Gamma Ray, Sonic, Density and Resistivity), which resulted in continuous profiles of porosity, effective thermal conductivity and radiogenetic heat production. These profiles allowed to asses in detail the variability of the petrophysical properties with depth and to check for lateral changes between the wells. All this data entered the numerical simulations which were performed by a 3-D

  16. Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Kraft, Toni; Cauzzi, Carlo; Kästli, Philipp; Wiemer, Stefan

    2015-05-01

    Monitoring and understanding induced seismicity is critical in order to estimate and mitigate seismic risk related to numerous existing and emerging techniques for natural resource exploitation in the shallow-crust. State of the art approaches for guiding decision making, such as traffic light systems, rely heavily on data such as earthquake location and magnitude that are provided to them. In this context we document the monitoring of a deep geothermal energy project in St Gallen, Switzerland. We focus on the issues of earthquake magnitude, ground motion and macroseismic intensity which are important components of the seismic hazard associated to the project. We highlight the problems with attenuation corrections for magnitude estimation and site amplification that were observed when trying to apply practices used for monitoring regional seismicity to a small-scale monitoring network. Relying on the almost constant source-station distance for events in the geothermal `seismic cloud' we developed a simple procedure, calibrated using several ML > 1.3 events, which allowed the unbiased calculation of ML using only stations of the local monitoring network. The approach determines station specific ML correction terms that account for both the bias of the attenuation correction in the near field and amplification at the site. Since the smallest events (ML < -1) were only observed on a single borehole instrument, a simple relation between the amplitude at the central borehole station of the monitoring network and ML was found. When compared against magnitudes computed over the whole network this single station approach was shown to provide robust estimates (±0.17 units) for the events down to ML = -1. The relation could then be used to estimate the magnitude of even smaller events (ML < -1) only recorded on the central borehole station. Using data from almost 2700 events in Switzerland, we then recalibrated the attenuation correction, extending its range of validity

  17. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts.

    PubMed

    Alcaraz, Mar; García-Gil, Alejandro; Vázquez-Suñé, Enric; Velasco, Violeta

    2016-02-01

    Borehole Heat Exchangers (BHEs) are increasingly being used to exploit shallow geothermal energy. This paper presents a new methodology to provide a response to the need for a regional quantification of the geothermal potential that can be extracted by BHEs and the associated environmental impacts. A set of analytical solutions facilitates accurate calculation of the heat exchange of BHEs with the ground and its environmental impacts. For the first time, advection and dispersion heat transport mechanisms and the temporal evolution from the start of operation of the BHE are taken into account in the regional estimation of shallow geothermal resources. This methodology is integrated in a GIS environment, which facilitates the management of input and output data at a regional scale. An example of the methodology's application is presented for Barcelona, in Spain. As a result of the application, it is possible to show the strengths and improvements of this methodology in the development of potential maps of low temperature geothermal energy as well as maps of environmental impacts. The minimum and maximum energy potential values for the study site are 50 and 1800 W/m(2) for a drilled depth of 100 m, proportionally to Darcy velocity. Regarding to thermal impacts, the higher the groundwater velocity and the energy potential, the higher the size of the thermal plume after 6 months of exploitation, whose length ranges from 10 to 27 m long. A sensitivity analysis was carried out in the calculation of heat exchange rate and its impacts for different scenarios and for a wide range of Darcy velocities. The results of this analysis lead to the conclusion that the consideration of dispersion effects and temporal evolution of the exploitation prevent significant differences up to a factor 2.5 in the heat exchange rate accuracy and up to several orders of magnitude in the impacts generated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle's contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  19. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle`s contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  20. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  1. The SGP-CFE geothermal hydrogen study

    SciTech Connect

    Fioravanti, M.; Kruger, P.; Cadenas, C.; Rangel, M.

    1995-12-31

    Excess baseload geothermal electric power could be used to manufacture hydrogen as an alternate automotive fuel, providing several synergistic economic and environmental health benefits. A study is underway as part of the DOE-CFE Geothermal Agreement to estimate the potential for producing hydrogen at geothermal fields in Mexico with low-cost excess capacity and the concomitant potential for air pollution abatement in the Mexico City metropolitan area. Case studies have been made for excess capacity at three scales: (1) small (10 MWe) at a new developing field as an experimental facility; (2) moderate (100 MWe) at Cerro Prieto as a demonstration project; and (3) large (1000 MWe) using the entire output of Mexico`s geothermal resources for significant air quality improvement.

  2. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    SciTech Connect

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  3. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  4. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Not Available

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  6. Evaluation of NEPA-based environmental commitments at four geopressured geothermal design wells

    SciTech Connect

    Reed, A.W.; Hunsaker, D.B. Jr.; Roop, R.D.; Webb, J.W.

    1983-01-01

    This study verifies the implementation and effectiveness of environmental mitigation and monitoring commitments made by the US Department of Energy in National Environmental Policy Act documents (Environmental Assessments (EAs)) prepared for four geopressure design well projects, one in Texas and three in Louisiana. The evaluation was based on visits to the project sites conducted by Oak Ridge National Laboratory staff in August 1982 and April 1983, and on a review of monitoring and project activity reports provided by DOE subcontractors. Subcontractors responsible for drilling and testing activities at the well sites adequately implemented most of the mitigation measures described in each project's EA. Exceptions included the lack of impermeable liners for drilling mud pits at three sites and the lack of a ring levee at one site. Water quality, noise, and air monitoring were not performed as strictly as outlined in the EAs. A review of the data collected to date indicates that no significant environmental degradation has occurred. Additional or future monitoring needs, especially with regard to subsidence, microseismicity, and groundwater and soil sampling were recommended.

  7. 1995 project of the year Hanford Environmental compliance project nomination

    SciTech Connect

    Kelly, J.R.

    1996-02-01

    The completion of the Hanford Environmental Compliance (HEC) Project in December 1995 brought to a successful close a long line of major contributions to environmental cleanup. Not since the early days of the Hanford Site during and shortly after World War 11 had such a large group of diverse construction activities, with a common goal, been performed at Hanford. Key to this success was the unique combination of 14 subprojects under the HEC Project which afforded the flexibility to address evolving subproject requirements. This strategy resulted in the accomplishment of the HEC Project stakeholders` objectives on an aggressive schedule, at a $33 million cost savings to the customer. The primary objectives of the HEC Project were to upgrade selected Hanford Site facilities and systems to bring them into compliance with current environmental standards and regulations. The HEC Project contributed significantly towards the Hanford site compliance with Clean Water Act, Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. It provided, in part, those construction activities required to comply with those requirements in the areas of liquid and solid waste treatment and disposal, waste characterization, and groundwater monitoring.

  8. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  9. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  10. Geothermal Exploratory-Well Project: city of Alamosa, Colorado. Final report, September 1980-April 1983

    SciTech Connect

    Phetteplace, D.R.; Kunze, J.F.

    1983-01-01

    The Geothermal Exploratory Well Project for the City of Alamosa, Colorado is summarized. In September, 1980, the City of Alamosa made application to the US Department of Energy for a program which, in essence, provided for the Department of Energy to insure that the City would not risk more than 10% of the total cost in the well if the well was a failure. If the well was a complete success, such as 650 gpm and 230/sup 0/F temperature, the City was responsible for 80% of the costs for drilling the well and there would be no further obligation from the Department of Energy. The well was drilled in November and early December, 1981, and remedial work was done in May and June 1982. The total drilled depth was 7118 ft. The well was cased to 4182 ft., with a slotted liner to 6084 ft. The maximum down hole temperature recorded was 190/sup 0/F at 6294 ft. Testing immediately following the remedial work indicated the well had virtually no potential to produce water.

  11. Do environmental projects promote gender equity?

    PubMed

    Joekes, S

    1995-02-01

    In the 1980s, governments and development agencies began to recognize the need to consider gender issues in their environmental and natural resource management programs. First came the understanding that women play a vital role in the management of natural resources and often have a strong traditional and contemporary knowledge of their environment. To exclude them would damage the efficacy of any project. Next, donor agencies came to view women, in their roles as environmental managers, as vulnerable victims of and contributors to environmental degradation. When awareness grew of examples of women successfully fighting to conserve local resources, women were considered important local assets to be used in efforts toward better environmental management. New environmental projects began by asking whether the protected resource was used by men or women in order to target the crucial people. For example, when planning to preserve forests, it is useful to recognize that men typically use wood for construction and fencing, while women use it for cooking fires. It has become increasingly common for women to participate in water and sanitation committees. But good intentions have often been subverted. Community level management of environmental projects does not guarantee female participation. Sometimes involving women means that women do all the physical labor without receiving their fair share of the benefits. In areas where women's property rights are restricted, women will have little authority in resource management. Legal reforms are needed, but they must be complemented at the local level by collective action.

  12. Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect

    Not Available

    1981-03-31

    Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

  13. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  14. Environmental Assessment : Happy Valley [Substation Project].

    SciTech Connect

    United States. Bonneville Power Administration.

    1982-05-01

    The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

  15. Geothermal Today - 1999

    SciTech Connect

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  16. Mounds View Environmental Education Project, Report #1.

    ERIC Educational Resources Information Center

    Budde, Duane

    Prepared for the 1971 National Science Teachers Association (NSTA) Annual Meeting, this collection of ideas, activities, and unit plans from the Mounds View Environmental Education Project would be useful for junior and senior high school teachers and curriculum planners. Content includes: (1) a senior high course outline and daily lesson plans…

  17. Environmental Science Projects. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    This bibliography cites sources to assist middle, junior, and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences. In addition, a few books with experiments suitable for elementary grade students are included. The listing includes: (1) 5 introductory texts; (2) 31…

  18. Environmental Science Projects. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    Sources to assist junior and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences are cited in this bibliography that includes a few books with experiments suitable for elementary grade students. Information and/or citations are provided under the following headings: (1)…

  19. Project Approval, Environmental Assessment and Public Participation.

    ERIC Educational Resources Information Center

    Elder, P. S.

    1982-01-01

    Presents a case study of a heavy oil project proposed by Esso Resources Canada Limited at Cold Lake, Alberta, Canada. Focuses on the approval process, environmental and social impact assessments, and public participation. Evaluates the case and makes recommendations concerning the approval process. (DC)

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  1. Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy).

    PubMed

    Loppi, S

    2001-11-01

    The environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, central Italy) and its surroundings was evaluated by means of lichens used as bioaccumulators. Adopting a 'before-after' strategy, the impact of a recently built power plant was also evaluated. Four sites were sampled: (1) S. Fiora, a town 2 km SE of Bagnore; (2) Bagnore, a village where geothermal power is generated; (3) Aiole, a locality 1.5 km NW of Bagnore with an abandoned Hg smelting plant and a waste pile of roasted cinnabar; (4) Arcidosso, a town 3.5 km NW of Bagnore. At S. Fiora and Arcidosso, where most of the population is concentrated, mercury levels in lichens were within the background range (0.1-0.2 microg/g dw). On the contrary, at Aiole, Hg concentrations (0.63-0.67 microg/g dw) were much higher than background. After the new geothermal power plant went into operation at Bagnore, lichen concentrations of Hg showed a 50% increase from 0.22 to 0.32 microg/g dw. This value, however, is in line with those found in lichens from natural areas with hot springs and fumaroles.

  2. Marion Industrial Substation Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    Consumers Power, Inc. (CPI), proposes to construct a new distribution substation under the existing Bonneville Power Administration (BPA) Albay-Lebanon transmission line near the city of Albany in Linn County, Oregon. BPA is proposing to grant a new Point of Delivery to CPI at this substation. The purpose of the project is to serve the developing industrial needs in the Marion Industrial Park and on the 550 acres of nearby land within CPI`s service area that are zoned for residential use. CPI prepared, and the Rural Electrification Administration (REA) has approved a Borrower`s Environmental Report (BER) which addresses this action along with several other proposed projects in the CPI service area. Portions of this BER are summarized in this brief EA. BPA is preparing its own EA since Department of Energy National Environmental Policy Act (NEPA) guidelines require additional environmental concerns to be addressed than are required by REA`s NEPA guidelines.

  3. Marion Industrial Substation Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    Consumers Power, Inc. (CPI), proposes to construct a new distribution substation under the existing Bonneville Power Administration (BPA) Albay-Lebanon transmission line near the city of Albany in Linn County, Oregon. BPA is proposing to grant a new Point of Delivery to CPI at this substation. The purpose of the project is to serve the developing industrial needs in the Marion Industrial Park and on the 550 acres of nearby land within CPI's service area that are zoned for residential use. CPI prepared, and the Rural Electrification Administration (REA) has approved a Borrower's Environmental Report (BER) which addresses this action along with several other proposed projects in the CPI service area. Portions of this BER are summarized in this brief EA. BPA is preparing its own EA since Department of Energy National Environmental Policy Act (NEPA) guidelines require additional environmental concerns to be addressed than are required by REA's NEPA guidelines.

  4. Klickitat Cogeneration Project : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  5. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  6. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    SciTech Connect

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  7. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  8. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    SciTech Connect

    Sebastian Puente

    1998-07-25

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.

  9. A Project-Based Model for Professional Environmental Experience

    ERIC Educational Resources Information Center

    Meehan, Barry; Thomas, Ian

    2006-01-01

    The projects described in this article were designed to provide a real world situation akin to the work of environmental professionals. The projects were conducted with Australian students working on environmental issues in Vietnam. The projects demonstrated that multi-disciplinary teamwork fits well into environmental projects, and importantly…

  10. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  11. South Dakota Geothermal Energy Handbook

    SciTech Connect

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  12. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  13. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    NASA Astrophysics Data System (ADS)

    Kirsch, Reinhard; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Hese, Fabian; Mathiesen, Anders; Møller Nielsen, Carsten; Nielsen, Lars Henrik; Offermann, Petra; Poulsen, Niels Erik; Rabbel, Wolfgang; Thomsen, Claudia

    2016-04-01

    Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological model was developed and used as structural basis for the set-up of a regional temperature model. In that frame, new reflection seismic data were obtained to close local data gaps in the border region. The analyses and reinterpretation of available relevant data (old and new seismic profiles, core and well-log data, borehole data, literature data) and a new time-depth conversion (new velocity model) allowed correlation of seismic profiles across the border. On this basis, new topologically consistent depth and thickness maps for 12 geological/lithological units were drawn, with special emphasis on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface temperature model. New local surface heat-flow values (range: 72-84 mW/m²) were determined and predicted temperature were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological sections (e.g. Rhaetian/Gassum, Middle Buntsandstein) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. As an example, modelled temperatures for the Middle Buntsandstein geothermal reservoir are shown with temperatures ranging

  14. Hanford environmental dose reconstruction project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The Technical Steering Panel consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included among the members are appointed technical members representing the States of Oregon and Washington, cultural and technical experts nominated by the Indian tribes in the region, and an individual representing the public.

  15. The projection of world geothermal energy consumption from time series and regression model

    NASA Astrophysics Data System (ADS)

    Simanullang, Elwin Y.; Supriatna, Agus; Supriatna, Asep K.

    2015-12-01

    World population growth has many impacts on human live activities and other related aspects. One among the aspects is the increase of the use of energy to support human daily activities, covering industrial aspect, transportation, domestic activities, etc. It is plausible that the higher the population size in a country the higher the needs for energy to support all aspects of human activities in the country. Considering the depletion of petroleum and other fossil-based energy, recently there is a tendency to use geothermal as other source of energy. In this paper we will discuss the prediction of the world consumption of geothermal energy by two different methods, i.e. via the time series of the geothermal usage and via the time series of the geothermal usage combined with the prediction of the world total population. For the first case, we use the simple exponential smoothing method while for the second case we use the simple regression method. The result shows that taking into account the prediction of the world population size giving a better prediction to forecast a short term of the geothermal energy consumption.

  16. United States Gulf Coast geopressured geothermal program. Special projects research and coordination assistance. Final report, 1 December 1978-30 October 1980

    SciTech Connect

    Dorfman, M.H.; Morton, R.A.

    1981-06-01

    Work for the period, December 1, 1978 through October 31, 1980, is documented. The following activities are covered: project technical coordination assistance and liaison; technical assistance for review and evaluation of proposals and contract results; technical assistance for geopressured-geothermal test wells; technical assistance, coordination, and planning of surface utilization program; legal research; and special projects. (MHR)

  17. Analysis of environmental regulations governing the disposal of geothermal wastes in California

    SciTech Connect

    Royce, B.A.

    1985-09-01

    Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

  18. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  19. Tough2/PC application simulation project for Heber geothermal field, California, a progress report

    SciTech Connect

    Boardman, Timothy S.; Khan, M. Ali; Antunez, Emilio

    1996-01-24

    A numerical simulation model for the Heber geothermal field in Southern California is being developed under a technology transfer agreement between the Department of Energy/Lawrence Berkeley National Laboratory (LBNL) and the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR). The main objectives of the cooperation are (1) to train DOGGR personnel in the use of the TOUGH2PC computer code; and (2) to develop a module compatible with TOUGH2 to investigate the effects of production/injection operations on the ground surface subsidence-rebound phenomenon observed in the Heber geothermal field. Initial-state calibration (undisturbed system) runs are being conducted to calibrate the model.

  20. Antelope-Fossil Rebuild Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration`s (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower`s Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

  1. Antelope-Fossil Rebuild Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    The Columbia Power Cooperative Association (CPCA), Monument, Oregon, proposes to upgrade a 69-kV transmission line in Wasco and Wheeler Counties, Oregon, between the Antelope Substation and the Bonneville Power Administration's (BPA) Fossil Substation. The project involves rebuilding and reconductoring 23.2 miles of transmission line, including modifying it for future use at 115 kV. Related project activities will include setting new wood pole structures, removing and disposing of old structures, conductors, and insulators, and stringing new conductor, all within the existing right-of-way. No new access roads will be required. A Borrower's Environmental Report was prepared for the 1992--1993 Work Plan for Columbia Power Cooperative Association in March 1991. This report investigated cultural resources, threatened or endangered species, wetlands, and floodplains, and other environmental issues, and included correspondence with appropriate Federal, state, and local agencies. The report was submitted to the Rural Electrification Administration for their use in preparing their environmental documentation for the project.

  2. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    SciTech Connect

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  3. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  4. A sustainability analysis of geothermal energy development on the island of Dominica

    NASA Astrophysics Data System (ADS)

    Edwards, Kiyana Marie-Jose

    Dominica is heavily dependent on fossil fuels to meet its electricity generation needs. Dominica's volcanic origin and current volcanic activity allow the island to be an ideal place for the production of geothermal energy. Once geothermal exploration and development has begun in Dominica, it is uncertain whether the efforts will produce an environmentally, economically and socially feasible exploitation of the resource. Using content analysis and cost benefit analysis, this study examined the impacts of geothermal energy development based on the triple bottom line of sustainability for the Wotten Waven community, as well as the island as a whole. The results indicate that this project will have an overall positive impact on the triple bottom line of sustainability for Dominica. Therefore, geothermal energy may provide substantial net benefits to economic and sustainable development of the island. Assessing the sustainability of geothermal development is important as Dominica begins to produce geothermal energy.

  5. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    SciTech Connect

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  6. Geological and geothermal 3D modelling of the Vienna Basin, Austria - pilot area of the project TRANSENERGY

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; Bottig, M.; Zekiri, F.; Fuchsluger, M.; Götzl, G.; Schubert, G.; Brüstle, A.

    2012-04-01

    In general, sedimentary basins show high potential for the use of geothermal energy. Since the Vienna Basin is a densely populated area, (approximately 1.7 million people in the city of Vienna plus surroundings) geothermal power and heat could play a significant role in the future. The Vienna basin is a relatively cold system where the 100 °C isotherm is to be found at a minimum of about 2500 meters. This fact, meaning the need of deep thus expensive wells, adding the problem of space for drillings and geothermal power plants are challenging subjects in terms of exploitation. The aim of the present work is to model the thermal regime of the Vienna basin and take a closer look on two exploitation scenarios in different hydrological systems (parts of the Bajuvaric and Juvavic nappes in the basement and the horizon of Aderklaa conglomerates in the Neogene sediments). In the first phase, a geological 3D model was created using published data (surface geology, interpreted cross sections from drilling and seismic data) as well as markers from selected wells (data derived from OMV). The geometrical model was built in GoCADTM, where in a first step surfaces were created, displaced along major faults and further exported for the following numerical simulations. In total, 14 Surfaces were created, seven Neogene layers and seven structuring the basement. The thermal modelling is realized using the finite-element software COMSOL Multiphysics© and FEFLOW. Major surfaces were imported into COMSOL as geometry objects, which is not practicable for very complex, fine structures. To represent smaller units inside the subdomains, the associated material parameters had to be imported as functions of the three space coordinates. To gain initial values for the exploitation scenario modelling a steady-state solution has to be achieved. For the lower model boundary, a Neumann boundary condition was set using a newly derived heat flow density map (project TRANSENERGY, Geological Survey

  7. Cheap-GSHPs, an European project aiming cost-reducing innovations for shallow geothermal installations. - Geological data reinterpretation

    NASA Astrophysics Data System (ADS)

    Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa

    2016-04-01

    The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several

  8. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  9. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  10. Geothermal development attitudes surveyed

    SciTech Connect

    Not Available

    1986-01-01

    The State of Hawaii has conducted several surveys on public opinion towards the development of geothermal energy. The latest poll was designed to: measure public opinion in the County of Hawaii relevant to geothermal development for electrical power supplied to Island of Hawaii residents only; measure public opinion in the County of Hawaii relevant to geothermal development of electricity to be exported for use on Oahu; and identify barriers to, and opportunities for energy conservation programs, including geothermal development. In general, the residents of the County of Hawaii favor some form of geothermal development. Issues on geothermal development of concern to the public were similar to those mentioned in the 1982 study. Basically, the issues amount to a trade-off between the economic advantages and the environmental problems of geothermal development. The strong points in favor of development include a perceived need for more energy, a strong preference for alternate energy forms over petroleum, perceived benefits for the local economy and the employment rates, and the possibility that development may reduce or contain utility bills. On the other hand, it appears that geothermal development will cause health problems for those who live near the wells, be hazardous to flora and fauna in the Puna area, and create noise and odor above tolerable levels. These are oversimplified statements of the reasons behind both support and opposition for geothermal development.

  11. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    SciTech Connect

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  12. Biochemical processes for geothermal brine treatment

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  13. UMTRA Project environmental, health, and safety plan

    SciTech Connect

    Not Available

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs.

  14. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  15. Geothermal: Energy for development - The World Bank and geothermal development

    SciTech Connect

    Bertelsmeier, W.

    1986-01-01

    The World Bank views geothermal energy as one of a variety of natural resources which can be developed to supply the energy needs of a country. Since the World Bank Group finances projects in developing countries. This paper discusses geothermal energy only in that context. Geothermal power is generated in nine developing countries today, which represent nearly 40% of worldwide geothermal generating capacity. The World Bank has helped finance geothermal investments in six of these countries-the Phillippines, Mexico, El Salvador, Nicaragua, Indonesia and Kenya.

  16. NPOESS Preparatory Project (NPP) Environmental Products

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Hughes, R.; Andreas, N. S.

    2010-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization is responsible for the algorithms that produce the EDRs, including their quality aspects. Given a launch date for the NPP spacecraft on the near horizon and the need for users to become familiar with NPP environmental products, this paper will provide an overview of all the products generated by the IDPS and provided to NOAA’s Comprehensive Large Array-data Stewardship System (CLASS) for public distribution. It will discuss each of the 25 NPP EDRs in detail, including a description of the EDR, its size, coverage, measurement range, and expected uses.

  17. Geothermal development plan: Graham-Greenlee counties

    SciTech Connect

    White, D.H.

    1981-01-01

    Geothermal potential in Graham and Greenlee counties both of which contain significant quantities of geothermal energy that could be used for industrial, agricultural or residential use, is described. Projections are made of geothermal heat on line under both private and city-owned utility development. Potential users of geothermal energy, however, are limited since this area is sparsely populated and lacks an industrial base. Only a couple of industries were identified which could use geothermal energy for their process heat needs.

  18. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  19. Use of geothermal heat for sugar refining in Imperial County. Final report, Phase I

    SciTech Connect

    Not Available

    1980-12-01

    The objective of the three-phase Holly Sugar Geothermal Project was to replace fossil fuels with geothermal energy for sugar beet processing at the Holly Sugar plant located in Brawley, California, in a technically straightforward, economically sound and environmentally acceptable manner. The first phase of the project, discussed in this final report, encompassed the design and analysis of a geothermal industrial heat system for Holly Sugar and addresses: (1) assessment of the geothermal resource; (2) development of a preliminary system design; (3) analysis and publication of an environmental analysis and monitoring report; (4) preliminary economic analyses; (5) dissemination of project related information; and (6) the development of a proposal for the follow-on phases.

  20. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  1. Enhanced Geothermal Systems Project Development Solicitation - Final Report - 09/30/2000 - 02/01/2001

    SciTech Connect

    Nielson, Dennis L.

    2001-05-07

    The Enhanced Geothermal System concept is to develop the technology required to extract energy from the reduced permeability zones that underlie all high-temperature geothermal systems. Our concept is that injection wells will be drilled into the high temperature zone. The wells will identify fractures that are only poorly connected to the overlying reservoir. Water injected into these fractures will cause them to propagate through thermal contraction, increase in hydrostatic pressure, and reduction of effective stress. The fractures will connect with the overlying normal temperature reservoir, and steam will be produced from existing production wells. The injection water will generate high thermal quality steam while mitigating problems relating to high gas and chloride.

  2. Final rapid reactivation project environmental assessment

    SciTech Connect

    1999-02-10

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) for the Rapid Reactivation Project at Sandia National Laboratories, New Mexico. The EA analyzes the potential effects of a proposal to increase production of neutron generators from the current capability of 600 units per year up to 2,000 units per year. The project would use existing buildings and infrastructure to the maximum extent possible to meet the additional production needs. The increased production levels would necessitate modifications and additions involving a total area of approximately 26,290 gross square feet at Sandia National Laboratories, New Mexico, Technical Area 1. Additional production equipment would be procured and installed. The no-action alternative would be to continue production activities at the current capability of 600 units per year. The EA analyzes effects on health, safety, and air quality, resulting from construction and operation and associated cumulative effects. A detailed description of the proposed action and its environmental consequences is presented in the EA.

  3. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    SciTech Connect

    Longyear, A.B.

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  4. Bangladesh Agro-Climatic Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.

    1988-01-01

    The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.

  5. Cost Analysis of Environmental Control Systems applicable to Geothermal Energy Development

    SciTech Connect

    1982-08-01

    This report provides an engineering performance and cost correlations from which user could estimate costs of mitigating principal emissions from geothermal power systems. Hydrogen sulfide abatement describes four processes; Iron catalyst, Stretford, EIC, and Dow oxygenation process. Wastewater treatments include: Chemical precipitation, Evaporation ponds, Injection without pretreatment, and Injection with pretreatment. Process and cost estimates are given for Best Case, Most Probable Case, and Worst Case 50 MWe power plant. The cases may be confusing since the worst case has the lowest resource temperature, but the highest loads to mitigate. (DJE 2005)

  6. Geothermal power generation in United States

    NASA Astrophysics Data System (ADS)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  7. Physico-chemical and environmental controls on siliceous sinter formation at the high-altitude El Tatio geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Nicolau, Constanza; Reich, Martin; Lynne, Bridget

    2014-08-01

    El Tatio geothermal field is located 4270 m above sea level in the Altiplano, northern Chile. Siliceous sinter deposits from El Tatio were studied to understand the influence of water chemistry and the extreme climatic conditions on their textures and mineralogy. The results of this study show that the mineralogy of El Tatio sinters include of opal-A and accessory minerals, such as halite, gypsum and cahnite (Ca4B2As2O12•4H2O), which precipitate by full evaporation of high arsenic, boron and calcium thermal waters. El Tatio sinters show a high degree of structural disorder, probably linked to cation incorporation into the silica structure and/or the occurrence of micro- to nano-scale accessory minerals. The high content of cations in the thermal waters is strongly tied to relatively high silica precipitation rates considering silica concentration in water (147-285 mg/l SiO2). Precipitation rate reach 2.5 kg/m2 per year based on in situ precipitation experiments. The particular environmental conditions of this high-altitude geothermal area that produce high water cooling rate and high evaporation rate, may also be responsible for the fast silica precipitation. Low environmental temperatures create freezing-related sinter textures (i.e., silica platelets and micro columns/ridges). Silicified microbial filaments are also characteristic of El Tatio sinters, and they are indicative of water temperature and hydrodynamic conditions at the moment of sinter formation. However, sinter textural interpretation in a high-altitude Andean context must be done carefully as specific relationships between microbial and hydrodynamic textures are found.

  8. Comprehensive planning for the development of geothermal energy in Las Cruces and Dona Ana County, New Mexico. Final report, January 1-December 3, 1980

    SciTech Connect

    Starkey, A.H.; Gebhard, T.G.

    1981-03-01

    The key commercialization projects components are described: creation of a charter, a policy committee, use of technical expertise, the staff role and the formed adoption of policy recommendations, and their interrelationships. A technical state-of-the-art report for geothermal resources in Dona Ana County is presented including a geothermal evaluation and an environmental impact assessment. (MHR)

  9. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  10. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  11. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions.

    PubMed

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-07-17

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound's western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 "seed-community" split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community's receptiveness towards immigrants, were the key qualities that ensured the GMMC's sustenance amidst habitat degradation and dispersal to discrete environments.

  12. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions

    PubMed Central

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-01-01

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound’s western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 “seed-community” split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community’s receptiveness towards immigrants, were the key qualities that ensured the GMMC’s sustenance amidst habitat degradation and dispersal to discrete environments. PMID:26184838

  13. Public Scholarship Student Projects for Introductory Environmental Courses

    ERIC Educational Resources Information Center

    Baum, Seth D.; Aman, Destiny D.; Israel, Andrei L.

    2012-01-01

    This paper presents a model project for introductory undergraduate courses that develops students as citizens contributing scholarship to public discussions of environmental issues. In this field-based project, students actively and independently engage with an environmental issue and present their project experience to a relevant public forum. In…

  14. Public Scholarship Student Projects for Introductory Environmental Courses

    ERIC Educational Resources Information Center

    Baum, Seth D.; Aman, Destiny D.; Israel, Andrei L.

    2012-01-01

    This paper presents a model project for introductory undergraduate courses that develops students as citizens contributing scholarship to public discussions of environmental issues. In this field-based project, students actively and independently engage with an environmental issue and present their project experience to a relevant public forum. In…

  15. Geothermal energy survey and technology

    NASA Astrophysics Data System (ADS)

    This is an FY-1990 Annual Report on 'geothermal energy survey and technology' by New Energy and Industrial Technology Development Organization (NEDO). First, concerning geothermal resources exploration project in which surveys have been executed throughout Japan since 1980, outlines of surveys in 1990 and objectives for FY-1992 are summarized. As for surveys for promoting development of geothermal energy, surveys in 8 areas conducted for three years from 1988 to 1990 as well as future plans are also described. Then, the verification investigation for geothermal survey technologies, which has been executed since 1980 for the purpose of establishing geothermal survey technologies to promote the development of geothermal resources in Japan, is introduced with outlines of surveys in 1990 and objectives for FY-1992. Furthermore, development conditions of power generation technologies utilizing geothermal energy such as binary-cycle power generation and hot dry rock power generation are described.

  16. Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report

    SciTech Connect

    Not Available

    1981-02-01

    The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

  17. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  18. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  19. Environmentally Preferable Coatings for Structural Steel Project

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  20. Geothermal aquaculture in Nevada

    SciTech Connect

    Birk, S.

    1987-06-01

    Work in geothermal aquaculture and vertically integrated agriculture is undertaken by Washoe Aquaculture Limited, Gourmet Prawnz Inc., General Managing Partners. This approach to agriculture is researched at the integrated Prototype Aquaculture Facility (IPAF) at Hobo Hot Springs, Nevada. The principal objective at the IPAF is to use geothermal aquifers to commercially raise food, plants, and ornamental fish. At the IPAF, the feasibility of geothermal aquaculture has been demonstrated. The company has implemented many demonstration projects, including the cultivation of freshwater prawns, native baitfish, exotic tropical species, and commercially important aquatic plants.

  1. Commission decision on the Northern California Power Agency's Application for Certification for Geothermal Project No. 2. Docket 79-AFC-2

    SciTech Connect

    Not Available

    1980-03-01

    The text of the Decision is presented in narrative form. Included are: findings on compliance with statutory site certification requirements, a discussion of the Joint Environmental Study and its significance in terms of the California Environmental Quality and National Environmental Policy Acts, a brief recapitulation of the procedural steps which occurred, and a summary of the evidentiary bases for this Decision. Also presented are topical discussions on the various human and natural environmental areas impacted by the project, as well as the technical, engineering, and other areas of concern affected by the project. These topical discussions summarize the basis for the Commission's ultimte Findings and Conclusions pertaining to each broad cetegory. (MHR)

  2. Geothermal Energy Technology: a current-awareness bulletin

    SciTech Connect

    Smith, L.B.

    1983-01-15

    This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

  3. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special

  4. Final environmental impact report. Part I. Pacific Gas and Electric Company Geysers Unit 16, Geothermal Power Plant, Lake County, California

    SciTech Connect

    Not Available

    1981-03-01

    The environmental analysis includes the following: geology, soils, hydrology, water quality, vegetation, wildlife, air resources, health and safety, noise, waste management, cultural resources, land use, aesthetics, socioeconomics, public services, transportation, and energy and material resources. Also included are: the project description, a summary of environmental consequences, and alternatives to the proposed action. (MHR)

  5. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  6. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  7. Pleasant Bayou geopressured/geothermal testing project, Brazoria County, Texas. Final report

    SciTech Connect

    Ortego, P.K.

    1985-07-01

    Phase II-B production testing of the Pleasant Bayou No. 2 well began September 22, 1982. The test plan was designed to evaluate the capabilities of the geopressured-geothermal reservoir during an extended flow period. Tests were conducted to determine reservoir areal extent; aquifer fluid properties; fluid property change with production; information on reservoir production drive mechanism; long-term scale and corrosion control methods; and disposal well operations. Operatinal aspects of geopressured-geothermal production were also evaluated. The test was discontinued prematurely in May 1983 because of a production tubing failure. Most of the production tubing was recovered from the well and cause of the failure was determined. Plans for recompletion of the well were prepared. However, the well was not recompleted because of funding constraints and/or program rescheduling. In March 1984, the Department of Energy, Nevada Operations Office (DOE/NV) directed that the site be placed in a standby-secured condition. In August 1984, the site was secured. Routine site maintenance and security was provided during the secured period.

  8. Hanford Environmental Dose Reconstruction Project. Monthly Technical Report, November 1987

    SciTech Connect

    Haerer, H. A.

    1987-11-01

    This monthly report for November 1987 summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP).

  9. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  10. Geothermal reservoir technology

    SciTech Connect

    Lippmann, M.J.

    1985-09-01

    A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

  11. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  12. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  13. Hanford Environmental Dose Reconstruction Project. Monthly report, November 1991

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  14. Hanford Environmental Dose Reconstruction Project. Monthly report, January 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  15. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  16. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  17. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  18. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  19. Environmental Impact Report, November 15, 1972. Indian Valley Colleges Project.

    ERIC Educational Resources Information Center

    Berg, Ernest H.; Fleming, Dale A.

    A study of the environmental impact of the construction of a second community college on a site adjacent to the City of Novato in Marin County, California, is presented. The five sections of the report are as follows: I. Project Description and Purpose: A. The Proposal; B. Purpose of the Project; C. Need for the Project; D. History of the Project;…

  20. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  1. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  2. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    SciTech Connect

    Harto, C. B.; Schroeder, J. N.; Horner, R. M.; Patton, T. L.; Durham, L. A.; Murphy, D. J.; Clark, C. E.

    2014-10-01

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  3. LAPA - a graphical analysis technique for prioritizing geothermal leasing activities on public lands

    SciTech Connect

    Yen, W.W.S.; Benson, W.H.

    1982-10-01

    This paper describes the development of a composite indicator for prioritizing geothermal leasing activities on public lands. LAPA utilizes fuzzy set software developed by the GRAD/SEEDIS projects at the Lawrence Berkeley Laboratory. It is an automated procedure which allows the analyst to use subjective categories to prioritize geothermal areas according to their unleased energy potential, the level of private response, and the potential for pre-lease environmental delays.

  4. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  5. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect

    Not Available

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  6. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  8. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  9. Characterization of the geothermal resource at Lackland AFB, San Antonio, Texas. Phase I report

    SciTech Connect

    Lawford, T.W.; Malone, C.R.; Allman, D.W.; Zeisloft, J.; Foley, D.

    1983-06-01

    The geothermal resource under Lackland Air Force Base (AFB), San Antonio, Texas was studied. It is the conclusion of the investigators that a geothermal well drilled at the site recommended by this study has a high probability of delivering geothermal fluids in sufficient quantity and at adequate temperatures to support a projected space and domestic hot water heating system. An exploratory production well location is recommended in the southwest sector of the base, based upon geologic conditions and the availability of sufficient open space to support the drilling operation. It is projected that a production well drilled at the recommended location would produce geothermal fluid of 130 to 145/sup 0/F at a rate of approximately 1000 gpm with reasonable fluid drawdowns. The Environmental Assessment for the drilling portion of the project has been completed, and no irreversible or irretrievable impacts are anticipated as a result of this drilling program. The permitting process is proceeding smoothly.

  10. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    PubMed

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mineralogical-chemical composition and environmental risk potential of pond sediments at the geothermal field of Los Azufres, Mexico

    NASA Astrophysics Data System (ADS)

    Birkle, P.; Merkel, B.

    2002-01-01

    Since 1982, estimated amounts of 9,400 t, 15,000 kg, 720 kg and 105 kg of Si, Fe, As and Cs respectively have accumulated at the bottom of 18 evaporation ponds as part of the geothermal production cycle at Los Azufres. This accumulation is caused by precipitation of brine solutes during the evaporation of 10% of the total pond water volume before its re-injection into the reservoir. Extraction experiments with pond precipitates and geochemical simulations with the PHREEQC program indicate the high solubility of most precipitates under natural environmental conditions. The comparisons with the primary brine composition indicate that less than 1% of most dissolved brine solutes, except for Co, Cu, Mn, Pb, Ag, Fe and Si, are accumulated at the pond bottom. Arsenic has maximum values of 160 mg/kg in the pond sediments, and Mo, Hg and Tl also exceed international environmental standards for contaminated soils. Elevated concentrations and the mobility potential of several metals and non-metals require the application of remediation techniques for the final disposal of the sediments in the future.

  12. Heber Geothermal Binary Demonstration Project. Final design availability assessment. Revision 1

    SciTech Connect

    Mulvihill, R.J.; Reny, D.A.; Geumlek, J.M.; Purohit, G.P.

    1983-02-01

    An availability assessment of the principal systems of the Heber Geothermal Power Plant has been carried out based on the final issue of the process descriptions, process flow diagrams, and the approved for design P and IDs prepared by Fluor Power Services, Inc. (FPS). The principal systems are those which contribute most to plant unavailability. The plant equivalent availability, considering forced and deferred corrective maintenance outages, was computed using a 91 state Markov model to represent the 29 principal system failure configurations and their significant combinations. The failure configurations and associated failure and repair rates were defined from system/subsystem availability assessments that were conducted using the availability assessments based on the EPRI GO methodology and availability block diagram models. The availability and unavailability ranking of the systems and major equipment is presented.

  13. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  14. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  15. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    SciTech Connect

    Beiswanger, Robert C.

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  16. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    SciTech Connect

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will

  17. Kalispell Maintenance Headquarters Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-01-01

    The facilities needed to maintain and repair Bonneville Power Administration (BPA's) electrical equipment in northwest Montana are currently in two locations: A maintenance headquarters at the Kalispell Substation, and a temporary leased facility south of Kalispell. The present situation is not efficient. There is not enough space to accommodate the equipment needed at each site, and coordination and communication between the two sites is difficult. Also, two sites means duplication of equipment and facilities. BPA needs a single, centralized facility that would efficiently accommodate all the area's maintenance activities and equipment. BPA proposes to build a maintenance headquarters facility consisting of 2 to 4 single-story buildings totaling about 35,000 square feet (office spaces and workshop areas); an open-ended vehicle storage building (carport style); a fenced-in storage year; a storage building for flammables, herbicides, and hazardous wastes; and a parking lot. The facility would require developing about 6 to 10 acres of land. Two sites are being considered for the proposed project (see the attached map for locations). This report is the environmental assessment of the two options.

  18. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  19. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  20. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  1. Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis.

    PubMed

    Burton, N P; Norris, P R

    2000-10-01

    DNA was extracted from water and sediment samples taken from acidic, geothermal pools on the Caribbean island of Montserrat. 16S rRNA genes were amplified by PCR, cloned, sequenced, and examined to indicate some of the organisms that might be significant components of the in situ microbiota. A clone bank representing the lowest temperature pool that was sampled (33 degrees C) was dominated by genes corresponding to two types of acidophiles: Acidiphilium-like mesophilic heterotrophs and thermotolerant Acidithiobacillus caldus. Three clone types with origins in low- and moderate- (48 degrees C) temperature pools corresponded to bacteria that could be involved in metabolism of sulfur compounds: the aerobic A. caldus and putative anaerobic, moderately thermophilic, sulfur-reducing bacteria (from an undescribed genus and from the Desulfurella group). A higher-temperature sample indicated the presence of a Ferroplasma-like organism, distinct from the other strains of these recently recognized acidophilic, iron-oxidizing members of the Euryarchaeota. Acidophilic Archaea from undescribed genera related to Sulfolobus and Acidianus were predicted to dominate the indigenous acidophilic archaeal population at the highest temperatures.

  2. Hanford Environmental Dose Reconstruction Project: Monthly technical report

    SciTech Connect

    Not Available

    1988-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The Department of Energy (DOE) funds the project and represents the interests of the federal government and the public. The organization for the project is outlined.

  3. Hanford Environmental Dose Reconstruction Project. Monthly report, June 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  4. China starts tapping rich geothermal resources

    NASA Astrophysics Data System (ADS)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  5. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Office of the Secretary Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft...: Notice of availability. SUMMARY: The draft environmental assessment for the East Hobble Creek Restoration Project is available for public review and comment. The assessment analyzes the anticipated environmental...

  6. Geothermal temperature gradient core drill, Santiam Pass

    SciTech Connect

    Not Available

    1989-01-01

    DOE is proposing to share in the cost of drilling a 3000-ft core hole to evaluate temperature gradients, subsurface geology and the geothermal potential of an area in the Cascade Mountains. The proposed core hole will be located in the Deschutes National Forest in Oregon, near Santiam Pass. The proposed action has been described in the Environmental Assessment (EA) for Geothermal Temperature Gradient Core Drill Santiam Pass Area (No. OR-050-9-51) prepared by the US Bureau of Land Management (BLM). DOE has determined that the BLM EA adequately addresses the impacts of the proposal and is hereby adopting the EA in partial fulfillment of its NEPA responsibilities. Based upon a review of the EA and an independent analysis, DOE has concluded that the proposed corehole drilling project does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement will not be prepared.

  7. Modern geothermal power: GeoPP with geothermal steam turbines

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  8. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  9. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  10. South Carolina Course Alignment Project: Environmental Scan

    ERIC Educational Resources Information Center

    Educational Policy Improvement Center (NJ1), 2007

    2007-01-01

    An "environmental scan" is designed to identify key issues of policy and practice in an area of interest so that action can be taken. By definition, an environmental scan focuses upon areas of concern. However, the results of an environmental scan are not designed to be either an indictment or endorsement of the current way of doing…

  11. Richland Environmental Restoration Project management action process document

    SciTech Connect

    1996-04-01

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

  12. Fernald Environmental Management Project 1995 site environmental report summary

    SciTech Connect

    1996-06-01

    This report summarizes the 1995 Site Environmental Report for the Fernald site. It describes the Fernald site mission, exposure pathways, and environmental standards and guidelines. An overview is presented of the impact these activities have on the local environment and public health. Environmental monitoring activities measure and estimate the amount of radioactive and nonradioactive materials that may leave the site and enter the surrounding environment.

  13. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmental pathways and dose estimates.

  14. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmental pathways and dose estimates.

  15. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  16. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  17. The Field Project as a Tool for Teaching Environmental Psychology.

    ERIC Educational Resources Information Center

    Howells, Gary N.

    1978-01-01

    Describes a university class project designed to enable students to translate environmental research into action. Students focused on a conflict between state and county government over solid waste management. Outlines steps involved in such a project and discusses student involvement and the success of the project. (KC)

  18. National Geothermal Data System

    NASA Astrophysics Data System (ADS)

    Anderson, A. F.; Cuyler, D.; Snyder, W. S.; Allison, M. L.; Blackwell, D. D.; Williams, C. F.

    2011-12-01

    The goal of the U.S. Department of Energy's National Geothermal Data System is to design, build, implement, deploy and populate a national, sustainable, distributed, interoperable network of data and service (application) providers. These providers will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral component of NGDS. As a result the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. Five separate NGDS projects provide the data support, acquisition, and access to cyber infrastructure necessary to reduce cost and risk of the nation's geothermal energy strategy and US DOE program goals focused on the production and utilization of geothermal energy. The U.S DOE Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program is developing the knowledge and data foundation necessary for discovery and development of large-scale energy production while the Buildings Technology Program is focused on other practical applications such as direct use and residential/commercial ground source heat pumps. The NGDS provides expanded reference and resource data for research and development activities (a subset of the US DOE goals) and includes data from across all fifty states and the nation's leading academic geothermal centers. Thus, the project incorporates not only high-temperature potential but also moderate and low-temperature locations incorporating US DOE's goal of adding more geothermal electricity to the grid. The program, through its development of data integration cyberinfrastructure, will help lead to innovative exploration technologies through increased data availability on geothermal energy capacity. Finally

  19. Baca geothermal demonstration project baseline ecosystem studies of cooling tower emission effects

    SciTech Connect

    Leitner, P.; Osterling, R.; Price, D.; Westermeier, J.

    1981-03-01

    Results of baseline studies for boron, arsenic, mercury, and fluorine in vegetation and soil near the Baca Geothermal Demonstration Power Plant are provided for the 1980 sampling season. Preliminary results of visual vegetation assessments and population density studies of soil invertebrate fauna are also provided. Foliage samples were collected for chemical analysis on a total of 17 plots on 5 transects. Two to five plant species were sampled at each plot. Samples were collected in June-July and September. Soil samples were collected at each plot during September. Visual vegetation inspections were conducted along each transect. Eighty-eight soil samples were collected for soil invertebrate studies. Boron, arsenic, mercury, and fluorine levels in vegetation were within normal range for natural vegetation and crops. Concentrations of soil arsenic and mercury were comparable to foliage concentrations. Boron concentrations were lower in soil than in foliage, whereas soil fluorine concentrations were considerably higher than foliage concentrations. With the exception of heavy insect infestations in June-July, no vegetation abnormalities were noted. Preliminary soil invertebrate analysis indicated an overall arthropod density of approximately 100,000/m/sup 2/ which appears within the normal range encountered in forest and meadow soil.

  20. Silica Extraction at the Mammoth Lakes Geothermal Site

    SciTech Connect

    Bourcier, W; Ralph, W; Johnson, M; Bruton, C; Gutierrez, P

    2006-06-07

    The purpose of this project is to develop a cost-effective method to extract marketable silica (SiO{sub 2}) from fluids at the Mammoth Lakes, California geothermal power plant. Marketable silica provides an additional revenue source for the geothermal power industry and therefore lowers the costs of geothermal power production. The use of this type of ''solution mining'' to extract resources from geothermal fluids eliminates the need for acquiring these resources through energy intensive and environmentally damaging mining technologies. We have demonstrated that both precipitated and colloidal silica can be produced from the geothermal fluids at Mammoth Lakes by first concentrating the silica to over 600 ppm using reverse osmosis (RO). The RO permeate can be used in evaporative cooling at the plant; the RO concentrate is used for silica and potentially other (Li, Cs, Rb) resource extraction. Preliminary results suggest that silica recovery at Mammoth Lakes could reduce the cost of geothermal electricity production by 1.0 cents/kWh.

  1. Environmental assessment: geothermal energy geopressure subprogram. DOE Sweet Lake No. 1, Cameron Parish, Louisiana

    SciTech Connect

    Not Available

    1980-02-01

    The following are described: the proposed action; existing environment; probable impacts, direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, and local agencies; and alternatives. (MHR)

  2. Mars Exploration Rover (MER) Project Environmental Assurance Program

    NASA Astrophysics Data System (ADS)

    Man, Kin F.; Farguson, Christine T.; Hoffman, Alan R.

    2004-08-01

    A comprehensive prelaunch environmental assurance program was planned and implemented on NASA's Mars Exploration Rover (MER) project. This project consisted of two rovers/spacecraft launched on two separate launch vehicles. The environmental assurance program included assembly/subsystem and system-level testing in the areas of dynamics, thermal, and electromagnetic (EMC), as well as venting/pressure, dust, radiation, and micrometeoroid analyses. Due to the Martian diurnal cycles, the susceptible hardware also underwent thermal cycling qualification of their packaging designs and manufacturing processes. This paper presents a comprehensive summary of the environmental assurance program for the MER project. A series of test and analysis metrics are generated. Selections of the numerous lessons that have been learned from implementation of the MER environmental assurance program are documented in this paper. They include both technical and programmatic lessons that would be helpful in improving implementation of the environmental program for future projects.

  3. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect

    1996-06-01

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  4. Geothermal resource areas database for monitoring the progress of development in the United States

    SciTech Connect

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  5. Geothermal resource areas database for monitoring the progress of development in the United States

    NASA Astrophysics Data System (ADS)

    Lawrence, J. D.; Lepman, S. R.; Leung, K. N.; Phillips, S. L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described as well as the structure of the database.

  6. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  7. Final report Hanford environmental compliance project 89-D-172

    SciTech Connect

    Kelly, J.R.

    1996-02-08

    The Hanford Environmental Compliance (HEC) Project is unique in that it consisted of 14 subprojects which varied in project scope and were funded from more that one program. This report describes the HEC Project from inception to completion and the scope, schedule, and cost of the individual subprojects. Also provided are the individual subproject Cost closing statements and Project completion reports accompanied by construction photographs and illustrations.

  8. Direct use of the geothermal energy at Los Azufres geothermal field, Mexico

    SciTech Connect

    Sanchez-Velasco, E.; Casimiro-Espinoza, E.

    1995-12-31

    The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico, CFE has designed a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct use of geothermal energy is an attractive feasible and economical project. The object of this paper is to present the CFE experiences in different pilot projects applied to direct uses of geothermal energy.

  9. Resource Guide, Wisconsin Environmental Education Inservice Project.

    ERIC Educational Resources Information Center

    Wisconsin State Univ., Superior.

    This interdisciplinary environmental education resource guide is designed for use in the inservice preparation of teachers in environmental education. The guide is developed around nine components: (1) perceptual awareness, (2) conceptual awareness, (3) the phenomena of the natural environment, (4) the phenomena of the man-made environment, (5)…

  10. Washington: a guide to geothermal energy development

    SciTech Connect

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  11. Overview of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described.

  12. Overview of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described.

  13. Governmental policies of the County of Lassen toward the utilization of geothermal resources

    SciTech Connect

    Totten, M.A.

    1981-05-01

    The interim geothermal policy adopted is presented. The environmental impacts of the Honey Lake hybrid geothermal power plant are discussed. A partial listing of the governmental organizations which must have input into geothermal decisions is given.

  14. Using a coupled hydro-mechanical fault model to better understand the risk of induced seismicity in deep geothermal projects

    NASA Astrophysics Data System (ADS)

    Abe, Steffen; Krieger, Lars; Deckert, Hagen

    2017-04-01

    The changes of fluid pressures related to the injection of fluids into the deep underground, for example during geothermal energy production, can potentially reactivate faults and thus cause induced seismic events. Therefore, an important aspect in the planning and operation of such projects, in particular in densely populated regions such as the Upper Rhine Graben in Germany, is the estimation and mitigation of the induced seismic risk. The occurrence of induced seismicity depends on a combination of hydraulic properties of the underground, mechanical and geometric parameters of the fault, and the fluid injection regime. In this study we are therefore employing a numerical model to investigate the impact of fluid pressure changes on the dynamics of the faults and the resulting seismicity. The approach combines a model of the fluid flow around a geothermal well based on a 3D finite difference discretisation of the Darcy-equation with a 2D block-slider model of a fault. The models are coupled so that the evolving pore pressure at the relevant locations of the hydraulic model is taken into account in the calculation of the stick-slip dynamics of the fault model. Our modelling approach uses two subsequent modelling steps. Initially, the fault model is run by applying a fixed deformation rate for a given duration and without the influence of the hydraulic model in order to generate the background event statistics. Initial tests have shown that the response of the fault to hydraulic loading depends on the timing of the fluid injection relative to the seismic cycle of the fault. Therefore, multiple snapshots of the fault's stress- and displacement state are generated from the fault model. In a second step, these snapshots are then used as initial conditions in a set of coupled hydro-mechanical model runs including the effects of the fluid injection. This set of models is then compared with the background event statistics to evaluate the change in the probability of

  15. The Iceland Deep Drilling Project: (III) Evidence for amphibolite grade contact metamorphism in an active geothermal system

    NASA Astrophysics Data System (ADS)

    Marks, N.; Schiffman, P.; Zierenberg, R. A.; Franzson, H.

    2008-12-01

    One of the scientific goals of the Iceland Deep Drilling Project is to reach the depths of transition from greenschist to amphibolite grade metamorphism in an active geothermal system. The deepest borehole to date in the Reykjanes system is RN-17, which was drilled to a depth of 3082 m. This well had been considered as a candidate for deepening by the IDDP until it collapsed during a flow test in November 2005. Temperatures in the lower portion of the borehole were never recorded due to an obstruction at 2100 m depth, but are estimated to be approximately 340°C. Epidote, albite, and actinolite are ubiquitous within pillow basalt, hyaloclastite, and in veins, implying that greenschist grade conditions have been attained throughout much of the well below approximately 1200 m. Intrusive lithologies constitute approximately 50% of the observed cuttings between 2600 and 2700 m. These intrusive rocks have produced small, but recognizable contact metamorphic effects characterized by granoblastic hornfels consisting of amphibolite grade assemblages of quartz + anorthite + diopside + magnetite + titanite. These have, in turn, been locally cut by actinolite veins, presumably reflective of the present-day, thermal state of the hydrothermal system at these depths. Based on their siliceous bulk composition, we believe the hornfels represent the thermally- recrystallized products of earlier-formed, hydrothermal veins consisting of quartz, epidote, and actinolite. The metamorphic plagioclase is distinctly more anorthitic (An90 to An98) than igneous plagioclase in adjacent mafic intrusives (An33 to An80) and also exhibits consistently lower Mg content and higher iron (up to 2.07 wt.% as Fe2O3). Stoichiometry implies that much of the iron in hydrothermal anorthite is Fe3+, which may imply recrystallization from precursor epidote under relatively oxidizing conditions. Diopside compositions (average Wo0.48En0.27Fs0.25) are consistently less calcic than hydrothermal clinopyroxenes

  16. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  17. The Philippines geothermal success story

    NASA Astrophysics Data System (ADS)

    Birsic, R. J.

    1980-09-01

    Geothermal electrical plants currently in operation in the Philippines are presented. Following a brief review of the geographical and energy situation of the nation, attention is given to the first 55,000-kW unit of the Tiwi Geothermal Electric Plant, which commenced operation in January 1979, the portable 3,000-kE Leyte Geothermal Pilot Plant, which commenced operation in July, 1977 as the first geothermal power plant in the country, the Makiling-Banahaw (Mak-Ban) Geothermal Power Plant, the first 55,000-kW unit of which began operation in May, 1979 and the second 55,000-kW unit of the Tiwi plant, which came into service in June, 1979, thus making the Philippines the fourth largest producer of geothermal electricity in the world. Factors favoring the use of geothermal plants in developing nations are pointed out, including low capital costs, no foreign exchange costs for fuel, small units, and little environmental impact, and the start-up of two more plants, the second 55,000-kW unit at Mak-Ban in September 1979 and the third Tiwi unit in January 1980, are noted. It is predicted that in 1981, when the Philippines is expected to become the largest user of geothermal energy from hot-water fields, it will have a total capacity of 552 MW from the Mak-Ban, Tiwi and Leyte sites. Further areas with geothermal potential are also pointed out.

  18. Computers in geothermal energy

    SciTech Connect

    Pettinger, F.E.

    1984-10-01

    This article describes a data base and file management system for the IBM/PC, and gives a general idea of how the Power Base (PB) system might be applied to the running of a typical geothermal business. Requirements for running PB are a monitor, at least 256K, and two double-sided disk drives or a single drive and a hard disk. The relational data base created by PB is organized in filing card type records that are composed of fields. When a file is created, it can be designed according to a company's specific requirements and can allow changes in the layout at any time. Geothermal businesses can use this software package for shipping and client invoice tracking, most billing functions, inventory calculations and mailing data bases. Geothermal project planners might find PB's project tracking aspect useful.

  19. Federal assistance program. Geothermal technology transfer. Project status report, May 1986

    SciTech Connect

    Lienau, P.J.; Culver, G.

    1986-05-01

    Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

  20. Criticality accident alarm system at the Fernald Environmental Management Project

    SciTech Connect

    Marble, R.C.; Brown, T.D.; Wooldridge, J.C.

    1994-12-31

    This paper describes the staus of the Fernald Environmental Management Project (FEMP) criticality alarm system. A new radiation detection alarm system was installed in 1990. The anunciation system, calibration and maintenance, and detector placement is described.

  1. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  2. The Iceland Deep Drilling Project, a 5 km Deep Drillhole Underway to Investigate Deep Geothermal Resources on the Mid-Atlantic Ridge.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Pope, E. C.; Freedman, A. J.; Schiffmann, P.; Zierenberg, R. A.; Reed, M. H.; Palandri, J.

    2005-12-01

    The Iceland Deep Drilling Project (IDDP) is a long-term study of high-temperature hydrothermal systems on the Reykjanes Peninsula, where the Mid-Atlantic Ridge emerges on to the SW tip of Iceland. The IDDP is a collaborative effort, by a consortium of Icelandic power companies and the Icelandic government, to investigate if utilizing supercritical geothermal fluids would improve the economics of power production from geothermal fields. Over the next decade this will involve drilling a series of wells >4 km deep, to reach temperatures ~450°C. The deepest of these wells so far was completed at 3.1 km in February 2005. The rocks penetrated consist of Holocene basaltic lavas, subglacial hyaloclastites, marine sediments, submarine pillow basalts, and diabase dikes. In 2006, the IDDP will rotary drill and spot core this, or another candidate well, to 4.0 km, and in 2007, the IDDP will deepen the borehole from 4.0 km to 5.0 km, using continuous wireline coring. Such deep, hot wells present both technical challenges and opportunities for important scientific studies. For example, preliminary analyses of rock samples and fluids from the existing geothermal wells indicate that the shallow geothermal system is complex, as indicated by paragenetic relations and strong compositional zoning in calc-silicate minerals, such as epidote. Calculation of local equilibria between calc-silicates and calcite suggests that the CO2 content of the geothermal fluids increased during the evolution of this geothermal system. Zoned hydrothermal amphiboles at 3.1 km depth include tschermakitic hornblende (~13 wt. % Al2O3), suggesting temperatures in the upper 300°C range. Similarly, analyses of hydrogen isotopic ratios of epidotes and amphiboles currently underway indicate that meteoric water has mixed with seawater during the evolution of the Reykjanes geothermal system. The Reykjanes Peninsula is a superb location for scientific investigations of the deeper levels of a high enthalpy

  3. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  4. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  5. Environmental Studies in Several Science Courses. Project Reports, Volume 4, The Rachel Carson Project.

    ERIC Educational Resources Information Center

    Tanner, R. Thomas

    This document is the fourth of seven accompanying volumes included in the Rachel Carson Project. The project attempts to introduce environmental education lessons and units into existing courses of study within a high school curriculum rather than to implement environmental education through the introduction of new courses. This volume reports the…

  6. Environmental Studies: Five Miscellaneous Reports. Project Reports, Volume 7, The Rachel Carson Project.

    ERIC Educational Resources Information Center

    Tanner, R. Thomas

    This document is the last of seven volumes included in the Rachel Carson Project. The project attempts to introduce environmental education lessons and units into existing courses of study within a high school curriculum rather than to implement environmental education through the introduction of new courses. Included in this volume is a report…

  7. Environmental Studies in the Physical Sciences. Project Reports, Volume 3, The Rachel Carson Project.

    ERIC Educational Resources Information Center

    Tanner, R. Thomas

    This document is the third of seven accompanying volumes included in the Rachel Carson Project. The project attempts to introduce environmental education lessons and units into existing courses of study within a high school rather than to implement environmental education through the introduction of new courses. This volume reports the…

  8. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  9. Environmental Technology (Laboratory Analysis and Environmental Sampling) Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Hinojosa, Oscar V.; Guillen, Alfonso

    A project assessed the need and developed a curriculum for environmental technology (laboratory analysis and environmental sampling) in the emerging high technology centered around environmental safety and health in Texas. Initial data were collected through interviews by telephone and in person and through onsite visits. Additional data was…

  10. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect

    Erkelens, Conrad

    1994-03-01

    . Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  11. Environmental Justice Small Grants Program Project Descriptions for 2009

    EPA Pesticide Factsheets

    Project Descriptions for the 2009 award recipients of the Environmental Justice Small Grants Program which is designed to assist recipients in building collaborative partnerships that will help them understand and address the environmental and/or public health issues in their communities.

  12. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  13. A Year-Long Environmental Project for Primary Grades.

    ERIC Educational Resources Information Center

    Abrahamson, Gloria

    Increasing the opportunities for young children to become perceptive of the environment around them is the goal of a year-long environmental project for primary grade students described in this booklet. An environmental encounter approach is adopted, focusing all of one's senses on the particular environment he is experiencing at the moment,…

  14. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  15. Environmental Justice Small Grants Program Project Descriptions for 2007

    EPA Pesticide Factsheets

    Project Descriptions for the 2007 award recipients of the Environmental Justice Small Grants Program which is designed to assist recipients in building collaborative partnerships that will help them understand and address the environmental and/or public health issues in their communities.

  16. The Project-Based Learning Approach in Environmental Education

    ERIC Educational Resources Information Center

    Genc, Murat

    2015-01-01

    The purpose of this study is to investigate the effect of project-based learning on students' attitudes toward the environment. In the study that was performed with 39 students who take the "Environmental Education" course, attitude changes toward the environment were investigated in students who developed projects on environmental…

  17. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  18. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  19. The Project-Based Learning Approach in Environmental Education

    ERIC Educational Resources Information Center

    Genc, Murat

    2015-01-01

    The purpose of this study is to investigate the effect of project-based learning on students' attitudes toward the environment. In the study that was performed with 39 students who take the "Environmental Education" course, attitude changes toward the environment were investigated in students who developed projects on environmental…

  20. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  1. Trade-off analysis for environmental projects: An annotated bibliography

    SciTech Connect

    Feather, T.D.; Harrington, K.W.; Capan, D.T.

    1995-08-01

    This is a report with an attached annotated bibliography. This study explores the literature for analytical techniques that can support the complex decision-making process associated with Corps of Engineers environmental projects. The literature review focuses on opportunities for using trade-off methodologies and group processes in environmental plan formulation and evaluation. The work was conducted under the Evaluation Framework Work Unit within the Evaluation of Environmental Investments Research Program.

  2. The Iceland Deep Drilling Project (IDDP): Deep Fluid Sampling in Fractured Quartz, Reykjanes Geothermal System, Iceland

    NASA Astrophysics Data System (ADS)

    Seward, R. J.; Reed, M. H.; Grist, H. R.; Fridriksson, T.; Danielsen, P.; Thorhallsson, S.; Elders, W. A.; Fridleifsson, G. O.

    2011-12-01

    In July of 2011 a fluid inclusion tool (FIT) was deployed in well RN-17b of the Reykjanes geothermal system, Iceland, with the goal of sampling fluids in situ at the deepest feed point in the well. The tool consists of a perforated stainless steel pipe containing eight stainless steel mesh canisters, each loaded with 10mm-scale blocks of thermally fractured quartz. Except for one control canister, in each canister the fractured quartz blocks were surrounded by a different grain size of SiO¬2 glass that ranged in size from 10μm-scale glass wool to cm-scale glass shards. The FIT was left in the well on a wireline at a depth of 2768m and retrieved after three weeks. The fluid at 2768m depth is known from November 2010 well logs to have a temperature of about 330°C and pressure of 170 bars, a pressure ~40 bar too high for boiling at that temperature. After retrieval, quartz in all of the canisters contained liquid-dominated fluid inclusions, but their quantity and size differed by canister. Groups of inclusions occur in healed fractures and both healed and open fracture surfaces are visible within single quartz blocks. Measurements on a heating and cooling stage yield approximant inclusion homogenization temperatures of 332°C and freezing points of -2.0°C. These measurements and a pressure of 170 bars yield trapping temperatures of 335°C and a NaCl weight percent of 3.4, both of which match known values, thus verifying that the device trapped fluids as intended. In upcoming studies, these fluids will be analyzed using bulk methods and LA-ICP-MS on individual inclusions. The glass added to the quartz blocks in the canisters allowed the Reykjanes fluids to precipitate enough quartz to heal fractures and trap fluids despite the fluid undersaturation in quartz. Almost all of the glass that was added to the canisters, 27 to 66 grams in each (except glass wool), was consumed in the experiment. Remaining glass was in the non-mesh bottom caps of the canisters where fluid

  3. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  4. Direct utilization of a moderate temperature geothermal resource in agribusiness

    SciTech Connect

    Zeller, T.J.; Grams, W.H.; Howard, S.M.

    1980-09-01

    A demonstration project of the direct utilization of geothermal energy in a South Dakota agribusiness was undertaken. Off-the-shelf hardware was used in demonstrating that the technology was available today to develop geothermal energy resources. An existing artesian well into the Madison Formation having an energy resource of 67/sup 0/C and a flow rate of 655 liters per minute was developed into an energy for grain drying and space heating. The Diamond Ring Ranch structures and the wellhead are 2500 meters apart at the farthest point and the distribution of the highly corrosive, moderate temperature resource presented several unique problems. With the completion of the construction and the operation of the system through the first heating season, the direct utilization of geothermal resources is proving economically feasible and environmentally compatible. Compatible with the ranch operations.

  5. 75 FR 29359 - Draft Environmental Impact Statement for the Tamiami Trail Modifications: Next Steps Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... Project, Everglades National Park Tamiami Trail Modifications: Next Steps Project, Draft Environmental Impact Statement, Everglades National Park, Florida. The Notice of Intent (NOI) for this project referred... Environmental Impact Statement for the Tamiami Trail Modifications: Next Steps Project, Everglades National...

  6. The Environmental Management Project Manager`s Handbook for improved project definition

    SciTech Connect

    1995-02-01

    The United States Department of Energy (DOE) is committed to providing high quality products that satisfy customer needs and are the associated with this goal, DOE personnel must possess the knowledge, skills, and abilities to ensure successful job performance. In addition, there must be recognition that the greatest obstacle to proper project performance is inadequate project definition. Without strong project definition, DOE environmental management efforts are vulnerable to fragmented solutions, duplication of effort, and wastes resources. The primary means of ensuring environmental management projects meet cost and schedule milestones is through a structured and graded approach to project definition, which is the focus of this handbook.

  7. Project Canada West. Canadian Environmental Concepts.

    ERIC Educational Resources Information Center

    Western Curriculum Project on Canada Studies, Edmonton (Alberta).

    The overall objective of the curriculum development project is to develop a general high school level interdisciplinary course on environment studies. This potential five to ten month course is outlined as follows: ecology, water pollution, air pollution, noise pollution, population, socioeconomic implications, and resource management. The general…

  8. Managing environmental issues during international electric power project development

    SciTech Connect

    Cooper, H.W.

    1998-07-01

    Responsible international project developers most often view environmental matters with quite mixed emotions. Those with whom Dynalytics has worked would certainly never contemplate jeopardizing the health of anyone in the world. But while they want their projects realized, and are willing to implement reasonable requirements, they are often asked to do more than is appropriate, more than is technologically possible, and more than is financially possible. The paper discusses the following: who is in charge of environmental matters; whose environmental standards apply; the role of technology; accelerating timetables and reducing costs; documentation and applications; and post-construction requirements.

  9. Project W-314 phase I environmental permits and approvals plan

    SciTech Connect

    TOLLEFSON, K.S.

    1999-02-24

    This document describes the range of environmental actions, including required permits and other agency approvals, for Project W-314 activities in the Hanford Site's Tank Waste Remediation System. This document outlines alternative approaches to satisfying applicable environmental standards, and describes selected strategies for acquiring permits and other approvals needed for waste feed delivery to proceed. This document also includes estimated costs and schedule to obtain the required permits and approvals based on the selected strategy. It also provides estimated costs for environmental support during design and construction based on the preliminary project schedule provided.

  10. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  11. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  12. International environmental issues and requirements for new power projects

    SciTech Connect

    Newman, J.R.; Maltby, J.H.

    1997-12-31

    The purpose of this presentation was to discuss the emerging role of financial entities in determining environmental requirements for international power projects. The paper outlines the following: emerging conditions; examples of announced privatization energy projects by country; types of government and international financial entity sources; problems for IPPs; similarity and differences between the World Bank and the USEPA; comparison of the international standards and regulations for power plants; recent trends/issues involving international power project approval; and recommendations for understanding/expediting the financial entities` environmental approval process and how to expedite this process.

  13. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  14. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  15. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  16. Application of quality assurance standards to environmental projects

    SciTech Connect

    Richardson, T.L.; Lynch, J.E.; Chaudhary, T.B.

    1994-12-31

    Quality assurance (QA) is critical to every environmental project undertaken. While QA appears to be a cut-and-dried subject, it is actually an evolving issue. Environmental projects need high QA standards. The needs of the nuclear industry have driven most QA programs for the last several decades. Mom recently, the internationally accepted ISO-9000 standard, and the more recent E-4 standard (in draft), have been suggested as alternatives to achieving QA for environmental firms. These standards can be successfully integrated and implemented. However, this requires good up-front planning of the program`s purpose and function and commitments by management and staff to make it work. The purpose of this paper is to discuss how various QA standards can be appropriately applied to the demands of environmental projects.

  17. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  18. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  19. Induced seismicity risk assessment for the 2006 Basel, Switzerland, Enhanced Geothermal System (EGS) project: Role of parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud; Landtwing, Delano; Mena, Banu; Wiemer, Stefan

    2013-04-01

    A project to exploit the geothermal potential of the crystalline rocks below the city of Basel, Switzerland, was abandoned in recent years due to unacceptable risk associated to increased seismic activity during and following hydraulic stimulation. The largest induced earthquake (Mw = 3.2, 8 December 2006) was widely felt by the local population and provoked slight non-structural damage to buildings. Here we present a probabilistic risk assessment analysis for the 2006 Basel EGS project, including uncertainty linked to the following parameters: induced seismicity forecast model, maximum magnitude, intensity prediction equation, site amplification or not, vulnerability index and cost function. Uncertainty is implemented using a logic tree composed of a total of 324 branches. Exposure is defined from the Basel area building stock of Baisch et al. (2009) (SERIANEX study). We first generate deterministic loss curves, defined as the insured value loss (IVL) as a function of earthquake magnitude. We calibrate the vulnerability curves for low EMS-98 intensities (using the input parameters fixed in the SERIANEX study) such that we match the real loss value, which has been estimated to 3 million CHF (lower than the paid value) for the Mw = 3.2 event. Coupling the deterministic loss curves with seismic hazard curves using the short-term earthquake risk (STEER) method, we obtain site-specific probabilistic loss curves (PLC, i.e., probability of exceeding a given IVL) for the 79 settlements considered. We then integrate over the different PLCs to calculate the most probable IVL. Based on the proposed logic tree, we find considerable variations in the most probable IVL, with lower values for the 6-day injection period than for the first 6 days of the post-injection period. This difference is due to a b-value significantly lower in the second period than in the first one, yielding a higher likelihood of larger earthquakes in the post-injection phase. Based on tornado diagrams

  20. Strategic plan for the geothermal energy program

    SciTech Connect

    1998-06-01

    Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.